JP4866122B2 - Ceramic straight tube hole cylindrical support and membrane element for solid oxide fuel cell - Google Patents

Ceramic straight tube hole cylindrical support and membrane element for solid oxide fuel cell Download PDF

Info

Publication number
JP4866122B2
JP4866122B2 JP2006081799A JP2006081799A JP4866122B2 JP 4866122 B2 JP4866122 B2 JP 4866122B2 JP 2006081799 A JP2006081799 A JP 2006081799A JP 2006081799 A JP2006081799 A JP 2006081799A JP 4866122 B2 JP4866122 B2 JP 4866122B2
Authority
JP
Japan
Prior art keywords
support
ceramic
perforated plate
straight tube
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006081799A
Other languages
Japanese (ja)
Other versions
JP2007258027A (en
Inventor
洋祐 高橋
久富 田口
彰広 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2006081799A priority Critical patent/JP4866122B2/en
Publication of JP2007258027A publication Critical patent/JP2007258027A/en
Application granted granted Critical
Publication of JP4866122B2 publication Critical patent/JP4866122B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体酸化物型燃料電池の支持体に使用可能な外周面から内周面に真っ直ぐに貫通する直管孔を備えた筒状のセラミック支持体、および固体酸化物型燃料電池用の膜エレメントに関する。   The present invention relates to a cylindrical ceramic support having a straight tube hole that passes straight from an outer peripheral surface to an inner peripheral surface that can be used as a support for a solid oxide fuel cell, and for a solid oxide fuel cell. It relates to a membrane element.

例えば、固体酸化物型燃料電池(以下、SOFCという)は、発電効率が高く、環境負荷が低く、しかも多様な燃料の使用が可能である等の利点があるため、次世代の発電装置として開発が進められている。SOFCは、一般に、酸化物イオン伝導体から成る固体電解質緻密膜層に空気極層(すなわちカソード)と燃料極層(すなわちアノード)とを積層した構造が採られ、カソード側に空気を、アノード側に水素含有ガスを流して用いられる。これらカソードおよびアノードは、ガス拡散性の高い多孔質膜で構成される。このようなSOFCにおいては、カソード側に供給された空気中の酸素は、電気化学的に還元されて酸素イオンになり、電解質層内をアノードに向かって移動する。アノードに到達した酸素イオンは、アノード側に供給されたガス中の水素等を酸化して外部負荷に電子を放出し、電気エネルギーを生成する。   For example, solid oxide fuel cells (hereinafter referred to as SOFC) have the advantages of high power generation efficiency, low environmental impact, and the ability to use a variety of fuels. Is underway. The SOFC generally has a structure in which an air electrode layer (that is, a cathode) and a fuel electrode layer (that is, an anode) are stacked on a solid electrolyte dense membrane layer made of an oxide ion conductor. It is used by flowing a hydrogen-containing gas. These cathode and anode are composed of a porous film having high gas diffusibility. In such an SOFC, oxygen in the air supplied to the cathode side is electrochemically reduced to oxygen ions and moves in the electrolyte layer toward the anode. Oxygen ions that have reached the anode oxidize hydrogen or the like in the gas supplied to the anode side, release electrons to an external load, and generate electrical energy.

上記のような電気エネルギーの生成機構によれば、固体電解質膜にはイオン伝導率の高い材料が好ましい。また、固体電解質膜の膜厚が薄いほど、イオン透過速度が高くなって発電効率が高められるから、固体電解質膜は可及的に薄いことが望まれる。そのため、膜単体で用いる自立膜に代えて、電解質膜を薄膜で構成すると共に、その機械的強度を補う目的で肉厚方向に貫通する多数の細孔を備えた多孔質の支持体上に膜を形成すること(すなわち非対称膜に構成すること)が行われている。このような目的で用いられる多孔質支持体は、実用的な規模での使用を考慮すると、筒状、例えば円筒形状が好ましいと考えられている(例えば特許文献1を参照。)。筒状エレメントは、平板積層構造のものに比べてシールや大型化が比較的容易である。また、複数個を密接させて束ねて構成することもできるため、装置が小型化できる点でも有利である。   According to the electric energy generation mechanism as described above, a material having high ion conductivity is preferable for the solid electrolyte membrane. In addition, the thinner the solid electrolyte membrane, the higher the ion permeation speed and the higher the power generation efficiency. Therefore, it is desirable that the solid electrolyte membrane be as thin as possible. Therefore, instead of the self-supporting membrane used as a single membrane, the membrane is formed on a porous support having a large number of pores penetrating in the thickness direction for the purpose of supplementing the mechanical strength of the electrolyte membrane with a thin film. (That is, forming an asymmetric film). The porous support used for such a purpose is considered to be preferably cylindrical, for example, cylindrical, considering use on a practical scale (see, for example, Patent Document 1). The cylindrical element is relatively easy to seal and increase in size as compared with a flat plate structure. In addition, since a plurality of devices can be bundled closely together, it is advantageous in that the device can be miniaturized.

上記のような事情により、円筒形状の多孔質支持体が用いられているが、非対称膜構造では多孔質支持体のガス拡散性能が装置性能に直ちに影響する。そのため、発電性能の高いSOFCを製造するためには、ガス拡散性の高い支持体が必要になる。また、耐久性の高いSOFCを得るためには、機械的強度や電解質薄膜との親和性の高い支持体が必要である。更に、実用化のためには容易且つ安価に製造できることも望まれる。
特開平07−315922号公報 特公平06−069907号公報 特開2002−097083号公報 特開2003−210952号公報 特開平09−132459号公報 特開平09−087024号公報 特許第3540495号公報 特開平11−099324号公報
Due to the above circumstances, a cylindrical porous support is used, but in the asymmetric membrane structure, the gas diffusion performance of the porous support immediately affects the performance of the apparatus. Therefore, in order to produce an SOFC with high power generation performance, a support having high gas diffusibility is required. In order to obtain a highly durable SOFC, a support having high mechanical strength and high affinity with the electrolyte thin film is required. Furthermore, it is desired that it can be manufactured easily and inexpensively for practical use.
JP 07-315922 A Japanese Patent Publication No. 06-069907 JP 2002-097083 A JP 2003-210952 A Japanese Patent Laid-Open No. 09-132559 JP 09-087024 A Japanese Patent No. 3540495 JP-A-11-099324

従来から、電解質薄膜を支持するための多孔質支持体を製造する方法は、原料、添加する気孔形成剤、焼成方法等の観点から種々提案されてきた。例えば、La1-xSrxMnO3(但し、0<x≦0.5)をその出発原料の混合物を1000〜1400(℃)の温度で焼成して合成し、得られた化合物を2〜10(μm)程度の平均粒径に粉砕した粉体から製造するものがある(例えば特許文献2を参照)。また、AFexO3-δ(但し、AはBa,Sr,Caの少なくとも一種。)から成る混合伝導性酸化物原料に樹脂を混合して成形および焼成して多孔質支持体を得るに際して、混合する樹脂量、成形圧力、焼成温度を調整することによって、その気孔率を変化させるものがある(例えば特許文献3を参照。)。また、ABB'O3(但し、Aは酸素で12配位される金属成分、B、B'は酸素で6配位される成分。)から成る原料にカーボンビーズを混合して成形し、酸化雰囲気で焼成することによりそのカーボンビーズを焼失させて、焼失痕を気孔とするものがある(例えば特許文献4を参照。)。また、ランタン系ペロブスカイト原料に微粉状で比表面積の大きい炭素粉末、例えば、平均粒径が1〜10(μm)で比表面積が200(m2/g)以上の炭素粉末を混合し、酸化雰囲気で焼成してその炭素粉末を焼失させることによって気孔を形成するものがある(例えば特許文献5,6を参照。)。上記何れの製造方法によっても、ガス透過を阻害しないような細孔径および気孔率の範囲の多孔質支持体が得られていた。 Conventionally, various methods for producing a porous support for supporting an electrolyte thin film have been proposed from the viewpoints of raw materials, added pore forming agents, firing methods, and the like. For example, La 1-x Sr x MnO 3 (where 0 <x ≦ 0.5) was synthesized by calcining a mixture of the starting materials at a temperature of 1000 to 1400 (° C.), and the resulting compound was 2 to 10 ( Some are manufactured from a powder pulverized to an average particle size of about μm) (see, for example, Patent Document 2). Further, when obtaining a porous support by mixing and molding a resin to a mixed conductive oxide raw material composed of AFe x O 3-δ (where A is at least one of Ba, Sr, and Ca). There is one that changes the porosity by adjusting the amount of resin to be mixed, molding pressure, and firing temperature (see, for example, Patent Document 3). In addition, carbon beads are mixed into a raw material consisting of ABB'O 3 (where A is a metal component that is 12-coordinated with oxygen, and B and B 'are components that are 6-coordinated with oxygen), and then oxidized. There is one in which the carbon beads are burned off by firing in an atmosphere, and burnt marks are used as pores (see, for example, Patent Document 4). Also, lanthanum perovskite raw material is mixed with fine powdery carbon powder with a large specific surface area, for example, carbon powder with an average particle size of 1 to 10 (μm) and a specific surface area of 200 (m 2 / g) or more, and an oxidizing atmosphere In some cases, pores are formed by burning the carbon powder and burning the carbon powder (see, for example, Patent Documents 5 and 6). By any of the above production methods, a porous support having a pore diameter and a porosity range that does not inhibit gas permeation has been obtained.

ところで、近年、固体電解質膜や触媒の性能向上に伴い、多孔質支持体のガス拡散性能がSOFCの性能を律するようになってきた。そのため、多孔質支持体のガス拡散性能の一層の向上が求められている。ガス拡散性能を向上させるためには、多孔質支持体の細孔径および気孔率を一層大きくすることが考えられる。しかしながら、細孔径および気孔率を大きくするほど多孔質支持体の機械的強度は低下する。例えば、気孔率を90(%)程度まで高めると、材料強度が10(MPa)程度まで低下して、取扱い性や耐久性が不十分になる。しかも、上記各公報に記載された製造方法では、粒子間の空隙で連通孔が形成される。そのため、連通孔が著しく屈曲していることから、気孔率や細孔径を大きくしても、ガス拡散性能を十分に高めることは困難であった。   By the way, in recent years, with the improvement of the performance of the solid electrolyte membrane and the catalyst, the gas diffusion performance of the porous support has come to regulate the performance of the SOFC. Therefore, further improvement of the gas diffusion performance of the porous support is required. In order to improve the gas diffusion performance, it is conceivable to further increase the pore diameter and porosity of the porous support. However, the mechanical strength of the porous support decreases as the pore diameter and porosity increase. For example, when the porosity is increased to about 90 (%), the material strength is decreased to about 10 (MPa), and the handleability and durability become insufficient. Moreover, in the manufacturing method described in each of the above publications, communication holes are formed by voids between particles. Therefore, since the communication holes are remarkably bent, it is difficult to sufficiently improve the gas diffusion performance even when the porosity and the pore diameter are increased.

一方、支持体上に膜を設けた構造体としては、通気用の多数の孔が開いた金属製のベースパイプを支持体として用い、その外周面に水素透過性金属箔を重ね合わせた水素分離膜が知られている(例えば、特許文献7,8を参照。)。このような支持体の肉厚方向に直線的に貫通する直管状の孔は、屈曲する連通孔に比べて通気抵抗が著しく小さいため、これらによれば、ガス拡散性能を著しく高めることができる。   On the other hand, as a structure with a membrane on a support, a hydrogen base metal pipe with a large number of holes for ventilation is used as the support, and a hydrogen permeable metal foil is superimposed on the outer peripheral surface. Membranes are known (see, for example, Patent Documents 7 and 8). Since the straight tubular hole that penetrates linearly in the thickness direction of the support body has a remarkably low ventilation resistance as compared with the bent communication hole, the gas diffusion performance can be remarkably improved.

しかしながら、上記特許文献7,8に記載されているベースパイプは、水素分離に用いることを目的とした金属製多孔質支持体であって、そのままSOFCに適用できるものでは無い。SOFC用途では、高温、高圧、還元雰囲気、或いは水蒸気雰囲気に曝されるため、耐還元性、耐水蒸気性、および高い機械的強度を有するセラミックスで支持体を構成することが望まれる。金属製円筒には直管孔を容易に設けることができるが、機械加工性に劣るセラミックスに多数の直管孔を設けることは極めて困難である。例えば、成形体や焼結体に機械加工を施すことで特許文献7,8に記載されているものと同様な孔を設けようとすると、一度に形成できる孔数は1乃至数個、多くとも10個未満であるため、多大な手間が必要となる。しかも、曲面に貫通孔を形成するので、位置や寸法形状精度等を確保するためには、複雑な制御が必要となる問題もある。   However, the base pipes described in Patent Documents 7 and 8 are metal porous supports intended for use in hydrogen separation, and are not directly applicable to SOFC. In SOFC applications, since it is exposed to high temperature, high pressure, a reducing atmosphere, or a water vapor atmosphere, it is desired that the support is composed of ceramics having reduction resistance, water vapor resistance, and high mechanical strength. Although straight pipe holes can be easily provided in a metal cylinder, it is extremely difficult to provide a large number of straight pipe holes in ceramics that are inferior in machinability. For example, if a molded body or a sintered body is machined to provide holes similar to those described in Patent Documents 7 and 8, the number of holes that can be formed at one time is one to several at most. Since it is less than 10, a great deal of labor is required. In addition, since the through-hole is formed in the curved surface, there is a problem that complicated control is required in order to ensure the position, the dimensional shape accuracy, and the like.

本発明は、以上の事情を背景として為されたものであって、その目的は、ガス拡散性能の高い直管孔を有するセラミック製筒状支持体および発電効率の高い燃料電池用の膜エレメントを提供することにある。   The present invention has been made in the background of the above circumstances, and its object is to provide a ceramic cylindrical support having a straight pipe hole with high gas diffusion performance and a membrane element for a fuel cell with high power generation efficiency. It is to provide.

斯かる目的を達成するため、第1発明の固体酸化物型燃料電池用のセラミック直管孔筒状支持体の要旨とするところは、(a)内周部に厚み方向に貫通する貫通孔をそれぞれ有し且つその厚み方向に所定の相互間隔を以て連なるセラミック製の複数の孔明き板状部と、(b)それら複数の孔明き板状部の環状端面間にその周方向に所定の相互間隔を以て配置され且つそれら複数の孔明き板状部を相互に接続するセラミック製の複数の連結部とを含んで、全体が筒状を成すことにある。   In order to achieve such an object, the gist of the ceramic straight tube hole tubular support for the solid oxide fuel cell of the first invention is that (a) a through hole penetrating in the thickness direction is formed in the inner peripheral portion. A plurality of ceramic perforated plate-like portions each having a predetermined mutual spacing in the thickness direction thereof, and (b) a predetermined mutual spacing in the circumferential direction between the annular end faces of the plurality of perforated plate-like portions. And a plurality of connecting portions made of ceramic that connect the plurality of perforated plate-like portions to each other.

また、前記目的を達成するための第2発明の固体酸化物型燃料電池用膜エレメントの要旨とするところは、前記第1発明のセラミック直管孔筒状支持体の表面にイオン伝導性を有する固体酸化物電解質から成る緻密膜が固着されたことにある。   In addition, the gist of the membrane element for a solid oxide fuel cell of the second invention for achieving the above object is that the surface of the ceramic straight tube hole cylindrical support of the first invention has ionic conductivity. This is because a dense film made of a solid oxide electrolyte is fixed.

第1発明によれば、セラミック直管孔筒状支持体は、セラミック製の複数の孔明き板状部が、それらの環状端面間に設けられたセラミック製の連結部で相互に接続されることによって構成される。このとき、複数の孔明き板状部がその厚み方向に連なるので、それらの貫通孔によってその厚み方向に沿って伸びる孔が内周側に実質的に形成され、支持体は全体として筒状を成す。しかも、複数の連結部は環状端面の周方向に所定の相互間隔を以て配置されることから、複数の孔明き板状部の環状端面間の各々の連結部相互間には、その孔明き板状部の外周面側から内周面側に向かって直線的に貫通する直管孔が備えられる。すなわち、第1発明の支持体は、全体として筒状を成し且つ側壁に内外周面間を直線的に貫通する多数の直管孔を備えたものとなる。この直管孔の孔径は、孔明き板状部の相互間隔と、環状端面の周方向における連結部の相互間隔とによって定められることから、これらの大きさを適宜定めることによって、所望するガス拡散性能に応じた適当な大きさの直管孔が得られる。したがって、ガス拡散性能の高い直管孔を有するセラミック筒状支持体が得られる。   According to the first invention, in the ceramic straight tube hole cylindrical support, a plurality of ceramic perforated plate-like portions are connected to each other by a ceramic connecting portion provided between their annular end faces. Consists of. At this time, since the plurality of perforated plate-like portions are continuous in the thickness direction, a hole extending along the thickness direction is substantially formed on the inner peripheral side by the through holes, and the support body has a cylindrical shape as a whole. Make it. In addition, since the plurality of connecting portions are arranged with a predetermined mutual interval in the circumferential direction of the annular end surface, between the connecting portions between the annular end surfaces of the plurality of perforated plate-like portions, there is a perforated plate shape. A straight pipe hole penetrating linearly from the outer peripheral surface side to the inner peripheral surface side is provided. That is, the support according to the first aspect of the present invention has a tubular shape as a whole and includes a large number of straight pipe holes that penetrate the inner and outer peripheral surfaces linearly on the side wall. The diameter of the straight pipe hole is determined by the mutual interval of the perforated plate-like portions and the mutual interval of the connecting portions in the circumferential direction of the annular end surface. Therefore, by appropriately determining these sizes, the desired gas diffusion A straight pipe hole having an appropriate size according to the performance can be obtained. Therefore, a ceramic cylindrical support having straight pipe holes with high gas diffusion performance can be obtained.

また、第2発明によれば、ガス拡散性能の高い直管孔を有するセラミック筒状支持体の表面にイオン伝導体から成る緻密膜(すなわち電解質膜)が固着されていることから、その電解質膜に好適に酸素或いは酸素を含む気体が供給され、或いは、緻密膜を透過した酸素或いはこれと水素や一酸化炭素等との化合物(すなわち水や二酸化炭素など)が支持体を好適に通過させられる。そのため、支持体のガス拡散性能が膜エレメントの酸素イオン透過速度を律することを好適に緩和でき或いは避けることができるので、発電性能の高い燃料電池用膜エレメントが得られる。上記緻密膜は、好適には、セリアまたはジルコニアである。   Further, according to the second invention, a dense membrane (that is, an electrolyte membrane) made of an ionic conductor is fixed to the surface of a ceramic cylindrical support having a straight pipe hole with high gas diffusion performance. Oxygen or a gas containing oxygen is preferably supplied, or oxygen or a compound of hydrogen and carbon monoxide (that is, water, carbon monoxide, etc.) permeated through the dense membrane is preferably passed through the support. . Therefore, it is possible to preferably alleviate or avoid that the gas diffusion performance of the support regulates the oxygen ion permeation rate of the membrane element, so that a fuel cell membrane element with high power generation performance can be obtained. The dense film is preferably ceria or zirconia.

なお、「環状端面間に」とは、連結部の少なくとも一部が環状端面に接する状態に配置されていることを意味し、例えば柱状等を成す連結部材の全体が環状端面上に設けられていてもよいが、一部が環状端面の外周側または内周側にはみ出していても差し支えない。また、連結部は、孔明き板状部の厚み方向において一様な断面を備えたものに限られず、例えば、中間部の断面積が両端に比較して大きく或いは小さくされていても差し支えない。例えば、中間部が小面積にされると共に、環状端面よりも外周側に位置することとなっていてもよい。   The term “between the annular end faces” means that at least a part of the connecting portion is disposed in contact with the annular end face. For example, the entire connecting member having a columnar shape or the like is provided on the annular end face. However, it does not matter even if a part protrudes from the outer peripheral side or inner peripheral side of the annular end face. Further, the connecting portion is not limited to one having a uniform cross section in the thickness direction of the perforated plate-like portion, and for example, the cross-sectional area of the intermediate portion may be larger or smaller than both ends. For example, the intermediate portion may have a small area and be positioned on the outer peripheral side of the annular end surface.

また、連結部は、周方向において少なくとも2つに分割されていればよく、分割数や相互間隔の大きさは特に問わない。但し、環状端面上において連結部の占める面積が大きくなるほど、機械的強度が高くなる反面で支持体全体を筒状体と捉えた場合のその側壁における空隙率が低下し、延いてはガス拡散性能が低下するため、その面積は、空隙率が小さくなりすぎない範囲で強度を確保できるように定めることが好ましい。支持体の機械的強度は、例えば曲げ強度で30(MPa)以上あることが好ましい。なお、上記「側壁における空隙率」は、支持体を構成する複数の孔明き板状部の外周面および内周面をそれぞれ結んで作られる外周側筒状曲面および内周側筒状曲面を考えたとき、それらの間の部分の体積に対する空隙の割合を意味するものである。本願においては、第1発明の支持体について、この空隙率を気孔率として取り扱う。なお、第1発明の支持体以外、すなわち、その構成要素や後述する中間層や従来の支持体等における気孔率は、通常の定義に従い、水銀圧入法等によって測定される値である。   Moreover, the connection part should just be divided | segmented into at least two in the circumferential direction, and the magnitude | size of a division | segmentation number or a mutual space | interval is not ask | required in particular. However, the larger the area occupied by the connecting portion on the annular end surface, the higher the mechanical strength, but on the other hand, the porosity of the side wall when the entire support is regarded as a cylindrical body decreases, and as a result gas diffusion performance Therefore, the area is preferably determined so that the strength can be secured in a range in which the porosity is not too small. The mechanical strength of the support is preferably, for example, 30 (MPa) or more in terms of bending strength. The above-mentioned “porosity in the side wall” refers to an outer peripheral cylindrical curved surface and an inner peripheral cylindrical curved surface formed by connecting the outer peripheral surface and the inner peripheral surface of a plurality of perforated plate-like portions constituting the support, respectively. It means the ratio of the void to the volume of the part between them. In the present application, the porosity of the support of the first invention is treated as the porosity. It should be noted that the porosity of the component other than the support of the first invention, that is, its constituent elements, an intermediate layer described later, a conventional support, and the like is a value measured by a mercury intrusion method or the like according to a normal definition.

