JP4867388B2 - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
JP4867388B2
JP4867388B2 JP2006044118A JP2006044118A JP4867388B2 JP 4867388 B2 JP4867388 B2 JP 4867388B2 JP 2006044118 A JP2006044118 A JP 2006044118A JP 2006044118 A JP2006044118 A JP 2006044118A JP 4867388 B2 JP4867388 B2 JP 4867388B2
Authority
JP
Japan
Prior art keywords
heat
point metal
melting point
power generation
thermoelectric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006044118A
Other languages
Japanese (ja)
Other versions
JP2007227458A (en
Inventor
善樹 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006044118A priority Critical patent/JP4867388B2/en
Publication of JP2007227458A publication Critical patent/JP2007227458A/en
Application granted granted Critical
Publication of JP4867388B2 publication Critical patent/JP4867388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、熱エネルギーを電気エネルギーに直接変換する熱電発電モジュールを備えた熱電発電装置に関するものである。   The present invention relates to a thermoelectric power generation apparatus including a thermoelectric power generation module that directly converts thermal energy into electric energy.

熱電発電モジュールは、ゼーベック効果により温度差に応じた熱起電力を発生するn型熱電発電素子およびp型熱電発電素子が高温側の受熱部と低温側の放熱部との間に複数個設置された構造を有し、熱エネルギーを電気エネルギーに直接変換することができる。そして、このような熱電発電モジュールの受熱部に高温熱源である適宜の熱回収部材を接触させ、その放熱部に適宜の熱放出部材を接触させることで熱電発電装置が構成される。   In the thermoelectric power generation module, a plurality of n-type thermoelectric power generation elements and p-type thermoelectric power generation elements that generate a thermoelectromotive force according to a temperature difference by the Seebeck effect are installed between a high-temperature side heat receiving part and a low-temperature side heat dissipation part. And can directly convert heat energy into electrical energy. Then, an appropriate heat recovery member, which is a high-temperature heat source, is brought into contact with the heat receiving portion of such a thermoelectric power generation module, and an appropriate heat release member is brought into contact with the heat radiating portion, thereby forming a thermoelectric generator.

この種の熱電発電モジュールを備えた熱電発電装置においては、熱回収部材から熱電発電モジュールの受熱部への熱伝導性が発電性能に大きく影響するため、一般には、熱回収部材と熱電発電モジュールの受熱部との接触面を高い平面度に仕上げ、あるいは、両者に圧力を掛けてその接触面を均一に圧接させている。   In a thermoelectric generator equipped with this type of thermoelectric power generation module, the heat conductivity from the heat recovery member to the heat receiving part of the thermoelectric power generation module greatly affects the power generation performance. The contact surface with the heat receiving part is finished with high flatness, or pressure is applied to both to bring the contact surface into uniform pressure contact.

この種の熱電発電装置として、特許文献1には、熱回収部材としてのインナシェルの集熱面と熱電発電モジュールの受熱部としての高温側の端面との間に緩衝部材を挟持した例が開示されている。そして、この特許文献1には、ステンレスなどの金属ワイヤをメッシュ状に編み込んだ金属織布を積層ないし折り畳んだものや、波板形状の金属板、金属コイルなどが緩衝部材として使用できると記載されている。
特開平10−234194号公報(段落番号45、46)
As this type of thermoelectric generator, Patent Document 1 discloses an example in which a buffer member is sandwiched between a heat collecting surface of an inner shell as a heat recovery member and an end surface on a high temperature side as a heat receiving portion of a thermoelectric generator module. Has been. And in this patent document 1, it describes that what laminated | stacked or folded the metal woven fabric which woven metal wires, such as stainless steel, in mesh shape, a corrugated metal plate, a metal coil, etc. can be used as a buffer member. ing.
JP-A-10-234194 (paragraph numbers 45 and 46)

ところで、特許文献1に記載された熱電発電装置においては、高温の熱がインナシェルの集熱面から金属メッシュ等で構成された緩衝部材を介して熱電発電モジュールの高温側の端面に伝導されるため、その熱伝導性が大きく損なわれて発電性能が低下する恐れがある。   By the way, in the thermoelectric power generation device described in Patent Document 1, high-temperature heat is conducted from the heat collecting surface of the inner shell to the end surface on the high-temperature side of the thermoelectric power generation module through a buffer member made of a metal mesh or the like. For this reason, the thermal conductivity is greatly impaired, and the power generation performance may be reduced.

そこで、本発明は、熱回収部材と熱電発電モジュールの受熱部との接触面を高い平面度に仕上げ、あるいはその接触面を均一に圧接させることなく、長期にわたって極めて良好に熱回収部材から熱電発電モジュールの受熱部に熱伝導できる熱電発電装置を提供することを課題とする。   In view of this, the present invention provides a very good contact between the heat recovery member and the heat receiving portion of the thermoelectric power generation module with a high degree of flatness, or the contact surface is uniformly pressed against the thermoelectric power generation from the heat recovery member over a long period of time. It is an object of the present invention to provide a thermoelectric generator that can conduct heat to a heat receiving portion of a module.

本発明に係る熱電発電装置は、熱回収手段に接触する受熱部と熱放出手段に接触する放熱部との間に複数の熱電発電素子が配置された熱電発電モジュールを備える熱電発電装置であって、熱電発電モジュールの受熱部は、高融点金属被覆で覆われた低融点金属体を介して熱回収手段に接触しており、低融点金属体中への金属成分の溶解を防止する保護膜が低融点金属体の全面を覆っていることを特徴とする。   A thermoelectric power generation device according to the present invention is a thermoelectric power generation device including a thermoelectric power generation module in which a plurality of thermoelectric power generation elements are arranged between a heat receiving portion that contacts the heat recovery means and a heat dissipation portion that contacts the heat release means. The heat receiving part of the thermoelectric power module is in contact with the heat recovery means through the low melting point metal body covered with the high melting point metal coating, and a protective film for preventing the dissolution of the metal component in the low melting point metal body is provided. It covers the entire surface of the low melting point metal body.

