JP4869656B2 - Interferometer - Google Patents

Interferometer Download PDF

Info

Publication number
JP4869656B2
JP4869656B2 JP2005229312A JP2005229312A JP4869656B2 JP 4869656 B2 JP4869656 B2 JP 4869656B2 JP 2005229312 A JP2005229312 A JP 2005229312A JP 2005229312 A JP2005229312 A JP 2005229312A JP 4869656 B2 JP4869656 B2 JP 4869656B2
Authority
JP
Japan
Prior art keywords
light
combined
phase shift
reflected
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005229312A
Other languages
Japanese (ja)
Other versions
JP2007046938A (en
Inventor
義将 鈴木
和彦 川▼崎▲
慎一郎 谷中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2005229312A priority Critical patent/JP4869656B2/en
Publication of JP2007046938A publication Critical patent/JP2007046938A/en
Application granted granted Critical
Publication of JP4869656B2 publication Critical patent/JP4869656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、位相シフト法を用いた干渉計に関する。   The present invention relates to an interferometer using a phase shift method.

被測定物の表面形状を高精度に測定する装置として干渉計が知られている。干渉計は基準となる参照面からの反射光(参照光)と、測定対象物からの反射光(測定光)とを合成させて干渉縞を発生させ、この干渉縞を解析することにより参照面に対する被測定物の相対的な形状を測定するものである。干渉計には様々なタイプのものがあるが、中でもフィゾー型干渉計は構成が簡単で且つ参照光と測定光が共通光路を通るため高い測定精度が見込めるものとして知られている。   An interferometer is known as an apparatus for measuring the surface shape of an object to be measured with high accuracy. The interferometer generates interference fringes by combining the reflected light (reference light) from the reference surface as a reference and the reflected light (measurement light) from the object to be measured, and analyzes the interference fringes to generate a reference surface. Measure the relative shape of the object to be measured. There are various types of interferometers. Among them, the Fizeau interferometer is known to have a simple configuration and high measurement accuracy because the reference light and the measurement light pass through a common optical path.

また、干渉計により得られた干渉縞の解析方法として、位相シフト法が知られている。位相シフト法は、参照面を光軸方向に変位させるなどの手法により、干渉縞の位相をシフトさせつつ複数枚の干渉縞画像を取得して被測定物の形状を算出する方法である。高い精度が得られるため、現在では、多くの干渉計に適用されている。   A phase shift method is known as an analysis method of interference fringes obtained by an interferometer. The phase shift method is a method of calculating the shape of the object to be measured by acquiring a plurality of interference fringe images while shifting the phase of the interference fringes by a method such as displacing the reference surface in the optical axis direction. Since high accuracy is obtained, it is currently applied to many interferometers.

しかし、参照面を変位させながら干渉縞を取得する方法のため、測定に時間を要する。また、干渉縞を取得する間、被測定物を静定している必要があるため、振動などの揺らぎを排除した特別な環境下で測定を行う必要がある。   However, it takes time to measure because of the method of acquiring interference fringes while displacing the reference surface. In addition, since it is necessary to stabilize the object to be measured while acquiring the interference fringes, it is necessary to perform measurement in a special environment that eliminates fluctuations such as vibration.

これに対し、複数の撮像素子を用いて、光学的に位相をシフトさせた干渉縞を同時に撮像する方法が、例えば特許文献1、2により知られている。この方法によれば、位相シフト法で演算処理するのに必要な枚数の干渉縞画像を瞬時に取り込むことができるため測定の高速化が図れる。また、振動条件下での測定も可能になる。   On the other hand, for example, Patent Documents 1 and 2 disclose a method of simultaneously imaging interference fringes whose phases are optically shifted using a plurality of imaging elements. According to this method, the number of interference fringe images required for the arithmetic processing by the phase shift method can be instantaneously captured, so that the measurement speed can be increased. Also, measurement under vibration conditions is possible.