また、貫通孔は、複数の孔明き板状部において同軸的に備えられていることが好ましいが、複数の貫通孔で形成される孔が、ガス流通に支障が生じ延いては膜エレメントの酸素イオン透過速度に著しい影響を及ぼす程度まで屈曲しているのでなければ、同軸的に設けられていなくとも差し支えない。また、複数の貫通孔の各々の大きさも、一様であることが好ましいが、同様な観点で酸素イオン透過速度に著しい影響を及ぼさない範囲でばらついていても差し支えない。   Further, the through holes are preferably provided coaxially in the plurality of perforated plate-like portions, but the holes formed by the plurality of through holes cause an obstacle to gas flow and extend the oxygen of the membrane element. If it is not bent to the extent that it has a significant effect on the ion transmission speed, it does not matter if it is not provided coaxially. In addition, the size of each of the plurality of through holes is preferably uniform, but may vary within a range that does not significantly affect the oxygen ion transmission rate from the same viewpoint.

また、複数の孔明き板状部の外周縁の形状や大きさも、一様であることが好ましいが、電解質膜を固着するに際して支障の無い範囲でばらついていても差し支えない。   In addition, the shape and size of the outer peripheral edge of the plurality of perforated plate portions are preferably uniform, but may be varied within a range that does not hinder the fixing of the electrolyte membrane.

ここで、好適には、前記セラミック直管孔筒状支持体は、一般式Ln1-xAexMO3(ここでLnはランタノイドから選択される少なくとも一種、AeはSr,Ca,Mg,Baから選択される少なくとも一種、MはMg,Fe,Mn,Ga,Ti,Co,Ni,Al,Cu,In,Sn,Zr,V,Cr,Zn,Ge,Sc,Yから選択されるAeとは異なる少なくとも一種、0≦x≦1)で表されるペロブスカイト複合酸化物、安定化ジルコニア、酸化セリウム、これらのうちの少なくとも二種の複合材料、および、これらのうちから選択される少なくとも一種と酸化珪素、窒化珪素、酸化チタン、酸化アルミニウムから選択される少なくとも一種との複合材料の中から選択される少なくとも一種のセラミックス材料から成るものである。このようにすれば、上記ペロブスカイト複合酸化物、安定化ジルコニア、および酸化セリウムは、固体酸化物型燃料電池を構成するための電解質膜と熱膨張係数が近似する。そのため、これら或いはこれらの複合材料で支持体を構成すると、製造工程や使用時に加熱或いは冷却された場合にも熱膨張量の相違に起因して破損することが好適に抑制される。なお、酸化珪素、窒化珪素、酸化チタン、酸化アルミニウムは、酸素イオン伝導性が低いが、機械的強度が比較的高く且つ安価であることから、これらとペロブスカイト複合酸化物等の酸素イオン伝導性の高い材料との複合材料から成る支持体は、比較的高い機械的強度を有し且つ安価に製造できる利点がある。また、支持体材料としては、電解質膜材料や空気極触媒材料も好ましい。 Here, preferably, the ceramic straight tube hole cylindrical support has a general formula Ln 1-x Ae x MO 3 (where Ln is at least one selected from lanthanoids, Ae is Sr, Ca, Mg, Ba At least one selected from M, Ae selected from Mg, Fe, Mn, Ga, Ti, Co, Ni, Al, Cu, In, Sn, Zr, V, Cr, Zn, Ge, Sc, Y Are at least one different, perovskite composite oxide represented by 0 ≦ x ≦ 1), stabilized zirconia, cerium oxide, at least two of these composite materials, and at least one selected from these It is made of at least one ceramic material selected from a composite material with at least one selected from silicon oxide, silicon nitride, titanium oxide, and aluminum oxide. In this way, the perovskite complex oxide, stabilized zirconia, and cerium oxide have a thermal expansion coefficient that is close to that of the electrolyte membrane for constituting a solid oxide fuel cell. For this reason, when the support is composed of these or these composite materials, it is preferably suppressed from being damaged due to the difference in the amount of thermal expansion even when heated or cooled during the production process or use. Although silicon oxide, silicon nitride, titanium oxide, and aluminum oxide have low oxygen ion conductivity, they have relatively high mechanical strength and are inexpensive, so that they have oxygen ion conductivity such as perovskite composite oxide. A support made of a composite material with a high material has the advantage that it has a relatively high mechanical strength and can be manufactured inexpensively. In addition, as the support material, an electrolyte membrane material and an air electrode catalyst material are also preferable.

また、第1発明および第2発明で用いられるランタノイド系ペロブスカイト複合酸化物としては、例えば、Ln1-xAxMnO3(但し、LnはLa,Ce,Nd,Pr,Smのうちの少なくとも一種。AはSr,Ca,Mg,Baのうちの少なくとも一種。)や、Ln1-xAxGa1-yMyO3(但し、LnはLa,Ce,Pr,Nd,Smのうちの少なくとも一種。AはSr,Ca,Baのうちの少なくとも一種。MはMg,Co,Ni,Al,Cu,Fe,Zn,Ge,Inのうちの少なくとも一種。)が挙げられる。Ln1-xAxMnO3はSOFCの空気極の構成材料でもあり、Ln1-xAxGa1-yMyO3は低温用SOFCの電解質材料として有力とされているものであるから、これらで支持体を構成すれば、全体の構造を簡素化できる利点がある。 The lanthanoid perovskite complex oxide used in the first and second inventions is, for example, Ln 1-x A x MnO 3 (where Ln is at least one of La, Ce, Nd, Pr, and Sm) A is at least one of Sr, Ca, Mg and Ba.) And Ln 1-x A x Ga 1- y My O 3 (where Ln is one of La, Ce, Pr, Nd and Sm) At least one of them, A is at least one of Sr, Ca, and Ba, and M is at least one of Mg, Co, Ni, Al, Cu, Fe, Zn, Ge, and In.). Ln 1-x A x MnO 3 is also a constituent material of SOFC air electrode, and Ln 1-x A x Ga 1- y My O 3 is considered to be a promising electrolyte material for SOFC for low temperature. If the support is composed of these, there is an advantage that the entire structure can be simplified.

また、安定化ジルコニアや酸化セリウムは、上記ランタノイド系に比較すると高強度を有する。したがって、要求される機械的強度が比較的高い場合にはこれらを用いることも好ましい。また、支持体および電解質膜を共に安定化ジルコニアや酸化セリウムで構成する場合には、熱膨張差による問題が一層生じにくい利点もある。   Stabilized zirconia and cerium oxide have higher strength than the lanthanoid series. Therefore, it is also preferable to use these when the required mechanical strength is relatively high. Further, when both the support and the electrolyte membrane are made of stabilized zirconia or cerium oxide, there is an advantage that a problem due to a difference in thermal expansion hardly occurs.

上記安定化ジルコニアの安定化剤は特に限定されず、Y2O3、CaO、MgO、Yb2O3、Sc2O3、CeO2等、種々の安定化剤を添加したものを用いることができる。 The stabilizer for the above-mentioned stabilized zirconia is not particularly limited, and Y 2 O 3 , CaO, MgO, Yb 2 O 3 , Sc 2 O 3 , CeO 2 and the like added with various stabilizers may be used. it can.

また、酸化アルミニウム、酸化珪素、窒化珪素、酸化チタンは、電子伝導性が低く、酸素イオン伝導性もランタノイド系に比較すると著しく低いが、原料が比較的安価で機械的強度が高い利点がある。したがって、ペロブスカイト複合酸化物、安定化ジルコニア、酸化セリウムとの複合材料に限られず、これら酸化アルミニウム、酸化珪素、窒化珪素、酸化チタンで支持体を構成することも有効である。   In addition, aluminum oxide, silicon oxide, silicon nitride, and titanium oxide have low electronic conductivity and oxygen ion conductivity that is significantly lower than that of lanthanoid-based materials, but have the advantages of relatively inexpensive raw materials and high mechanical strength. Therefore, it is not limited to a composite material of perovskite composite oxide, stabilized zirconia, and cerium oxide, and it is also effective to form a support with these aluminum oxide, silicon oxide, silicon nitride, and titanium oxide.

また、好適には、前記複数の孔明き板状部の相互間隔は0.01乃至50(mm)の範囲内の大きさである。支持体におけるガス拡散抵抗を十分に小さくするためには、相互間隔を0.01(mm)以上にすることが好ましい。一般に、多孔質体においては、細孔径が1(μm)以上であれば、気体分子の平均自由行程との関係でガスの流通抵抗にならない。上記相互間隔が支持体の内外周間を貫通する直管孔の孔径に相当するものであるから、製造バラツキなどを考慮しても、0.01(mm)以上であればガス拡散抵抗を考慮する必要がない。また、支持体上に電解質膜を容易に形成すると共に、その保持強度を十分に高くするためには、電解質膜の形成方法にもよるが、相互間隔を50(mm)以下にすることが好ましい。   Preferably, the interval between the plurality of perforated plate portions is in the range of 0.01 to 50 (mm). In order to sufficiently reduce the gas diffusion resistance in the support, the mutual interval is preferably set to 0.01 (mm) or more. In general, in a porous body, if the pore diameter is 1 (μm) or more, there is no gas flow resistance in relation to the mean free path of gas molecules. Since the above mutual distance corresponds to the diameter of a straight pipe hole penetrating between the inner and outer peripheries of the support, it is necessary to consider gas diffusion resistance if it is 0.01 (mm) or more even if manufacturing variation is taken into consideration There is no. Further, in order to easily form the electrolyte membrane on the support and to sufficiently increase its holding strength, the mutual interval is preferably 50 (mm) or less, depending on the method of forming the electrolyte membrane. .

また、一層好適には、上記相互間隔は、5(mm)以下である。5(mm)以下であれば、支持体上に後述する中間層を形成する際にその中間層が破損する可能性が十分に低いので、工程が簡単になる利点がある。   More preferably, the mutual interval is 5 (mm) or less. If it is 5 (mm) or less, the possibility that the intermediate layer will be damaged when an intermediate layer to be described later is formed on the support is sufficiently low.

また、好適には、前記複数の孔明き板状部は同軸的に位置し、且つそれらの外周面および内周面をそれぞれ含む外周側筒状曲面および内周側筒状曲面の間の部分は20乃至95(%)の範囲内の空隙率である。前述したように、この空隙率は、実質的に支持体の側壁における気孔率に相当する。十分に高いガス拡散性能を得るためには、空隙率を20(%)以上にすることが好ましく、機械的強度を確保するためには、空隙率を95(%)以下に留めることが好ましい。   Preferably, the plurality of perforated plate-like portions are coaxially positioned, and a portion between the outer peripheral side cylindrical curved surface and the inner peripheral side cylindrical curved surface including the outer peripheral surface and the inner peripheral surface, respectively. The porosity is in the range of 20 to 95 (%). As described above, this porosity substantially corresponds to the porosity in the side wall of the support. In order to obtain a sufficiently high gas diffusion performance, the porosity is preferably set to 20 (%) or more, and in order to ensure mechanical strength, the porosity is preferably set to 95 (%) or less.

また、第1発明の支持体を構成する前記複数の連結部は、孔明き板状部の環状端面上の各所に設けられるものが各々独立した部材で構成されてもよいが、一つの環状端面上に設けられるものが孔明き板状部の厚み方向における一部において相互に連結されていてもよい。また、連結部は、孔明き板状部の厚み方向において連続する部材のうちその孔明き板状部の相互間に位置する部分によって構成されていてもよい。   In addition, the plurality of connecting portions constituting the support body of the first invention may be constituted by independent members provided at various places on the annular end surface of the perforated plate-like portion, but one annular end surface What is provided above may be mutually connected in a part in the thickness direction of the perforated plate-like portion. Moreover, a connection part may be comprised by the part located between the perforated plate-shaped parts among the members continuous in the thickness direction of a perforated plate-shaped part.

また、孔明き板状部とその環状端面上に位置する連結部とは、一体的に構成されていてもよい。例えば、孔明き板状部の一方の環状端面上の例えば外周縁部に、その厚み方向に突き出す複数個の突起を適当な相互間隔で設けた部材を用意し、これを複数個重ね合わせて相互に接合することで支持体を構成することもできる。   Further, the perforated plate-like portion and the connecting portion located on the annular end surface may be integrally formed. For example, a member in which a plurality of protrusions protruding in the thickness direction are provided at appropriate mutual intervals on, for example, the outer peripheral edge portion on one annular end surface of the perforated plate-like portion, and a plurality of these members are overlapped with each other. It is also possible to configure the support by bonding to.

また、連結部の形状は例えば円柱状であるが、これに限られず、角柱状その他適宜の形状とすることができる。   Moreover, although the shape of a connection part is cylindrical, for example, it is not restricted to this, It can be set as prismatic shape and other appropriate shapes.

また、好適には、孔明き板状部には、連結部の断面形状に合わせた凹所または貫通孔(前記内周部の貫通孔とは異なる他の貫通孔)が備えられ、その連結部は、それら凹所または他の貫通孔に嵌め入れられるものである。このようにすれば、連結部が環状端面上でその面に沿ってずれることが抑制されるので、複数の孔明き板状部が相互にずれて支持体全体としての真直性が低下することが好適に抑制される。また、連結部の位置ずれが抑制されるので、直管孔が所望の位置および大きさで形成される。連結部が孔明き板状部と一体に構成されている場合にも、他の孔明き板状部のその連結部に対応する位置に凹所或いは他の貫通孔を設けることにより、同様な効果を享受し得る。   Preferably, the perforated plate-like portion is provided with a recess or a through hole (another through hole different from the through hole of the inner peripheral portion) that matches the cross-sectional shape of the connecting portion, and the connecting portion. Are to be fitted into these recesses or other through holes. In this way, the connecting portion is prevented from shifting along the surface on the annular end surface, so that the plurality of perforated plate-like portions may be displaced from each other and the straightness of the entire support body may be reduced. It is preferably suppressed. Further, since the displacement of the connecting portion is suppressed, the straight pipe hole is formed at a desired position and size. Even when the connecting portion is formed integrally with the perforated plate-like portion, the same effect can be obtained by providing a recess or other through hole at a position corresponding to the connecting portion of the other perforated plate-like portion. Can enjoy.

また、好適には、複数の孔明き板状部には、前記内周部の貫通孔の他に、他の貫通孔が備えられ、本発明の支持体には、連結部の他に、その他の貫通孔を刺し通す案内用長尺棒が備えられる。このようにすれば、連結部で孔明き板状部の相互間隔が定められる一方、案内用長尺棒で孔明き板状部のその軸方向に垂直な方向における位置ずれが抑制される。   Preferably, the plurality of perforated plate-like portions are provided with other through holes in addition to the through holes in the inner peripheral portion. A long guide bar that pierces the through-hole is provided. If it does in this way, while the mutual space | interval of a perforated plate-shaped part will be defined by a connection part, the position shift in the direction perpendicular | vertical to the axial direction of a perforated plate-shaped part will be suppressed with the elongate rod for guidance.

また、好適には、前記孔明き板状部および連結部は、互いに同一材料から成るものである。すなわち、一体的に構成されない場合にも、これらは同一材料で構成されることが好ましい。このようにすれば、同一材料であることから製造工程における取扱いが容易であると共に、熱膨張係数が同一であることから、製造工程および使用時において熱膨張量の相違に起因して破損することが好適に抑制される。   Preferably, the perforated plate-like portion and the connecting portion are made of the same material. That is, even when they are not integrally formed, they are preferably made of the same material. In this way, it is easy to handle in the manufacturing process because it is the same material, and because it has the same thermal expansion coefficient, it can be damaged due to differences in the amount of thermal expansion during the manufacturing process and use. Is suitably suppressed.

また、本発明の支持体を用いて酸素分離膜を構成するに際しては、支持体と混合伝導体から成る緻密膜との間に、支持体よりも気孔率の小さい中間層が設けられる。このようにすれば、支持体上に直接設ける場合に比較して緻密膜を容易に形成できる利点がある。なお、この中間層は、孔明き板状部および連結部と同一材料で構成してもよいが、異なる材料で構成してもよい。同一材料で構成する場合には、焼成収縮が十分に小さくなるように、孔明き板状部の原料よりも粒径の大きい原料を用いることが好ましい。異なる材料で構成する場合には、孔明き板状部および緻密膜との熱膨張係数の相違が可及的に小さく、且つ、その緻密膜との反応性の低い材料を用いることが好ましい。また、中間層は、細孔径が0.1〜10(μm)程度の範囲内で気孔率が20(%)以上であることが好ましい。一層好適には、細孔径が5(μm)以上、気孔率が20〜30(%)程度である。   Further, when an oxygen separation membrane is constructed using the support of the present invention, an intermediate layer having a lower porosity than that of the support is provided between the support and a dense membrane made of a mixed conductor. In this way, there is an advantage that a dense film can be easily formed as compared with the case where it is provided directly on the support. The intermediate layer may be made of the same material as the perforated plate-like portion and the connecting portion, but may be made of a different material. In the case of using the same material, it is preferable to use a raw material having a particle size larger than that of the perforated plate-like portion so that the firing shrinkage is sufficiently small. In the case of using different materials, it is preferable to use a material having a difference in thermal expansion coefficient as small as possible between the perforated plate-like portion and the dense film and having low reactivity with the dense film. In addition, the intermediate layer preferably has a porosity of 20 (%) or more within a pore diameter range of about 0.1 to 10 (μm). More preferably, the pore diameter is 5 (μm) or more and the porosity is about 20 to 30 (%).

また、本発明の支持体は、孔明き板状部および連結部をそれぞれ緻密質に構成し、それらを空隙が生ずるように接合することで支持体全体として適当な空隙を有するものとすることが好ましい。このようにすれば、支持体全体を一体的に構成する場合に比較して製造が容易になる。また、支持体の構成要素の各部が緻密質であることから、高い機械的強度を有するので、接合後の全体に高い機械的強度を与えることが容易である。すなわち、孔明き板状部および連結部は、多孔質であっても緻密質であっても差し支えないが、可及的に高い機械的強度を得るためには緻密質に構成することが好ましい。   In addition, the support of the present invention has a perforated plate-like portion and a connecting portion that are dense, and has a suitable void as a whole by joining them so that a void is formed. preferable. In this way, manufacture becomes easier as compared with a case where the entire support is integrally formed. Moreover, since each part of the component of a support body is precise | minute, since it has high mechanical strength, it is easy to give high mechanical strength to the whole after joining. That is, the perforated plate-like portion and the connecting portion may be porous or dense, but are preferably dense so as to obtain as high mechanical strength as possible.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例のセラミック直管孔筒状支持体10(以下、支持体10という)の全体を示す斜視図である。支持体10は、例えば全体が外径20(mm)×内径14(mm)×長さ300(mm)程度の大きさを備えた略円筒形状を成すものであり、複数枚の孔明き円板12が支柱14を介して積層された状態で相互に固着されることにより構成されている。本実施例においては、孔明き円板12が孔明き板状部に、支柱14が連結部にそれぞれ相当する。   FIG. 1 is a perspective view showing an entire ceramic straight tube hole cylindrical support 10 (hereinafter referred to as support 10) according to an embodiment of the present invention. The support 10 has a substantially cylindrical shape, for example, having a size of an outer diameter of 20 (mm) × an inner diameter of 14 (mm) × a length of 300 (mm), and has a plurality of perforated disks. 12 are fixed to each other in a state of being stacked via support columns 14. In this embodiment, the perforated disc 12 corresponds to a perforated plate-like portion, and the support column 14 corresponds to a connecting portion.

上記の孔明き円板12は、内周部に厚み方向に貫通する貫通孔16を外周縁と同心に有するものであり、外径20(mm)×内径14(mm)×厚さ1.5(mm)程度の大きさを備えている。また、前記支柱14は、各々が直径1.5(mm)×長さ1.5(mm)程度の円柱形状を成すものであり、その孔明き円板12の環状端面18上において、周方向に等間隔で4個が配置されている。したがって、複数枚の孔明き円板12の相互間の各々には、1.5×10(mm)程度の開口径を備えて環状端面18の外周縁から内周縁に直線的に貫通する4つの直管孔20がそれぞれ備えられている。   The above-described perforated disk 12 has a through-hole 16 penetrating in the thickness direction in the inner peripheral portion, concentrically with the outer peripheral edge, and has an outer diameter 20 (mm) × inner diameter 14 (mm) × thickness 1.5 (mm). ) About the size. Further, each of the columns 14 has a columnar shape with a diameter of about 1.5 (mm) × a length of about 1.5 (mm). On the annular end surface 18 of the perforated disc 12, the columns 14 are equally spaced in the circumferential direction. Four are arranged. Therefore, each of the plurality of perforated disks 12 is provided with four straight pipes each having an opening diameter of about 1.5 × 10 (mm) and linearly penetrating from the outer peripheral edge to the inner peripheral edge of the annular end surface 18. Each hole 20 is provided.

また、上記の孔明き円板12および支柱14は、例えば何れもLa0.85Sr0.15MnO3(以下、LSMという)等のランタン系ペロブスカイト複合酸化物や、3molY安定化ジルコニア(以下、3YSZという)等の酸素イオン伝導性を有する酸化物から成る緻密体であり、1(%)未満の気孔率を備え、焼成処理を施すことによって強固に接合されることによって一体化させられている。なお、複数個の孔明き円板12は、全て同一形状および同一寸法に構成されており、その外周面および内周面は、それぞれ一つの円筒面上に位置する。 Further, the perforated disk 12 and the column 14 are both lanthanum perovskite complex oxides such as La 0.85 Sr 0.15 MnO 3 (hereinafter referred to as LSM), 3 molY stabilized zirconia (hereinafter referred to as 3YSZ), etc. These are dense bodies made of oxides having oxygen ion conductivity, and have a porosity of less than 1 (%), and are integrated by being firmly joined by performing a baking treatment. Note that the plurality of perforated disks 12 are all configured to have the same shape and the same dimensions, and the outer peripheral surface and the inner peripheral surface thereof are located on one cylindrical surface.

また、上述したように、支持体10は、緻密質の構成部材のみで構成されているが、前記のように孔明き円板12の相互間には4つの直管孔20がそれぞれ備えられている。そのため、支持体10全体としてみれば、孔明き円板12の外周面を含む外周側円筒面と、その内周面を含む内周側円筒面との間の部分は、例えば45(%)程度の気孔率を備えた多孔質円筒である。また、この多孔質円筒の外内周面間のガス透過率は、例えば1.2×10-3〜2.1×10-3(mol/Pa/m2/s)程度の極めて高い値である。 Further, as described above, the support body 10 is composed only of dense constituent members, but the four straight pipe holes 20 are provided between the perforated disks 12 as described above. Yes. Therefore, when viewed as the entire support 10, the portion between the outer peripheral cylindrical surface including the outer peripheral surface of the perforated disk 12 and the inner peripheral cylindrical surface including the inner peripheral surface is, for example, about 45 (%). It is a porous cylinder provided with the following porosity. Further, the gas permeability between the outer and inner peripheral surfaces of the porous cylinder is an extremely high value of about 1.2 × 10 −3 to 2.1 × 10 −3 (mol / Pa / m 2 / s), for example.

上記の支持体10は、例えば図2に示すように、外周面に酸素イオン伝導体から成る緻密膜(電解質膜)22が形成されることにより、固体酸化物型燃料電池の膜エレメント24として用いられる。このとき、支持体10と緻密膜22との間には、その支持体10よりも十分に気孔率および細孔径の小さい多孔質の中間層26が必要に応じて備えられる。上記の緻密膜22は、高い酸素イオン透過速度を得るためには可及的に薄くされることが好ましく、例えば100(μm)程度の厚さ寸法で設けられる。そのため、このような薄い膜を支持体10の外周面に直接設けることは困難である場合には、中間層26が設けられるのである。中間層26は、それ自体が支持体10上で形状を維持し得るように、例えば、0.1〜0.3(mm)程度の厚さ寸法で設けられる。また、中間層26の細孔径は例えば0.1〜10(μm)程度、気孔率は20(%)以上である。   For example, as shown in FIG. 2, the support 10 is used as a membrane element 24 of a solid oxide fuel cell by forming a dense membrane (electrolyte membrane) 22 made of an oxygen ion conductor on the outer peripheral surface. It is done. At this time, a porous intermediate layer 26 having a porosity and a pore diameter sufficiently smaller than that of the support 10 is provided between the support 10 and the dense film 22 as necessary. The dense film 22 is preferably made as thin as possible in order to obtain a high oxygen ion permeation rate, and is provided with a thickness of about 100 (μm), for example. Therefore, when it is difficult to directly provide such a thin film on the outer peripheral surface of the support 10, the intermediate layer 26 is provided. The intermediate layer 26 is provided with a thickness of about 0.1 to 0.3 (mm), for example, so that the intermediate layer 26 can maintain its shape on the support 10 itself. The intermediate layer 26 has a pore diameter of, for example, about 0.1 to 10 (μm), and a porosity of 20 (%) or more.

なお、上記の緻密膜22は、例えば、3YSZ或いは8YSZから成るものである。すなわち、緻密膜22は、支持体10と同一材料で構成することができる。一般には、イオン伝導性の高い8YSZが用いられる。また、上記の中間層26も、例えば3YSZ等から成るものである。中間層26も支持体10と同一材料で構成することが好ましい。   The dense film 22 is made of, for example, 3YSZ or 8YSZ. That is, the dense film 22 can be composed of the same material as the support 10. Generally, 8YSZ with high ion conductivity is used. The intermediate layer 26 is also made of, for example, 3YSZ. The intermediate layer 26 is also preferably made of the same material as the support 10.

以上のように構成された支持体10は、孔明き円板12がその環状端面18間に設けられた支柱14で相互に接続されることによって構成されることから、全体として、支持体10の長手方向に伸びる孔が内周側に備えられる。しかも、支柱14は、環状端面18の周方向に4つが等間隔で配置されることから、それら支柱14相互間には支持体10の外周面から内周面に直線的に貫通する孔径が1.5(mm)程度の直管孔20が備えられ、全体として円筒状を成す支持体10は、45(%)程度の高い気孔率を有するものとなる。したがって、本実施例によれば、ガス拡散性能の高い直管孔20を有する支持体10が得られる。   Since the support body 10 configured as described above is configured by connecting the perforated discs 12 to each other by the columns 14 provided between the annular end faces 18, the support body 10 as a whole. A hole extending in the longitudinal direction is provided on the inner peripheral side. Moreover, since the four support posts 14 are arranged at equal intervals in the circumferential direction of the annular end surface 18, the diameter of the hole penetrating linearly from the outer peripheral surface of the support 10 to the inner peripheral surface between the support posts 14 is 1.5. The support body 10 having a straight pipe hole 20 of about (mm) and having a cylindrical shape as a whole has a high porosity of about 45 (%). Therefore, according to this embodiment, the support 10 having the straight pipe hole 20 with high gas diffusion performance can be obtained.

また、前記膜エレメント24は、上記のようなガス拡散性能の高い支持体10の外周面に緻密膜22を固着することによって構成されていることから、支持体10が膜エレメント24全体の酸素イオン透過速度を律することが好適に抑制される。したがって、その緻密膜22の構成材料や膜厚などに応じた高い酸素イオン透過速度を有する膜エレメント24が得られる。   Further, since the membrane element 24 is configured by fixing the dense membrane 22 to the outer peripheral surface of the support 10 having a high gas diffusion performance as described above, the support 10 has oxygen ions in the entire membrane element 24. Controlling the transmission speed is preferably suppressed. Therefore, the membrane element 24 having a high oxygen ion permeation rate according to the constituent material and film thickness of the dense membrane 22 can be obtained.

ところで、上記の支持体10は、例えば、以下のようにして製造される。以下、図3の工程図を参照しつつ製造方法の一例を説明する。   By the way, said support body 10 is manufactured as follows, for example. Hereinafter, an example of the manufacturing method will be described with reference to the process diagram of FIG.

先ず、混合工程PS1においては、孔明き円板12および支柱14を構成するためのLSMや3YSZ等の原料粉末に、バインダーおよび分散剤を混合する。原料粉末は、市販の適宜のものを用いることができ、例えば、平均粒径が1(μm)程度のものが用いられる。次いで、造粒工程PS2においては、この混合物を噴霧造粒等の適宜の方法で造粒する。造粒後の粒子径は例えば60(μm)程度である。   First, in the mixing step PS1, a binder and a dispersing agent are mixed with raw powders such as LSM and 3YSZ for constituting the perforated disc 12 and the support column 14. As the raw material powder, commercially available appropriate powders can be used. For example, powders having an average particle diameter of about 1 (μm) are used. Next, in the granulation step PS2, the mixture is granulated by an appropriate method such as spray granulation. The particle diameter after granulation is, for example, about 60 (μm).

次いで、成形工程PS3においては、上記の造粒原料を用いて、粉末プレス成形法等の適宜の成形方法を利用して、孔明き円板12および支柱14をそれぞれ製造するための成形体を成形する。前者の成形寸法は、例えば外径25(mm)、内径17(mm)、厚さ2(mm)程度である。また、後者の成形寸法は、例えば直径2〜3(mm)、厚さ2(mm)程度である。これらには、必要に応じて例えば150(MPa)程度の湿式静水圧加圧(CIP)を更に施す。   Next, in the molding step PS3, a molded body for manufacturing the perforated disk 12 and the support column 14 is molded using the above granulation raw material using an appropriate molding method such as a powder press molding method. To do. The former molding dimensions are, for example, an outer diameter of 25 (mm), an inner diameter of 17 (mm), and a thickness of about 2 (mm). The latter molding dimensions are, for example, a diameter of 2 to 3 (mm) and a thickness of about 2 (mm). These are further subjected to wet isostatic pressing (CIP) of about 150 (MPa) as necessary.

次いで、焼成工程PS4においては、上記の成形体に大気中において焼成処理を施す。焼成処理は、例えば200〜500(℃)程度の温度で10時間程度保持して有機物を分解した後、1000〜1600(℃)程度まで昇温して3時間程度保持することにより行う。次いで、研磨工程PS5では、得られた焼成物に機械研磨を施すことにより、所望の寸法に加工する。加工後の厚さ寸法は、例えば1.5(mm)程度である。必要に応じ、孔明き円板12の内径および外径、支柱14の外径を研磨しても良く、これらの研磨加工後の寸法は、孔明き円板12が内径14(mm)、外径20(mm)程度、支柱14が外径1.5(mm)程度である。図4、図5に、研磨を施した後の焼成物すなわち孔明き円板12および支柱14を示す。   Next, in the firing step PS4, the molded body is subjected to a firing treatment in the air. The baking treatment is performed by, for example, maintaining the temperature at about 200 to 500 (° C.) for about 10 hours to decompose the organic matter, then raising the temperature to about 1000 to 1600 (° C.) and holding it for about 3 hours. Next, in the polishing step PS5, the obtained fired product is mechanically polished to be processed into a desired dimension. The thickness dimension after processing is, for example, about 1.5 (mm). If necessary, the inner and outer diameters of the perforated disk 12 and the outer diameter of the support 14 may be polished. The dimensions after polishing are as follows: the perforated disk 12 has an inner diameter of 14 (mm) and an outer diameter. About 20 (mm), the support column 14 has an outer diameter of about 1.5 (mm). 4 and 5 show the fired product, that is, the perforated disk 12 and the support column 14 after being polished.

次いで、接合工程PS7においては、上記孔明き円板12および支柱14を重ね合わせ、例えば1300〜1600(℃)程度の温度で焼成処理を施すことにより、これらを接合する。これにより、前記図1に示されるような支持体10が得られる。したがって、本実施例によれば、孔明き円板12および支柱14をそれぞれ作製し、これらを接合するだけで支持体10が得られることから、直管孔20を有し且つ気孔率の高い支持体10を極めて容易に得ることができる。   Next, in the joining step PS7, the above-described perforated disk 12 and the support column 14 are superposed and subjected to a firing treatment at a temperature of about 1300 to 1600 (° C.), for example, to join them. Thereby, the support body 10 as shown in FIG. 1 is obtained. Therefore, according to the present embodiment, the support body 10 can be obtained simply by making the perforated disk 12 and the support column 14 and joining them together, so that the support having the straight pipe hole 20 and having a high porosity is obtained. The body 10 can be obtained very easily.

また、前記膜エレメント24は、上記のようにして製造した支持体10を用いて例えば図6に示される工程に従って製造される。   The membrane element 24 is manufactured according to the process shown in FIG. 6, for example, using the support 10 manufactured as described above.

先ず、シート成形工程PR1においては、例えば、平均粒径が20〜50(μm)程度の3YSZ原料を用意し、これに溶媒、バインダー、可塑剤、および分散剤を加えて、混合してスラリーを調製し、例えばドクターブレード法を利用してシートを成形する。成形寸法は例えば幅寸法100(mm)、長さ1000(mm)、厚さ100〜300(μm)程度である。なお、中間層26は、前述したように多孔質とする必要があるため、孔明き円板12等を製造するための原料に比較して粗大なものを用いる。次いで、巻き付け工程PR2においては、このシート状成形体を所望の大きさおよび形状に切断し、前記支持体10の外周面に巻き付ける。なお、シート成形体が十分な可塑性を有する場合には、そのまま巻き付けても支持体10から剥離することはないが、剥離する場合には、支持体10の表面またはシート成形体の表面に少量の可塑剤を塗布してから巻き付ければよい。   First, in the sheet forming step PR1, for example, a 3YSZ raw material having an average particle diameter of about 20 to 50 (μm) is prepared, and a solvent, a binder, a plasticizer, and a dispersing agent are added thereto and mixed to form a slurry. For example, a sheet is formed using a doctor blade method. The molding dimensions are, for example, a width dimension of 100 (mm), a length of 1000 (mm), and a thickness of about 100 to 300 (μm). Since the intermediate layer 26 needs to be porous as described above, a coarser layer is used as compared with the raw material for manufacturing the perforated disk 12 or the like. Next, in the winding step PR2, the sheet-like molded body is cut into a desired size and shape and wound around the outer peripheral surface of the support 10. In addition, when the sheet molded body has sufficient plasticity, it does not peel off from the support 10 even if it is wound as it is. However, when it is peeled off, a small amount is formed on the surface of the support 10 or the surface of the sheet molded body. What is necessary is just to wind after apply | coating a plasticizer.

次いで、中間層焼成工程PR3においては、シート状成形体を巻き付けた支持体10を、例えば大気中において1000〜1600(℃)程度の温度で3時間程度保持することにより、焼成処理を施す。これにより、シート状成形体から多孔質の中間層26が生成される。生成された中間層26は、例えば、細孔径が5〜10(μm)程度、気孔率が20〜30(%)程度である。   Next, in the intermediate layer firing step PR3, the support 10 on which the sheet-like molded body is wound is subjected to firing treatment by, for example, holding in the atmosphere at a temperature of about 1000 to 1600 (° C.) for about 3 hours. Thereby, the porous intermediate | middle layer 26 is produced | generated from a sheet-like molded object. The generated intermediate layer 26 has, for example, a pore diameter of about 5 to 10 (μm) and a porosity of about 20 to 30 (%).

次いで、製膜工程PR4においては、例えば、平均粒径が1(μm)程度の3YSZまたは8YSZ粉末に溶媒、バインダー、可塑剤、および分散剤等を加えて、混合してスラリーを調製し、このスラリー中に中間層26が生成された支持体10をディッピングしてその外周面にスラリーを塗布する。塗布厚みは例えば100(μm)程度である。次いで、膜焼成工程PR5において、大気中で1000〜1600(℃)程度の温度で3時間程度保持することにより、スラリーから前記緻密膜22を生成する。これにより、前記膜エレメント24が得られる。   Next, in the film forming process PR4, for example, a solvent, a binder, a plasticizer, a dispersant, and the like are added to 3YSZ or 8YSZ powder having an average particle diameter of about 1 (μm) and mixed to prepare a slurry. The support 10 on which the intermediate layer 26 is generated in the slurry is dipped and the slurry is applied to the outer peripheral surface thereof. The coating thickness is, for example, about 100 (μm). Next, in the film baking step PR5, the dense film 22 is generated from the slurry by holding in the atmosphere at a temperature of about 1000 to 1600 (° C.) for about 3 hours. Thereby, the membrane element 24 is obtained.

なお、上記製造方法は、中間層26を支持体10と同一材料で構成する場合について説明したが、中間層26は、支持体10と異なる材料で構成しても良い。例えば、孔明き円板12および支柱14は緻密質に構成する必要があるため焼結性の高い原料を用いることが好ましいが、中間層26は多孔質に構成する必要があるため、それよりも十分に焼結性の低い原料を用いることが好ましい。   In the above manufacturing method, the intermediate layer 26 is made of the same material as that of the support 10. However, the intermediate layer 26 may be made of a material different from that of the support 10. For example, it is preferable to use a highly sinterable raw material because the perforated disk 12 and the column 14 need to be dense, but the intermediate layer 26 needs to be porous, so that It is preferable to use a raw material having a sufficiently low sinterability.

例えば、中間層26の構成材料としては、平均粒径が20(μm)程度のLaCrO3、LSM、LaSrCrO3や、LaSrCoFeO3等を用いることができる。これらの原料粉末に前記シート成形工程PR1と同様にして溶媒等を加えてスラリーを調製し、同様にしてシートを成形する。このスラリーから得られる中間層26は、例えば、細孔径が1〜10(μm)、気孔率が20〜40(%)程度である。 For example, as the constituent material of the intermediate layer 26, LaCrO 3 , LSM, LaSrCrO 3 , LaSrCoFeO 3 or the like having an average particle diameter of about 20 (μm) can be used. A solvent is added to these raw material powders in the same manner as in the sheet forming step PR1 to prepare a slurry, and a sheet is formed in the same manner. The intermediate layer 26 obtained from this slurry has, for example, a pore diameter of 1 to 10 (μm) and a porosity of about 20 to 40 (%).

以下、上記のような構成例および製造方法例において、種々の原料を用いて支持体10を製造して、特性を評価した結果を比較例の評価結果と併せて説明する。   Hereinafter, in the configuration example and the manufacturing method example described above, the result of manufacturing the support 10 using various raw materials and evaluating the characteristics will be described together with the evaluation result of the comparative example.

下記の表1は評価結果をまとめたものである。表1において、「材料および形状」欄は、支持体の構成材料および形状を表している。また、「細孔径」、「気孔率」欄は、それぞれ支持体の細孔径と気孔率を表している。また、「ガス透過率」欄には、支持体単独で測定したガス透過率を、「三点曲げ強度」欄には、JIS R1601に準拠して支持体の構成材料で曲げ試験片を作製し、室温で測定した材料自体の三点曲げ強度を示した。   Table 1 below summarizes the evaluation results. In Table 1, the “material and shape” column represents the constituent material and shape of the support. The “pore diameter” and “porosity” columns represent the pore diameter and porosity of the support, respectively. In the “Gas Permeability” column, the gas permeability measured by the support alone is prepared, and in the “Three-point bending strength” column, a bending test piece is prepared from the constituent material of the support in accordance with JIS R1601. The three-point bending strength of the material itself measured at room temperature is shown.

Figure 0004866122
Figure 0004866122

なお、表1において、支持体細孔径は、直管孔のものすなわち実施例については、孔明き円板12の相互間隔すなわち支柱14の高さ寸法を用いている。一方、非直管孔のものすなわち比較例については、水銀圧入法で測定した実測値である。また、気孔率は、実施例については、内外周面間の体積およびそのうちの空間体積を計算で算出し、その空間部分を気孔として算出した値である。比較例については、水銀圧入法で測定した値である。また、ガス透過率は、支持体の両端部を気密にシールすると共にそのうちの一端にガス供給路を設け、そのガス供給路から支持体内に空気を供給して、供給ガス圧と流量との関係から算出した値である。   In Table 1, for the support pore diameter, the mutual interval of the perforated discs 12, that is, the height dimension of the support column 14 is used in the case of the straight pipe hole, that is, the example. On the other hand, the non-straight pipe hole, that is, the comparative example, is an actual measurement value measured by a mercury intrusion method. Further, the porosity is a value obtained by calculating the volume between the inner and outer peripheral surfaces and the space volume thereof by calculation and calculating the space portion as the pore. About a comparative example, it is the value measured by the mercury intrusion method. The gas permeability is such that the both ends of the support are hermetically sealed and a gas supply path is provided at one end of the support, and air is supplied from the gas supply path to the support, and the relationship between the supply gas pressure and the flow rate. It is a value calculated from

上記の表1中、No.1〜5は、本発明の範囲内の実施例であり、No.6〜10は、本発明の範囲外の比較例である。これら比較例は、例えば以下のようにして支持体を製造した。   In Table 1 above, Nos. 1 to 5 are examples within the scope of the present invention, and Nos. 6 to 10 are comparative examples outside the scope of the present invention. In these comparative examples, for example, a support was produced as follows.

すなわち、例えば平均粒径が1〜50(μm)程度のLSM、3YSZ等の原料粉末を用意し、それぞれにバインダーおよび分散剤を混合して、噴霧造粒等の適宜の方法を用いて造粒する。造粒後の平均粒径は例えば30〜80(μm)程度である。これを円柱状の金型に充填し、湿式静水圧成形法を用いて例えば150(MPa)程度の圧力で加圧成形する。これにより、一端が封止された円筒形状の成形体が得られる。次いで、得られた成形体に大気中において焼成処理を施す。焼成処理は、例えば200〜500(℃)で10時間程度保持して有機物を分解除去し、その後、1000〜1600(℃)で3時間程度保持するものとした。この焼成体に機械研磨を施すことにより、比較例の円筒形状の支持体が得られる。すなわち、比較例の支持体は、原料粉末として平均粒径の大きいものを用いることにより、その粒子間に生じる空隙で細孔を形成する従来の多孔質支持体である。   That is, for example, raw material powders such as LSM and 3YSZ having an average particle size of about 1 to 50 (μm) are prepared, mixed with a binder and a dispersant, and granulated using an appropriate method such as spray granulation. To do. The average particle diameter after granulation is, for example, about 30 to 80 (μm). This is filled into a cylindrical mold, and press-molded at a pressure of, for example, about 150 (MPa) using a wet isostatic pressing method. Thereby, the cylindrical molded object with which the end was sealed is obtained. Next, the obtained molded body is fired in the air. In the baking treatment, for example, the organic substances are decomposed and removed by holding at 200 to 500 (° C.) for about 10 hours, and then held at 1000 to 1600 (° C.) for about 3 hours. By subjecting this fired body to mechanical polishing, a cylindrical support of a comparative example is obtained. That is, the support of the comparative example is a conventional porous support in which pores are formed by voids generated between the particles by using a raw material powder having a large average particle diameter.

また、上記の表1において、LSGMは、La0.9Sr0.1Ga0.8Mg0.2Oxであり、LSGMCは、La0.9Sr0.1Ga0.8Mg0.1Co0.1Oxである。何れも、酸素数xは3またはそれよりも僅かに小さい値である。 In Table 1 above, LSGM is La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O x, LSGMC is La 0.9 Sr 0.1 Ga 0.8 Mg 0.1 Co 0.1 O x. In either case, the oxygen number x is 3 or a slightly smaller value.

上記の評価結果に示すように、比較例の支持体は細孔径が3(μm)程度に過ぎず、気孔率も35(%)程度に留まるのに対し、実施例の支持体10は、支柱14の厚さ寸法に応じた極めて大きな細孔径を有し、気孔率も48(%)以上である。この結果、支持体10のガス透過率は、1.2〜2.1×10-3(mol/Pa/m2/s)に達したが、比較例では最大でも3.3×10-5(mol/Pa/m2/s)に留まった。このように、実施例の支持体10は高いガス透過率を有しているので、これを用いた膜エレメント24は、支持体10のガス拡散性能が膜エレメント24の特性を律することが無く、特にデータは示さないが、高い酸素イオン透過速度を有する。これに対して、比較例では支持体のガス透過率が低いことから、緻密膜22の特性が十分に発揮されないため、特にデータは示さないが、高い酸素イオン透過速度が得られない。 As shown in the above evaluation results, the support of the comparative example has a pore diameter of only about 3 (μm) and the porosity is only about 35 (%), whereas the support of the embodiment has a support column. It has an extremely large pore diameter corresponding to the thickness dimension of 14, and the porosity is 48 (%) or more. As a result, the gas permeability of the support 10 reached 1.2 to 2.1 × 10 −3 (mol / Pa / m 2 / s), but in the comparative example, 3.3 × 10 −5 (mol / Pa / m) at the maximum. 2 / s). Thus, since the support 10 of the example has a high gas permeability, the membrane element 24 using the support 10 does not restrict the gas diffusion performance of the support 10 to the characteristics of the membrane element 24. Although no data is shown, it has a high oxygen ion transmission rate. On the other hand, in the comparative example, since the gas permeability of the support is low, the characteristics of the dense membrane 22 are not sufficiently exhibited, so no particular data is shown, but a high oxygen ion permeation rate cannot be obtained.

図7は、本発明の他の実施例のセラミック直管孔筒状支持体を構成するための孔明き円板部28および支柱部30,32が一体に備えられた支柱一体型円板34を示す斜視図である。図7において、支柱一体型円板34は、一方の環状端面36に4つの支柱部30が周方向において等間隔に備えられると共に、他方の環状端面38に4つの支柱部32が周方向において等間隔に備えられている。これら支柱部30,32は、略矩形の平面形状を備えて互いに同様な高さ寸法を有し、且つ、互いに他方の周方向における中間部に位置しており、それらの周方向寸法の和は、環状端面36,38の外周縁の円周よりも短くなっている。支柱部30,32の大きさは、例えば、3×3×1.5(mm)程度で、孔明き円板部28の環状端面の外周縁から内周縁に亘る範囲に配置されている。   FIG. 7 shows a pillar-integrated disc 34 in which a perforated disc portion 28 and strut portions 30 and 32 for constituting a ceramic straight tube hole cylindrical support according to another embodiment of the present invention are integrally provided. It is a perspective view shown. In FIG. 7, the column-integrated disk 34 has four column portions 30 on one annular end surface 36 at equal intervals in the circumferential direction, and four column portions 32 on the other annular end surface 38 in the circumferential direction. Provided for spacing. These column portions 30 and 32 have a substantially rectangular planar shape, have the same height dimension, and are positioned at the middle portion in the other circumferential direction, and the sum of their circumferential dimensions is The outer circumferential edges of the annular end surfaces 36 and 38 are shorter than the circumference. The size of the support columns 30 and 32 is, for example, about 3 × 3 × 1.5 (mm), and is arranged in a range from the outer peripheral edge to the inner peripheral edge of the annular end surface of the perforated disk portion 28.

そのため、このような支柱一体型円板34を重ね合わせると、それら周方向寸法の和と外周縁の円周との差に応じた周方向寸法を有し且つ支柱部30,32の高さ寸法に等しい高さ寸法を備えた隙間が、支柱一体型円板34の内外周間に直線的に貫通して備えられることになる。したがって、この態様によれば、支柱として機能する部材を別に製造する場合に比較して、1種類の部品を製造するだけで足りると共に、その部品を単に重ね合わせて接合するだけで、前記支持体10と同様な支持体が得られるため、製造工程が一層簡単になる利点がある。   Therefore, when such support-integrated discs 34 are superposed, they have a circumferential dimension corresponding to the difference between the sum of their circumferential dimensions and the circumference of the outer peripheral edge, and the height dimensions of the support columns 30 and 32. A gap having a height dimension equal to is linearly provided between the inner and outer peripheries of the columnar integrated disc 34. Therefore, according to this aspect, as compared with the case where a member functioning as a support is manufactured separately, it is only necessary to manufacture one type of component, and the components are simply overlapped and joined. Since the support similar to 10 is obtained, there is an advantage that the manufacturing process is further simplified.

図8は、図7と同様に支柱部40,42が孔明き円板部44の両面に一体的に備えられた支柱一体型円板46を示す図であるが、この実施例では、両面の支柱部40,42が孔明き円板部44の周方向における同一位置に備えられている。支柱部40,42の各々は、例えば、3×1×1.5(mm)程度の大きさで、孔明き円板部44の環状端面の径方向に沿って、外周縁から内周縁に亘る範囲に配置されている。そのため、この支柱一体型円板46を使用するに際しては、例えば、上下に接して配置されるものを支柱部40の周方向における中心間隔の半分の長さだけ周方向に互いに回転させて重ね合わせることにより、図7と同様な支持体を構成し得る。   FIG. 8 is a view showing a support-integrated disk 46 in which support sections 40 and 42 are integrally provided on both surfaces of a perforated disk section 44 as in FIG. The column portions 40 and 42 are provided at the same position in the circumferential direction of the perforated disc portion 44. Each of the column portions 40 and 42 has a size of, for example, about 3 × 1 × 1.5 (mm), and ranges from the outer peripheral edge to the inner peripheral edge along the radial direction of the annular end surface of the perforated disk portion 44. Has been placed. Therefore, when using this column integrated disc 46, for example, the columns arranged in contact with each other are rotated and overlapped with each other in the circumferential direction by a length that is half the center interval in the circumferential direction of the column part 40. Thereby, the support body similar to FIG. 7 can be comprised.

なお、図8に示す例では、支柱40,42が両面でそれぞれ6個ずつ備えられているが、これらの個数は適宜変更できる。また、同数を等間隔で配置することが好ましいが、必須ではなく、両面で個数が異なっていても差し支えない。また、図7、図8何れの実施例においても、支柱部30,32,40,42の形状は任意に定めることができる。これらの実施例では角板状乃至角柱状とされているが、円柱形状や扇形等であっても差し支えない。   In addition, in the example shown in FIG. 8, although the support | pillars 40 and 42 are each provided with six each on both surfaces, these numbers can be changed suitably. Moreover, it is preferable to arrange the same number at equal intervals, but it is not essential and the number may be different on both sides. In any of the embodiments in FIGS. 7 and 8, the shapes of the support columns 30, 32, 40, and 42 can be arbitrarily determined. In these embodiments, a square plate shape or a prism shape is used, but a cylindrical shape, a sector shape, or the like may be used.

図9は、孔明き円板48および支柱50の更に他の構成例を説明する図である。この実施例の孔明き円板48には、その一方の環状端面52に支柱50の外径よりも僅かに大きい内径寸法の円形のくぼみ54が2つ備えられている。このくぼみ54は、図示するように、支柱50を嵌め入れるために設けられているものである。これら孔明き円板48および支柱50を用いて支持体を作製するに際しては、支柱50を複数枚の孔明き円板48のくぼみ54にそれぞれ嵌め入れ、その後、支柱50と一体にした孔明き円板48を重ね合わせて焼成処理を施す。そのため、支柱50の位置ずれが抑制されるので、支持体の製造が一層容易になる利点がある。   FIG. 9 is a diagram for explaining still another configuration example of the perforated disk 48 and the column 50. The perforated disk 48 of this embodiment is provided with two circular recesses 54 having an inner diameter slightly larger than the outer diameter of the support column 50 on one annular end surface 52 thereof. As shown in the figure, the recess 54 is provided for fitting the support 50. When producing a support using these perforated disks 48 and struts 50, the struts 50 are respectively fitted into the recesses 54 of the plurality of perforated disks 48, and then the perforated circles integrated with the struts 50 are integrated. A baking process is performed by superposing the plates 48. Therefore, since the positional deviation of the support 50 is suppressed, there is an advantage that the manufacture of the support body becomes easier.

なお、上記の態様において、孔明き円板48の他方の環状端面56にもくぼみ54と同様なくぼみを設けることができる。このようにすれば、孔明き円板48を重ね合わせるに際して、その環状端面56のくぼみが位置決め機能を有するので、位置合せが容易になる利点がある。   In the above embodiment, the other annular end surface 56 of the perforated disk 48 can be provided with a recess similar to the recess 54. In this way, when the perforated discs 48 are overlapped, the recess of the annular end surface 56 has a positioning function, so that there is an advantage that the alignment becomes easy.

図10は、複数枚の孔明き円板58の径方向における相対位置を定めるためのガイドとして機能する長尺棒60を用いる構成例を示す斜視図である。この実施例においては、孔明き円板58に長尺棒60を刺し通すための貫通孔62が、例えば2個の支柱64の周方向における中間部に備えられている。そのため、孔明き円板58を重ね合わせるに際して、それぞれを長尺棒60に刺し通すだけで位置決めされるため、位置合せが容易になる利点がある。   FIG. 10 is a perspective view showing a configuration example using a long bar 60 that functions as a guide for determining a relative position in the radial direction of a plurality of perforated discs 58. In this embodiment, a through hole 62 for piercing the long rod 60 through the perforated disk 58 is provided, for example, in the intermediate portion in the circumferential direction of the two columns 64. For this reason, when the perforated discs 58 are overlapped, positioning is performed simply by inserting them into the long bar 60, so that there is an advantage that the alignment becomes easy.

なお、貫通孔62は、例えば、その中心が支柱64の端面の中心と同一円周上に位置するように設けられているが、それよりも外周側または内周側に位置しても差し支えない。また、支柱64と同一径で設けられても、それよりも小径または大径で設けられてもよい。また、この実施例では、貫通孔62が周方向における2箇所に設けられているが、1箇所であっても位置合わせ効果を得ることができる。また、3箇所以上設けられていても差し支えない。貫通孔62は、2箇所以上に設けられている場合には周方向に均等に配置されていることが好ましいが、必須ではない。また、この実施例では長尺棒60が円柱形状を成しているが、その断面形状は円形に限られず矩形等の適宜の形状とすることができる。更に、上記の実施例において、支柱64は、孔明き円板58に一体的に設けられていても良く、図1や図9に示される実施例に示すように別に製造されたものであっても良い。   The through hole 62 is provided, for example, so that its center is located on the same circumference as the center of the end face of the support column 64. However, the through hole 62 may be located on the outer peripheral side or the inner peripheral side. . Moreover, even if it is provided with the same diameter as the support | pillar 64, it may be provided with a smaller diameter or a larger diameter. Further, in this embodiment, the through holes 62 are provided at two locations in the circumferential direction, but the alignment effect can be obtained even at one location. Also, there may be three or more locations. When the through holes 62 are provided at two or more places, it is preferable that the through holes 62 are evenly arranged in the circumferential direction, but it is not essential. In this embodiment, the long bar 60 has a columnar shape, but the cross-sectional shape is not limited to a circle, and may be an appropriate shape such as a rectangle. Further, in the above embodiment, the support column 64 may be provided integrally with the perforated disk 58, and is separately manufactured as shown in the embodiment shown in FIG. 1 and FIG. Also good.

また、長尺棒60は、そのまま支持体を構成部材としても差し支えないが、位置決め後或いは焼成処理の後に取り外して再利用することもできる。焼成処理後に取り外して再利用する場合には、焼成処理の際に接合することのないように貫通孔62を大きめの寸法にすればよい。   Further, the long bar 60 can be used as a constituent member as it is, but it can be removed and reused after positioning or after the firing process. When it is removed and reused after the firing process, the through-hole 62 may be made larger so as not to be joined during the firing process.

以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。   As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect, A various change can be added in the range which does not deviate from the main point.

本発明の一実施例のセラミック直管孔筒状支持体を示す斜視図である。It is a perspective view which shows the ceramic straight tube hole cylindrical support body of one Example of this invention. 図1の支持体を用いた固体酸化物型燃料電池の膜エレメントの構成例を示す斜視図である。It is a perspective view which shows the structural example of the membrane element of a solid oxide fuel cell using the support body of FIG. 図1のセラミック直管孔筒状支持体の製造方法の一例の要部を説明する工程図である。It is process drawing explaining the principal part of an example of the manufacturing method of the ceramic straight tube hole cylindrical support body of FIG. 図3の製造工程で得られた孔明き円板を示す斜視図である。It is a perspective view which shows the perforated disc obtained by the manufacturing process of FIG. 図3の製造工程で得られた支柱を示す斜視図である。It is a perspective view which shows the support | pillar obtained at the manufacturing process of FIG. 図2に示す酸素分離膜の製造方法の一例の要部を説明する工程図である。It is process drawing explaining the principal part of an example of the manufacturing method of the oxygen separation membrane shown in FIG. 孔明き円板および支柱が一体に備えられた構成例を示す斜視図である。It is a perspective view which shows the structural example with which the perforated disc and the support | pillar were integrally provided. 孔明き円板および支柱が一体に備えられた他の構成例を示す斜視図である。It is a perspective view which shows the other structural example with which the perforated disc and the support | pillar were integrally provided. 孔明き円板への支柱の取付態様の他の例を説明する斜視図である。It is a perspective view explaining the other example of the attachment aspect of the support | pillar to a perforated disc. ガイド用の長尺棒を用いた構成例を説明する斜視図である。It is a perspective view explaining the structural example using the elongate stick for guides.

符号の説明Explanation of symbols

10:セラミック直管孔筒状支持体、12:孔明き円板、14:支柱、16:貫通孔、18:環状端面 10: Ceramic straight tube hole cylindrical support, 12: Perforated disk, 14: Support, 16: Through hole, 18: Annular end face

Claims (5)

内周部に厚み方向に貫通する貫通孔をそれぞれ有し且つその厚み方向に所定の相互間隔を以て連なるセラミック製の複数の孔明き板状部と、
それら複数の孔明き板状部の環状端面間にその周方向に所定の相互間隔を以て配置され且つそれら複数の孔明き板状部を相互に接続するセラミック製の複数の連結部と
を含んで、全体が筒状を成すことを特徴とする固体酸化物型燃料電池用のセラミック直管孔筒状支持体。
A plurality of perforated plate-like parts made of ceramic each having a through-hole penetrating in the thickness direction in the inner peripheral part and continuous with a predetermined mutual interval in the thickness direction;
A plurality of ceramic coupling portions disposed between the annular end faces of the plurality of perforated plate-like portions at a predetermined mutual interval in the circumferential direction and connecting the plurality of perforated plate-like portions to each other; A ceramic straight tube cylindrical support for a solid oxide fuel cell, characterized in that the whole is cylindrical.
一般式Ln1-xAexMO3(ここでLnはランタノイドから選択される少なくとも一種、AeはSr,Ca,Mg,Baから選択される少なくとも一種、MはMg,Fe,Mn,Ga,Ti,Co,Ni,Al,Cu,In,Sn,Zr,V,Cr,Zn,Ge,Sc,Yから選択されるAeとは異なる少なくとも一種、0≦x≦1)で表されるペロブスカイト複合酸化物、安定化ジルコニア、酸化セリウム、これらのうちの少なくとも二種の複合材料、および、これらのうちから選択される少なくとも一種と酸化珪素、窒化珪素、酸化チタン、酸化アルミニウムから選択される少なくとも一種との複合材料の中から選択される少なくとも一種のセラミックス材料から成る請求項1のセラミック直管孔筒状支持体。 General formula Ln 1-x Ae x MO 3 (where Ln is at least one selected from lanthanoids, Ae is at least one selected from Sr, Ca, Mg, Ba, M is Mg, Fe, Mn, Ga, Ti Perovskite complex oxidation represented by 0 ≦ x ≦ 1), at least one different from Ae selected from Co, Ni, Al, Cu, In, Sn, Zr, V, Cr, Zn, Ge, Sc, Y A material, stabilized zirconia, cerium oxide, at least two of these composite materials, and at least one selected from these and at least one selected from silicon oxide, silicon nitride, titanium oxide, and aluminum oxide 2. A ceramic straight tube hole cylindrical support according to claim 1, comprising at least one ceramic material selected from the composite materials. 前記複数の孔明き板状部の相互間隔は0.01乃至50(mm)の範囲内の大きさである請求項1または請求項2のセラミック直管孔筒状支持体。   The ceramic straight tube hole cylindrical support according to claim 1 or 2, wherein a distance between the plurality of perforated plate-like portions is in a range of 0.01 to 50 (mm). 前記複数の孔明き板状部は同軸的に位置し、且つそれらの外周面および内周面をそれぞれ含む外周側筒状面および内周側筒状面の間の部分は20乃至95(%)の範囲内の空隙率である請求項1乃至請求項3の何れかのセラミック直管孔筒状支持体。   The plurality of perforated plate-like portions are located coaxially, and the portion between the outer peripheral side cylindrical surface and the inner peripheral side cylindrical surface including their outer peripheral surface and inner peripheral surface is 20 to 95 (%) The ceramic straight tube hole cylindrical support according to any one of claims 1 to 3, wherein the porosity is in the range of. 前記請求項1乃至請求項4の何れかのセラミック直管孔筒状支持体の表面にイオン伝導性を有する固体酸化物電解質から成る緻密膜が固着されたことを特徴とする固体酸化物型燃料電池用膜エレメント。   5. A solid oxide fuel characterized in that a dense membrane made of a solid oxide electrolyte having ionic conductivity is fixed to the surface of the ceramic straight tube cylindrical support according to any one of claims 1 to 4. Battery membrane element.
JP2006081799A 2006-03-23 2006-03-23 Ceramic straight tube hole cylindrical support and membrane element for solid oxide fuel cell Expired - Fee Related JP4866122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081799A JP4866122B2 (en) 2006-03-23 2006-03-23 Ceramic straight tube hole cylindrical support and membrane element for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081799A JP4866122B2 (en) 2006-03-23 2006-03-23 Ceramic straight tube hole cylindrical support and membrane element for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2007258027A JP2007258027A (en) 2007-10-04
JP4866122B2 true JP4866122B2 (en) 2012-02-01

Family

ID=38632045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081799A Expired - Fee Related JP4866122B2 (en) 2006-03-23 2006-03-23 Ceramic straight tube hole cylindrical support and membrane element for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4866122B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198108B2 (en) * 2008-03-26 2013-05-15 京セラ株式会社 Horizontally-striped solid oxide fuel cell stack and fuel cell
JP5306852B2 (en) * 2009-02-25 2013-10-02 京セラ株式会社 Horizontally-striped solid oxide fuel cell stack and fuel cell
KR101138760B1 (en) 2010-09-07 2012-04-24 삼성중공업 주식회사 Fuel cell stack and its cooling method
JP6519001B2 (en) * 2014-06-06 2019-05-29 日本製鉄株式会社 Solid oxide fuel cell air electrode, solid oxide fuel cell, and method of manufacturing solid oxide fuel cell air electrode

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257571A (en) * 1989-03-30 1990-10-18 Nkk Corp Solid electrolyte type fuel cell and manufacture thereof
JPH03274672A (en) * 1990-03-26 1991-12-05 Ngk Insulators Ltd Solid electrolyte type fuel cell
JPH05166532A (en) * 1991-12-12 1993-07-02 Yoshida Kogyo Kk <Ykk> Solid electrolyte fuel cell
JP3668349B2 (en) * 1997-01-08 2005-07-06 日本碍子株式会社 Electrochemical cell substrate, electrochemical cell, and method for producing electrochemical cell substrate
JP2000243414A (en) * 1999-02-23 2000-09-08 Osaka Gas Co Ltd Solid electrolyte type fuel cell
JP3858261B2 (en) * 2001-05-22 2006-12-13 日産自動車株式会社 Cell plate for fuel cell, method for producing the same, and solid oxide fuel cell
JP2003308854A (en) * 2002-04-18 2003-10-31 Nissan Motor Co Ltd Solid oxide fuel cell and its manufacturing method
JP2004356014A (en) * 2003-05-30 2004-12-16 Sanyo Electric Co Ltd Solid oxide fuel cell, solid oxide fuel cell assembly, solid oxide fuel cell module, and solid oxide fuel cell generator

Also Published As

Publication number Publication date
JP2007258027A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
KR101386431B1 (en) An all ceramics solid oxide fuel cell
WO2017014069A1 (en) Electrolyte layer-anode composite member for fuel cell and method for manufacturing said member
JP6121954B2 (en) Solid oxide fuel cell
US20140010953A1 (en) SINTERING ADDITIVES FOR CERAMIC DEVICES OBTAINABLE IN A LOW pO2 ATMOSPHERE
JP2009037874A (en) Manufacturing method of air electrode support type single cell for intermediate temperature actuating solid oxide fuel cell
JP4866122B2 (en) Ceramic straight tube hole cylindrical support and membrane element for solid oxide fuel cell
US20200144645A1 (en) Fuel cell, fuel cell stack, manufacturing method of fuel cell and manufacturing method of fuel cell stack
JP5989941B1 (en) Cell, cell stack device, module, and module housing device
JP5108987B1 (en) Fuel cell structure
JP5240700B2 (en) Fuel cell stack and manufacturing method thereof
JP6174608B2 (en) Solid oxide fuel cell and method for producing the same
US11575137B2 (en) Fuel cell stack and manufacturing method of the same
US11251439B2 (en) Fuel cell and fuel cell stack
JP5667315B1 (en) Fuel cell
JP4523924B2 (en) Ceramic straight tube hole cylindrical support and oxygen separation membrane
KR102154420B1 (en) Catalyst-containing oxygen transport membrane
JP2007069395A (en) Ceramic porous support and its manufacturing method
KR101582742B1 (en) Porous support body and method for manufacturing the same
JP2007035451A (en) Hollow flat fuel battery cell and fuel battery
JP5703355B2 (en) Fuel cell
JP5587479B1 (en) Fuel cell
JP2008133146A (en) Support for firing solid electrolyte body, method for producing solid electrolyte body, and method for production of the support
JP5923139B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees