JP4871037B2 - Mass sensor for measuring instrument - Google Patents

Mass sensor for measuring instrument Download PDF

Info

Publication number
JP4871037B2
JP4871037B2 JP2006175103A JP2006175103A JP4871037B2 JP 4871037 B2 JP4871037 B2 JP 4871037B2 JP 2006175103 A JP2006175103 A JP 2006175103A JP 2006175103 A JP2006175103 A JP 2006175103A JP 4871037 B2 JP4871037 B2 JP 4871037B2
Authority
JP
Japan
Prior art keywords
pair
floating frame
fixing
mass sensor
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006175103A
Other languages
Japanese (ja)
Other versions
JP2008003031A (en
Inventor
直人 出雲
聡 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2006175103A priority Critical patent/JP4871037B2/en
Publication of JP2008003031A publication Critical patent/JP2008003031A/en
Application granted granted Critical
Publication of JP4871037B2 publication Critical patent/JP4871037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)

Description

この発明は、計量器用質量センサに関し、特に、ロバーバル機構を備えた計量器用質量センサにおいて、小型化と計量精度を同時に改善する技術に関するものである。   The present invention relates to a weighing sensor mass sensor, and more particularly to a technique for simultaneously improving the miniaturization and weighing accuracy in a weighing sensor mass sensor equipped with a robust mechanism.

質量を測定する計量器においては、例えば、1kgの質量を1mgまで測定できる感度を持たせるなど、その分解能が、百万分の1に達する製品が汎用機器として存在している。   In a measuring instrument that measures mass, for example, a product that has a resolution that can be reduced to 1 / 1,000,000, such as a sensitivity that can measure a mass of 1 kg up to 1 mg, exists as a general-purpose device.

過去にはこのような高分解能、高感度な天びんについては、十分な大きさを確保し、それなりの価格にて取引されていた。しかし、時代の要請から天びんも小形化が進み、現在では高分解能となる分析天びんでも質量センサ部を秤量室背後に設置した方式から、通常、トップローダーと呼ばれ質量センサから見ると、直上に計量皿を載せた構造が増加している。   In the past, such high-resolution, high-sensitivity balances have been secured at a sufficient size and at reasonable prices. However, the balance has been downsized due to the demands of the times, and even in analytical balances with high resolution nowadays, the mass sensor section is usually installed behind the weighing chamber. Structures with weighing pans are increasing.

トップローダー方式を含め天びんでは、皿上の四隅誤差を解消する為のロバーバル機構を有している。ロバーバル機構は、皿に加わる質量を荷重として受ける荷重部受け部(通称、浮き枠部と呼ばれている)と、四隅荷重により浮き枠部が受けるモーメント荷重を相殺し、浮き枠部に垂直荷重のみの変位を与えるための薄肉可動部を端面に2または3,4個所備えた、上下一対の板状部材(通称、副桿と呼ばれている)および、浮き枠部の受けた荷重を荷重検出用センサ部に伝達する吊りバンドなどが固定され、また、浮き枠部と、上下副桿を介して接続され、質量センサをケースに固定するための部材として機能する固定部(通称、フレームと呼ばれている)により構成される。   Balances including the top loader system have a Roverval mechanism to eliminate four corner errors on the pan. The Roverval mechanism offsets the load receiving part (commonly called the floating frame part) that receives the mass applied to the pan as a load, and the moment load received by the floating frame part due to four corner loads, and the vertical load on the floating frame part Loads received by a pair of upper and lower plate-like members (commonly referred to as secondary rods) and two or three or four thin-walled movable parts on the end face to give only displacement A suspension band or the like that transmits to the detection sensor unit is fixed, and a fixing unit (commonly called a frame) that is connected to the floating frame unit via upper and lower auxiliary hooks and functions as a member for fixing the mass sensor to the case. Called).

これらの部材には、高分解能を維持するための剛性と、また、質量検出の感度を上げるための軽量化という相反した設計要求があり、この矛盾した設計内容が、小形化・高精度化を阻害する要因となっている。   These members have conflicting design requirements such as rigidity to maintain high resolution and weight reduction to increase the sensitivity of mass detection, and this contradictory design content reduces size and increases accuracy. It is a factor that obstructs.

このような問題点の中で、特に高精度化を達成する為に、支点、吊りバンド、ロバーバル機構および天びんのサオ(通称、ビームと呼ばれている)などを一体のブロックから切削加工で形成したり、また、1対のブロックを放電加工の1種であるワイヤーカット加工にて連続的に切出す加工方法にて形成する提案がなされている。   Among these problems, in order to achieve particularly high accuracy, fulcrum, suspension band, Roverval mechanism and balance sao (commonly called beam) are formed by cutting from a single block. In addition, proposals have been made to form a pair of blocks by a machining method in which a block is continuously cut by wire cutting which is one type of electric discharge machining.

しかし、上記加工方法でのセンサ構造部の形成では、一体形のブロックの1方向のみからしか加工を加えられず、各部材を3次元立体的に組み込むことが不可能となり、各部材の設計上の最適位置への配置が困難となる問題があった。   However, in the formation of the sensor structure portion by the above processing method, processing can be applied only from one direction of the integrated block, and each member cannot be three-dimensionally incorporated. There is a problem that it is difficult to arrange the optimal position of the.

また、加工方法は、放電加工の1種となるワイヤーカット加工や、切削加工の1種となる高速フライスマシーンに限定され、いずれも長時間を必要とする加工となり、同時に加工機械が制限された結果、非常に高価なユニットとなる問題がある。   In addition, the machining method is limited to wire cut machining, which is one type of electric discharge machining, and high-speed milling machine, which is one type of cutting, both of which require a long time, and at the same time, the machining machine is limited. The result is a very expensive unit.

また、市場では、例えば、皿上過荷重によるセンサ部の破壊時に、全ユニット交換が必要になり、特に、ワイヤーカット加工では、加工方法の制限から、構成部材間の隙間が、ワイヤーの外径φ0.3mm程度と小さなくなり、悪環境での使用時には、粉塵などの侵入により短時間で故障が発生し、製品寿命が短くなる。
修理時には、センサ部の全交換が必要になるなど、ユーザーの負担が大きくなると言う問題があった。
In addition, in the market, for example, when the sensor unit is destroyed due to overload on the pan, it is necessary to replace all units.In particular, in wire cutting processing, the gap between components is limited by the outer diameter of the wire due to processing method limitations. It becomes as small as φ0.3mm, and when used in a bad environment, it will cause a failure in a short time due to the intrusion of dust, etc., and the product life will be shortened.
At the time of repair, there is a problem that the burden on the user increases, such as the need to completely replace the sensor unit.

一方、設計技術的には、限定されたセンサ寸法内で、ロバーバル機構の幅、奥行き、高さの3次元寸法を可能な限り大きく設計できれば、剛性が高くとれ、ロバーバル機構として優れた結果が得られが、このことに関しても、一体成形に関しては、ロバーバル構造の性能を決定する副桿が、フレームと浮き枠の内側に配置されると言う問題があった。   On the other hand, in terms of design technology, if the three-dimensional dimensions of the width, depth, and height of the Roverval mechanism can be designed as large as possible within the limited sensor dimensions, the rigidity can be increased and excellent results can be obtained as a Roverval mechanism. However, with respect to this as well, there is a problem that the auxiliary rod that determines the performance of the Roval structure is disposed inside the frame and the floating frame with respect to the integral molding.

上記問題点の解決の為、旧来の全部品を個別の部材に分離した方式と、上記全部品を一体化した方式の中間的方式が、特許文献1に開示されている。しかしながら、この特許文献に開示されている方式には、以下に説明する課題があった。   In order to solve the above problems, Patent Document 1 discloses an intermediate method between a method in which all conventional parts are separated into individual members and a method in which all the above parts are integrated. However, the method disclosed in this patent document has the following problems.

特開2000−283829号公報Japanese Patent Laid-Open No. 2000-282829

すなわち、特許文献1に開示されている技術では、各部材の最適位置への設定に関しては、立体空間の設計自由度に限界があり、最適設計には、十分に対応することができないという問題があった。   That is, in the technique disclosed in Patent Document 1, there is a problem in that the degree of freedom in design of the three-dimensional space is limited with respect to the setting of each member to the optimum position, and the optimum design cannot be sufficiently handled. there were.

また、特許文献1に開示されている技術では、対向配置される固定部と浮き枠部との対向する面間に副桿が一体に配置され、これらが一列状に配置されているので、連なった長手方向の自由度が制限され、例えば、副桿に設けられている薄肉部間のピッチが大きく取れないことから、ロバーバル構造の剛性が不十分になり、天びんとしての機能が十分に発揮できないという問題もあった。 本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、ロバーバル機構を構成する部材の最適位置への設定が可能になり、かつ、設計、製作時の自由度が改善され、集積度の向上と小型化が達成される計量器用質量センサを提供することにある。   Further, in the technique disclosed in Patent Document 1, since the auxiliary rods are integrally disposed between the opposed surfaces of the fixed portion and the floating frame portion that are opposed to each other, and these are arranged in a line, they are continuous. The degree of freedom in the longitudinal direction is limited, and for example, the pitch between the thin wall portions provided in the auxiliary bowl cannot be made large, so the rigidity of the Roverval structure becomes insufficient and the function as a balance cannot be fully exhibited. There was also a problem. The present invention has been made in view of such conventional problems. The object of the present invention is to enable setting of members constituting the Roverval mechanism to an optimum position, and to design and manufacture the invention. It is an object of the present invention to provide a mass sensor for a measuring instrument in which the degree of freedom in time is improved and the degree of integration is improved and the size is reduced.

上記目的を達成するために、本発明は、秤量皿上の偏置誤差を調整するロバーバル機構を備え、該ロバーバル機構が、浮き枠部と固定部および上下一対の副桿とで構成され、前記上下一対の副桿のうち上側の副桿は前記浮き枠部側の端縁近傍に一対の薄肉部を有する計量器用質量センサにおいて、前記一対の薄肉部の間には前記浮き枠部の挿入用貫通部が形成され、前記浮き枠部は、前記浮き枠部の挿入用貫通部から前記一対の薄肉部の間に突出するように形成され、該突出した部分に秤量皿の連結部材が固定されることを特徴とする。 In order to achieve the above object, the present invention is provided with a Rovalval mechanism that adjusts a deviation error on a weighing pan, and the Rovalval mechanism is composed of a floating frame portion, a fixing portion, and a pair of upper and lower auxiliary rods, Of the pair of upper and lower auxiliary rods, the upper auxiliary rod is a mass sensor for a measuring instrument having a pair of thin wall portions in the vicinity of the edge on the floating frame portion side, for inserting the floating frame portion between the pair of thin wall portions. A penetrating portion is formed, and the floating frame portion is formed so as to protrude from the insertion penetrating portion of the floating frame portion between the pair of thin-walled portions, and a connecting member of the weighing pan is fixed to the protruding portion. It is characterized by that.

また、請求項2の発明は請求項1において、前記浮き枠部の挿入用貫通部は、前記副桿に形成された貫通孔であることを特徴とする。According to a second aspect of the present invention, in the first aspect, the insertion penetrating portion of the floating frame portion is a through-hole formed in the auxiliary rod.

請求項3の発明は請求項1または2において、前記上側の副桿は前記固定部側の端縁近傍に一対の薄肉部を有し、該固定部側の一対の薄肉部の間には、前記固定部の挿入用貫通部が形成され、前記固定部は、前記固定部の挿入用貫通部から前記一対の薄肉部の間に突出するように形成され、該突出した部分がケースに固定されることを特徴とする。

The invention of claim 3 is the invention according to claim 1 or 2, wherein the upper auxiliary rod has a pair of thin portions in the vicinity of the edge on the fixed portion side, and between the pair of thin portions on the fixed portion side, An insertion penetrating portion of the fixing portion is formed, and the fixing portion is formed so as to protrude between the pair of thin portions from the insertion through portion of the fixing portion, and the protruding portion is fixed to the case. It is characterized by that.

請求項4の発明は請求項3において、前記固定部の挿入用貫通部は、前記固定部側が凹状に形成された副桿を前記固定部に固定することによって形成されることを特徴とする。According to a fourth aspect of the present invention, in the third aspect of the present invention, the insertion through portion of the fixing portion is formed by fixing an auxiliary hook having a concave shape on the fixing portion side to the fixing portion.

この構成によれば、皿中心と薄肉部とが近接ないしは隣接するので、ロバーバル機構による偏置荷重の保証点が皿中心となり、この結果、浮き枠部の四隅荷重による変位が小さくなり、計量誤差を低減させることができる。   According to this configuration, since the center of the dish and the thin part are close to or adjacent to each other, the guaranteed point of the eccentric load by the Roverval mechanism is the center of the dish. Can be reduced.

前記浮き枠部と固定部は、それぞれの上端部が上方の前記副桿の上面から上方に突出するように配置することができる。   The floating frame portion and the fixing portion can be arranged such that the upper end portions of the floating frame portion and the fixing portion protrude upward from the upper surface of the upper auxiliary hook.

この構成によれば、上下方向の自由度が増す。   According to this configuration, the degree of freedom in the vertical direction increases.

本発明にかかる計量器用質量センサによれば、ロバーバル機構を構成する部材の最適位置への設定が可能になり、かつ、設計、製作時の自由度が改善され、質量センサ部品の集積度の向上とセンサ全体の小型化が達成される。   According to the mass sensor for a measuring instrument according to the present invention, it is possible to set the member constituting the Roverval mechanism to the optimum position, and the degree of freedom in designing and manufacturing is improved, and the degree of integration of the mass sensor parts is improved. And downsizing of the whole sensor is achieved.

以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。図1から図6は、本発明にかかる質量センサの一実施例を示している。これらの図に示した実施例は、本発明を電磁平衡式の質量センサに適用した場合を例示している。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. 1 to 6 show an embodiment of a mass sensor according to the present invention. The embodiments shown in these figures illustrate the case where the present invention is applied to an electromagnetic balance type mass sensor.

これらの図に示した計量器用質量センサ10は、秤量皿上の偏置誤差を調整するロバーバル機構12と、当該ロバーバル機構12の上下方向の高さ調整を可逆的に可能とする四隅調整機構14とを備えている。   The weighing sensor mass sensor 10 shown in these drawings includes a roval mechanism 12 that adjusts an offset error on the weighing pan, and a four-corner adjustment mechanism 14 that reversibly adjusts the vertical height of the roval mechanism 12. And.

ロバーバル機構12は、荷重受け部となる浮き枠部16と、ケースなどに固定される固定部18と、一対の上,下副桿20,22とからなる個別の4部材から構成されており、これらの各構成部材を組み付けた形態は、図1に示すように、概略直方体形状になっている。なお、この直方体形状の内部には、所定の空間部23が形成され、この空間部23内には、四隅調整機構14や後述する伝達部材29などが収納されている。   The Roverval mechanism 12 is composed of four individual members including a floating frame portion 16 serving as a load receiving portion, a fixing portion 18 fixed to a case or the like, and a pair of upper and lower auxiliary rods 20 and 22. As shown in FIG. 1, the form in which these constituent members are assembled has a substantially rectangular parallelepiped shape. A predetermined space portion 23 is formed inside the rectangular parallelepiped shape, and the four-corner adjustment mechanism 14 and a transmission member 29 described later are accommodated in the space portion 23.

浮き枠部16は、固定部18と対向配置されるものであって、図3の分解斜視図に示すように、角柱状に形成された本体16aを有し、その上端面に図示省略の秤量皿の連結部材が固定され、本体16aの後端面には、上下方向に間隔を置いて一対の突起16bが突設されている。   The floating frame portion 16 is disposed to face the fixed portion 18 and has a main body 16a formed in a prismatic shape as shown in the exploded perspective view of FIG. A dish connecting member is fixed, and a pair of protrusions 16b are provided on the rear end face of the main body 16a with a space in the vertical direction.

各突起16bには、上,下副桿20,22の左端側が固定され、この固定状態では、図5ないしは図6に示すように、本体16aの上端側が、上副桿20の上面よりも上方に突出するようになっている。   The left end side of the upper and lower auxiliary rods 20 and 22 is fixed to each protrusion 16b. In this fixed state, the upper end side of the main body 16a is higher than the upper surface of the upper auxiliary rod 20 as shown in FIGS. To protrude.

固定部18は、概略平板状に形成された本体ブロック18aを有している。本体ブロック18aは、一端側に配置され、上下方向に突出する角筒状の固定用取付部18bを有している。この取付部18bは、質量センサ10をケースなどの構造部材に固定する際に用いられるものであって、上端には固定用ネジの螺着孔が設けられている。   The fixing portion 18 has a main body block 18a formed in a substantially flat plate shape. The main body block 18a has a square cylindrical fixing mounting portion 18b which is disposed on one end side and protrudes in the vertical direction. The mounting portion 18b is used when the mass sensor 10 is fixed to a structural member such as a case, and a screwing hole for a fixing screw is provided at the upper end.

取付部18bの両側には、ロバーバル機構12の上,下副桿20,22の一端側を支持する上,下支持部18c,18dが設けられている。上支持部18cに上副桿20を取付固定した際には、図5ないしは図6に示すように、固定用取付部18bの上端が、上副桿20の上面から上方に突出するようになっている。   On both sides of the mounting portion 18b, upper and lower support portions 18c and 18d are provided to support one end side of the upper and lower auxiliary rods 20 and 22 of the roberval mechanism 12. When the upper auxiliary rod 20 is attached and fixed to the upper support portion 18c, the upper end of the fixing attachment portion 18b protrudes upward from the upper surface of the upper auxiliary rod 20 as shown in FIGS. ing.

上,下支持部18c,18dは、本実施例の場合、取付部18aの両側に一対ずつ配置されていて、合計4箇所設けられている。上方側の一対の上支持部18cは、取付部18bの両側に隣接した位置あって、取付部18bの上端面よりも一段低く形成されている。   In the case of this embodiment, the upper and lower support portions 18c and 18d are arranged in pairs on both sides of the attachment portion 18a, and are provided in a total of four locations. The pair of upper support portions 18c on the upper side are located adjacent to both sides of the attachment portion 18b and are formed one step lower than the upper end surface of the attachment portion 18b.

各支持部18c,18dは、ロバーバル機構部12の後述する副桿20,22の端部が固定されるものであって、各支持部18c,18dには、副桿20,22の固定用ネジの螺着ネジ孔が設けられている。   The support portions 18c and 18d are fixed to the end portions of the auxiliary rods 20 and 22 (to be described later) of the Roverval mechanism portion 12, and the support portions 18c and 18d are fixed with screws for fixing the auxiliary rods 20 and 22, respectively. Screw screw holes are provided.

本実施例の場合、上方側の上支持部18cは、ネジ孔が中心に穿設された正方形状の板状体から構成され、四隅調整機構14の後述するアーム部14aの上面側に一体に配置されている。   In the case of the present embodiment, the upper support portion 18c on the upper side is formed of a square plate-like body having a screw hole at the center, and is integrally formed on the upper surface side of an arm portion 14a described later of the four-corner adjustment mechanism 14. Has been placed.

上,下副桿20,22は、本実施例の場合、同一形状に形成されていて、概略長方形の平板状に形成され本体部20a,22aを有している。各本体部20a,22aの四隅には、取付け用の貫通孔が穿設されると共に、一端側に浮き枠16の挿通用角形貫通孔20b,22bが穿設され、他端側には、固定部18の挿通用貫通凹部20c,22cが設けられている。なお、上副桿20に設けられた2個の貫通円孔20dは、後述する四隅調整ネジ14dの挿通用の孔である。   In the case of the present embodiment, the upper and lower auxiliary rods 20 and 22 are formed in the same shape, are formed in a substantially rectangular flat plate shape, and have main body portions 20a and 22a. At the four corners of each of the main body portions 20a and 22a, through holes for mounting are formed, and rectangular through holes 20b and 22b for insertion of the floating frame 16 are formed at one end side, and fixed at the other end side. The penetration recesses 20c and 22c for insertion of the part 18 are provided. Note that the two through-holes 20d provided in the upper auxiliary rod 20 are holes for inserting four-corner adjusting screws 14d described later.

また、各副桿20,22の本体部20a,22aの両端側には、それぞれ4箇の薄肉部20e,22eが設けられており、本実施例の場合には、各薄肉部20e,22eは、本体部20a,22aの長手方向の端縁近傍に配置されている。   In addition, four thin portions 20e and 22e are provided on both ends of the main body portions 20a and 22a of the auxiliary rods 20 and 22, respectively. In the present embodiment, the thin portions 20e and 22e are The main body portions 20a and 22a are disposed in the vicinity of the longitudinal edges.

浮き枠16側の薄肉部20e,22eは、副桿20,22の取付け状態において、図5に示すような位置関係になっている。すなわち、質量センサ10のロバーバル機構12を側面から見た場合に、薄肉部20e,22の中心は、浮き枠16の荷重受承点(本体16aの中心)とほぼ一致する程度に近接ないしは隣接している。   The thin portions 20e, 22e on the floating frame 16 side are in a positional relationship as shown in FIG. That is, when the robust mechanism 12 of the mass sensor 10 is viewed from the side, the centers of the thin portions 20e and 22 are close to or adjacent to each other so as to substantially coincide with the load receiving point of the floating frame 16 (center of the main body 16a). ing.

このように構成すると、皿中心と薄肉部20e,22eとが、可及的ないしは極近い距離で近接ないしは隣接するので、ロバーバル機構12に対する偏置荷重による変位小さくなり、計量誤差を低減させることができる。   With this configuration, since the center of the dish and the thin portions 20e and 22e are close to or adjacent to each other as close as possible or extremely close to each other, the displacement due to the eccentric load with respect to the Roverval mechanism 12 is reduced, and measurement errors can be reduced. it can.

一方、四隅調整機構14は、図5,6に断面を示すように、固定部18の一端から、上副桿20の背面側に添うようにして、浮き枠部16側に向けて、一体に延設されたアーム部14aと、アーム部14aを支持する基部14bと、アーム部14aの基端側に設けられた薄肉部14cとを有し、アーム部14aは、基部14bにより片持ち梁状に支持されている。   On the other hand, as shown in FIGS. 5 and 6, the four-corner adjusting mechanism 14 is integrally formed from one end of the fixing portion 18 toward the floating frame portion 16 side so as to follow the back side of the upper auxiliary rod 20. The arm portion 14a has an extended arm portion 14a, a base portion 14b that supports the arm portion 14a, and a thin portion 14c provided on the base end side of the arm portion 14a. The arm portion 14a is cantilevered by the base portion 14b. It is supported by.

アーム部14aには、これを貫通するようにして螺着される四隅調整ネジ14dが設けられ、アーム部14aの下面と本体ブロック18aの上面との間には、四隅調整ネジ14d介装されており、四隅調整ネジ14dの外周には、四隅バネ14eが装着されている。   The arm portion 14a is provided with four-corner adjusting screws 14d that are screwed so as to penetrate the arm portion 14a, and the four-corner adjusting screws 14d are interposed between the lower surface of the arm portion 14a and the upper surface of the main body block 18a. A four corner spring 14e is mounted on the outer periphery of the four corner adjustment screw 14d.

本実施例の場合、基部14bは、本体ブロック18aの端部に一体に設けられており、一対のアーム部14aが相互に平行になるように構成され、同一構成の上記四隅調整機構14が、空間部23内にあって、本体ブロック18aの上方に一対配置されている。   In the case of the present embodiment, the base portion 14b is integrally provided at the end portion of the main body block 18a, and the pair of arm portions 14a are configured to be parallel to each other. A pair is disposed in the space 23 and above the main body block 18a.

アーム部14aは、本実施例の場合、下方に向けて段状に低くなるように形成され、最下段の位置に、四隅調整ネジ14dが螺着されている。このような構成において、四隅調整ネジ14dを四隅バネ14eの不勢力に抗して、回転させることにより、各アーム部14aを上下移動させることができる。   In the case of the present embodiment, the arm portion 14a is formed so as to be lowered stepwise downward, and a four-corner adjustment screw 14d is screwed at the lowest position. In such a configuration, each arm portion 14a can be moved up and down by rotating the four corner adjusting screws 14d against the inferior force of the four corner springs 14e.

この場合、アーム部14a上には、上支持部18cが一体に設けられていて、この上支持部18cに、ロバーバル機構12の一部を構成する上副桿20の端部が固定されている。   In this case, an upper support portion 18c is integrally provided on the arm portion 14a, and an end portion of the upper auxiliary rod 20 constituting a part of the Roverval mechanism 12 is fixed to the upper support portion 18c. .

従って、アーム部14aを四隅調整ネジ14dの回転により、上下方向に移動させると、これに伴って、ロバーバル機構12の上副桿20の端部側が上下方向に移動し、これにより秤量皿の四隅調整が可逆的に可能になる。   Accordingly, when the arm portion 14a is moved in the vertical direction by the rotation of the four corner adjusting screw 14d, the end portion side of the upper auxiliary rod 20 of the roval mechanism 12 is moved in the vertical direction, and thereby the four corners of the weighing pan are moved. Adjustment is reversible.

このときに、本実施例の場合には、アーム部14aは、上副桿20の下面側に延設され、上副桿20に四隅調整ネジ14dの挿通可能な貫通孔20cを設け、四隅調整ネジ14dの上端が、直方体の上面を形成する上副桿20の上方に露出しているので、四隅調整ネジ14dの回転操作が上方から容易に行われるようになっている。   At this time, in the case of the present embodiment, the arm portion 14a extends to the lower surface side of the upper auxiliary rod 20, and the upper auxiliary rod 20 is provided with a through-hole 20c through which the four corner adjusting screw 14d can be inserted, thereby adjusting the four corners. Since the upper end of the screw 14d is exposed above the upper auxiliary rod 20 that forms the upper surface of the rectangular parallelepiped, the rotation operation of the four-corner adjusting screw 14d can be easily performed from above.

なお、図中に符号26で示した部材は、質量センサ本体24を保持する枠体であり、同号28は、質量センサ本体24に荷重を伝達するレバーであり、同29は、レバー24に荷重を伝達する荷重伝達部材である。荷重伝達部材29は、下吊りバンド30を介して、浮き枠部16に連結され、一対の上吊りバンド31を介して、固定部18の本体ブロック18aに連結されている。   The member denoted by reference numeral 26 in the figure is a frame body that holds the mass sensor main body 24, the same reference numeral 28 is a lever that transmits a load to the mass sensor main body 24, and the same reference numeral 29 is the lever 24. It is a load transmission member which transmits a load. The load transmission member 29 is connected to the floating frame portion 16 via the lower suspension band 30 and is connected to the main body block 18 a of the fixed portion 18 via the pair of upper suspension bands 31.

このような吊りバンド30,31および荷重伝達部材29は、四隅調整機構14と共に、浮き枠16,固定部18、上,下副桿20,22の4部材で構成した直方体内の空間部23に配置され、空間部23を有効に活用している。   The suspension bands 30 and 31 and the load transmission member 29 are formed in the space 23 in the rectangular parallelepiped formed by the four corner adjustment mechanism 14 and the floating frame 16, the fixing portion 18, and the upper and lower auxiliary rods 20 and 22. It is arranged and the space part 23 is effectively utilized.

また、レバー28は、概略平板状に形成され、直方体の一方の外側面に沿うようにして、揺動自在に配置され、上下方向の荷重のみを質量センサ本体24に伝達する。   The lever 28 is formed in a substantially flat plate shape and is swingably disposed along one outer surface of the rectangular parallelepiped, and transmits only the load in the vertical direction to the mass sensor main body 24.

以上の構成に加えて、本実施例の質量センサ10は、固定部18の固定用取付部18bと上支持部18cとの間に、双方の剛性干渉を防止するスリット溝40をそれぞれ設けている。なお、本実施例では、スリット溝40は、固定用取付部18bと上支持部18cとの間に設けた場合を例示しているが、例えば、四隅調整機構14を質量センサ10の下方側に設ける場合には、固定用取付部18bと下支持部18dとの間に配置することや、これらの双方に配置することも可能である。   In addition to the above configuration, the mass sensor 10 according to the present embodiment is provided with the slit grooves 40 for preventing the rigid interference between the fixing mounting portion 18b and the upper support portion 18c of the fixing portion 18 respectively. . In the present embodiment, the slit groove 40 is illustrated as being provided between the fixing attachment portion 18b and the upper support portion 18c. However, for example, the four-corner adjustment mechanism 14 is disposed below the mass sensor 10. When providing, it is also possible to arrange | position between the fixing attachment part 18b and the lower support part 18d, or to arrange | position to both of these.

本実施例の場合、スリット溝40は、固定用取付部18bの側面に沿うとともに、四隅調整機構14のアーム部14aの側面に沿って一直線状に延設され、その深さは、アーム部14aの上下方向の幅にほぼ等しくなっている。   In the case of the present embodiment, the slit groove 40 extends along the side surface of the fixing attachment portion 18b and extends along the side surface of the arm portion 14a of the four-corner adjustment mechanism 14, and the depth thereof is the arm portion 14a. It is almost equal to the vertical width of.

このようなスリット溝40を設けると、以下の作用効果が得られる。すなわち、ケースの構造部材などに接続・固定され、最も高い剛性が要求される固定用取付部18bは、スリット溝40の形成により、本体ブロック18aの上方側に突出した部分の四周が、周囲から離間して切離された状態になっている。   When such a slit groove 40 is provided, the following effects can be obtained. That is, the fixing mounting portion 18b that is connected and fixed to the structural member of the case and requires the highest rigidity has four rounds of a portion protruding upward from the main body block 18a due to the formation of the slit groove 40 from the periphery. They are separated and separated.

このため、スリット溝40により、固定取付部18bと四隅調整機構14との剛性干渉がなくなり、固定取付部18bと四隅調整機構14とを近接配置することができ、これにより小型化を達成することができる。   For this reason, the slit groove 40 eliminates the rigid interference between the fixed mounting portion 18b and the four corner adjusting mechanism 14, and the fixed mounting portion 18b and the four corner adjusting mechanism 14 can be disposed close to each other, thereby achieving miniaturization. Can do.

また、スリット溝40により剛性が隔離され、高分解性能を背景としたミクロンレベルでの微妙な四隅調整と、荷重による固定取付部18bの変形歪みとが分離可能となる。このことにより、センサの幅方向の圧縮が可能になり、小型化が達成される。   Further, the rigidity is isolated by the slit groove 40, so that fine four-corner adjustment at a micron level against the background of high resolution performance can be separated from deformation deformation of the fixed mounting portion 18b due to a load. As a result, the sensor can be compressed in the width direction, and downsizing is achieved.

さらに、剛性をスリット溝40により隔絶することにより、センサを調整治具から外して、ケースなどの構造部材に再固定しても、固定面の加工精度、固定強度による取付け歪みの影響が排除され、生産性の改善、市場へのセンサ単体での供給が可能になる。   Furthermore, by separating the rigidity by the slit groove 40, even if the sensor is removed from the adjustment jig and re-fixed to a structural member such as a case, the influence of mounting distortion due to the processing accuracy and fixing strength of the fixed surface is eliminated. , Improving productivity and supplying the sensor alone to the market.

さて、以上のように構成した計量器用質量センサ10によれば、ロバーバル機構12を構成する4部材、すなわち、浮き枠部16と固定部18および一対の副桿20,22とが個別部材で形成されているので、自由度の制限が殆どなくなり、これらを最適位置に設定することができる。   Now, according to the mass sensor 10 for the measuring instrument configured as described above, the four members constituting the Roverval mechanism 12, that is, the floating frame portion 16, the fixed portion 18, and the pair of auxiliary rods 20, 22 are formed by individual members. Therefore, the restriction on the degree of freedom is almost eliminated, and these can be set at the optimum positions.

また、この場合、本実施例では、副桿20,22は、長方形平板状の対向する短辺側に設けられた浮き枠部16と固定部18の挿入用貫通部20b,22b、20c,22cと、長手方向の両端側に設けられた薄肉部20e,22eとを備え、貫通部20b,22b、20c,22c内に浮き枠部16と固定部18とが相互に対するように垂設状態で挿入して、副桿20,22の長手方向の端部を浮き枠部16および固定部18の側方でこれらに固定し、一対の副桿20,22が上下方向に間隔を隔てて、相互に平行になるように配置して、4部材で内部に空間部を有する概略直方体形状とするので、長手方向の自由度が増し、副桿20,22の長さも大きく取れることになる。   In this case, in this embodiment, the auxiliary rods 20 and 22 are inserted through portions 20b, 22b, 20c, and 22c for insertion of the floating frame portion 16 and the fixing portion 18 provided on the opposite short sides of the rectangular flat plate shape. And thin-walled portions 20e and 22e provided at both ends in the longitudinal direction, and the floating frame portion 16 and the fixing portion 18 are inserted in the penetrating state in the through portions 20b, 22b, 20c and 22c so as to be mutually opposed. Then, the longitudinal ends of the auxiliary rods 20 and 22 are fixed to these at the sides of the floating frame portion 16 and the fixing portion 18, and the pair of auxiliary rods 20 and 22 are spaced apart from each other in the vertical direction. Since they are arranged so as to be parallel and have a substantially rectangular parallelepiped shape with four members and a space inside, the degree of freedom in the longitudinal direction is increased, and the length of the auxiliary rods 20 and 22 can be increased.

副桿20,22の長さが大きくなると、薄肉部20e,22e間のピッチを十分確保することが可能になり、これにより副桿20,22の剛性も十分に確保することができる。   When the lengths of the auxiliary rods 20 and 22 are increased, it is possible to ensure a sufficient pitch between the thin portions 20e and 22e, thereby sufficiently ensuring the rigidity of the auxiliary rods 20 and 22.

さらに、本実施例では、浮き枠部16と固定部18は、それぞれの上端部が上方の副桿20の上面から上方に突出するように配置されているので、上下方向の自由度が増す。   Further, in the present embodiment, the floating frame portion 16 and the fixing portion 18 are arranged so that the upper end portions thereof protrude upward from the upper surface of the upper auxiliary rod 20, so that the degree of freedom in the vertical direction increases.

なお、上記実施例では、本発明を電磁平衡式の質量センサに適用した場合を例示したが、本発明の実施はこれに限定されることはなく、例えば、ロバーバル機構を備えていれば他の型式の質量センサに用いることもできる。   In the above embodiment, the case where the present invention is applied to an electromagnetic balance type mass sensor is illustrated. However, the embodiment of the present invention is not limited to this. It can also be used for a type of mass sensor.

本発明にかかる計量器用質量センサによれば、設計、製作時の自由度が改善され、集積度の向上と小型化が達成されるので、計量器の分野で技術を有効に活用することができる。   According to the mass sensor for a measuring instrument according to the present invention, the degree of freedom at the time of designing and manufacturing is improved, and the integration degree and the miniaturization are achieved. Therefore, the technology can be effectively used in the field of the measuring instrument. .

本発明にかかる計量器用質量センサの一実施例を示す外観斜視図である。It is an external appearance perspective view which shows one Example of the mass sensor for scales concerning this invention. 図1の背面図である。It is a rear view of FIG. 図1に示した質量センサの分解説明図である。FIG. 2 is an exploded explanatory view of the mass sensor shown in FIG. 1. 図1の平面図である。It is a top view of FIG. 図1の要部断面説明図である。It is principal part sectional drawing of FIG. 図1の断面図である。It is sectional drawing of FIG.

符号の説明Explanation of symbols

10 質量センサ
12 ロバーバル機構
14 四隅調整機構
16 浮き枠部
18 固定部
18a 本体ブロック
18b 固定用取付部
18c 上支持部
18d 下支持部
20 上副桿
22 下副桿
20b,22b 角形貫通孔
20c,22c 貫通凹部
20e,22e 薄肉部
DESCRIPTION OF SYMBOLS 10 Mass sensor 12 Roberval mechanism 14 Four-corner adjustment mechanism 16 Floating frame part 18 Fixing part 18a Main body block 18b Fixing attachment part 18c Upper support part 18d Lower support part 20 Upper auxiliary rod 22 Lower auxiliary rod 20b, 22b Rectangular through-hole 20c, 22c Through recess 20e, 22e Thin part

Claims (4)

秤量皿上の偏置誤差を調整するロバーバル機構を備え、該ロバーバル機構が、浮き枠部と固定部および上下一対の副桿とで構成され、
前記上下一対の副桿のうち上側の副桿は前記浮き枠部側の端縁近傍に一対の薄肉部を有する計量器用質量センサにおいて、
前記一対の薄肉部の間には前記浮き枠部の挿入用貫通部が形成され、
前記浮き枠部は、前記浮き枠部の挿入用貫通部から前記一対の薄肉部の間に突出するように形成され、該突出した部分に秤量皿の連結部材が固定されることを特徴とする計量器用質量センサ。
It is provided with a Roverval mechanism that adjusts the deviation error on the weighing pan, and the Roverval mechanism is composed of a floating frame portion, a fixed portion, and a pair of upper and lower auxiliary rods,
In the mass sensor for measuring instrument, the upper auxiliary rod of the pair of upper and lower auxiliary rods has a pair of thin portions in the vicinity of the edge on the floating frame portion side.
Between the pair of thin-walled portions, a penetrating portion for insertion of the floating frame portion is formed,
The floating frame part is formed so as to protrude between the pair of thin parts from the insertion through part of the floating frame part, and a connecting member of the weighing pan is fixed to the protruding part. Mass sensor for measuring instruments.
前記浮き枠部の挿入用貫通部は、前記副桿に形成された貫通孔であることを特徴とする請求項1に記載の計量器質量センサ。   The measuring instrument mass sensor according to claim 1, wherein the insertion penetrating portion of the floating frame portion is a through-hole formed in the auxiliary rod. 前記上側の副桿は前記固定部側の端縁近傍に一対の薄肉部を有し、
該固定部側の一対の薄肉部の間には、前記固定部の挿入用貫通部が形成され、
前記固定部は、前記固定部の挿入用貫通部から前記一対の薄肉部の間に突出するように形成され、該突出した部分がケースに固定されることを特徴とする請求項1または2に記載の計量器用質量センサ。
The upper auxiliary rod has a pair of thin portions in the vicinity of the edge on the fixed portion side,
Between the pair of thin-walled portions on the fixed portion side, a through-hole for insertion of the fixed portion is formed,
3. The fixing part according to claim 1, wherein the fixing part is formed so as to protrude between the pair of thin parts from the insertion through part of the fixing part, and the protruding part is fixed to the case. The mass sensor for a measuring instrument as described.
前記固定部の挿入用貫通部は、前記固定部側が凹状に形成された副桿を前記固定部に固定することによって形成されることを特徴とする請求項3に記載の計量器用質量センサ。   The weighing sensor for a measuring instrument according to claim 3, wherein the insertion through portion of the fixing portion is formed by fixing an auxiliary hook having a concave shape on the fixing portion side to the fixing portion.
JP2006175103A 2006-06-26 2006-06-26 Mass sensor for measuring instrument Active JP4871037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006175103A JP4871037B2 (en) 2006-06-26 2006-06-26 Mass sensor for measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175103A JP4871037B2 (en) 2006-06-26 2006-06-26 Mass sensor for measuring instrument

Publications (2)

Publication Number Publication Date
JP2008003031A JP2008003031A (en) 2008-01-10
JP4871037B2 true JP4871037B2 (en) 2012-02-08

Family

ID=39007533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175103A Active JP4871037B2 (en) 2006-06-26 2006-06-26 Mass sensor for measuring instrument

Country Status (1)

Country Link
JP (1) JP4871037B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6105462B2 (en) * 2013-12-25 2017-03-29 東芝テック株式会社 Load cell unit and scale device
JP6335292B2 (en) * 2014-06-26 2018-06-06 株式会社エー・アンド・デイ Mass sensor
CN110094614B (en) * 2019-06-17 2024-04-16 河北工业大学 Sensor support frame capable of bidirectionally adjusting position

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526247A (en) * 1983-01-18 1985-07-02 Ohaus Scale Corporation Weighing scale transducer
JPS62108835A (en) * 1985-11-07 1987-05-20 C K Fine Kemikaruzu:Kk Production of 2,3,6-trimethylhydroquinone
JPH0214041A (en) * 1988-06-28 1990-01-18 Ikeda Kenshiyoku Kk Woven fabric having high lateral stretchability and resistance to washing shrinkage
JP3296106B2 (en) * 1994-08-31 2002-06-24 株式会社島津製作所 Precision weighing scale
JP3975611B2 (en) * 1999-05-31 2007-09-12 株式会社島津製作所 Electronic balance
JP2002365125A (en) * 2001-06-08 2002-12-18 A & D Co Ltd Roberval mechanism, and method of regulating errors in four corners for the roberval mechanism
JP2005265804A (en) * 2004-03-22 2005-09-29 Shimadzu Corp Electronic balance

Also Published As

Publication number Publication date
JP2008003031A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
US7132610B2 (en) Scale pan mount for single-point or multi-point mounted scale pan
JP4874344B2 (en) Weighing receiver
US5771986A (en) Balance with scale on top
JP6130895B2 (en) Parallelogram linkage structure for weighers
JPH1172374A (en) Mounting apparatus for parallel guide apparatus in force-measuring apparatus
JP4871037B2 (en) Mass sensor for measuring instrument
JP2006284539A (en) Load cell and balance
US7365276B2 (en) Force-transmitting device
JP2007328204A (en) Scanner holding device and image forming apparatus
JP6335292B2 (en) Mass sensor
JP4003024B2 (en) Electronic balance
US20030209086A1 (en) Force-measuring element for a scale, and scale
JP2001343279A (en) Electronic weighing machine
JP7149339B2 (en) Weight measurement sensor and lever
JP3818415B2 (en) Electromagnetic balance type electronic balance
JP2005134377A (en) Combination body of bearing housing and load measurement plate
JP4820690B2 (en) Mass sensor
JP3171709U (en) Force measuring device
US20170131135A1 (en) Weigh module with parallel-guiding mechanism module
JP2006098114A (en) Electronic balance
JP2000214008A (en) Integrated roverbal mechanism
JP5097510B2 (en) Force measuring mechanism
US5090494A (en) Balance with parallel guide rod guidance
JP4808946B2 (en) Load measuring mechanism of capacitance type weighing device
JP2544164Y2 (en) Integrated frame of weighing mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Ref document number: 4871037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250