本発明に係る熱電発電装置では、使用状態において熱回収手段が高温となると、高融点金属被覆で覆われた低融点金属体が溶融し、この溶融した低融点金属体の柔軟性により高融点金属被覆が熱電発電モジュールの受熱部に均一な面圧で密着する。その結果、熱回収手段から熱電発電モジュールの受熱部への熱伝導が極めて良好に行われる。   In the thermoelectric generator according to the present invention, when the heat recovery means becomes high temperature in use, the low melting point metal body covered with the high melting point metal coating melts, and the high melting point metal body is melted by the flexibility of the melted low melting point metal body. The coating adheres to the heat receiving part of the thermoelectric power generation module with a uniform surface pressure. As a result, heat conduction from the heat recovery means to the heat receiving portion of the thermoelectric power generation module is performed extremely well.

そして、このような使用状態においては、低融点金属体の全面を覆っている保護膜により、溶融した低融点金属体中に高融点金属被覆や熱回収手段の金属成分が溶解するのが未然に防止されるため、低融点金属体の融点などの物性の変化および高融点金属被覆の損傷が長期にわたって防止される。従って、熱回収手段から熱電発電モジュールの受熱部への熱伝導が長期にわたって極めて良好に行われる。   In such a use state, the protective film covering the entire surface of the low-melting-point metal body causes the high-melting-point metal coating and the metal component of the heat recovery means to dissolve in the molten low-melting-point metal body. Therefore, changes in physical properties such as the melting point of the low melting point metal body and damage to the high melting point metal coating can be prevented over a long period of time. Therefore, heat conduction from the heat recovery means to the heat receiving portion of the thermoelectric power generation module is performed extremely well over a long period of time.

本発明の熱電発電装置において、高温の使用環境で溶融した低融点金属体中に高融点金属被覆や熱回収手段の金属成分が溶解するのを確実に防止するためには、低融点金属体を覆う保護膜を粘土セラミックス膜またはセラミックス溶射膜とするのが好ましい。   In the thermoelectric generator of the present invention, in order to reliably prevent the metal component of the high melting point metal coating or heat recovery means from dissolving in the low melting point metal body melted in a high temperature use environment, The covering protective film is preferably a clay ceramic film or a ceramic sprayed film.

また、本発明の熱電発電装置において、低融点金属体を覆う保護膜が粘土セラミックス膜またはセラミックス溶射膜である場合には、その焼成時における低融点金属体の形状を保持するため、低融点金属体に予め高融点金属のメッキ層を形成し、このメッキ層上に保護膜を形成するのが好ましい。   Further, in the thermoelectric power generator of the present invention, when the protective film covering the low melting point metal body is a clay ceramic film or a ceramic sprayed film, the low melting point metal body is maintained in order to maintain the shape of the low melting point metal body during firing. It is preferable to form a refractory metal plating layer on the body in advance and form a protective film on the plating layer.

本発明の熱電発電装置において、高融点金属被覆は板金により構成することができる。この場合、板金の内面は保護膜で被覆されているのが好ましい。   In the thermoelectric generator of the present invention, the refractory metal coating can be made of sheet metal. In this case, the inner surface of the sheet metal is preferably covered with a protective film.

本発明に係る熱電発電装置では、使用状態において高融点金属被覆で覆われた低融点金属体が溶融すると、この溶融した低融点金属体の柔軟性により高融点金属皮膜が熱電発電モジュールの受熱部に均一な面圧で密着する。その際、低融点金属体の全面を覆っている保護膜により、溶融した低融点金属体中に高融点金属被覆やフィン部材の金属成分が溶解するのが未然に防止されるため、低融点金属体の融点などの物性の変化および高融点金属被覆の損傷が長期にわたって防止される。   In the thermoelectric generator according to the present invention, when the low-melting point metal body covered with the high-melting point metal coating is melted in use, the high-melting point metal film is formed by the flexibility of the molten low-melting point metal body. It adheres with uniform surface pressure. At that time, the protective film covering the entire surface of the low melting point metal body prevents the metal component of the high melting point metal coating or the fin member from being dissolved in the molten low melting point metal body. Changes in physical properties such as the melting point of the body and damage to the refractory metal coating are prevented over time.

従って、本発明によれば、熱回収部材と熱電発電モジュールの受熱部との接触面を高い平面度に仕上げ、あるいはその接触面を均一に圧接させることなく、長期にわたって極めて良好に熱回収部材から熱電発電モジュールの受熱部に熱伝導できる。その結果、長期にわたって高い発電性能を発揮することができる。   Therefore, according to the present invention, the contact surface between the heat recovery member and the heat receiving portion of the thermoelectric power generation module is finished with a high flatness, or the contact surface is uniformly pressed from the heat recovery member over a long period of time. Heat can be transferred to the heat receiving part of the thermoelectric generator module. As a result, high power generation performance can be exhibited over a long period of time.

本発明の熱電発電装置において、低融点金属体を覆うが粘土セラミックス膜またはセラミックス溶射膜である場合、高温の使用環境で溶融した低融点金属体中に高融点金属被覆や熱回収手段の金属成分が溶解するのを保護膜によって確実に防止することができる。   In the thermoelectric generator of the present invention, when the low melting point metal body is covered but is a clay ceramic film or a ceramic sprayed film, the high melting point metal coating or the metal component of the heat recovery means in the low melting point metal body melted in a high temperature use environment It is possible to reliably prevent the dissolution by the protective film.

また、本発明の熱電発電装置において、低融点金属体に予め高融点金属のメッキ層が形成され、このメッキ層上に保護膜が形成されていると、粘土セラミックス膜またはセラミックス溶射膜からなる保護膜の焼成時に低融点金属体の形状を高融点金属のメッキ層で保持することができる。   In the thermoelectric generator of the present invention, when a high melting point metal plating layer is previously formed on the low melting point metal body and a protective film is formed on the plating layer, the protection made of a clay ceramic film or a ceramic sprayed film is provided. The shape of the low-melting-point metal body can be held by the high-melting-point metal plating layer when the film is fired.

以下、図面を参照して本発明に係る熱電発電装置の実施の形態を説明する。参照する図面において、図1は一実施形態に係る熱電発電装置を構成する熱電発電モジュールの概略構造を示す斜視図、図2は一実施形態に係る熱電発電装置の概略構造を示す縦断面図である。   Embodiments of a thermoelectric generator according to the present invention will be described below with reference to the drawings. In the drawings to be referred to, FIG. 1 is a perspective view showing a schematic structure of a thermoelectric power generation module constituting a thermoelectric power generation apparatus according to one embodiment, and FIG. 2 is a longitudinal sectional view showing a schematic structure of the thermoelectric power generation apparatus according to one embodiment. is there.

一実施形態に係る熱電発電装置は、例えば図1に示すような構造の熱電発電モジュール1を備えている。この熱電発電モジュール1は、高温側の受熱部を構成する絶縁セラミックス製の受熱基板1Aと、低温側の放熱部を構成する絶縁セラミックス製の放熱基板1Bとの間に、ゼーベック効果により温度差に応じた熱起電力を発生するn型熱電発電素子Nおよびp型熱電発電素子Pが複数個設置され、これらのn型熱電発電素子Nおよびp型熱電発電素子Pが電極板1Cを介して交互に直列に接続された基本構造を有する。   A thermoelectric generator according to an embodiment includes a thermoelectric generator module 1 having a structure as shown in FIG. This thermoelectric power generation module 1 has a temperature difference due to the Seebeck effect between a heat-receiving board 1A made of insulating ceramics that constitutes a heat-receiving part on the high temperature side and a heat-radiating board 1B made of insulating ceramics that forms the heat-radiating part on the low temperature side. A plurality of n-type thermoelectric power generation elements N and p-type thermoelectric power generation elements P that generate the corresponding thermoelectromotive force are installed, and these n-type thermoelectric power generation elements N and p-type thermoelectric power generation elements P are alternately arranged via the electrode plate 1C. Have a basic structure connected in series.

このような構造の熱電発電モジュール1は、図2に示すように、熱回収手段としてのフィン部材2と熱放出手段としての放熱ブロック3との間に配置される。ここで、熱電発電モジュール1は、受熱部である受熱基板1Aの外面の受熱面1A1が高融点金属被覆4で覆われた低融点金属体5を介してフィン部材2に接触し、放熱部である放熱基板1Bの外面が放熱ブロック3に直接接触している。   As shown in FIG. 2, the thermoelectric power generation module 1 having such a structure is disposed between a fin member 2 as heat recovery means and a heat dissipation block 3 as heat release means. Here, the thermoelectric generator module 1 is in contact with the fin member 2 via the low melting point metal body 5 in which the heat receiving surface 1A1 of the outer surface of the heat receiving substrate 1A that is the heat receiving portion is covered with the refractory metal coating 4, The outer surface of a certain heat radiating board 1B is in direct contact with the heat radiating block 3.

フィン部材2は、例えば熱伝導性の高い銅合金やアルミニウム合金の押出し型材からなり、熱電発電モジュール1の受熱面1A1に対面する対向面2Aの反対側には、熱回収用の複数のフィン2Bが一体に突出成形されている。そして、このフィン部材2の対向面2Aには、低融点金属体5を収容する凹部2Cが形成されている。この凹部2Cは、熱電発電モジュール1の受熱面1A1より大きい例えば四角形の開口面を有する。   The fin member 2 is made of, for example, an extruded mold material of copper alloy or aluminum alloy having high thermal conductivity. On the opposite side of the facing surface 2A facing the heat receiving surface 1A1 of the thermoelectric power generation module 1, a plurality of fins 2B for heat recovery are provided. Are integrally formed by protruding. A recess 2 </ b> C for accommodating the low melting point metal body 5 is formed on the facing surface 2 </ b> A of the fin member 2. The recess 2C has, for example, a rectangular opening surface larger than the heat receiving surface 1A1 of the thermoelectric power generation module 1.

放熱ブロック3は、熱電発電モジュール1の放熱基板1Bとの間の熱交換により放熱基板1Bから吸熱できるように、熱伝導性の高い銅合金やアルミニウム合金製の本体内部(図示省略)に冷却水の流通路が形成されている。   The heat dissipating block 3 has cooling water in the main body (not shown) made of copper alloy or aluminum alloy having high heat conductivity so that heat can be absorbed from the heat dissipating substrate 1B by heat exchange with the heat dissipating substrate 1B of the thermoelectric power generation module 1. The flow path is formed.

低融点金属体5は、錫(Sn)、鉛(Pb)、亜鉛(Zn)などの金属材料からなり、例えば、フィン部材2が250℃以上の温度雰囲気に晒される使用状態において確実に溶融する錫(Sn)を成分として構成されている。この低融点金属体5は、フィン部材2の対向面2Aに形成された凹部2C内に収容されており、その表面は低い台形をなして凹部2Cの開口面から盛り上がっている。この盛上り部5Aは、熱電発電モジュール1の受熱面1A1の周縁部を除いた内側の領域に対面している。   The low-melting-point metal body 5 is made of a metal material such as tin (Sn), lead (Pb), or zinc (Zn). For example, the fin member 2 is reliably melted in a usage state where the fin member 2 is exposed to a temperature atmosphere of 250 ° C. or higher. It is composed of tin (Sn) as a component. The low-melting-point metal body 5 is accommodated in a recess 2C formed on the opposing surface 2A of the fin member 2, and the surface thereof forms a low trapezoid and rises from the opening surface of the recess 2C. The swelled portion 5A faces the inner region excluding the peripheral edge portion of the heat receiving surface 1A1 of the thermoelectric power generation module 1.

高融点金属被覆4は、モリブデン(Mo)やニッケル(Ni)などの高融点金属の板金からなり、低融点金属体5の盛上り部5Aの表面およびその周囲のフィン部材2の対向面2Aを覆っている。なお、この高融点金属被覆4は、モリブデン(Mo)やニッケル(Ni)などの高融点金属をメッキ、蒸着あるいは溶射することで皮膜状に形成されていてもよい。   The refractory metal coating 4 is made of a sheet metal of a refractory metal such as molybdenum (Mo) or nickel (Ni), and the surface of the raised portion 5A of the low melting point metal body 5 and the opposing surface 2A of the surrounding fin member 2 are formed. Covering. The refractory metal coating 4 may be formed into a film by plating, vapor deposition, or thermal spraying a refractory metal such as molybdenum (Mo) or nickel (Ni).

ここで、低融点金属体5の盛上り部5Aの表面には、モリブデン(Mo)やニッケル(Ni)などの高融点金属のメッキ層6が形成されている。そして、このような低融点金属体5の全面は、フィン部材2の凹部2Cの内面からその周囲の対向面2Aにわたって形成された保護膜7Aと、この保護膜7Aの周縁部からメッキ層6上にわたって形成された保護膜7Bとによって密封状態に覆われている。   Here, a plating layer 6 of a high melting point metal such as molybdenum (Mo) or nickel (Ni) is formed on the surface of the rising portion 5A of the low melting point metal body 5. The entire surface of the low-melting-point metal body 5 is formed on the protective layer 7A formed from the inner surface of the concave portion 2C of the fin member 2 to the surrounding opposing surface 2A, and on the plating layer 6 from the peripheral portion of the protective film 7A. And a protective film 7B formed over the cover.

保護膜7Aは、溶融した低融点金属体5中にフィン部材2の金属成分が溶解して低融点金属体5の融点などの物性が変化するのを防止するための皮膜である。また、保護膜7Bは、溶融した低融点金属体5中に高融点金属被覆4の金属成分が溶解して低融点金属体5の融点などの物性が変化するのを防止すると共に、金属成分の溶出によって高融点金属被覆4が損傷するのを防止するための皮膜である。   The protective film 7 </ b> A is a film for preventing the metal component of the fin member 2 from being dissolved in the molten low melting point metal body 5 to change the physical properties such as the melting point of the low melting point metal body 5. The protective film 7B prevents the metal component of the high melting point metal coating 4 from being dissolved in the molten low melting point metal body 5 to change the physical properties such as the melting point of the low melting point metal body 5, and This is a film for preventing the refractory metal coating 4 from being damaged by elution.

このような保護膜7Aおよび保護膜7Bは、例えば250℃以上の高温下において優れた気体バリアー性を発揮する厚さ0.1〜2mm程度の粘土セラミックス膜(粘土配向皮膜)からなり、低融点金属体5の酸化を防止する。この粘土セラミックス膜は、粘土粒子の積層を高度に配向させた皮膜であって、例えば、均一な粘土分散液を静置して粘土粒子を沈積させた後、分散媒である液体を遠心分離、ろ過、真空乾燥、凍結真空乾燥、又は加熱蒸発法などによって分離し、この皮膜素材を110〜300℃の高温下で乾燥することで焼成される。なお、保護膜7Aおよび保護膜7Bは、粘土セラミックス膜と同様の機能を有するセラミックス溶射膜で構成されていてもよい。   The protective film 7A and the protective film 7B are made of a clay ceramic film (clay oriented film) having a thickness of about 0.1 to 2 mm that exhibits excellent gas barrier properties at a high temperature of, for example, 250 ° C. or higher, and has a low melting point. The oxidation of the metal body 5 is prevented. This clay ceramic film is a film in which the lamination of clay particles is highly oriented, for example, after leaving a uniform clay dispersion and depositing clay particles, the liquid as a dispersion medium is centrifuged, It isolate | separates by filtration, vacuum drying, freeze vacuum drying, a heating evaporation method, etc., and this film | membrane raw material is baked by drying at 110-300 degreeC high temperature. The protective film 7A and the protective film 7B may be formed of a ceramic sprayed film having the same function as the clay ceramic film.

図3および図4は、図2に示したフィン部材2の凹部2C内に低融点金属体5を収容し、その表面を高融点金属被覆4で覆う製造工程の一例を示している。まず、図3の(a)に示す第1工程では、フィン部材2の凹部2Cの内面からその周囲の対向面2Aにわたる部分を粘土セラミックス膜からなる焼成前の保護膜7Aで被覆する。なお、この保護膜7Aに代えて、フィン部材2の凹部2Cの内面からその周囲の対向面2Aにわたる部分にセラミックス溶射膜を形成しても良い。   3 and 4 show an example of a manufacturing process in which the low melting point metal body 5 is accommodated in the recess 2C of the fin member 2 shown in FIG. 2 and the surface thereof is covered with the high melting point metal coating 4. FIG. First, in the first step shown in FIG. 3A, a portion extending from the inner surface of the concave portion 2C of the fin member 2 to the surrounding opposing surface 2A is covered with a protective film 7A before firing made of a clay ceramic film. In place of the protective film 7A, a ceramic sprayed film may be formed on a portion extending from the inner surface of the recess 2C of the fin member 2 to the surrounding facing surface 2A.

図3の(b)に示す第2工程では、焼成前の保護膜7Aで被覆されたフィン部材2の凹部2C内に溶融した低融点金属体5を盛り上がり状態で鋳込み、これを冷却して固化させた後、低融点金属体5の表面を機械加工して低い台形状の盛上り部5Aを形成する。   In the second step shown in FIG. 3 (b), the molten low melting point metal body 5 is cast in a raised state into the recess 2C of the fin member 2 covered with the protective film 7A before firing, and is cooled and solidified. Then, the surface of the low melting point metal body 5 is machined to form a low trapezoidal raised portion 5A.

図4の(a)に示す第3工程では、つぎの第4工程で焼成前の保護膜7Aおよび保護膜7Bを焼成する際に溶融する低融点金属体5の形状を保持できるように、低融点金属体5の盛上り部5Aの表面にモリブデン(Mo)やニッケル(Ni)などの高融点金属のメッキ層6を形成する。   In the third step shown in FIG. 4 (a), the low melting point metal body 5 that is melted when the protective film 7A and the protective film 7B before firing in the next fourth step are fired is kept low. A plating layer 6 of a refractory metal such as molybdenum (Mo) or nickel (Ni) is formed on the surface of the rising portion 5A of the melting point metal body 5.

図4の(b)に示す第4工程では、焼成前の保護膜7Aの周縁部からメッキ層6上にわたる部分を粘土セラミックス膜からなる焼成前の保護膜7Bで被覆し、その後、保護膜7Aおよび保護膜7Bを250〜300℃の高温下で焼成して低融点金属体5を密封する。なお、この保護膜7Bに代えて、焼成前の保護膜7Aの周縁部からメッキ層6上にわたる部分にセラミックス溶射膜を形成しても良い。   In the fourth step shown in FIG. 4B, a portion extending from the peripheral edge of the protective film 7A before firing to the plating layer 6 is covered with the protective film 7B before firing made of a clay ceramic film, and then the protective film 7A. The protective film 7B is fired at a high temperature of 250 to 300 ° C. to seal the low melting point metal body 5. Instead of the protective film 7B, a ceramic sprayed film may be formed on a portion extending from the peripheral edge of the protective film 7A before firing to the plated layer 6.

図4の(c)に示す第5工程では、焼成された保護膜7Bに沿う所定の断面形状に形成されたモリブデン(Mo)やニッケル(Ni)などの高融点金属材料の板金を高融点金属被覆4として用意し、この板金からなる高融点金属被覆4を保護膜7B上に被せて低融点金属体5の盛上り部5Aの表面およびその周囲のフィン部材2の対向面2Aを覆う。   In the fifth step shown in FIG. 4C, a sheet metal of a refractory metal material such as molybdenum (Mo) or nickel (Ni) formed in a predetermined cross-sectional shape along the fired protective film 7B is used as a refractory metal. Prepared as a coating 4, the refractory metal coating 4 made of sheet metal is placed on the protective film 7 </ b> B to cover the surface of the rising portion 5 </ b> A of the low melting metal body 5 and the opposing surface 2 </ b> A of the fin member 2 around it.

以上の工程により、焼成された保護膜7Aおよび保護膜7Bで全面が密封状態に覆われた低融点金属体5がフィン部材2の凹部2C内に収容され、この低融点金属体5の盛上り部5Aが高融点金属被覆4で覆われる。そして、図2に示すように、熱電発電モジュール1の受熱面1A1が高融点金属皮膜4で覆われた低融点金属体5を介してフィン部材2に接触する。   Through the above steps, the low melting point metal body 5 whose whole surface is covered with the fired protective film 7A and the protective film 7B is accommodated in the recess 2C of the fin member 2, and the low melting point metal body 5 rises. The part 5A is covered with the refractory metal coating 4. As shown in FIG. 2, the heat receiving surface 1 </ b> A <b> 1 of the thermoelectric power generation module 1 comes into contact with the fin member 2 through the low melting point metal body 5 covered with the high melting point metal film 4.

このような構造を有する本実施形態の熱電発電装置は、例えば自動車の排気系の熱を回収して発電するように、フィン部材2のフィン2Bが図示しない排気ガスの流通経路に臨んで設置される。そして、フィン2Bにより回収された排気ガスの熱がフィン部材2から低融点金属体5および高融点金属被覆4を介して熱電発電モジュール1の受熱基板1Aに伝熱され、熱電発電モジュール1の放熱基板1Bから放熱ブロック3へ放熱されることにより、熱電発電モジュール1の各n型熱電発電素子Nおよびp型熱電発電素子P(図1参照)が起電力を発生して発電する。   The thermoelectric generator of this embodiment having such a structure is installed with the fins 2B of the fin member 2 facing an exhaust gas distribution path (not shown) so as to generate heat by collecting the heat of the exhaust system of the automobile, for example. The Then, the heat of the exhaust gas recovered by the fins 2B is transferred from the fin member 2 to the heat receiving substrate 1A of the thermoelectric power generation module 1 through the low melting point metal body 5 and the high melting point metal coating 4, and the heat dissipation of the thermoelectric generation module 1 is performed. By radiating heat from the substrate 1B to the heat dissipation block 3, each n-type thermoelectric power generation element N and p-type thermoelectric power generation element P (see FIG. 1) of the thermoelectric power generation module 1 generates electromotive force to generate power.

このような本実施形態の熱電発電装置の使用状態において、フィン部材2のフィン2Bが排気ガスの熱を吸収して例えば250℃以上の高温になると、例えば錫(Sn)を成分とする低融点金属体5がフィン部材2の凹部2C内で確実に溶融し、この溶融した低融点金属体4の柔軟性により、例えばモリブデン(Mo)やニッケル(Ni)を成分とする高融点金属皮膜4が熱電発電モジュール1の受熱基板1Aの受熱面1A1に密着する。   When the fin 2B of the fin member 2 absorbs the heat of the exhaust gas and reaches a high temperature of, for example, 250 ° C. or higher in the usage state of the thermoelectric generator of this embodiment, for example, a low melting point containing, for example, tin (Sn) as a component The metal body 5 is surely melted in the recess 2C of the fin member 2, and due to the flexibility of the melted low-melting-point metal body 4, for example, the refractory metal film 4 containing molybdenum (Mo) or nickel (Ni) as a component is formed. The thermoelectric generator module 1 is in close contact with the heat receiving surface 1A1 of the heat receiving substrate 1A.

この場合、高融点金属皮膜4の中央部は、受熱基板1Aの受熱面1A1における周縁部を除いた内側の領域に対面する低融点金属体5の盛上り部5Aに沿って盛り上がっている。すなわち、高融点金属皮膜4の中央部は、受熱面1A1の外周より若干内側の領域に対面しているため、受熱基板1Aの受熱面1A1に均一な面圧で確実に密着する。その結果、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導が極めて良好に行われる。   In this case, the central portion of the refractory metal coating 4 swells along the raised portion 5A of the low-melting-point metal body 5 facing the inner region excluding the peripheral edge portion of the heat receiving surface 1A1 of the heat receiving substrate 1A. That is, since the central portion of the refractory metal film 4 faces a region slightly inside the outer periphery of the heat receiving surface 1A1, it reliably adheres to the heat receiving surface 1A1 of the heat receiving substrate 1A with a uniform surface pressure. As a result, heat conduction from the fin member 2 to the heat receiving substrate 1A of the thermoelectric power generation module 1 is performed extremely well.

ここで、本実施形態の熱電発電装置では、例えば250℃以上の高温下において優れた気体バリアー性を発揮する粘土セラミックス膜(粘土配向皮膜)で構成された保護膜7Aおよび保護膜7Bにより低融点金属体5の全面が密封状態に覆われている。このため、250℃以上の高温の使用環境で溶融した低融点金属体5中にフィン部材2の金属成分や高融点金属被覆4の金属成分が溶解して低融点金属体5の融点などの物性が変化する事態が長期にわたって確実に防止される。また、金属成分の溶出によって高融点金属被覆4が損傷する事態が長期にわたって確実に防止される。   Here, in the thermoelectric generator of the present embodiment, for example, the protective film 7A and the protective film 7B made of a clay ceramic film (clay alignment film) exhibiting excellent gas barrier properties at a high temperature of 250 ° C. or higher have a low melting point. The entire surface of the metal body 5 is covered in a sealed state. For this reason, the metal component of the fin member 2 and the metal component of the refractory metal coating 4 are dissolved in the low melting point metal body 5 melted in a high temperature use environment of 250 ° C. or higher, and the physical properties such as the melting point of the low melting point metal body 5. The situation that changes is reliably prevented for a long time. Moreover, the situation where the refractory metal coating 4 is damaged by the elution of the metal component is reliably prevented over a long period of time.

なお、低融点金属体5の盛上り部5Aの表面に形成されたメッキ層6のモリブデン(Mo)やニッケル(Ni)などの金属成分は、溶融した低融点金属体5中へ溶解してゆくが、その溶解量は極めて微量であるため、低融点金属体5の融点などの物性変化に殆ど影響を与えない。   It should be noted that metal components such as molybdenum (Mo) and nickel (Ni) of the plating layer 6 formed on the surface of the raised portion 5A of the low melting point metal body 5 are dissolved into the molten low melting point metal body 5. However, since the dissolved amount is extremely small, it hardly affects the change in physical properties such as the melting point of the low melting point metal body 5.

従って、本実施形態の熱電発電装置によれば、フィン部材2と熱電発電モジュール1の受熱基板1Aとの接触面を高い平面度に仕上げ、あるいはその接触面を均一に圧接させることなく、フィン部材2から熱電発電モジュール1の受熱基板1Aへの熱伝導を長期にわたって極めて良好に行うことができ、長期にわたって高い発電性能を発揮することができる。   Therefore, according to the thermoelectric power generation device of the present embodiment, the fin member 2 and the heat receiving substrate 1A of the thermoelectric power generation module 1 are finished with a high flatness, or the fin member is not pressed uniformly. Heat conduction from 2 to the heat receiving substrate 1A of the thermoelectric power generation module 1 can be performed extremely well over a long period of time, and high power generation performance can be exhibited over a long period of time.

本発明は前述した一実施形態に限定されるものではない。例えば図2に示した高融点金属被覆4は、モリブデン(Mo)やニッケル(Ni)などの高融点金属のメッキ、蒸着、溶射などの適宜の手段で形成してもよい。また、図4の(a)〜(c)に示した第3工程〜第5工程は、図5の(a)〜(b)に示す第3工程および第4工程に変更することができる。   The present invention is not limited to the above-described embodiment. For example, the refractory metal coating 4 shown in FIG. 2 may be formed by an appropriate means such as plating, vapor deposition, or thermal spraying of a refractory metal such as molybdenum (Mo) or nickel (Ni). Moreover, the 3rd process-5th process shown to (a)-(c) of FIG. 4 can be changed into the 3rd process and 4th process shown to (a)-(b) of FIG.

ここで、図5の(a)に示す第3工程では、焼成前の保護膜7Aの周縁部から低融点金属体5の盛上り部5Aに沿う所定の断面形状に形成され、かつ、内面が焼成前の保護膜7Bで被覆されたモリブデン(Mo)やニッケル(Ni)などの高融点金属材料の板金を高融点金属被覆4として用意し、この板金からなる高融点金属被覆4を保護膜7Aの周縁部から低融点金属体5の盛上り部5Aにわたって被せる。   Here, in the third step shown in FIG. 5A, a predetermined cross-sectional shape is formed from the peripheral portion of the protective film 7A before firing along the rising portion 5A of the low melting point metal body 5, and the inner surface is formed. A sheet metal of a refractory metal material such as molybdenum (Mo) or nickel (Ni) coated with the protective film 7B before firing is prepared as the refractory metal coating 4, and the refractory metal coating 4 made of this sheet metal is used as the protective film 7A. Of the low melting point metal body 5 from the peripheral part of the swelled portion 5A.

そして、図5の(b)に示す第4工程では、板金からなる高融点金属被覆4の周縁部に押さえ枠8を重ね、この押さえ枠8および高融点金属被覆4の周縁部を貫通する複数のボルト9により押さえ枠8をフィン部材2の対向面2Aの周縁部に止め付ける。そして、この状態で焼成前の保護膜7Aおよび保護膜7Bを250〜300℃の高温下で焼成した後、ボルト9および押さえ枠8を取り外す。   In the fourth step shown in FIG. 5 (b), a pressing frame 8 is stacked on the peripheral edge of the refractory metal coating 4 made of sheet metal, and a plurality of penetrating through the peripheral edge of the pressing frame 8 and the refractory metal coating 4. The holding frame 8 is fastened to the peripheral edge portion of the facing surface 2 </ b> A of the fin member 2 with the bolt 9. And after baking the protective film 7A and the protective film 7B before baking in this state at the high temperature of 250-300 degreeC, the volt | bolt 9 and the press frame 8 are removed.

このような製造工程の一部変更によっても、保護膜7Aおよび保護膜7Bで全面が密封状態に覆われた低融点金属体5がフィン部材2の凹部2C内に収容され、この低融点金属体5の盛上り部5Aが高融点金属被覆4で覆われる。そして、図2に示すように、熱電発電モジュール1の受熱面1A1が高融点金属皮膜4で覆われた低融点金属体5を介してフィン部材2に接触する。   Even with such a partial change in the manufacturing process, the low-melting-point metal body 5 whose entire surface is covered with the protective film 7A and the protective film 7B is accommodated in the recess 2C of the fin member 2, and this low-melting-point metal body. 5 swelled portions 5 </ b> A are covered with a refractory metal coating 4. As shown in FIG. 2, the heat receiving surface 1 </ b> A <b> 1 of the thermoelectric power generation module 1 comes into contact with the fin member 2 through the low melting point metal body 5 covered with the high melting point metal film 4.

本発明の一実施形態に係る熱電発電装置を構成する熱電発電モジュールの概略構造を示す斜視図である。It is a perspective view showing the schematic structure of the thermoelectric power generation module which constitutes the thermoelectric power generation device concerning one embodiment of the present invention. 一実施形態に係る熱電発電装置の概略構造を示す縦断面図である。It is a longitudinal section showing the schematic structure of the thermoelectric power generator concerning one embodiment. 図2に示したフィン部材の凹部内に低融点金属体を収容し、その表面を高融点金属被覆で覆う製造工程の一例における第1工程および第2工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 1st process and 2nd process in an example of the manufacturing process which accommodates the low melting-point metal body in the recessed part of the fin member shown in FIG. 2, and covers the surface with a high-melting-point metal coating. 図3に示した第2工程に続く第3工程〜第5工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 3rd process-5th process following the 2nd process shown in FIG. 図4に示した第3工程〜第5工程の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the 3rd process-5th process shown in FIG.

符号の説明Explanation of symbols

1…熱電発電モジュール、1A…受熱基板、1A1…受熱面、1B…放熱基板、2…フィン部材、2A…対向面、2B…フィン、2C…凹部、3…放熱ブロック、4…高融点金属被覆、5…低融点金属体、5A…盛上り部、6…メッキ層、7A,7B…保護膜。
DESCRIPTION OF SYMBOLS 1 ... Thermoelectric power generation module, 1A ... Heat receiving board, 1A1 ... Heat receiving surface, 1B ... Heat sink board, 2 ... Fin member, 2A ... Opposing surface, 2B ... Fin, 2C ... Recessed part, 3 ... Heat sink block, 4 ... High melting point metal coating 5 ... Low melting point metal body, 5A ... Swelling part, 6 ... Plating layer, 7A, 7B ... Protective film.

Claims (5)

熱回収手段に接触する受熱部と熱放出手段に接触する放熱部との間に複数の熱電発電素子が配置された熱電発電モジュールを備える熱電発電装置であって、
前記熱電発電モジュールは受熱部高融点金属被覆で覆われた低融点金属体を介して前記熱回収手段に接触しており、前記放熱部の外面が前記熱放出手段に直接接触しており、
前記低融点金属体中への金属成分の溶解を防止する保護膜が前記低融点金属体の全面を覆っており、
前記熱回収手段には、前記受熱部の受熱面に対面する対向面に凹部が形成されており、
前記低融点金属体は、前記凹部に収容され、当該凹部の開口面から盛り上がる盛上り部を有し、
前記盛上り部が前記受熱面の周縁部を除いた内側の領域に対面していることを特徴とする熱電発電装置。
A thermoelectric power generation apparatus comprising a thermoelectric power generation module in which a plurality of thermoelectric power generation elements are arranged between a heat receiving part in contact with a heat recovery means and a heat dissipation part in contact with a heat release means,
The thermoelectric power generation module through the low melting metal member which heat receiving portion is covered with a high melting point metal covering is in contact with the heat recovery means, the outer surface of the heat radiating portion is in direct contact with the heat dissipation means ,
A protective film that prevents dissolution of the metal component in the low-melting-point metal body covers the entire surface of the low-melting-point metal body,
In the heat recovery means, a concave portion is formed on the facing surface facing the heat receiving surface of the heat receiving portion,
The low-melting-point metal body is accommodated in the concave portion, and has a rising portion that rises from the opening surface of the concave portion,
2. The thermoelectric generator according to claim 1, wherein the swelled portion faces an inner region excluding the peripheral portion of the heat receiving surface.
前記保護膜が粘土セラミックス膜またはセラミックス溶射膜であることを特徴とする請求項1に記載の熱電発電装置。   The thermoelectric generator according to claim 1, wherein the protective film is a clay ceramic film or a ceramic sprayed film. 前記低融点金属体に高融点金属のメッキ層が形成され、このメッキ層上に前記保護膜が形成されていることを特徴とする請求項1または2に記載の熱電発電装置。   The thermoelectric power generator according to claim 1 or 2, wherein a plating layer of a high melting point metal is formed on the low melting point metal body, and the protective film is formed on the plating layer. 前記高融点金属被覆が板金により構成されていることを特徴とする請求項1または2に記載の熱電発電装置。   The thermoelectric power generator according to claim 1 or 2, wherein the refractory metal coating is made of sheet metal. 前記板金の内面が前記保護膜で被覆されていることを特徴とする請求項4に記載の熱電発電装置。   The thermoelectric generator according to claim 4, wherein an inner surface of the sheet metal is covered with the protective film.
JP2006044118A 2006-02-21 2006-02-21 Thermoelectric generator Expired - Fee Related JP4867388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044118A JP4867388B2 (en) 2006-02-21 2006-02-21 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044118A JP4867388B2 (en) 2006-02-21 2006-02-21 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2007227458A JP2007227458A (en) 2007-09-06
JP4867388B2 true JP4867388B2 (en) 2012-02-01

Family

ID=38549013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044118A Expired - Fee Related JP4867388B2 (en) 2006-02-21 2006-02-21 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP4867388B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011366A (en) * 2009-06-30 2011-01-20 Sumitomo Electric Ind Ltd Method of manufacturing metal laminated structure
JP5583985B2 (en) 2010-02-19 2014-09-03 住友電気工業株式会社 Metal laminated structure
JP5580772B2 (en) * 2011-04-07 2014-08-27 住友電気工業株式会社 Manufacturing method of metal laminated structure
DE102011007395A1 (en) * 2011-04-14 2012-10-18 Behr Gmbh & Co. Kg Thermoelectric module for use in thermoelectric generator, for producing electrical energy, has device for generating electrical energy from heat, where contact surface of device is in thermal or electrical contact with connector
JP6064591B2 (en) * 2012-12-27 2017-01-25 トヨタ自動車株式会社 Thermoelectric generator
WO2017017876A1 (en) * 2015-07-28 2017-02-02 パナソニックIpマネジメント株式会社 Thermoelectric device and thermoelectric conversion unit
JP6450941B2 (en) * 2015-09-28 2019-01-16 パナソニックIpマネジメント株式会社 Power generator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111354A (en) * 1981-12-25 1983-07-02 Hitachi Ltd Thermal coupler
JPS6260817A (en) * 1985-09-11 1987-03-17 Nippon Steel Corp Heating method for preventing oxidation of metallic material
JPH0341102U (en) * 1989-08-28 1991-04-19
JPH088567A (en) * 1994-06-23 1996-01-12 Fujitsu Ltd Cooling device and heat conducting mechanism section of part
JP3573448B2 (en) * 2000-12-18 2004-10-06 財団法人電力中央研究所 Thermoelectric conversion element
JP2004006563A (en) * 2002-05-31 2004-01-08 Nippon Light Metal Co Ltd Heat dissipation mechanism
JP4014549B2 (en) * 2003-09-18 2007-11-28 富士電機システムズ株式会社 Heat sink and manufacturing method thereof
JP4165405B2 (en) * 2003-10-06 2008-10-15 トヨタ自動車株式会社 Exhaust gas purification device
JP4775932B2 (en) * 2004-07-06 2011-09-21 財団法人電力中央研究所 Cushion for heat transfer and thermoelectric conversion module having the same
JP5166705B2 (en) * 2005-06-09 2013-03-21 トヨタ自動車株式会社 Thermoelectric generator

Also Published As

Publication number Publication date
JP2007227458A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP4867388B2 (en) Thermoelectric generator
JP5956608B2 (en) Thermoelectric module
WO2017136793A1 (en) Electrode structure for magnesium silicide-based bulk materials to prevent elemental migration for long term reliability
WO2011118341A1 (en) Thermoelectric element and thermoelectric module
EP2789822B1 (en) Thermoelectric generator to engine exhaust manifold assembly
KR101066711B1 (en) Semiconductor package
JP2006332188A (en) Thermoelectric power generation module
JP5166705B2 (en) Thermoelectric generator
US20080277104A1 (en) Al-AlN composite material, related manufacturing method and heat exchanger using such composite material
JP2007221895A (en) Thermal power generator
JP2003332642A (en) Thermoelectric conversion element unit
WO2017066261A2 (en) Oxidation and sublimation prevention for thermoelectric devices
JP2010157645A (en) Thermoelectric power generation unit
JP2005277206A (en) Thermoelectric converter
US20180090660A1 (en) Flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
US20130139866A1 (en) Ceramic Plate
JP2017130596A (en) Thermoelectric conversion module and method of manufacturing the same
TW201038911A (en) Heat dissipation module and fabrication method thereof
CN102413666A (en) Thermal interface material for reducing thermal resistance and method of making the same
JP7052200B2 (en) Thermoelectric conversion module
JP4815914B2 (en) Thermoelectric generator
JP4523306B2 (en) Method for manufacturing thermoelectric element
US20140305480A1 (en) Thermoelectric generator to engine exhaust manifold assembly
JP2018093152A (en) Thermoelectric power generation device
JPH11307824A (en) Thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R151 Written notification of patent or utility model registration

Ref document number: 4867388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees