JP4870962B2 - Styrenic flame retardant resin composition and styrene flame retardant resin molded product - Google Patents

Styrenic flame retardant resin composition and styrene flame retardant resin molded product Download PDF

Info

Publication number
JP4870962B2
JP4870962B2 JP2005302993A JP2005302993A JP4870962B2 JP 4870962 B2 JP4870962 B2 JP 4870962B2 JP 2005302993 A JP2005302993 A JP 2005302993A JP 2005302993 A JP2005302993 A JP 2005302993A JP 4870962 B2 JP4870962 B2 JP 4870962B2
Authority
JP
Japan
Prior art keywords
flame retardant
styrene
retardant resin
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005302993A
Other languages
Japanese (ja)
Other versions
JP2006199925A (en
Inventor
鉄二 野田
郁夫 町田
一義 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Styrene Co Ltd
Original Assignee
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Styrene Co Ltd filed Critical Toyo Styrene Co Ltd
Priority to JP2005302993A priority Critical patent/JP4870962B2/en
Publication of JP2006199925A publication Critical patent/JP2006199925A/en
Application granted granted Critical
Publication of JP4870962B2 publication Critical patent/JP4870962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高価な難燃化剤(C)を極力低減するも高度な難燃性を有し、耐光性、流動性に優れ、かつ金属に対する密着性を低減した安価なスチレン系難燃樹脂組成物に関するものである。 The present invention is an inexpensive styrene-based flame retardant resin that has high flame resistance, excellent light resistance, fluidity, and reduced adhesion to metal, while reducing the expensive flame retardant (C) as much as possible. It relates to a composition.

スチレン系樹脂はその特性を生かし広範囲な用途に使用されている。中でも高度な難燃性を付与させた難燃性樹脂はワープロ、パーソナルコンピュータ、プリンター、複写機等のOA機器、TV、VTR、オーディオ等の家電製品等を初めとする多岐の分野で使用されている。 Styrenic resins are used in a wide range of applications by taking advantage of their properties. Above all, flame retardant resins with high flame resistance are used in various fields including office automation equipment such as word processors, personal computers, printers, copiers, home appliances such as TVs, VTRs, and audio. Yes.

昨今、OA機器・家電製品などの分野では、プラスチック部品の大型化対応するため大型成形機を使用したホットランナー成形法やガスアシストインジェクション法等が適用される。このため使用される樹脂には、難燃性以外に優れた成形性が要求されており、加えて、蛍光灯や屋外から入る光に暴露されため、耐光性も重要視されている。 In recent years, hot runner molding method using a large molding machine, gas assist injection method, etc. are applied in the field of OA equipment, home appliances, etc. in order to cope with the increase in size of plastic parts. For this reason, the resin used is required to have excellent moldability in addition to flame retardancy, and in addition, light resistance is also regarded as important because it is exposed to fluorescent light and light entering from outside.

従来から、スチレン系樹脂に難燃性を付与するために、種々の難燃化剤が提案されており、中でも安価で物性バランスに優れているハロゲン含有有機化合物が多く用いられている。代表的なものとしてはテトラブロモビスフェノールA、デカブロモジフェニルエーテル、デカブロモジフェニルエタン、臭素化エポキシ、及び臭素化エポキシ樹脂のエポキシ基をトリブロモフェノールで封鎖したものなどが知られている。 Conventionally, various flame retardants have been proposed to impart flame retardancy to styrene-based resins, and among them, halogen-containing organic compounds that are inexpensive and excellent in balance of physical properties are often used. Typical examples include tetrabromobisphenol A, decabromodiphenyl ether, decabromodiphenylethane, brominated epoxy, and those obtained by blocking the epoxy group of brominated epoxy resin with tribromophenol.

しかし、これら難燃化剤はスチレン系樹脂と配合した場合、耐光性を大幅に低下させる欠点がある。この耐光性低下を抑える事を目的として、例えば、特許昭61−211354号公報においては、両末端にエポキシ基を有するブロム含有化合物を難燃化剤として用いる事で耐光性が改良される、との技術が開示されている。しかし、エポキシ基は金属に対する密着性が高いため、押出機内で樹脂と溶融混練する際にゲル化が生じやすく、発生したゲル化物が劣化変色して異物となり、成形品の外観不良を生じる等の問題があった。 However, these flame retardants have the drawback of significantly reducing light resistance when blended with styrene resins. For the purpose of suppressing this decrease in light resistance, for example, in Japanese Patent No. 61-211354, light resistance is improved by using a bromine-containing compound having an epoxy group at both ends as a flame retardant. The technology is disclosed. However, since the epoxy group has high adhesion to the metal, gelation is likely to occur when melt-kneading with the resin in the extruder, and the generated gelled product is deteriorated and discolored to become foreign matter, resulting in poor appearance of the molded product. There was a problem.

この様な問題を解決するために、特開平01−101350号公報、及び特開平06−093156号公報において、塩基性無機化合物を添加する技術が開示されている。しかし、本技術においても、ゲル化を十分に抑えるためには多量の塩基性無機化合物を添加する必要があり、得られる樹脂組成物の衝撃強度が損なわれるなどの実用上の問題があった。 In order to solve such problems, Japanese Patent Application Laid-Open No. 01-101350 and Japanese Patent Application Laid-Open No. 06-093156 disclose a technique of adding a basic inorganic compound. However, even in this technique, in order to sufficiently suppress gelation, it is necessary to add a large amount of a basic inorganic compound, and there are practical problems such as the impact strength of the resulting resin composition being impaired.

また、耐光難燃樹脂組成物として特開平05−214203号公報に難燃剤エチレンビステトラブロモフタルイミドと臭素化ビスフェノールA(末端トルブロモフェノール変性)、及び三酸化アンチモンからなる技術が開示されている。しかし、本組成物は超耐光性(キセノン照射:ΔE*ab≦3.0)を要求される分野においては不十分であった。耐光性を補う方法として安定剤、紫外線吸収剤等の添加が記載されているがコスト的に不利である。更に、本組成物は黄色味が強く、製品の色が限定されるという問題もある。黄色味を十分に抑えるほど多量の酸化チタンを添加すると衝撃強度の低下を招く、更にはコスト的に不利である。かつ、エチレンビステトラブロモフタルイミドの添加量が多いため薄肉成形においては流動性不足によるシュートショット等の実用上の問題があった。
特許昭61−211354号 特開平01−101350号 特開平06−093156号 特開平05−214203号 特開平07−300546号
Moreover, as a light-resistant flame retardant resin composition, Japanese Patent Application Laid-Open No. 05-214203 discloses a technique comprising a flame retardant ethylene bistetrabromophthalimide, brominated bisphenol A (terminal tolubromophenol-modified), and antimony trioxide. However, this composition is insufficient in a field where super light resistance (xenon irradiation: ΔE * ab ≦ 3.0) is required. Addition of stabilizers, ultraviolet absorbers and the like is described as a method for supplementing light resistance, but it is disadvantageous in terms of cost. In addition, the composition has a strong yellowish color and has a problem that the color of the product is limited. If a large amount of titanium oxide is added so as to sufficiently suppress the yellowish taste, the impact strength is reduced, which is disadvantageous in terms of cost. In addition, since the amount of ethylenebistetrabromophthalimide added is large, there has been a practical problem such as shoot shot due to insufficient fluidity in thin-wall molding.
Patent 61-211354 JP-A-01-101350 Japanese Patent Laid-Open No. 06-093156 JP 05-214203 A JP 07-300546 A

本発明は、この様な現状を鑑み、上記の問題点を解決し、高度な難燃性と共に超耐光性(キセノン照射:ΔE*ab≦3.0)、流動性、耐金属密着性に優れたスチレン系難燃性樹脂組成物を提供するものである。 In view of such a current situation, the present invention solves the above-described problems, and has excellent flame resistance and super light resistance (xenon irradiation: ΔE * ab ≦ 3.0), fluidity, and metal adhesion resistance. A styrene-based flame retardant resin composition is provided.

本発明者らは、かかる現状に鑑み、鋭意検討を重ねた結果、難燃剤エチレンビステトラブロモフタルイミドと臭素化エポキシ樹脂のエポキシ基の一部または全部を短鎖モノアルコールで封鎖したハロゲン系難燃剤、難燃助剤、塩基性無機化合物、及び着色剤を組み合わせる等により、高度な難燃性と共に耐光性、流動性、耐金属密着性に優れた難燃性スチレン系樹脂組成物が得られることを見出し、本発明に至った。 In light of the current situation, the present inventors have made extensive studies, and as a result, halogen-based flame retardants in which part or all of the epoxy groups of the flame retardant ethylenebistetrabromophthalimide and brominated epoxy resin are blocked with a short-chain monoalcohol. By combining a flame retardant aid, a basic inorganic compound, and a colorant, etc., a flame retardant styrenic resin composition excellent in light resistance, fluidity and metal adhesion resistance as well as high flame resistance can be obtained. And found the present invention.

即ち、本発明は、ゴム変性スチレン系樹脂(A)100質量部に対し、難燃化剤として(B)末端エポキシ基の20〜100%がメタノールで封止された構造を有し、平均分子量(Mn)が1,000〜10,000であるハロゲン化エポキシ樹脂を7〜20質量部(C)エチレンビステトラブロモフタルイミドを0.1〜15質量部、難燃化助剤として(D)三酸化アンチモンを1〜8質量部配合してなり、かつ上記(B)、(C)の合計が10〜25質量部であることを特徴とするスチレン系難燃樹脂組成物に関する。 That is, the present invention has a structure in which 20 to 100% of the (B) terminal epoxy group is sealed with methanol as a flame retardant with respect to 100 parts by mass of the rubber-modified styrene resin (A) , and has an average molecular weight. (Mn) is between 7-20 parts by weight of halogenated epoxy resins is 1,000 to 10,000 (C) ethylene bistetrabromophthalimide 0.1 to 15 parts by weight, as a flame retardant aid (D) antimony trioxide becomes engaged distributing 1-8 parts by weight, and the (B), about the total styrene flame retardant resin composition characterized in that 10 to 25 parts by weight of (C).

上記(A)は成形用樹脂組成物の主成分をなし、成形品の強度保持の役割を担い、(B)、(C)、及び(D)は(A)に難燃性等やその他の機能性を付与するための成分である。 The above (A) is the main component of the molding resin composition and plays the role of maintaining the strength of the molded product. (B), (C), and (D) It is a component for imparting functionality.

本発明の技術によれば、耐光性、成形性、耐金属密着性に優れ、しかも高度な難燃性を保持したスチレン系難燃樹脂組成物を得ることが出来る。この様にして得られた難燃性樹脂組成物は、昨今の家電製品、OA機器等への高機能化分野で有用であり産業上の利用価値は極めて大きい。具体的には、事務機器、情報機器等の内外装材等への利用が期待される。 According to the technique of the present invention, it is possible to obtain a styrene-based flame retardant resin composition that is excellent in light resistance, moldability, and metal adhesion resistance and that retains high flame retardancy. The flame retardant resin composition obtained in this way is useful in the field of high functionality for recent home appliances, OA equipment, and the like, and its industrial utility value is extremely large. Specifically, it is expected to be used for interior and exterior materials such as office equipment and information equipment.

本発明の組成物で使用するゴム変性スチレン系樹脂(A)とは、例えば芳香族ビニル単量体と不活性溶媒の混合液にゴム状重合体を溶解し、攪拌して塊状重合、懸濁重合、溶液重合等を行うことにより得られる、芳香族ビニル重合体のマトリックス中にゴム状重合体が粒子状に分散してなる重合体を言う。マトリックス部分の分子量については特に制限ないが、還元粘度(ηsp/C)で0.50以上、好ましくは0.55〜0.85が適当である。0.85を超えると、組成物の流動性が低くすぎて成形に支障をきたし、0.55未満だと実用的に十分な強度が発揮できない等の問題がある。ゴム含有量については特に制限ないが、ゴム変性スチレン系樹脂に一般的に使用される5〜15重量%が適当である。ゴム含有量は、成形品に必要な耐衝撃強度と剛性のバランス等を勘案して決めることが望ましい。ゴム状重合体の平均粒子径については特に制限ないが、一般的には0.4〜6.0μmであり、好ましくは0.5〜3.0μmが適当である。ゴム粒子径が小さ過ぎると耐衝撃強度が急激に低下し、粒子径が大きくなると成形品の表面光沢等の外観が悪くなる傾向がある。 The rubber-modified styrenic resin (A) used in the composition of the present invention is, for example, a rubber-like polymer dissolved in a mixture of an aromatic vinyl monomer and an inert solvent, stirred and bulk polymerized, suspended. A polymer obtained by dispersing a rubbery polymer in the form of particles in an aromatic vinyl polymer matrix obtained by polymerization, solution polymerization or the like. The molecular weight of the matrix portion is not particularly limited, but the reduced viscosity (ηsp / C) is 0.50 or more, preferably 0.55 to 0.85. If it exceeds 0.85, the fluidity of the composition is too low to cause molding, and if it is less than 0.55, practically sufficient strength cannot be exhibited. Although there is no restriction | limiting in particular about rubber content, 5 to 15 weight% generally used for rubber-modified styrene resin is suitable. The rubber content is preferably determined in consideration of the balance between impact strength and rigidity necessary for the molded product. The average particle size of the rubber-like polymer is not particularly limited, but is generally 0.4 to 6.0 μm, preferably 0.5 to 3.0 μm. If the rubber particle size is too small, the impact strength is drastically reduced, and if the particle size is large, the appearance of the molded product, such as surface gloss, tends to deteriorate.

上記の芳香族ビニル単量体としては、主にスチレンである。O−メチルスチレン、m−メチルスチレン、p−メチルスチレン、2,4−ジメチルスチレン等、及びこれらの併用系を挙げることが出来るが、スチレンが最も好適である。 The aromatic vinyl monomer is mainly styrene. O-methyl styrene, m-methyl styrene, p-methyl styrene, 2,4-dimethyl styrene, and the like, and combinations thereof can be mentioned, but styrene is most preferable.

上記のゴム状重合体としては、ポリブタジエン、スチレン−ブタジエン共重合体、ポリイソプレン等が挙げられ、中でもポリブタジエン、スチレン−ブタジエン共重合体が好ましい。 Examples of the rubber-like polymer include polybutadiene, styrene-butadiene copolymer, polyisoprene and the like. Among them, polybutadiene and styrene-butadiene copolymer are preferable.

本発明の組成物で使用するハロゲン含有化合物(B)のハロゲン化エポキシ樹脂としては、テトラクロロビスフェノールAのジグリシジルエーテル、テトラブロモビスフェノールAのジグリシジルエーテル、テトラクロロビスフェノールSのジグリシジルエーテル、テトラブロモビスフェノールSのジグリシジルエーテル、ジブロモフェノールノボラックのジグリシジルエーテル等を挙げることが出来る。 The halogenated epoxy resin of the halogen-containing compound (B) used in the composition of the present invention includes diglycidyl ether of tetrachlorobisphenol A, diglycidyl ether of tetrabromobisphenol A, diglycidyl ether of tetrachlorobisphenol S, tetra Examples thereof include diglycidyl ether of bromobisphenol S, diglycidyl ether of dibromophenol novolac, and the like.

ハロゲン化エポキシ樹脂のエポキシ基を封鎖する炭素数8個以下の短鎖モノアルコールとはメタノール、エタノール、プロパノール、ブタノール、アミルアルコール、ヘキサノール、ヘプタノール、ベンジルアルコール、及びこれらの異性体などが挙げられる。ハロゲン化エポキシ樹脂のエポキシ基の封止率としては20〜100%が好ましく、80%以下は更に好ましい。エポキシ基の封止率が20%以下では、金属に対する密着性の低減効果が小さいため、ゲル化防止効果が不十分であり外観不良の改善が期待出来ない。 Examples of the short-chain monoalcohol having 8 or less carbon atoms that block the epoxy group of the halogenated epoxy resin include methanol, ethanol, propanol, butanol, amyl alcohol, hexanol, heptanol, benzyl alcohol, and isomers thereof. The sealing rate of the epoxy group of the halogenated epoxy resin is preferably 20 to 100%, and more preferably 80% or less. When the sealing rate of the epoxy group is 20% or less, the effect of reducing the adhesion to metal is small, and thus the effect of preventing gelation is insufficient, and improvement in appearance defects cannot be expected.

また、ハロゲン化エポキシ樹脂のエポキシ基の封鎖に用いる短鎖モノアルコールの炭素数が多くなると、難燃化剤のハロゲン含有量が減少し、難燃性付与効果が落ち、樹脂組成物の耐熱性、及び機械特性等が低下するため、難燃化剤としての実用的性能を維持するためには炭素数は8個以下である必要があり、好ましくは3個以下、より好ましくは1個である。 Moreover, if the carbon number of the short-chain monoalcohol used for blocking the epoxy group of the halogenated epoxy resin is increased, the halogen content of the flame retardant is reduced, the effect of imparting flame retardancy is reduced, and the heat resistance of the resin composition In order to maintain the practical performance as a flame retardant, the number of carbons needs to be 8 or less, preferably 3 or less, more preferably 1 .

更に、本発明の組成物で使用するハロゲン含有化合物(B)の平均分子量(Mn)は10,000以下、好ましくは1,000〜8,000、より好ましくは1,000〜3,000である。10,000以上だと成形性(流動性)の低下、薄肉成形品では流動末端での層剥離を誘発する。 Furthermore, the average molecular weight (Mn) of the halogen-containing compound (B) used in the composition of the present invention is 10,000 or less, preferably 1,000 to 8,000, more preferably 1,000 to 3,000. . If it is 10,000 or more, moldability (fluidity) is lowered, and thin-walled molded products induce delamination at the fluid end.

本発明の組成物で使用する難燃化剤(D)は、難燃化剤(B)、(C)の難燃効果を更に高める働きをするものであり、例えば酸化アンチモンとして三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ等、ホウ素系化合物としてホウ酸亜鉛、メタホウ酸バリウム、無水ホウ酸亜鉛、無水ホウ酸等、スズ系化合物としてスズ酸亜鉛、ヒドロキシスズ酸亜鉛等、モリブデン系化合物として酸化モリブデン、モリブデン酸アンモニウム等、ジルコニウム系化合物として酸化ジルコニウム、水酸化ジルコニウム等、また亜鉛系化合物として硫化亜鉛等が挙げられるが、なかでも三酸化アンチモンを使用することが特に好ましい。 The flame retardant (D) used in the composition of the present invention functions to further enhance the flame retardant effect of the flame retardants (B) and (C). For example, antimony trioxide as antimony oxide, Antimony tetroxide, antimony pentoxide, sodium antimonate, etc., boron compounds as zinc borate, barium metaborate, anhydrous zinc borate, anhydrous boric acid, etc., tin compounds as zinc stannate, zinc hydroxystannate, etc., molybdenum Examples of the compound include molybdenum oxide and ammonium molybdate, examples of the zirconium compound include zirconium oxide and zirconium hydroxide, and examples of the zinc compound include zinc sulfide. Among these, antimony trioxide is particularly preferable.

難燃助剤(D)の添加量としては、ゴム変性スチレン系樹脂(A)100質量部に対して0.5〜8質量部が適当であり、10質量部より多いと燃焼時のグローイング挙動を高めるので好ましくない。 The addition amount of the flame retardant aid (D) is suitably 0.5 to 8 parts by mass with respect to 100 parts by mass of the rubber-modified styrenic resin (A). Is not preferable.

本発明の難燃性樹脂組成物の混合方法は、公知の混合技術を適用することが出来る。例えばミキサー型混合機、V型他ブレンダー、及びタンブラー型混合機等の混合装置であらかじめ混合しておいた混合物を、更に溶融混練することで均一な難燃性樹脂組成物とすることが出来る。溶融混練にも特に制限はなく公知の溶融技術を適用出来る。好適な溶融混練装置として、バンバリー型ミキサー、ニーダー、ロール、単軸押出機、特殊単軸押出機、及び二軸押出機等がある。更に押出機等の溶融混練装置の途中から難燃化剤等の添加剤を別途に添加する方法がある。 A known mixing technique can be applied to the method for mixing the flame-retardant resin composition of the present invention. For example, a uniform flame-retardant resin composition can be obtained by further melt-kneading a mixture previously mixed with a mixing apparatus such as a mixer-type mixer, a V-type blender, and a tumbler-type mixer. There is no particular limitation on melt kneading, and a known melting technique can be applied. Suitable melt kneaders include Banbury mixers, kneaders, rolls, single screw extruders, special single screw extruders, and twin screw extruders. Furthermore, there is a method of separately adding an additive such as a flame retardant from the middle of a melt-kneading apparatus such as an extruder.

難燃化剤(B)、(C)添加し溶融混練する際の樹脂温度は、分散に必要な最低温度が望ましく、通常260℃以下、更に好ましくは250℃以下で混練することが適当である。 The resin temperature when the flame retardants (B) and (C) are added and melt kneaded is desirably the minimum temperature required for dispersion, and it is usually appropriate to knead at 260 ° C. or lower, more preferably 250 ° C. or lower. .

また、本発明の難燃樹脂組成物には、本発明の目的を損なわない範囲で他の添加剤、例えば可塑剤、滑剤、安定剤、紫外線吸収剤、充填剤、補強剤等を添加することが出来る。 In addition, other additives such as plasticizers, lubricants, stabilizers, ultraviolet absorbers, fillers, reinforcing agents and the like should be added to the flame retardant resin composition of the present invention within a range that does not impair the purpose of the present invention. I can do it.

以下に例を挙げて具体的に本発明を説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.

実施例および比較例で使用したゴム変性スチレン系樹脂(A1)、及び(A2)は、それぞれ以下の組成であった。(A1)の組成:還元粘度0.81dl/g、ゴム状重合体含有量8.8重量%、ゲル含有量23.7重量%、及び体積平均粒子径2.5μmであった。(A2)組成:還元粘度0.60dl/g、ゴム状重合体含有量13.6重量%、ゴム状重合体のゲル含有量27.6重量%、及び体積平均粒子径0.63μmであった。ここで言う還元粘度、ゲル分、ゴム状重合体含有量及び平均粒子径は以下の方法にて測定した。 The rubber-modified styrenic resins (A1) and (A2) used in Examples and Comparative Examples had the following compositions, respectively. Composition of (A1): reduced viscosity 0.81 dl / g, rubbery polymer content 8.8% by weight, gel content 23.7% by weight, and volume average particle size 2.5 μm. (A2) Composition: Reduced viscosity 0.60 dl / g, rubbery polymer content 13.6% by weight, rubbery polymer gel content 27.6% by weight, and volume average particle size 0.63 μm . The reduced viscosity, gel content, rubber-like polymer content and average particle size referred to here were measured by the following methods.

還元粘度(ηsp/C)の測定:ゴム変性スチレン系樹脂1gにメチルエチルケトン(MEK)15mlとアセトン15mlの混合溶媒を加え、25℃で2時間振とう溶解した後、遠心分離で不溶分を沈降させ、デカンテーションにより上澄み液を取り出し、500mlのメタノールを加えて樹脂分を析出させ、ろ取後乾燥する。同操作で得られた樹脂分をトルエンに溶解してポリマー濃度0.4%(重量/体積)の試料溶液を作成する。この試料溶液、及び純トルエンを30℃に恒温しウベローデ型粘度計により溶液流下秒数を測定して、下式にて算出した。
ηsp/C=(t1/t0−1)/C
t0:純トルエン流下秒数
t1:試料溶液流下秒数

:ポリマー濃度
Measurement of reduced viscosity (ηsp / C): A mixed solvent of 15 ml of methyl ethyl ketone (MEK) and 15 ml of acetone is added to 1 g of a rubber-modified styrene resin, dissolved by shaking at 25 ° C. for 2 hours, and then insoluble matter is precipitated by centrifugation. The supernatant is taken out by decantation, and 500 ml of methanol is added to precipitate the resin, which is filtered and dried. The resin component obtained by the same operation is dissolved in toluene to prepare a sample solution having a polymer concentration of 0.4% (weight / volume). The sample solution and pure toluene were kept constant at 30 ° C., and the solution flow seconds were measured with an Ubbelohde viscometer.
ηsp / C = (t1 / t0-1) / C
t0: Pure toluene flow down seconds
t1: Sample solution flow down seconds
C
: Polymer concentration

ゲル含有量の測定:ゴム変性スチレン系樹脂をトルエンに2.5%の割合で加え、25℃で2時間振とう溶解した後、遠心分離(回転数10000〜14000rpm、分離時間30分)で不溶分(ゲル分)を沈降させ、デカンテーションにより上澄み液を除去してゲルを得る。次に、この膨潤ゲルを100℃で2時間予備乾燥した後、120℃の真空乾燥機で1時間乾燥する。デシケータで常温まで冷却し精秤し下式にて算出した。
ゲル分率(%)=[(b−a)/S]×100
a:遠心沈降管重量
b:乾燥ゲル+遠心沈降管重量
S:試料樹脂重量
Measurement of gel content: Rubber-modified styrene resin was added to toluene at a ratio of 2.5%, dissolved by shaking at 25 ° C. for 2 hours, and then insoluble by centrifugation (rotation speed: 10,000 to 14000 rpm, separation time 30 minutes). The fraction (gel fraction) is allowed to settle, and the supernatant is removed by decantation to obtain a gel. Next, this swelling gel is preliminarily dried at 100 ° C. for 2 hours, and then dried in a vacuum dryer at 120 ° C. for 1 hour. It cooled to normal temperature with the desiccator, weighed precisely, and computed with the following formula.
Gel fraction (%) = [(ba) / S] × 100
a: Centrifugal settling tube weight
b: Weight of dried gel + centrifuge tube
S: Sample resin weight

ゴム状重合体含有量の測定:ゴム変性スチレン系樹脂をクロロホルムに溶解させ、一定量の一塩化ヨウ素/四塩化炭素溶液を加え暗所に約1時間放置後、15質量%のヨウ化カリウム溶液と純水50mlを加え、過剰の一塩化ヨウ素を0.1Nチオ硫酸ナトリウム/エタノール水溶液で滴定し、付加した一塩化ヨウ素量から算出した。 Measurement of rubbery polymer content: A rubber-modified styrene resin is dissolved in chloroform, a certain amount of iodine monochloride / carbon tetrachloride solution is added, and the mixture is allowed to stand in a dark place for about 1 hour, and then a 15% by mass potassium iodide solution. And 50 ml of pure water were added, excess iodine monochloride was titrated with 0.1N sodium thiosulfate / ethanol aqueous solution, and the amount of iodine monochloride added was calculated.

ゴム状重合体の体積平均粒子径の測定:ゴム変性スチレン樹脂組成物をジメチルホルムアミドに完全に溶解させ、レーザー回析方式粒度分布装置にて測定した。
測定装置:コールター製 レーザー回析方式粒子アナライザーLS−230型
Measurement of volume average particle diameter of rubbery polymer: The rubber-modified styrene resin composition was completely dissolved in dimethylformamide and measured with a laser diffraction particle size distribution apparatus.
Measuring device: Laser diffraction type particle analyzer LS-230 type manufactured by Coulter

難燃化剤(B)は、ハロゲン化エポキシ樹脂の末端エポキシ基をメタノールで封鎖された構造を有するエポキシ樹脂臭素化ビスフェノールA誘導体を使用した。製造方法は特に制限されるものではなく、公知(特許2935161)の方法で容易に製造する事が出来る。特徴を表1に示す。 As the flame retardant (B), an epoxy resin brominated bisphenol A derivative having a structure in which the terminal epoxy group of the halogenated epoxy resin was blocked with methanol was used. The production method is not particularly limited, and can be easily produced by a known method (Japanese Patent No. 2935161). The characteristics are shown in Table 1.

Figure 0004870962
Figure 0004870962

難燃化剤(C)は、アルベマール社製のSAYTEX−93(エチレンビステトラブロモフタルイミド)を使用した。 SAYTEX-93 (ethylenebistetrabromophthalimide) manufactured by Albemarle was used as the flame retardant (C).

難燃助剤(D)は、日本精鉱株式会社の平均粒子径0.8μmの三酸化アンチモン(日本精鉱株式会社製、PATOX−M)を使用した。 As the flame retardant assistant (D), antimony trioxide (PATOX-M, manufactured by Nippon Seiko Co., Ltd.) having an average particle size of 0.8 μm manufactured by Nippon Seiko Co., Ltd. was used.

その他共通添加剤として、ソジウムアルミノシリケート系混合物(E1)、エチレンビスステアリン酸アマイド(E2)、ポリテトラフルオロエチレン共重合体(E3)、ベンゾトリアゾール系紫外線吸収剤とアミン系光安定剤の1:1ブレンド品(E4)、及び無機系着色剤(E5)を使用した。 Other common additives include sodium aluminosilicate mixture (E1), ethylenebisstearic acid amide (E2), polytetrafluoroethylene copolymer (E3), benzotriazole ultraviolet absorber and amine light stabilizer 1 1 blend product (E4) and inorganic colorant (E5) were used.

なお、実施例および比較例に示された各種測定は以下の方法により実施した。 Various measurements shown in Examples and Comparative Examples were performed by the following methods.

難燃性の測定:米国アンダーライターズ・ラボラトリーズ社のサブジェクト94号の垂直燃焼試験方法に準拠し、試験片厚さ1/12インチの燃焼性を評価した。 Measurement of flame retardancy: In accordance with the vertical combustion test method of Subject No. 94 of Underwriters Laboratories, USA, the flammability of a test piece thickness of 1/12 inch was evaluated.

メルトフローレート(MFR)の測定:JIS K7210に準拠し、200℃、49N荷重で測定した。 Measurement of melt flow rate (MFR): Measured according to JIS K7210 at 200 ° C. and a load of 49 N.

耐光性の測定:アトラス社製キセノンウエザーメータを用い、難燃性測定用テストピースを用い、照射強度0.30W/m2 、ブラックパネル温度63℃、湿度50%RHで300時間照射後のテストピ−スの色相差ΔE*abを、日本電色工業社製Σ80で測定し、未暴露サンプルとの差で表した。
◎:ΔE*ab≦3.0。
○:ΔE*ab≦5.0。
△:ΔE*ab≦10.0。
×:ΔE*ab≧10.0。
Measurement of light resistance: Using a Xenon weather meter manufactured by Atlas Co., Ltd., using a test piece for flame resistance measurement, a test peak after irradiation for 300 hours at an irradiation intensity of 0.30 W / m 2, a black panel temperature of 63 ° C. and a humidity of 50% RH. The hue difference ΔE * ab was measured with Σ80 manufactured by Nippon Denshoku Industries Co., Ltd. and expressed as the difference from the unexposed sample.
A: ΔE * ab ≦ 3.0.
○: ΔE * ab ≦ 5.0.
Δ: ΔE * ab ≦ 10.0.
X: ΔE * ab ≧ 10.0.

密着性試験:金属製熱ロールの第一ロールを200℃、第二ロールを60℃にそれぞれ設定し、試験片を第一ロールに3分間軽く圧着溶融後、3分間作動させた後に、試験片を引き剥がし、ロールへの付着状態を観察した。評価結果は下記の様に表記した。
○:ロールに付着しない。
△:容易にロールより剥がれる。
×:ロールに付着して剥がれない。
Adhesion test: The first roll of the metal hot roll was set to 200 ° C., the second roll was set to 60 ° C., the test piece was lightly crimped and melted to the first roll for 3 minutes, and then operated for 3 minutes. Was peeled off and the state of adhesion to the roll was observed. The evaluation results are shown as follows.
○: It does not adhere to the roll.
(Triangle | delta): It peels from a roll easily.
X: It adheres to a roll and does not peel.

Figure 0004870962
Figure 0004870962

難燃性樹脂組成物の製造 Manufacture of flame retardant resin composition

ゴム変性スチレン系樹脂(A1単独/乃至A2併用)、難燃助剤(C)、ソジウムアルミノシリケートとA型ゼオライトの混合物(E1)、エチレンビスステアリン酸アマイド(E2)、ポリテトラフルオロエチレン(E3)、ベンゾトリアゾール系紫外線吸収剤とアミン系耐光安定剤の混合物(E4)、及び無機系着色剤(E5)を表2に示す配合比率にて、ミキサー型混合機で予備混合後、二軸押出機に定量供給し溶融混練り後、更に同押出機の途中よりハロゲン含有難燃化剤(B1〜B5)、及び(C)を表2に示す配合比率で定量供給し難燃性樹脂組成物を得た。得られた樹脂組成物の難燃性、及び評価特性を表2に示す。 Rubber modified styrenic resin (A1 alone / with A2), flame retardant aid (C), sodium aluminosilicate and A-type zeolite mixture (E1), ethylenebisstearic acid amide (E2), polytetrafluoroethylene ( E3), a mixture of benzotriazole UV absorber and amine light stabilizer (E4), and inorganic colorant (E5) in the mixing ratio shown in Table 2 after premixing with a mixer-type mixer, biaxial After the quantitative supply to the extruder and melt-kneading, the halogen-containing flame retardants (B1 to B5) and (C) are further quantitatively supplied in the mixing ratio shown in Table 2 from the middle of the extruder. I got a thing. Table 2 shows the flame retardancy and evaluation characteristics of the obtained resin composition.

二軸押出機((株)神戸製鋼所製H−KTX30XHT、スクリュー径Φ30mm、L/D=46.8)の運転条件は下記の通り。
(1)
シリンダー設定温度:180℃(搬送部位)〜200℃(混練り〜計量部位)
(2) スクリュー回転数:450rpm
(3)
押出速度:50kg/h
(4)
樹脂温度:240〜250℃
The operating conditions of the twin screw extruder (H-KTX30XHT manufactured by Kobe Steel, Ltd., screw diameter Φ30 mm, L / D = 46.8) are as follows.
(1)
Cylinder set temperature: 180 ° C (conveying part) to 200 ° C (kneading to measuring part)
(2) Screw rotation speed: 450rpm
(3)
Extrusion speed: 50 kg / h
(4)
Resin temperature: 240-250 ° C

実施例1〜4
ハロゲン化エポキシ樹脂の末端をメタノールで封止した難燃化剤(B3)とエチレンビステトラブロモフタルイミド難燃化剤との併用系。実施例4は難燃化剤の分子量Mnを替えた(B4)とエチレンビステトラブロモフタルイミド難燃化剤との併用系。
Examples 1-4
A combined system of a flame retardant (B3) in which the end of a halogenated epoxy resin is sealed with methanol and an ethylene bistetrabromophthalimide flame retardant. Example 4 is a combined system of (B4) in which the molecular weight Mn of the flame retardant was changed and an ethylene bistetrabromophthalimide flame retardant.

参考例1〜2
ハロゲン化エポキシ樹脂の末端をメタノールで封止した難燃化剤(B5)単独、及び難燃化剤(B3)とエチレンビステトラブロモフタルイミド難燃化剤の併用系。
Reference Examples 1-2
A flame retardant (B5) alone in which the terminal of the halogenated epoxy resin is sealed with methanol, and a combined system of the flame retardant (B3) and an ethylenebistetrabromophthalimide flame retardant.

比較例1〜2
ハロゲン化エポキシ樹脂の末端をトリブロモフェノールで封止した難燃化剤(B1)単独/乃至エチレンビステトラブロモフタルイミド難燃化剤の併用系。
Comparative Examples 1-2
Flame retardant (B1) alone / through combined use of ethylenebistetrabromophthalimide flame retardant in which the terminal of the halogenated epoxy resin is sealed with tribromophenol.

比較例3〜5
ハロゲン化エポキシ樹脂の末端未封止の難燃化剤(B2)とエチレンビステトラブロモフタルイミド難燃化剤の併用系。
Comparative Examples 3-5
Combined system of a flame retardant (B2) in which the terminal of the halogenated epoxy resin is not sealed and an ethylene bistetrabromophthalimide flame retardant.

比較例1、2に係わる樹脂組成物は、末端をトリブロモフェノールで封止した難燃化剤(B1)を配合することにより耐金属密着性の改善が認められるが、耐光性ΔE*abが5.0を超えており、十分な耐光性が得られていない。
比較例3〜5の末端未封止の難燃化剤(B2)配合系は耐光性ΔE*abが3.0以下と十分な耐光性は得られるが耐金属密着性が劣るため経時によるコンタミ・ゲル等の発生懸念がある。また、難燃助剤を10質量部添加した配合系では難燃性の低下(グローイング)が認められる。
一方、末端をメタノールで封止した難燃化剤(B3、B4)とエチレンビステトラブロモフタルイミド難燃化剤と併用配合した実施例1〜4は高度な難燃性を有し、ΔE*ab3.0以下の優れた耐光レベルを達成。更に、耐金属密着性も改善されている。
In the resin compositions according to Comparative Examples 1 and 2, an improvement in metal adhesion was observed by adding a flame retardant (B1) whose ends were sealed with tribromophenol, but the light resistance ΔE * ab was It exceeds 5.0, and sufficient light resistance is not obtained.
In the comparative examples 3 to 5, the unsealed flame retardant (B2) blended system provides light resistance ΔE * ab of 3.0 or less and sufficient light resistance, but the metal adhesion is inferior.・ There is concern about the occurrence of gels. Moreover, in the compounding system which added 10 mass parts of flame retardant adjuvants, a flame retardance fall (glowing) is recognized.
On the other hand, Examples 1-4 combined with a flame retardant (B3, B4) whose end is sealed with methanol and an ethylenebistetrabromophthalimide flame retardant have high flame retardancy, and ΔE * ab3 Achieves excellent light resistance level of 0.0 or less. Furthermore, the metal adhesion resistance is also improved.

Claims (2)

ゴム変性スチレン系樹脂(A)100質量部に対し、難燃化剤として(B)末端エポキシ基の20〜100%がメタノールで封止された構造を有し、平均分子量(Mn)が1,000〜10,000であるハロゲン化エポキシ樹脂を7〜20質量部(C)エチレンビステトラブロモフタルイミドを0.1〜15質量部、難燃化助剤として(D)三酸化アンチモンを1〜8質量部配合してなり、かつ上記(B)、(C)の合計が17〜25質量部であることを特徴とするスチレン系難燃樹脂組成物。 The rubber-modified styrenic resin (A) has a structure in which 20 to 100% of the terminal epoxy group (B) is sealed with methanol as a flame retardant , and the average molecular weight (Mn) is 1, 0.1 to 15 parts by weight of a halogenated epoxy resin and 7-20 parts by weight of (C) ethylene bistetrabromophthalimide a 000~10,000, as a flame retardant aid (D). 1 to antimony trioxide distribution combined will be 8 parts by weight, and the (B), the total styrene flame retardant resin composition, which is a 17 to 25 parts by weight of (C). 請求項1記載の組成物からなる事を特徴とするスチレン系難燃樹脂成形体。 Styrene-based flame retardant resin molded article characterized by comprising the claims 1 Symbol placement of the composition.
JP2005302993A 2004-12-24 2005-10-18 Styrenic flame retardant resin composition and styrene flame retardant resin molded product Expired - Fee Related JP4870962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005302993A JP4870962B2 (en) 2004-12-24 2005-10-18 Styrenic flame retardant resin composition and styrene flame retardant resin molded product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004372398 2004-12-24
JP2004372398 2004-12-24
JP2005302993A JP4870962B2 (en) 2004-12-24 2005-10-18 Styrenic flame retardant resin composition and styrene flame retardant resin molded product

Publications (2)

Publication Number Publication Date
JP2006199925A JP2006199925A (en) 2006-08-03
JP4870962B2 true JP4870962B2 (en) 2012-02-08

Family

ID=36958205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302993A Expired - Fee Related JP4870962B2 (en) 2004-12-24 2005-10-18 Styrenic flame retardant resin composition and styrene flame retardant resin molded product

Country Status (1)

Country Link
JP (1) JP4870962B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354184B2 (en) * 2009-04-03 2013-11-27 日本電気株式会社 Rotating unit and mobile phone

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293869B2 (en) * 1992-02-07 2002-06-17 旭化成株式会社 Styrene-based flame-retardant resin composition
JPH08283525A (en) * 1995-04-17 1996-10-29 Denki Kagaku Kogyo Kk Flame-retardant resin composition
JP3721547B2 (en) * 1997-02-27 2005-11-30 共同薬品株式会社 Stabilized flame retardant styrenic resin composition
JPH10259380A (en) * 1997-03-19 1998-09-29 Asahi Chem Ind Co Ltd Halogenated bisimide flame retarding
JP3712223B2 (en) * 1998-02-03 2005-11-02 東洋スチレン株式会社 Flame retardant resin composition
JP2001279047A (en) * 2000-03-28 2001-10-10 Toyo Styrene Co Ltd Flame retardant thermoplastic resin composition

Also Published As

Publication number Publication date
JP2006199925A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP5319425B2 (en) Method for producing styrene-based flame retardant resin composition
JP5872577B2 (en) Flame retardant masterbatch and method for producing styrenic flame retardant resin composition using the same
JP6128926B2 (en) Flame retardant masterbatch, method for producing the same, and method for producing styrene-based flame retardant resin composition using the same
JP6078326B2 (en) Styrenic flame retardant resin composition and molded article comprising the same
JP2014012776A (en) Styrenic flame-retardant resin composition excellent in hinge properties and formed article consisting of the same
JP4870962B2 (en) Styrenic flame retardant resin composition and styrene flame retardant resin molded product
JP2012219250A (en) Flame-retardant styrenic resin composition and liquid crystal tv back cover using the same
JP6131112B2 (en) Styrene flame-retardant resin composition and molded body using the same
JP6282928B2 (en) Method for producing styrene-based flame retardant resin composition
JP6408261B2 (en) Styrene flame-retardant resin resin composition and molded article using the same
JP4616147B2 (en) Styrenic flame retardant thermoplastic resin composition
WO2017018505A1 (en) Flame retardant masterbatch and method for manufacturing same
JPH08283451A (en) Thermoplastic resin composition
JP6328404B2 (en) Styrenic flame retardant resin composition and molded article comprising the same
JP3497590B2 (en) Self-extinguishing polystyrene-based flame-retardant resin composition with dripping properties
JP2001279047A (en) Flame retardant thermoplastic resin composition
JP2013108032A (en) Styrenic flame retardant resin composition
JP6100507B2 (en) Styrene flame-retardant resin composition and molded article
JP6360700B2 (en) Styrene flame-retardant resin composition and molded article using the same
JP3904272B2 (en) Flame retardant heat resistant resin composition
JP3388854B2 (en) Flame retardant resin composition
JP6440972B2 (en) Styrene flame-retardant resin composition and molded article using the same
JP5687485B2 (en) Styrene flame-retardant resin composition and toner cartridge container using the same
JP3217924B2 (en) Flame retardant rubber-modified polystyrene resin composition
JP6227865B2 (en) Rubber-modified polystyrene-based resin composition, rubber-modified polystyrene-based flame retardant resin composition, and molded products using these.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4870962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees