JP4867213B2 - Method for producing non-aqueous electrolyte secondary battery - Google Patents

Method for producing non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4867213B2
JP4867213B2 JP2005181944A JP2005181944A JP4867213B2 JP 4867213 B2 JP4867213 B2 JP 4867213B2 JP 2005181944 A JP2005181944 A JP 2005181944A JP 2005181944 A JP2005181944 A JP 2005181944A JP 4867213 B2 JP4867213 B2 JP 4867213B2
Authority
JP
Japan
Prior art keywords
battery
thickness
pressurization
charging
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005181944A
Other languages
Japanese (ja)
Other versions
JP2007005069A (en
Inventor
周作 後藤
邦彦 峯谷
幸重 稲葉
敦史 上田
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005181944A priority Critical patent/JP4867213B2/en
Publication of JP2007005069A publication Critical patent/JP2007005069A/en
Application granted granted Critical
Publication of JP4867213B2 publication Critical patent/JP4867213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、非水電解液二次電池の製造方法に関し、さらに詳しくは角形の非水電解液二次電池の製造方法に関するものである。   The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery, and more particularly to a method for manufacturing a rectangular non-aqueous electrolyte secondary battery.

近年、携帯型情報機器の小型軽量化、高性能化の急速な進展により、その駆動電源として、4V級の高い作動電圧を有し、高エネルギー密度化に適した非水電解液二次電池の開発・実用化が積極的に行われている。   In recent years, with the rapid progress of miniaturization, weight reduction, and high performance of portable information devices, non-aqueous electrolyte secondary batteries that have a high operating voltage of 4V as a driving power source and are suitable for high energy density Development and practical use are being actively carried out.

非水電解液二次電池の正極活物質としては、層状岩塩構造を有するLiCoO2、LiNiO2、スピネル構造を有するLiMn24等のリチウム含有遷移金属化合物が用いられており、負極活物質には、天然黒鉛、球状・繊維状の人造黒鉛、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の炭素材料が採用されている。 As the positive electrode active material of the non-aqueous electrolyte secondary battery, lithium-containing transition metal compounds such as LiCoO 2 having a layered rock salt structure, LiNiO 2 , and LiMn 2 O 4 having a spinel structure are used. Employs carbon materials such as natural graphite, spherical / fibrous artificial graphite, non-graphitizable carbon (hard carbon), and graphitizable carbon (soft carbon).

高エネルギー密度化を実現するための有効な手段として、正極活物質の高密度充填化、高容量の負極活物質の採用、セパレータの薄型化の他、極板群構造や機構部品の最適化による取り組みがなされ、エネルギー密度の向上が遂げられている。   Effective means for realizing high energy density include high density packing of positive electrode active material, adoption of high capacity negative electrode active material, thinning of separator, optimization of electrode plate group structure and mechanical parts Efforts have been made and energy density has been improved.

例えば、正極活物質の高密度充填化においては、正極板中の結着剤や導電材の量を可能な限り少なくし、極板中の正極活物質量を多くしたり、また群構成前に行う極板圧延工程で、可能な限り高密度充填を行っている。   For example, in the high-density filling of the positive electrode active material, the amount of the binder and conductive material in the positive electrode plate is reduced as much as possible, the amount of the positive electrode active material in the electrode plate is increased, or before the group configuration In the electrode plate rolling process, high density filling is performed as much as possible.

しかし、角形電池においては、その形状のため圧力変形を受けやすく、電池内部で発生したガスや充電時極板の膨張などにより内圧が上昇すると、電池厚みが増加し、その結果エネルギー密度の低下を引き起こす恐れがあった。   However, a rectangular battery is susceptible to pressure deformation due to its shape.If the internal pressure increases due to gas generated inside the battery or expansion of the electrode plate during charging, the battery thickness increases, resulting in a decrease in energy density. There was a risk of causing it.

さらに、角形電池の扁平部は発生したガスの残存やその膨れのために、正負極板の未反応部分の出現による容量低下や、正負極板間距離の増加による、均一な反応の妨害そして充放電特性の低下が引き起こされた。   In addition, the flat part of the square battery has a hindered uniform reaction and charging due to the remaining capacity of the generated gas and its swelling, resulting in a decrease in capacity due to the appearance of unreacted parts of the positive and negative electrode plates and an increase in the distance between the positive and negative electrode plates. The discharge characteristics were degraded.

このような課題を解決するために、例えば、外装ケースの幅広面中央部にそれぞれ外向膨出部を設け、電池作製後前記外向膨出部をそれぞれ電池の内側に押圧成型し、電池内圧上昇による圧力変形を防ぎ、電池特性の向上を図ることが提案されている。
特開平4−106864号公報
In order to solve such a problem, for example, an outward bulge is provided in the center of the wide surface of the exterior case, and after the battery is manufactured, the outward bulge is press-molded inside the battery, thereby increasing the internal pressure of the battery. It has been proposed to improve battery characteristics by preventing pressure deformation.
JP-A-4-106864

しかしながら、これらの取組みだけでは高容量で充放電特性や生産性に優れる非水電解液二次電池を提供することは困難であった。例えば正極活物質以外の結着剤や導電材を減らすと、極板作製や群構成工程で合剤の剥がれが生じたり、サイクル特性などの放電特性が低下するという問題が発生した。さらに、高密度充填化を狙うあまり極板圧延を過度に実施してしまい、極板に大きなダメージが与えられ、特に角形電池において群構成、成形工程で、あるいは充放電を繰り返している間に捲回群の曲線部分の頂点付近で極板が切れ、容量低下を引き起こす場合があった。   However, it has been difficult to provide a non-aqueous electrolyte secondary battery having high capacity and excellent charge / discharge characteristics and productivity only by these approaches. For example, if the binder and the conductive material other than the positive electrode active material are reduced, there arises a problem that the mixture is peeled off during the electrode plate production and the group constitution process, and the discharge characteristics such as the cycle characteristics are deteriorated. In addition, the electrode plate is excessively rolled to aim at high-density packing, and the electrode plate is seriously damaged. Especially in the case of a square battery, the group structure, the molding process, or while charging and discharging are repeated. In some cases, the electrode plate was cut near the apex of the curved portion of the rotation group, causing a decrease in capacity.

また、特許文献1に代表されるように外装ケースに外向膨出部を設け、その部分を押圧成型した場合、外向膨出部の体積分だけ正負極活物質が充填できなくなり、結果的に容量
低下を引き起こす。さらに、組立方法も煩雑になり、生産性が低下してしまう。
In addition, when an outward bulge is provided in the outer case as represented by Patent Document 1 and the portion is press-molded, the positive and negative electrode active materials cannot be filled by the volume of the outward bulge, resulting in a capacity. Causes a drop. Furthermore, the assembling method becomes complicated and the productivity is lowered.

本発明は、このような従来の課題を解決するため、特許文献1のような特殊な外装ケースを使用しなくても、つまり一般的な角型電池ケースでも、充電中または充電後の充電状態で、角型電池ケースの最大幅広面中央部を加圧することで、正負極板間に残ったガスを極板間から取り除くことが可能とするものである。この作用により、正負極板の未反応部分をなくし、放電特性に優れた非水電解液二次電池の製造方法を提供することを目的とする。   In order to solve such a conventional problem, the present invention does not use a special exterior case as in Patent Document 1, that is, even in a general prismatic battery case, the charged state during or after charging Thus, the gas remaining between the positive and negative electrode plates can be removed from between the positive and negative electrode plates by pressurizing the central portion of the maximum wide surface of the rectangular battery case. By this action, an object of the present invention is to provide a method for producing a non-aqueous electrolyte secondary battery that eliminates unreacted portions of the positive and negative electrode plates and has excellent discharge characteristics.

上記の課題を解決するために、本発明の非水電解液二次電池の製造方法は、リチウムイオンを可逆的に吸蔵・脱離し得る活物質を含有する正極及び負極、セパレータからなる扁平型の捲回群と、非水電解液とを角型電池ケースに挿入し、密閉して組み立て、充電して仕上げる角型非水電解液二次電池の製造方法であって、前記充電中または前記充電後の充電状態で、角型電池ケースの最大幅広面中央部を加圧し、さらに加圧後は、電池厚みが前記加圧時の電池厚みから復元することを特徴とするものである。   In order to solve the above-described problems, the non-aqueous electrolyte secondary battery manufacturing method of the present invention is a flat type comprising a positive electrode, a negative electrode, and a separator containing an active material capable of reversibly inserting and extracting lithium ions. A method of manufacturing a prismatic non-aqueous electrolyte secondary battery in which a wound group and a non-aqueous electrolyte are inserted into a prismatic battery case, sealed and assembled, and charged to finish. In a later charged state, the central part of the maximum wide surface of the rectangular battery case is pressurized, and after further pressurization, the battery thickness is restored from the battery thickness at the time of pressurization.

また、前記加圧時の電池厚みが加圧前の電池厚みの95%以下になることが好ましい。   Moreover, it is preferable that the battery thickness at the time of pressurization becomes 95% or less of the battery thickness before pressurization.

このように電池の幅広面中央部を加圧前の厚みよりも薄くなるように、加圧することにより、正負極板間に残ったガスを極板間から取り除くことが可能となるため、正負極板の未反応部分がなくなり、放電特性に優れた非水電解液二次電池の製造方法を提供することができる。   In this way, it is possible to remove the gas remaining between the positive and negative electrode plates from between the positive and negative electrodes by pressurizing so that the central portion of the wide surface of the battery is thinner than the thickness before pressurization. An unreacted portion of the plate is eliminated, and a method for producing a nonaqueous electrolyte secondary battery excellent in discharge characteristics can be provided.

また、前記加圧工程を導入することで、一般的な角型電池ケースを使用することができる。   Moreover, a general prismatic battery case can be used by introducing the pressurizing step.

本発明によれば、リチウムイオンを可逆的に吸蔵・脱離し得る活物質を含有する正極及び負極、セパレータからなる扁平型の捲回群と、非水電解液とを角型電池ケースに挿入し、密閉して組み立て、充電して仕上げる角型非水電解液二次電池であって、前記充電中または前記充電後の充電状態で、角型電池ケースの最大幅広面中央部を加圧することで、一般的な角型電池ケースでも、放電特性に優れた非水電解液二次電池を提供することができる。   According to the present invention, a flat wound group consisting of a positive electrode, a negative electrode, and a separator containing an active material capable of reversibly occluding and desorbing lithium ions, and a nonaqueous electrolyte solution are inserted into a rectangular battery case. A prismatic non-aqueous electrolyte secondary battery that is hermetically sealed, charged and finished by pressurizing the central portion of the widest surface of the prismatic battery case during or after charging. Even in a general prismatic battery case, it is possible to provide a non-aqueous electrolyte secondary battery having excellent discharge characteristics.

また、正負極板間に残ったガスを極板間から取り除き、正負極板の未反応部分がなくなるため、その結果容量を増加させることもできる。   Further, the gas remaining between the positive and negative electrode plates is removed from between the electrode plates, and there is no unreacted portion of the positive and negative electrode plates. As a result, the capacity can be increased.

さらに、前記加圧をすることで、正負極板間距離が接近し、電池の厚みも薄くすることが可能となり、また、発生ガスを電池系外に放出するために行っている、電池を密閉する前の充電工程を省くことも可能となり、生産性も向上する。   Further, by applying the pressurization, the distance between the positive and negative electrode plates becomes closer, the thickness of the battery can be reduced, and the battery is sealed to discharge the generated gas to the outside of the battery system. It is also possible to omit the charging process before starting, which improves productivity.

本発明のリチウム二次電池の形状としては、正極板、負極板及びセパレータからなる捲回された極板群が、扁平形である主に角形、扁平形の形状で、例えば図1に示す様な角型非水電解液電池である。この図1の斜視図(一部切り欠き図)を用いて、本発明の実施の形態について説明する。   As the shape of the lithium secondary battery of the present invention, the wound electrode plate group composed of the positive electrode plate, the negative electrode plate and the separator has a flat shape, mainly a square shape and a flat shape, for example as shown in FIG. This is a square non-aqueous electrolyte battery. The embodiment of the present invention will be described with reference to the perspective view (partially cutaway view) of FIG.

図1に示すように、正極板4と負極板6とがセパレータ5を介在して楕円状に捲回された極板群が、有底角型の電池ケース1に収容されているとともに、封口板2の内部端子に
電気的に接続されており、封口板2と電池ケース1とをレーザー溶接した後、封口板2に設けた注液孔から非水電解液を注液した後、注液栓をレーザーで封口している。
As shown in FIG. 1, an electrode plate group in which a positive electrode plate 4 and a negative electrode plate 6 are wound in an elliptical shape with a separator 5 interposed therebetween is housed in a bottomed rectangular battery case 1 and sealed. After being electrically connected to the internal terminals of the plate 2 and laser welding the sealing plate 2 and the battery case 1, a non-aqueous electrolyte is injected from a liquid injection hole provided in the sealing plate 2, and then injected The stopper is sealed with a laser.

この正極板4は、アルミニウム製の箔やラス加工やエッチング処理された箔からなる集電体3の片側または両面に正極活物質と結着剤及び導電剤を溶剤に混練分散させたペーストを塗布、乾燥、圧延して作製することができる。そして、正極板4の厚みは130μm〜200μmの厚みで、柔軟性があることが好ましい。   This positive electrode plate 4 is applied with a paste in which a positive electrode active material, a binder and a conductive agent are kneaded and dispersed in a solvent on one side or both sides of a current collector 3 made of an aluminum foil, a lath processed or etched foil, or the like. It can be produced by drying, rolling. The thickness of the positive electrode plate 4 is preferably 130 μm to 200 μm and flexible.

正極活物質としては、例えば、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物が使用される。例えば、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物、LiCoO2、LiMnO2、LiNiO2、LiCoxNi(1-x)2(0<x<1)、LiCrO2、αLiFeO2、LiVO2等が好ましい。 As the positive electrode active material, for example, a lithium-containing transition metal compound that can accept lithium ions as a guest is used. For example, a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron, and vanadium with lithium, LiCoO 2 , LiMnO 2 , LiNiO 2 , LiCo x Ni (1-x) O 2 ( 0 <x <1), LiCrO 2 , αLiFeO 2 , LiVO 2 and the like are preferable.

結着剤としては、分散媒に混練分散できるものであれば特に限定されるものではないが、例えば、フッ素系結着材やアクリルゴム、変性アクリルゴム、スチレンーブタジエンゴム(SBR)、アクリル系重合体、ビニル系重合体等を単独、或いは二種類以上の混合物または共重合体として用いることができる。フッ素系結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンと六フッ化プロピレンの共重合体やポリテトラフルオロエチレン樹脂のディスパージョンが好ましい。   The binder is not particularly limited as long as it can be kneaded and dispersed in a dispersion medium. For example, a fluorine binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), acrylic A polymer, a vinyl polymer or the like can be used alone or as a mixture or copolymer of two or more. As the fluorine-based binder, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, and a dispersion of polytetrafluoroethylene resin are preferable.

導電剤としてはアセチレンブラック、グラファイト、炭素繊維等を単独、或いは二種類以上の混合物が好ましく、また必要に応じて増粘剤を加えることができ、増粘剤としてはエチレン−ビニルアルコール共重合体、カルボキシメチルセルロース、メチルセルロースなどが好ましい。   As the conductive agent, acetylene black, graphite, carbon fiber or the like is preferably used alone or as a mixture of two or more kinds, and a thickener can be added as necessary. As the thickener, an ethylene-vinyl alcohol copolymer is used. Carboxymethylcellulose, methylcellulose and the like are preferable.

分散媒としては、結着剤が溶解可能な溶剤が適切で、有機系結着剤の場合は、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトン等の有機溶剤を単独またはこれらを混合した混合溶剤が好ましく、水系結着剤の場合は水または温水が好ましい。   As the dispersion medium, a solvent in which the binder can be dissolved is suitable. In the case of an organic binder, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, hexa An organic solvent such as methylsulfuramide, tetramethylurea, acetone or methyl ethyl ketone is preferably used alone or as a mixed solvent thereof. In the case of an aqueous binder, water or warm water is preferred.

また、上記ペーストの混練分散時に、各種分散剤、界面活性剤、安定剤等を必要に応じて添加することも可能である。   In addition, various dispersants, surfactants, stabilizers, and the like can be added as necessary when the paste is kneaded and dispersed.

塗着乾燥は、特に限定されるものではなく、上記のように混練分散させたスラリー状合剤を、例えば、スリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーター等を用いて、容易に塗着することができ、自然乾燥に近い乾燥が好ましいが、生産性を考慮すると70℃〜200℃の温度で5時間〜10分間乾燥させるのが好ましい。   The coating and drying is not particularly limited, and the slurry mixture kneaded and dispersed as described above, for example, slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater, dip It can be easily applied using a coater or the like, and drying close to natural drying is preferable, but considering productivity, it is preferable to dry at a temperature of 70 ° C. to 200 ° C. for 5 hours to 10 minutes.

圧延は、ロールプレス機によって所定の厚みになるまで、線圧1000〜2000kg/cmで数回圧延を行うか、線圧を変えて圧延するのが好ましい。   Rolling is preferably performed several times at a linear pressure of 1000 to 2000 kg / cm or by changing the linear pressure until a predetermined thickness is reached by a roll press.

また、負極板6は、集電体7の片側または両面に負極活物質と結着剤、必要に応じて導電剤を溶剤に混練分散させたペーストを塗布、乾燥、圧延して作製することができる。そして、負極板の厚みは正極板と同様に140μm〜210μmの厚みで、柔軟性があることが好ましい。   The negative electrode plate 6 may be prepared by applying, drying, and rolling a paste in which a negative electrode active material, a binder, and, if necessary, a conductive agent are kneaded and dispersed in one or both sides of the current collector 7. it can. And the thickness of a negative electrode plate is 140 micrometers-210 micrometers similarly to a positive electrode plate, and it is preferable that it has a softness | flexibility.

この負極集電体7として用いる銅または銅合金は、特に限定されるものではなく、圧延
箔、電解箔などが挙げることができ、その形状も箔、孔開き箔、エキスパンド材、ラス材等であっても構わない。
The copper or copper alloy used as the negative electrode current collector 7 is not particularly limited, and examples thereof include rolled foil, electrolytic foil, and the shape thereof is foil, perforated foil, expanded material, lath material, and the like. It does not matter.

負極活物質としては、例えば、リチウムイオンを可逆的に吸蔵、脱離し得る黒鉛型結晶構造を有するグラファイトを含む材料、例えば天然黒鉛や球状・繊維状の人造黒鉛、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の炭素材料が好ましく、特に、格子面(002)の面間隔(d002)が0.3350〜0.3400nmである黒鉛型結晶構造を有する炭素材料を使用することがより好ましい。 Examples of the negative electrode active material include materials containing graphite having a graphite-type crystal structure capable of reversibly occluding and desorbing lithium ions, such as natural graphite, spherical and fibrous artificial graphite, and non-graphitizable carbon (hard carbon). ) And carbon materials such as graphitizable carbon (soft carbon) are preferable, and in particular, a carbon material having a graphite-type crystal structure in which the lattice spacing ( 002 ) has an interval (d 002 ) of 0.3350 to 0.3400 nm. More preferably, is used.

結着剤、分散媒および必要に応じて加えることができる導電剤、増粘剤は正極と同様のものを使用することができる。   As the binder, the dispersion medium, and the conductive agent and thickener that can be added as necessary, the same materials as those for the positive electrode can be used.

セパレータ5としては、厚さ15μm〜30μmのポリエチレン樹脂、ポリプロピレン樹脂などの微多孔性ポリオレフイン系樹脂の単層やポリエチレン樹脂の両側にポリプロピレン樹脂を積層したものが好ましい。   The separator 5 is preferably a single layer of microporous polyolefin resin such as polyethylene resin or polypropylene resin having a thickness of 15 μm to 30 μm or a laminate of polypropylene resin on both sides of the polyethylene resin.

電池ケース1としては、上端が開口している有底の角型ケースであり、その材質は、耐圧強度の観点からマンガン、銅等の金属を微量含有するアルミニウム合金や安価なニッケルメッキを施した鋼鈑が好ましい。   The battery case 1 is a bottomed rectangular case with an open upper end, and the material thereof is an aluminum alloy containing a trace amount of metal such as manganese or copper or inexpensive nickel plating from the viewpoint of pressure strength. A steel plate is preferred.

このようにして作製した正極板4と負極板6とをセパレータ5を介して絶縁されている状態で扁平状に巻回した極板群を乾燥した後、電池ケース1に収納するか、極板群を電池ケース1に収納した後、乾燥する。   The electrode plate group in which the positive electrode plate 4 and the negative electrode plate 6 thus manufactured are wound in a flat shape in a state of being insulated via the separator 5 is dried and then stored in the battery case 1 or the electrode plate. The group is stored in the battery case 1 and then dried.

この乾燥条件としては、低湿度、高温の雰囲気であることが好ましいが、温度が高すぎるとセパレータに熱収縮が生じたり、微多孔が潰れたりして電池特性に悪影響を及ぼすので、具体的には露点が−30℃〜−80℃であり、温度が80〜120℃であることが好ましい。   The drying condition is preferably an atmosphere of low humidity and high temperature. However, if the temperature is too high, the separator may be thermally shrunk or the micropores may be crushed. Preferably has a dew point of −30 ° C. to −80 ° C. and a temperature of 80 ° C. to 120 ° C.

電解液としては、非水溶媒に電解質を溶解することにより調整される。前記非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジクロロエタン、1,3−ジメトキシプロパン、4−メチル−2−ペンタノン、1,4−ジオキサン、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、スルホラン、3−メチル−スルホラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルホルムアミド、リン酸トリメチル、リン酸トリエチル等を用いることができ、これらの非水溶媒は、単独或いは二種類以上の混合溶媒として、使用することができる。   The electrolyte is adjusted by dissolving the electrolyte in a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-dichloroethane, 1,3-dimethoxypropane, 4- Methyl-2-pentanone, 1,4-dioxane, acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, sulfolane, 3-methyl-sulfolane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylformamide, dimethylsulfoxide, dimethylformamide, Trimethyl phosphate, triethyl phosphate, and the like can be used, and these nonaqueous solvents can be used alone or as a mixed solvent of two or more kinds.

非水電解液に含まれる電解質としては、例えば、電子吸引性の強いリチウム塩を使用し、例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33等が挙げられる。これらの電解質は、一種類で使用しても良く、二種類以上組み合わせて使用しても良い。これらの電解質は、前記非水溶媒に対して0.5〜1.5Mの濃度で溶解させることが好ましい。 As the electrolyte contained in the non-aqueous electrolyte, for example, a lithium salt having a strong electron withdrawing property is used. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are preferably dissolved at a concentration of 0.5 to 1.5 M in the non-aqueous solvent.

本発明の製造方法は、このようにして作製したリチウムイオン二次電池を充電状態にし、角型電池ケースの最大幅広面中央部の加圧を行う。   In the production method of the present invention, the lithium ion secondary battery thus produced is charged, and the central portion of the maximum wide surface of the rectangular battery case is pressurized.

ここでいう充電状態とは、非水電解液を注液した後、注液栓をレーザーで封口することによって作製したリチウムイオン二次電池を、定電流充電方式または定電流定電圧充電方式にて充電した状態であっても、定電流充電方式または定電流定電圧充電方式にて充電し、定電流方式で放電する充放電サイクルを少なくとも1回行い、再充電した状態であっても良い。   The state of charge here refers to a lithium ion secondary battery prepared by sealing a liquid injection stopper with a laser after injecting a non-aqueous electrolyte, using a constant current charging method or a constant current constant voltage charging method. Even in a charged state, the battery may be charged by a constant current charging method or a constant current constant voltage charging method, and charged and discharged at least once by a constant current method to be recharged.

その充電条件としては、特に限定されるものではなく、最大電流が0.5C(2時間率)以下であることが好ましい。   The charging condition is not particularly limited, and the maximum current is preferably 0.5 C (2 hour rate) or less.

また、電池の充電深度としては、特に限定されるものではないが、電池電圧を3.80V〜4.20Vにすることが好ましい。   Further, the charging depth of the battery is not particularly limited, but the battery voltage is preferably 3.80V to 4.20V.

加圧の条件としては、角型電池ケースの最大幅広面中央部を加圧することが好ましい。これは、注液、封口によって作製したリチウムイオン二次電池を充電状態にした時、電解液の分解により発生したガスが対向する正負極板間に残るが、特に角型電池の最大幅広面中央部に相当するところに多く残るため、その部分を加圧することが好ましいためである。   As a pressurizing condition, it is preferable to pressurize the central portion of the widest surface of the rectangular battery case. This is because when the lithium ion secondary battery produced by injection and sealing is charged, the gas generated by the decomposition of the electrolyte remains between the opposing positive and negative plates, but in particular the center of the maximum wide surface of the prismatic battery This is because a large amount remains in the portion corresponding to the portion, and it is preferable to pressurize the portion.

さらに、加圧時の電池厚みは加圧前の電池厚みの95%以下になることが好ましい。   Furthermore, the battery thickness during pressurization is preferably 95% or less of the battery thickness before pressurization.

95%より大きい場合は、加圧の効果が不十分になり、発生したガスが十分に押し出されない。   When it is larger than 95%, the effect of pressurization becomes insufficient, and the generated gas is not sufficiently extruded.

この結果として、一般的な角型電池ケースでも、正負極板間に残ったガスを極板間から取り除き、正負極板の未反応部分がなくなるため、放電特性に優れた非水電解液二次電池を提供することができ、また、容量を増加させることも可能となる。   As a result, even in a general prismatic battery case, the gas remaining between the positive and negative electrode plates is removed from between the electrode plates, and there is no unreacted portion of the positive and negative electrode plates. A battery can be provided and the capacity can be increased.

さらに、発生ガスを電池系外に放出するために行っている、電池を密閉する前の充電工程を省くことも可能となり、生産性が向上する。   Furthermore, it is possible to omit the charging step that is performed to release the generated gas to the outside of the battery system and before the battery is sealed, thereby improving productivity.

本発明を実施例と比較例を用いて詳細に説明するが、これらは、本発明を何ら限定するものではない。   The present invention will be described in detail using examples and comparative examples, but these do not limit the present invention.

(実施例1)
まず、正極板4は、正極活物質としてコバルト酸リチウムを100重量部、導電剤としてアセチレンブラックを2重量部、結着剤としてポリフッ化ビニリデン樹脂を固形分で3重量部を加え、N−メチル−2−ピロリドンを溶剤として混練分散させてペーストを作製した。このペーストを、厚さ15μmの帯状のアルミニウム箔からなる集電体3に連続的に間欠塗着を行い乾燥し、線圧1000Kg/cmで3回圧延を行った。
Example 1
First, the positive electrode plate 4 is obtained by adding 100 parts by weight of lithium cobaltate as a positive electrode active material, 2 parts by weight of acetylene black as a conductive agent, and 3 parts by weight of polyvinylidene fluoride resin as a binder, A paste was prepared by kneading and dispersing -2-pyrrolidone as a solvent. This paste was continuously applied intermittently to a current collector 3 made of a strip-shaped aluminum foil having a thickness of 15 μm, dried, and rolled three times at a linear pressure of 1000 kg / cm.

そして、アルミニウム製の正極リードをスポット溶接して取付け、さらに内部短絡を防止するためのポリプロピレン樹脂製絶縁テープを貼付することにより、幅寸法42mm、長さ300mm、厚さ0.145mmの正極板4を作製した。   Then, a positive electrode plate 4 having a width dimension of 42 mm, a length of 300 mm, and a thickness of 0.145 mm is obtained by spot welding an aluminum positive electrode lead and attaching a polypropylene resin insulating tape for preventing an internal short circuit. Was made.

次に、負極板6は、負極活物質としてリチウムを吸蔵、放出可能な鱗片状黒鉛を100重量部、結着剤としてスチレンブタジエンラバー(SBR)の水溶性デイスパージョンを固形分として1重量部、増粘剤としてカルボキシメチルセルロースを1重量部、溶剤として水を加え、混練分散させてペースト状合剤を作製した。このペーストを、厚さ10μmの帯状の銅箔からなる集電体7に連続的に間欠塗着を行い、110℃で30分間乾燥し、
線圧110Kg/cmで3回圧延を行った。
Next, the negative electrode plate 6 has 100 parts by weight of scaly graphite capable of occluding and releasing lithium as a negative electrode active material, and 1 part by weight of a water-soluble dispersion of styrene butadiene rubber (SBR) as a solid content as a binder. Then, 1 part by weight of carboxymethyl cellulose as a thickener and water as a solvent were added and kneaded and dispersed to prepare a paste mixture. This paste is continuously applied intermittently to a current collector 7 made of a strip-shaped copper foil having a thickness of 10 μm, and dried at 110 ° C. for 30 minutes,
Rolling was performed three times at a linear pressure of 110 kg / cm.

そして、ニッケル製の負極リードをスポット溶接して取付け、さらに内部短絡を防止するためのポリプロピレン樹脂製絶縁テープを貼付することにより、幅寸法43mm、長さ400mm、厚さ0.142mmの負極板6を作製した。   Then, a negative electrode lead made of nickel is spot welded and attached, and an insulating tape made of polypropylene resin for preventing an internal short circuit is applied, whereby a negative electrode plate 6 having a width dimension of 43 mm, a length of 400 mm, and a thickness of 0.142 mm. Was made.

このようにして作製した正極板4と負極板6とが厚さ20μmのポリエチレン樹脂製の微多孔性セパレータ5を介して絶縁された状態で楕円状に捲回した電極群の長辺面から6.5MPaの圧力条件にて5秒間プレスすることにより扁平型の極板群を得た。   From the long side surface of the electrode group wound in an elliptical shape in a state where the positive electrode plate 4 and the negative electrode plate 6 thus produced are insulated through a microporous separator 5 made of polyethylene resin having a thickness of 20 μm. A flat electrode plate group was obtained by pressing for 5 seconds under a pressure condition of 5 MPa.

この扁平状の極板群をマンガン、銅等の金属を微量含有する3000系のアルミニウム合金製で、肉厚0.25mmで、幅寸法6.3mm、長さ寸法34.0mm、総高50.0mmの形状にプレス成型により作製した有底角型の電池ケース1内に収納した。 This flat electrode plate group is made of a 3000 series aluminum alloy containing trace amounts of metals such as manganese and copper , has a thickness of 0.25 mm, a width dimension of 6.3 mm, a length dimension of 34.0 mm, and a total height of 50. It was housed in a bottomed rectangular battery case 1 produced by press molding into a 0 mm shape.

露点−30℃、温度90℃で2時間乾燥させることによって、カールフィシャー式水分計を用いた測定で、極板群の含有水分量を500ppmから70ppmに下げた。   By drying for 2 hours at a dew point of −30 ° C. and a temperature of 90 ° C., the moisture content of the electrode plate group was reduced from 500 ppm to 70 ppm as measured using a Karl Fischer moisture meter.

さらに、封口板2と電池ケース1とをレーザ溶接した後、封口板2に設けた注液孔より、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を2:1で混合した混合溶媒に、LiPF6を1.0Mの濃度で溶解させた非水電解液を注液した後、注液栓をレーザで封口して、電池容量が1000mAhを設計値とする角型の本発明電池Aを作製した。 Furthermore, after the sealing plate 2 and the battery case 1 are laser welded, from a liquid injection hole provided in the sealing plate 2, a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a ratio of 2: 1 is used. After injecting a non-aqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1.0 M, the injection cap was sealed with a laser, and a square battery of the present invention A having a design capacity of 1000 mAh was produced. did.

このようにして作製した角型リチウムイオン二次電池を25℃の環境下、電流値0.2C(200mA)、終止電圧4.07Vの定電流充電にて充電し、次いで、図2および図3の模式図に示すように加圧を行った電池を本発明電池Aとした。   The prismatic lithium ion secondary battery thus manufactured was charged by constant current charging at a current value of 0.2 C (200 mA) and a final voltage of 4.07 V in an environment of 25 ° C., and then FIG. 2 and FIG. A battery subjected to pressurization as shown in FIG.

図2において、電池8の最大幅広面9の中央部分を加圧治具11により、12の矢印で示す加圧方向から圧力120kgfで、加圧前の電池厚みの97%の厚みまで加圧した。図3に示す加圧部分10の範囲は、幅12mm、長さ40mmである。   In FIG. 2, the central portion of the maximum wide surface 9 of the battery 8 is pressed with a pressure jig 11 from the pressing direction indicated by the arrow 12 to a thickness of 97% of the battery thickness before pressing with a pressure of 120 kgf. . The range of the pressurizing portion 10 shown in FIG. 3 is 12 mm wide and 40 mm long.

(実施例2)
作製した電池を充電後加圧する時、加圧前の電池厚みの95%の厚みまで加圧を行った以外は、実施例1と同じようにした電池を本発明電池Bとした。
(Example 2)
A battery in the same manner as in Example 1 was designated as a battery B of the present invention, except that when the produced battery was pressurized after charging, it was pressurized to 95% of the thickness of the battery before pressing.

(実施例3)
作製した電池を充電後加圧する時、加圧前の電池厚みの93%の厚みまで加圧を行った以外は、実施例1と同じようにした電池を本発明電池Cとした。
(Example 3)
A battery in the same manner as in Example 1 was designated as the battery C of the present invention, except that when the produced battery was pressurized after charging, it was pressurized to 93% of the thickness of the battery before pressing.

(比較例1)
作製した電池を充電後加圧しなかった以外は、実施例1と同じようにした電池Dを比較例とした。
(Comparative Example 1)
A battery D, which was the same as Example 1, except that the manufactured battery was not pressurized after charging, was used as a comparative example.

以上加圧処理の異なる4種類の電池A〜Dについて、電池容量と高効率放電特性の比較を行った。   The battery capacity and high-efficiency discharge characteristics were compared for the four types of batteries A to D having different pressure treatments as described above.

電池容量の評価は、25℃で充電電流1000mA、充電電圧4.2Vの定電流定電圧充電で終止電流100mAまで充電した後、放電電流200mA、放電終止電圧3.0Vまで放電し、その放電容量を用いた正極活物質量で除すことで評価した。また、高効率放電特性試験は、電池容量評価と同様の充電条件で充電し、25℃で放電電流2000mA
、放電終止電圧3.0Vまで放電し、その放電容量で評価した。
The battery capacity was evaluated by charging at a constant current and constant voltage with a charging current of 1000 mA and a charging voltage of 4.2 V at 25 ° C. and then discharging to a final current of 100 mA, and then discharging to a discharge current of 200 mA and a final discharge voltage of 3.0 V. It was evaluated by dividing by the amount of the positive electrode active material using. The high-efficiency discharge characteristic test is performed under the same charging conditions as in the battery capacity evaluation, and the discharge current is 2000 mA at 25 ° C.
Then, the battery was discharged to a discharge end voltage of 3.0 V, and the discharge capacity was evaluated.

各電池の電池容量と高効率放電の結果を表1に示す。すべて比較例電池Dを100としたときの値を示す。   Table 1 shows the battery capacity of each battery and the results of high-efficiency discharge. All values when the comparative battery D is 100 are shown.

表1に示す通り、加圧処理した本発明電池A〜Cは比較例電池Dに比べて、電池容量、高効率放電特性ともに高い値を示し、特に加圧前の電池厚みの95%以下の厚みまで加圧処理した本発明電池B、Cはさらに高い値を示し、電池性能が改善されていることが確認された。   As shown in Table 1, the inventive batteries A to C subjected to the pressure treatment showed higher values for both the battery capacity and the high-efficiency discharge characteristics than the comparative battery D, particularly 95% or less of the thickness of the battery before pressurization. The batteries B and C of the present invention subjected to pressure treatment to a thickness showed higher values, and it was confirmed that the battery performance was improved.

これは、電解液の分解により発生したガスが対向する正負極板間に残るが、扁平型捲回群の挿入された角型電池ケースの最大幅広面中央部を加圧することで、正負極板間から発生したガスを取り除くことが可能となり、極板の未反応部分がなくなるためである。   This is because the gas generated by the decomposition of the electrolyte remains between the opposing positive and negative electrode plates, but by pressing the central part of the widest surface of the rectangular battery case in which the flat wound group is inserted, the positive and negative electrode plates This is because the gas generated from the gap can be removed, and the unreacted portion of the electrode plate is eliminated.

加圧時の電池厚みに関しては、加圧前の電池厚みの95%以下の厚みまで加圧することが好ましく、下限は加圧処理後電池にへこみ等の変形が生じない範囲内である。   Regarding the battery thickness at the time of pressurization, it is preferable to pressurize to a thickness of 95% or less of the battery thickness before pressurization, and the lower limit is within a range in which deformation such as dents does not occur in the battery after pressurization treatment.

各電池の加圧前、加圧時および加圧後の電池厚みを表2に示す。加圧前の電池厚みを100とした時の値を示す。   Table 2 shows battery thicknesses before, during and after pressurization of each battery. The value when the battery thickness before pressurization is 100 is shown.


加圧後の電池厚みは加圧を開放した後であるため、加圧時の厚み以上、加圧前の厚み以下になる。   Since the battery thickness after the pressurization is after the pressurization is released, the battery thickness is not less than the thickness at the time of pressurization and not more than the thickness before the pressurization.

本発明によれば、、一般的な角型電池ケースでも、放電特性に優れた非水電解液二次電池を提供することができるため、ポータブル用電子機器等の電源として有用である。   According to the present invention, a non-aqueous electrolyte secondary battery having excellent discharge characteristics can be provided even in a general prismatic battery case, which is useful as a power source for portable electronic devices and the like.

本発明のリチウム二次電池の斜視図The perspective view of the lithium secondary battery of this invention 本発明の加圧工程を示す模式図Schematic diagram showing the pressurization process of the present invention 本発明の加圧部分を示す模式図Schematic showing the pressure part of the present invention

符号の説明Explanation of symbols

1 電池外装ケース
2 封口板
3 正極集電体
4 正極板
5 セパレータ
6 負極板
7 負極集電体
8 電池
9 最大幅広面
10 加圧部分
11 加圧治具
12 加圧方向
DESCRIPTION OF SYMBOLS 1 Battery exterior case 2 Sealing plate 3 Positive electrode collector 4 Positive electrode plate 5 Separator 6 Negative electrode plate 7 Negative electrode collector 8 Battery 9 Maximum wide surface 10 Pressurizing part 11 Pressing jig 12 Pressing direction

Claims (1)

リチウムイオンを可逆的に吸蔵・脱離し得る活物質を含有する正極及び負極、セパレータからなる扁平型の捲回群と、非水電解液とを角型電池ケースに挿入し、密閉して組み立て、充電して仕上げる角型非水電解液二次電池の製造方法であって、前記充電中または前記充電後の充電状態で、角型電池ケースの最大幅広面中央部を加圧し、前記加圧時の電池厚みが加圧前の電池厚みの95%以下にし、さらに加圧後は、電池厚みが前記加圧時の電池厚みから復元することを特徴とする非水電解液二次電池の製造方法。 A positive and negative electrode containing an active material capable of reversibly occluding and desorbing lithium ions, a flat wound group consisting of a separator and a non-aqueous electrolyte are inserted into a rectangular battery case, sealed and assembled, a method of manufacturing a prismatic nonaqueous electrolyte secondary battery to finish charging, charging state of the charging during or after the charging, the maximum wide surface central portion of the square battery case pressurize the pressurization The thickness of the battery is 95% or less of the battery thickness before pressurization, and after pressurization, the battery thickness is restored from the battery thickness at the time of pressurization. .
JP2005181944A 2005-06-22 2005-06-22 Method for producing non-aqueous electrolyte secondary battery Active JP4867213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181944A JP4867213B2 (en) 2005-06-22 2005-06-22 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181944A JP4867213B2 (en) 2005-06-22 2005-06-22 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007005069A JP2007005069A (en) 2007-01-11
JP4867213B2 true JP4867213B2 (en) 2012-02-01

Family

ID=37690487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181944A Active JP4867213B2 (en) 2005-06-22 2005-06-22 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4867213B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293785B2 (en) 2010-03-26 2016-03-22 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery, vehicle, and battery mounting device
JP5888551B2 (en) * 2011-12-14 2016-03-22 トヨタ自動車株式会社 Manufacturing method of sealed lithium secondary battery
BR112014017443B8 (en) * 2013-05-07 2023-03-21 Lg Chemical Ltd CABLE TYPE SECONDARY BATTERY
JP6292035B2 (en) * 2014-05-30 2018-03-14 株式会社豊田自動織機 Power storage device restraint jig
JP2017010933A (en) * 2015-06-19 2017-01-12 株式会社半導体エネルギー研究所 Power storage device charging method, method of manufacturing power storage device, battery module and vehicle
KR102177819B1 (en) 2016-02-11 2020-11-11 주식회사 엘지화학 Method and apparatus for manufacturing of prismatic secondary battery
JP7368408B2 (en) * 2021-03-12 2023-10-24 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method for secondary batteries
JP7412389B2 (en) * 2021-05-28 2024-01-12 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533117B2 (en) * 1999-07-23 2004-05-31 日本電気株式会社 Method of manufacturing film-covered battery
JP3457624B2 (en) * 2000-04-14 2003-10-20 日本電気株式会社 Method of manufacturing flat battery
JP2001143757A (en) * 1999-11-11 2001-05-25 Nec Mobile Energy Kk Sealed cell
JP2004213902A (en) * 2002-12-26 2004-07-29 Sony Corp Charging device of battery and charging method of battery

Also Published As

Publication number Publication date
JP2007005069A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
KR101452875B1 (en) Non-aqueous secondary battery
KR102379223B1 (en) Methods for preparing negative electrode for lithium secondary battery and lithium secondary battery
JP5046352B2 (en) Method for producing lithium ion secondary battery
KR102362887B1 (en) Method of pre-lithiating an anode for lithium secondary battery and Lithium metal laminate for being used therefor
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP4867213B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6287187B2 (en) Nonaqueous electrolyte secondary battery
JP2019016483A (en) Nonaqueous electrolyte secondary battery
KR102557725B1 (en) Composite anode active material, anode including the material, and lithium secondary battery including the anode
JP2007273183A (en) Negative electrode and secondary battery
JP6275694B2 (en) Nonaqueous electrolyte secondary battery
WO2018025469A1 (en) Lithium ion secondary battery and method for manufacturing same
JP2015125856A (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2006302801A (en) Winding type secondary battery
JP4834299B2 (en) Lithium secondary battery
JP2013114847A (en) Lithium ion secondary batty and method for manufacturing the same
JP2007141482A (en) Nonaqueous electrolyte winding type secondary battery
JPWO2002091514A1 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2004119350A (en) Lithium secondary battery
JP6287186B2 (en) Nonaqueous electrolyte secondary battery
JP2009081067A (en) Non-aqueous secondary battery
KR102035247B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
EP3905413A1 (en) Non-aqueous electrolyte secondary battery
JP2004030939A (en) Manufacturing method of lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R151 Written notification of patent or utility model registration

Ref document number: 4867213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3