しかし、この光学位相シフト干渉計では、参照光と測定光の偏光面を互いに直交させる必要があるため、1/4波長板が不可欠となる。しかし、1/4波長板を製造するには、合成石英などの複屈折性の光学材料を数μmオーダーの高精度で加工する必要がある。このため、1/4波長板は一般的に高価であり、光学位相シフト干渉計の価格上昇の原因となっている。直径50mm以上の大きな1/4波長板は特に入手が困難であり、また入手できても非常に高価なものとなる。このため、こうした干渉計の測定領域は、限られた小さな領域に限定されてしまい望ましくない。
特開平5−87541号公報 特開2000−329535号公報
However, in this optical phase shift interferometer, since the polarization planes of the reference light and the measurement light need to be orthogonal to each other, a quarter wavelength plate is indispensable. However, in order to manufacture a quarter-wave plate, it is necessary to process a birefringent optical material such as synthetic quartz with high accuracy on the order of several μm. For this reason, the quarter-wave plate is generally expensive and causes an increase in the price of the optical phase shift interferometer. Large quarter-wave plates having a diameter of 50 mm or more are particularly difficult to obtain, and even if available, they are very expensive. For this reason, the measurement area of such an interferometer is limited to a limited small area, which is not desirable.
Japanese Patent Laid-Open No. 5-87541 JP 2000-329535 A

本発明は、高価な波長板を必要とせず、また大口径で測定領域の広域化も可能な干渉計を提供することを目的とする。   It is an object of the present invention to provide an interferometer that does not require an expensive wave plate and that can have a large aperture and a wide measurement area.

上記目的を達成するため、本発明に係るフィゾー型干渉計は、光源と、前記光源が出射する出射光のうち第1方向の偏光成分を有する第1の光を透過させる一方前記第1方向と直交する第2方向の偏光成分を有する第2の光を反射させ、且つ前記第1の光又は前記第2の光のいずれか一方を被測定物で反射させて測定光とする一方他方を参照面で反射させて参照光として前記測定光と前記参照光を合成して合成光とする偏光部材と、前記合成光を位相シフトさせる位相シフト部と、前記位相シフト部により複数通りの異なる位相シフトを与えられた前記合成光による干渉縞画像を撮像する撮像部とを備え、前記偏光部材は、その反射面が前記出射光に対し垂直となるように設置されると共に前記反射面が前記参照面を兼用されるように構成され、前記第1の光は、前記被測定物で反射した後、前記偏光部材を通過して前記第2の光と合成されることにより前記合成光とされることを特徴とする。
In order to achieve the above object, a Fizeau interferometer according to the present invention transmits a first light having a polarization component in a first direction out of emitted light emitted from the light source and the first direction. Reference is made to the other light which reflects the second light having the polarization component in the second direction orthogonal to each other and reflects either the first light or the second light by the object to be measured to obtain the measurement light. A polarizing member that is reflected by a surface and combines the measurement light and the reference light as reference light to be combined light, a phase shift unit that shifts the phase of the combined light, and a plurality of different phase shifts by the phase shift unit And an imaging unit that captures an interference fringe image by the combined light, and the polarizing member is installed so that a reflection surface thereof is perpendicular to the emitted light, and the reflection surface is the reference surface Constructed to be combined Said first light, said after being reflected by the object to be measured, characterized in that it is with the synthesized light by the being through the polarization member combined with the second light.

この発明によれば、偏光部材により、測定光と参照光とが互いに直交する偏光成分を有する光とされる。このため、高価な波長板を必要とせず、また大口径で測定領域の広域化も可能な干渉計を提供することが可能となる。   According to the present invention, the polarizing member causes the measurement light and the reference light to be light having polarization components that are orthogonal to each other. For this reason, it becomes possible to provide an interferometer that does not require an expensive wave plate and that can have a large aperture and a wide measurement area.

次に、本発明の実施の形態を、図面を参照して詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施の形態] 図1は、本発明の第1の実施の形態に係るフィゾー型干渉計の全体構成を示している。対比のため、図8に従来の干渉計の全体構成を示す。両者間で同一の構成部材については同一の符号を付して説明する。   First Embodiment FIG. 1 shows the overall configuration of a Fizeau interferometer according to a first embodiment of the present invention. For comparison, FIG. 8 shows the overall configuration of a conventional interferometer. The same constituent members will be described with the same reference numerals.

最初に図8の従来の干渉計について説明する。この干渉計において、光源101から出射された出射光は、集光レンズ102により集光されピンホール103に照射される。ここでは、ビームスプリッタ104の入射面に対しp偏光の光が光源101から出射されているものとする。ピンホール103の点光源からの光がビームスプリッタ104を通過してコリメータレンズ105により平行光とされる。この平行光の一部は、参照面106、1/4波長板107を通過して被測定物Wに至る。残りは参照面106で反射されて参照光(p偏光)とされる。1/4波長板107は、通過するp偏光の光を円偏光に変換する。この円偏光の光は被測定物Wで反射されて測定光とされる。この測定光は、1/4波長板107を通過することにより、s偏光に変換される。参照面106を通過したs偏光の測定光は、p偏光の参照光と合成されてp偏光成分とs偏光成分とを含む合成光とされるが、両者の偏光方向が垂直であるため合成されても光の干渉は生じない。   First, the conventional interferometer of FIG. 8 will be described. In this interferometer, the emitted light emitted from the light source 101 is condensed by the condenser lens 102 and irradiated to the pinhole 103. Here, it is assumed that p-polarized light is emitted from the light source 101 to the incident surface of the beam splitter 104. Light from the point light source of the pinhole 103 passes through the beam splitter 104 and is collimated by the collimator lens 105. Part of this parallel light passes through the reference surface 106 and the quarter-wave plate 107 and reaches the object W to be measured. The rest is reflected by the reference surface 106 to become reference light (p-polarized light). The quarter wavelength plate 107 converts the p-polarized light passing therethrough into circularly polarized light. This circularly polarized light is reflected by the object W to be measured and used as measurement light. This measurement light passes through the quarter-wave plate 107 and is converted into s-polarized light. The s-polarized measurement light that has passed through the reference surface 106 is combined with the p-polarized reference light to be a combined light including a p-polarized component and an s-polarized component, but is synthesized because the polarization directions of both are perpendicular. However, no light interference occurs.

合成光はビームスプリッタ104で反射された後、1/4波長板108を通過し、左回り円偏光成分と右回り円偏光成分とを含む光に変換される。この変換後の合成光が、無偏光ビームスプリッタ113A、113B及びミラー113Cにより3つの光に分割され、偏光板114A、114B及び114Cにより異なる位相シフト量を与えられる。偏光板114A−Cは、図9に示すように、透過軸方向0°、45°、90°と45度ずつ異なっており、これらを通過した3つの分割光の位相を90度ずつ異ならせる(0°、90°、180°)ようにするものである。この異なる位相シフト量を与えられた複数の干渉縞画像をそれぞれCCD撮像素子109A、109B及び109Cにより撮像する。   The combined light is reflected by the beam splitter 104, passes through the quarter-wave plate 108, and is converted into light including a counterclockwise circularly polarized component and a clockwise circularly polarized component. The converted combined light is divided into three lights by the non-polarizing beam splitters 113A and 113B and the mirror 113C, and different phase shift amounts are given by the polarizing plates 114A, 114B and 114C. As shown in FIG. 9, the polarizing plates 114A-C are different from each other by 45 degrees in the transmission axis directions 0 °, 45 °, and 90 °, and the phases of the three divided lights that have passed through these are varied by 90 degrees ( 0 °, 90 °, 180 °). A plurality of interference fringe images given different phase shift amounts are picked up by the CCD image pickup devices 109A, 109B and 109C, respectively.

この図8の干渉計では、1/4波長板107が測定光と参照光の偏光方向を直交させるために必要であるが、この1/4波長板107は高価格であり大型のものが入手困難のため測定領域の広域化が困難であった。   In the interferometer of FIG. 8, the quarter wavelength plate 107 is necessary to make the polarization directions of the measurement light and the reference light orthogonal, but this quarter wavelength plate 107 is expensive and has a large size. Due to the difficulty, it was difficult to widen the measurement area.

これに対し、図1に示す本発明の第1の実施の形態のフィゾー型干渉計は、1/4波長板107に代えて偏光板118を設け、これにより参照光と測定光の偏光方向を直交させている。また、この偏光板118の反射面を参照面として機能させ、偏光板118と被測定物Wを同一光路上に配置するフィゾー型干渉計としているため、別途参照面を用意する必要を無くしている。この偏光板118は、透過する光を測定光とし、反射する光を参照光として両者を合成する合成部材としても機能している。   In contrast, the Fizeau interferometer according to the first embodiment of the present invention shown in FIG. 1 is provided with a polarizing plate 118 in place of the quarter-wave plate 107, thereby changing the polarization directions of the reference light and the measuring light. It is orthogonal. Further, since the reflection surface of the polarizing plate 118 functions as a reference surface and a Fizeau interferometer in which the polarizing plate 118 and the object to be measured W are arranged on the same optical path, it is not necessary to prepare a separate reference surface. . The polarizing plate 118 also functions as a combining member that combines the transmitted light as measurement light and the reflected light as reference light.

偏光板118は、例えば図2に示すように、透明ガラス基板18Aと、この透明ガラス基板18Aの上に等間隔で形成されたワイヤグリッド(金属線格子)18Bとを備えている。ワイヤグリッド18Bは、例えばアルミニウムにより形成され、例えば線幅65nm、厚さ100〜200nm、ピッチ144nmで形成することができる。ワイヤグリッド18Bは、半導体製造工程において用いられるフォトリソグラフィとエッチングにより生成することができ、1/4波長板に比べ安価に製造することができる。また、この方法の場合、直径数百mmの偏光板も容易に作成することが可能であり、測定領域の広域化への対応も容易である。なお、このように構成されたワイヤグリッド型の偏光板118は、ワイヤグリッド18Bの長手方向と平行方向の偏光成分を反射し、垂直方向の偏光成分を透過する性質を有する。この点、一般に使用される、基材フィルムにヨウ素等を吸着させ延伸・配向させることで生成される一般的な偏光板とは異なっている。   For example, as shown in FIG. 2, the polarizing plate 118 includes a transparent glass substrate 18A and wire grids (metal wire lattices) 18B formed on the transparent glass substrate 18A at equal intervals. The wire grid 18B is made of, for example, aluminum, and can be formed with, for example, a line width of 65 nm, a thickness of 100 to 200 nm, and a pitch of 144 nm. The wire grid 18B can be generated by photolithography and etching used in the semiconductor manufacturing process, and can be manufactured at a lower cost than a quarter-wave plate. In the case of this method, a polarizing plate having a diameter of several hundreds of millimeters can be easily produced, and it is easy to cope with widening the measurement region. The wire grid type polarizing plate 118 configured as described above has a property of reflecting a polarization component in a direction parallel to the longitudinal direction of the wire grid 18B and transmitting a polarization component in a vertical direction. In this respect, it is different from a generally used polarizing plate produced by adsorbing iodine or the like on a base film and stretching and orienting it.

[第2の実施の形態]
次に、本発明の第2の実施の形態に係る干渉計を図3を参照して説明する。第1の実施の形態の干渉計と同一の構成部材については同一の符号を付しその詳細な説明は省略する。この実施の形態の干渉計は、偏光板118'が設けられ1/4波長板107(図8)を不要としている点で第1の実施の形態と共通している。しかし、偏光板118'は、光源101からの光の入射光軸に対して斜めに設置され、透過側に被測定物Wが、反射側に参照面120が設置されるものである点で、第1の実施の形態と異なっている。この構成において、偏光板118'で反射したp偏光の光は参照面120で反射して偏光板118'で再び反射される。一方、偏光板118'を透過したs偏光の光は被測定物Wで反射して偏光板118'を再び透過する。このp偏光の光とs偏光の光とが、合成部材としても機能する偏光板118'により合成され、ビームスプリッタ104で反射され集光レンズ121で集光された後偏光板114A〜Cで位相シフトを与えられる。これにより、位相シフト法による干渉計測が、第1の実施の形態と同様に実施可能となる。
[Second Embodiment]
Next, an interferometer according to a second embodiment of the present invention will be described with reference to FIG. The same components as those of the interferometer of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The interferometer of this embodiment is common to the first embodiment in that a polarizing plate 118 ′ is provided and the quarter-wave plate 107 (FIG. 8) is unnecessary. However, the polarizing plate 118 ′ is installed obliquely with respect to the incident optical axis of the light from the light source 101, and the object to be measured W is installed on the transmission side, and the reference surface 120 is installed on the reflection side. This is different from the first embodiment. In this configuration, the p-polarized light reflected by the polarizing plate 118 ′ is reflected by the reference surface 120 and is reflected again by the polarizing plate 118 ′. On the other hand, the s-polarized light transmitted through the polarizing plate 118 ′ is reflected by the object to be measured W and is transmitted again through the polarizing plate 118 ′. The p-polarized light and s-polarized light are combined by the polarizing plate 118 ′ that also functions as a combining member, reflected by the beam splitter 104, collected by the condensing lens 121, and then phase-shifted by the polarizing plates 114 </ b> A to 114 </ b> C. Given a shift. Thereby, the interference measurement by the phase shift method can be performed in the same manner as in the first embodiment.

[第3の実施の形態] 次に、本発明の第3の実施の形態の干渉計を図4を参照して説明する。この実施の形態の干渉計は、第1の実施の形態と同様に、偏光板118を入射光の光軸に垂直に配置して偏光板118の反射面を参照面として機能させ別個の参照面を不要にしている。ただしこの実施の形態では、ビームスプリッタ104以降の位相シフトのための1/4波長板及び偏光板の構成が第1の実施の形態と異なっている。すなわち、この実施の形態では、ビームスプリッタ104とビームスプリッタ113Aの間の1/4波長板108を省略し、p偏光とs偏光の合成光をそのままビームスプリッタ113A、113B及びミラー113Cにより分割すると共に、ビームスプリッタ113A〜Cによる分岐後の偏光部材等を、図5に示すように構成している。偏光板114A、114B、114Cの透過軸方向は、それぞれ角度α、α、α+90°としている。すなわち、偏光板114Aと114Bの透過軸方向は等しくされている。しかし、偏光板114Bの前には、更に1/4波長板122が配置されている。1/4波長板122の進相軸方位及び遅相軸方位は、参照光及び測定光の偏光方向に一致させている。
これにより、CCD撮像素子109Bで撮像される干渉縞の位相は、CCD撮像素子109Aで撮像される干渉縞の位相とは90°異なったものとすることができる。一方、偏光板114Cの透過軸方向はα+90°とされているため、CCD撮像素子109Aで撮像される干渉縞と、CCD撮像素子109Cで撮像される干渉縞との間には、180°の位相シフトが生じる。このため、第1の実施の形態と同様に、複数通りの位相シフトを与えられた干渉縞を得ることが出来る。
[Third Embodiment] Next, an interferometer according to a third embodiment of the present invention will be described with reference to FIG. In the interferometer of this embodiment, as in the first embodiment, the polarizing plate 118 is arranged perpendicular to the optical axis of the incident light, and the reflecting surface of the polarizing plate 118 functions as a reference surface. Is unnecessary. However, in this embodiment, the configuration of a quarter-wave plate and a polarizing plate for phase shift after the beam splitter 104 is different from that of the first embodiment. That is, in this embodiment, the quarter wavelength plate 108 between the beam splitter 104 and the beam splitter 113A is omitted, and the combined light of p-polarized light and s-polarized light is split as it is by the beam splitters 113A and 113B and the mirror 113C. The polarization members after branching by the beam splitters 113A to 113C are configured as shown in FIG. The transmission axis directions of the polarizing plates 114A, 114B, and 114C are set to angles α, α, and α + 90 °, respectively. That is, the transmission axis directions of the polarizing plates 114A and 114B are equal. However, a quarter-wave plate 122 is further disposed in front of the polarizing plate 114B. The fast axis direction and slow axis direction of the quarter-wave plate 122 are matched with the polarization directions of the reference light and the measurement light.
Thereby, the phase of the interference fringe imaged by the CCD image sensor 109B can be 90 ° different from the phase of the interference fringe imaged by the CCD image sensor 109A. On the other hand, since the transmission axis direction of the polarizing plate 114C is α + 90 °, a phase of 180 ° is formed between the interference fringe imaged by the CCD image sensor 109A and the interference fringe imaged by the CCD image sensor 109C. A shift occurs. For this reason, as in the first embodiment, it is possible to obtain interference fringes given a plurality of types of phase shifts.

[第4の実施の形態] 次に、本発明の第4の実施の形態の干渉計を図6を参照して説明する。この実施の形態の干渉計は、干渉縞の位相シフトを光学的に行うのではなく、図6に示すように、参照面として機能する偏光板118を光軸方向に移動させることにより位相シフトを生じさせる。このため、ビームスプリッタ113A、113B、及びミラー113Cは省略され、CCD撮像素子109は1台のみ用意すればよく、構成は上記実施の形態に比べ簡略化することができる。   [Fourth Embodiment] Next, an interferometer according to a fourth embodiment of the present invention will be described with reference to FIG. The interferometer of this embodiment does not optically shift the phase of the interference fringes, but shifts the phase shift by moving the polarizing plate 118 functioning as a reference surface in the optical axis direction as shown in FIG. Cause it to occur. For this reason, the beam splitters 113A and 113B and the mirror 113C are omitted, and only one CCD image sensor 109 needs to be prepared, and the configuration can be simplified compared to the above embodiment.

また、この実施の形態の干渉計は、参照光と測定光の強度比を調整するため、偏光板131と偏光板132とを備えている。偏光板131は回転可能に保持されてその透過軸方位を変更することができるようにされている。   In addition, the interferometer of this embodiment includes a polarizing plate 131 and a polarizing plate 132 in order to adjust the intensity ratio between the reference light and the measuring light. The polarizing plate 131 is rotatably held so that its transmission axis direction can be changed.

被測定物Wの材質は、ガラス、金属など様々であり、それぞれ反射率が異なる。
反射率が小さいと測定光の強度が参照光の強度に比べ小さくなる。この強度の差が大きくなると、干渉計測の精度が低下してしまう。そこで本実施の形態では、被測定物Wの反射率に応じて偏光板131の透過軸方位を変更し、これにより偏光板118に入射する光の偏光方向を変え、これにより参照光と測定光の強度比を調整している。このようにすることにより、参照光と測定光の強度の差を少なくすることができ、S/N比の高い干渉計測を行うことができる。なお、このような偏光板131は、上記第1、第2の実施の形態のような光学的位相シフトを用いた干渉計においても採用することが可能である。また、図7に示すように、偏光板131を省略すると共に、偏光板132を被測定物Wの反射率に応じて回転させるようにしても同様の効果を得ることができる。
The material of the object to be measured W is various, such as glass and metal, and has different reflectivities.
When the reflectance is small, the intensity of the measurement light is smaller than the intensity of the reference light. When this difference in intensity increases, the accuracy of interference measurement decreases. Therefore, in the present embodiment, the transmission axis direction of the polarizing plate 131 is changed in accordance with the reflectance of the object to be measured W, thereby changing the polarization direction of the light incident on the polarizing plate 118, thereby the reference light and the measuring light. The intensity ratio is adjusted. By doing so, the difference in intensity between the reference light and the measurement light can be reduced, and interference measurement with a high S / N ratio can be performed. Such a polarizing plate 131 can also be employed in an interferometer using an optical phase shift as in the first and second embodiments. Further, as shown in FIG. 7, the same effect can be obtained by omitting the polarizing plate 131 and rotating the polarizing plate 132 in accordance with the reflectance of the object W to be measured.

以上、発明の実施の形態を説明したが、本発明はこれらに限定されるものではなく、発明の趣旨を逸脱しない範囲内において、種々の変更、追加等が可能である。例えば、CCDカメラ209A−Cを複数台準備する例を説明したが、これに限らず、光路切替部材による切替を行うこと等により、1台のCCDカメラのみで撮像を行うことも可能である。また、上記の実施の形態では、参照面と被測定物が同一光路上に存在するフィゾー干渉計を説明したが、本発明は、これに限らず、両者が別光路に存在するマイケルソン型干渉計等にも適用可能である。フィゾー型干渉計に適用する場合、偏光板118は参照光と測定光を合成する合成部材として機能させることができるが、マイケルソン型の干渉計の場合には、別途光分割・合成部材を用意することにより、参照光と測定光を合成することができる。   Although the embodiments of the invention have been described above, the present invention is not limited to these embodiments, and various modifications and additions can be made without departing from the spirit of the invention. For example, an example in which a plurality of CCD cameras 209A-C are prepared has been described. However, the present invention is not limited to this, and it is also possible to perform imaging with only one CCD camera by switching with an optical path switching member. In the above embodiment, the Fizeau interferometer has been described in which the reference surface and the object to be measured are on the same optical path. However, the present invention is not limited to this, and the Michelson type interference in which both exist in different optical paths. It is also applicable to totals. When applied to a Fizeau interferometer, the polarizing plate 118 can function as a combining member that combines reference light and measurement light. However, in the case of a Michelson interferometer, a separate light splitting and combining member is prepared. By doing so, the reference light and the measurement light can be synthesized.

本発明の第1の実施の形態に係る干渉計の構成を示している。1 shows a configuration of an interferometer according to a first embodiment of the present invention. 図1の偏光板118の構造を示す。The structure of the polarizing plate 118 of FIG. 1 is shown. 本発明の第2の実施の形態に係る干渉計の構成を示している。The structure of the interferometer which concerns on the 2nd Embodiment of this invention is shown. 本発明の第3の実施の形態に係る干渉計の構成を示している。3 shows a configuration of an interferometer according to a third embodiment of the present invention. 図4に示す1/4波長板122及び偏光板114A〜Cを示している。The quarter wave plate 122 and polarizing plates 114A to 114C shown in FIG. 4 are shown. 本発明の第4の実施の形態に係る干渉計の構成を示している。The structure of the interferometer which concerns on the 4th Embodiment of this invention is shown. 第4の実施の形態の変形例に係る干渉計の構成を示している。The structure of the interferometer which concerns on the modification of 4th Embodiment is shown. 従来の干渉計の構成を示している。The structure of the conventional interferometer is shown. 図8の従来の干渉計の偏光板114Aの構成を説明している。The configuration of the polarizing plate 114A of the conventional interferometer of FIG. 8 will be described.

符号の説明Explanation of symbols

101・・・光源、 102・・・集光レンズ、 103・・・ピンホール、 104・・・ビームスプリッタ、 105・・・コリメータレンズ、 106・・・参照面、 107・・・1/4波長板、 W・・・被測定物、 108・・・1/4波長板、 113A、113B・・・無偏光ビームスプリッタ、 113・・・ミラー、 114A、114B、114C・・・偏光板、 109A、109B、109・・・CCD撮像素子、 118、118'・・・偏光板、 121・・・レンズ、 18A・・・透明ガラス基板、 18B・・・ワイヤグリッド(金属線格子)、 131、132・・・偏光板。
DESCRIPTION OF SYMBOLS 101 ... Light source, 102 ... Condensing lens, 103 ... Pinhole, 104 ... Beam splitter, 105 ... Collimator lens, 106 ... Reference surface, 107 ... 1/4 wavelength Plate, W ... object to be measured, 108 ... quarter wave plate, 113A, 113B ... non-polarizing beam splitter, 113 ... mirror, 114A, 114B, 114C ... polarizing plate, 109A, 109B, 109 ... CCD image sensor, 118, 118 '... polarizing plate, 121 ... lens, 18A ... transparent glass substrate, 18B ... wire grid (metal wire grid), 131, 132 ··Polarizer.

Claims (6)

光源と、
前記光源が出射する出射光のうち第1方向の偏光成分を有する第1の光を透過させる一方前記第1方向と直交する第2方向の偏光成分を有する第2の光を反射させ、且つ前記第1の光又は前記第2の光のいずれか一方を被測定物で反射させて測定光とする一方他方を参照面で反射させて参照光として前記測定光と前記参照光を合成して合成光とする偏光部材と、
前記合成光を位相シフトさせる位相シフト部と、
前記位相シフト部により複数通りの異なる位相シフトを与えられた前記合成光による干渉縞画像を撮像する撮像部と
を備え、
前記偏光部材は、その反射面が前記出射光に対し垂直となるように設置されると共に前記反射面が前記参照面を兼用されるように構成され、
前記第1の光は、前記被測定物で反射した後、前記偏光部材を通過して前記第2の光と合成されることにより前記合成光とされる
ことを特徴とするフィゾー型干渉計。
A light source;
Of the outgoing light emitted from the light source, the first light having the polarization component in the first direction is transmitted, while the second light having the polarization component in the second direction orthogonal to the first direction is reflected, and the Either the first light or the second light is reflected by the object to be measured to be measured light, and the other is reflected by the reference surface, and the measurement light and the reference light are combined as reference light and combined. A polarizing member for light;
A phase shift unit for phase shifting the combined light;
An imaging unit that captures an interference fringe image with the combined light that has been given a plurality of different phase shifts by the phase shift unit, and
The polarizing member is configured so that a reflection surface thereof is perpendicular to the emitted light, and the reflection surface is also used as the reference surface,
The Fizeau interferometer, wherein the first light is reflected by the object to be measured, passes through the polarizing member, and is combined with the second light to be the combined light.
前記偏光部材は、透明基板と、この透明基板の上に等間隔で形成された金属線格子とを備えたものであることを特徴とする請求項1記載のフィゾー型干渉計。 2. The Fizeau interferometer according to claim 1, wherein the polarizing member comprises a transparent substrate and a metal wire grating formed on the transparent substrate at equal intervals. 前記金属線格子は、前記透明基板上にフォトリソグラフィとエッチングにより形成されるものである請求項2記載のフィゾー型干渉計。 3. The Fizeau interferometer according to claim 2, wherein the metal line grating is formed on the transparent substrate by photolithography and etching. 前記合成光を複数の光に分割する光分割手段を更に備え、
前記位相シフト部は、光学部材を用いて分割された前記複数の光に異なる位相シフトを与えるものである請求項1記載のフィゾー型干渉計。
A light splitting means for splitting the combined light into a plurality of lights;
2. The Fizeau interferometer according to claim 1, wherein the phase shift unit gives different phase shifts to the plurality of lights divided by using an optical member.
前記位相シフト部は、前記参照面を移動させることにより前記合成光に位相シフトを与えるものである請求項1記載のフィゾー型干渉計。 The Fizeau interferometer according to claim 1, wherein the phase shift unit gives a phase shift to the combined light by moving the reference surface. 前記出射光の偏光方向を変更して前記参照光と前記測定光との強度比を調整するため、前記偏光部材と前記光源との間に別の偏光部材を備えたことを特徴とする請求項1記載のフィゾー型干渉計。 The polarization member of the present invention is provided with another polarization member between the polarization member and the light source in order to adjust the intensity ratio between the reference light and the measurement light by changing the polarization direction of the emitted light. 1. The Fizeau interferometer according to 1.
JP2005229312A 2005-08-08 2005-08-08 Interferometer Active JP4869656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229312A JP4869656B2 (en) 2005-08-08 2005-08-08 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229312A JP4869656B2 (en) 2005-08-08 2005-08-08 Interferometer

Publications (2)

Publication Number Publication Date
JP2007046938A JP2007046938A (en) 2007-02-22
JP4869656B2 true JP4869656B2 (en) 2012-02-08

Family

ID=37849880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229312A Active JP4869656B2 (en) 2005-08-08 2005-08-08 Interferometer

Country Status (1)

Country Link
JP (1) JP4869656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017009099A1 (en) 2016-11-09 2018-05-09 Mitutoyo Corporation PHASE SHIFTING INTERFEROMETER AND SHAPING METHOD

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286518A (en) * 2007-05-15 2008-11-27 Hitachi Ltd Method and device for measuring displacement thereof
JP2012047607A (en) * 2010-08-27 2012-03-08 Hitachi Ltd Internal flaw detection method and device for the same
JP5699105B2 (en) * 2012-04-11 2015-04-08 株式会社日立製作所 Surface measurement method and apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606638A (en) * 1983-11-03 1986-08-19 Zygo Corporation Distance measuring interferometer and method of use
JPS61116644A (en) * 1984-11-12 1986-06-04 Nec Corp Laser interferometer
JP2779497B2 (en) * 1988-03-31 1998-07-23 株式会社東京精密 Interferometer
JPH03195907A (en) * 1989-12-25 1991-08-27 Matsushita Electric Works Ltd Fizeau interferometer for polarized light
JPH06294624A (en) * 1993-04-09 1994-10-21 Ricoh Co Ltd Method and equipment for measuring microdisplacement
JPH08327453A (en) * 1995-05-29 1996-12-13 Shimadzu Corp Polarization interferometer
JPH11325848A (en) * 1998-05-19 1999-11-26 Nikon Corp Aspherical surface shape measurement device
JP4188515B2 (en) * 1999-10-04 2008-11-26 株式会社ミツトヨ Optical shape measuring device
JP3382600B2 (en) * 2000-09-14 2003-03-04 ナルックス株式会社 Polarizing beam splitter
JP4376507B2 (en) * 2002-11-01 2009-12-02 リコー光学株式会社 Polarizing optical element
JP4939765B2 (en) * 2005-03-28 2012-05-30 株式会社日立製作所 Displacement measuring method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017009099A1 (en) 2016-11-09 2018-05-09 Mitutoyo Corporation PHASE SHIFTING INTERFEROMETER AND SHAPING METHOD
US10444004B2 (en) 2016-11-09 2019-10-15 Mitutoyo Corporation Phase shift interferometer

Also Published As

Publication number Publication date
JP2007046938A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
TWI477758B (en) Discrete polarization permutation angular scatterometer, optical subsystem of a scatterometer and scatterometry method
US9880377B1 (en) Multiple wavelengths real time phase shift interference microscopy
US7499178B2 (en) Oblique incidence interferometer
JP4538388B2 (en) Phase shift interferometer
US8687202B2 (en) Displacement detecting device
JP4729423B2 (en) Optical interferometer
JPWO2013001805A1 (en) Structured illumination optical system and structured illumination microscope apparatus
JP4895353B2 (en) Interferometer and shape measuring method
JP2012237644A (en) Displacement detector
JP5965167B2 (en) White light interference measurement device
JP2007279287A (en) Structured illuminating optical system and structured illuminating microscope having the same
JP5849231B2 (en) Surface shape measuring apparatus and method
JP4077637B2 (en) Grating interference displacement measuring device
JP4869656B2 (en) Interferometer
US5194744A (en) Compact reticle/wafer alignment system
JPH01284715A (en) Encoder
JP5235554B2 (en) Optical displacement measuring device
JP4721685B2 (en) Shape measuring method and shape measuring apparatus
JP4616692B2 (en) Displacement detector
JP2010032342A (en) Oblique incidence interferometer
WO2017126215A1 (en) Phase shift amount measurement device
JP2001336952A (en) Measuring apparatus
JP2005062012A (en) Vibration-proof type interferometer device
JP2011257190A (en) Real-time measurement branch type interferometer
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Ref document number: 4869656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250