JP4865570B2 - Sputtering source, sputtering apparatus, and thin film manufacturing method - Google Patents

Sputtering source, sputtering apparatus, and thin film manufacturing method Download PDF

Info

Publication number
JP4865570B2
JP4865570B2 JP2006550687A JP2006550687A JP4865570B2 JP 4865570 B2 JP4865570 B2 JP 4865570B2 JP 2006550687 A JP2006550687 A JP 2006550687A JP 2006550687 A JP2006550687 A JP 2006550687A JP 4865570 B2 JP4865570 B2 JP 4865570B2
Authority
JP
Japan
Prior art keywords
target
opening
sputtering
housing
shielding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006550687A
Other languages
Japanese (ja)
Other versions
JPWO2006070633A1 (en
Inventor
敏夫 根岸
正博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006550687A priority Critical patent/JP4865570B2/en
Publication of JPWO2006070633A1 publication Critical patent/JPWO2006070633A1/en
Application granted granted Critical
Publication of JP4865570B2 publication Critical patent/JP4865570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3461Means for shaping the magnetic field, e.g. magnetic shunts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は有機EL素子の製造方法および製造装置に関し、特に有機層上にスパッタリングにより電極を形成する有機EL素子の製造方法および製造装置に関する。   The present invention relates to a method and apparatus for manufacturing an organic EL element, and more particularly to a method and apparatus for manufacturing an organic EL element in which an electrode is formed on an organic layer by sputtering.

従来では有機層上に電極、特に金属もしくは合金の電極を形成する場合、蒸着法が採用されていた。蒸着法では、電子などがほとんど発生せず有機層に損傷を与えないためである。   Conventionally, when an electrode, particularly a metal or alloy electrode, is formed on an organic layer, a vapor deposition method has been employed. This is because the vapor deposition method hardly generates electrons and does not damage the organic layer.

しかし、蒸着法では、金属もしくは合金を高温に加熱して蒸発させ有機層が形成された基板に蒸着するため、有機層が高温で損傷しないよう、蒸着源を基板から充分離し、かつ基板を冷却する必要があった。さらに、温度上昇を抑えるため成膜速度も速くできなかった。   However, in the vapor deposition method, the metal or alloy is heated to a high temperature and evaporated to deposit on the substrate on which the organic layer has been formed. There was a need to do. Furthermore, the film formation rate could not be increased in order to suppress the temperature rise.

さらに、蒸着法では高沸点の金属は使用できないため、使用する金属に制限があった。特に、高沸点の金属化合物等では蒸着法は使用できなかった。
このため、スパッタリングにより有機層上に電極膜を形成する方法が提案されている。
Furthermore, since high boiling point metals cannot be used in the vapor deposition method, there are limitations on the metals used. In particular, the vapor deposition method could not be used with high boiling point metal compounds.
For this reason, a method of forming an electrode film on the organic layer by sputtering has been proposed.

しかし、通常の半導体上などに電極膜を形成するスパッタリング方法では、発生した荷電粒子が有機層に損傷を与える場合がある。有機EL等で使用される有機層は非常に繊細なため、入射した荷電粒子による損傷で、電子もしくはホールの伝達等の機能が消失もしくは著しく低下する場合がある。   However, in a sputtering method in which an electrode film is formed on a normal semiconductor or the like, the generated charged particles may damage the organic layer. Since an organic layer used in organic EL or the like is very delicate, a function such as electron or hole transmission may be lost or significantly deteriorated due to damage caused by incident charged particles.

このため、基板とターゲットの間に、接地電位もしくは正電位のグリッド電極やアパーチャを設けて基板に衝突する電子を減少させる技術が公開されている(特許文献1)。
さらに、基板とターゲットの間に、基板と平行な磁場を発生させ基板に衝突する電子を減少させる技術が公開されている(特許文献2)。
For this reason, a technique for reducing the number of electrons colliding with the substrate by providing a ground electrode or a positive potential grid electrode or aperture between the substrate and the target is disclosed (Patent Document 1).
Furthermore, a technique for reducing the number of electrons that generate a magnetic field parallel to the substrate between the substrate and the target and collide with the substrate is disclosed (Patent Document 2).

しかし、上記従来技術では、基板の大型化に伴いグリッド電極やアパーチャの大型化、磁場発生装置の大型化が必要で、実質的に対応が困難である。さらに、大きなグリッド電極やアパーチャを備えると、クリーニングの頻度が大きくなりメンテナンス上不利になる場合もある。さらに、汚れの剥離によるアーキングなどの影響を大きく受ける場合もある。   However, in the above-described conventional technology, it is necessary to increase the size of the grid electrode and the aperture and the size of the magnetic field generator with the increase in size of the substrate, and it is substantially difficult to cope with it. Furthermore, if a large grid electrode or aperture is provided, the frequency of cleaning may increase, which may be disadvantageous for maintenance. Further, it may be greatly affected by arcing due to dirt removal.

さらにまた、複数の金属を同時にもしくは順次に成膜する場合に、一台の装置ではそれら複数の膜を形成できない場合があった。
特開平10−158821 特開平10−228981
Furthermore, when a plurality of metals are formed simultaneously or sequentially, there is a case where the plurality of films cannot be formed with one apparatus.
JP 10-158821 JP 10-228981 A

有機層上にスパッタリングにより金属等のスパッタ膜を形成する場合に、有機層へのダメージを抑えることができる電極膜の形成方法および形成装置を提供する。
さらに、基板が大型化しても対応が容易であるスパッタ膜の形成方法および形成装置を提供する。
さらに、複数の金属を同時もしくは順じ、一の装置で形成できるスパッタによる電極膜の形成装置を提供する。
Provided are an electrode film forming method and a forming apparatus capable of suppressing damage to an organic layer when a sputtered film of metal or the like is formed on the organic layer by sputtering.
Furthermore, the present invention provides a sputtered film forming method and a forming apparatus that can easily cope with an increase in size of a substrate.
Furthermore, an apparatus for forming an electrode film by sputtering capable of forming a plurality of metals simultaneously or sequentially with one apparatus is provided.

上記課題を解決するため、本発明は、筺体と、前記筺体内に配置されたターゲットと、前記筺体の一面に、前記ターゲットと離間して配置され、細長の開口部を有する遮蔽板とを有し、前記筺体内でプラズマを発生させ、前記ターゲットから放出されたスパッタリング粒子が前記開口部を通過して前記筺体の外に配置された成膜対象物表面に到達するように構成されたスパッタ源であって、前記開口部の長手方向に沿って、前記開口部の両脇に第一、第二のトラップ磁石部が配置され、前記第一、第二のトラップ磁石部の前記開口部に面した側面には、異なる磁極が配置されたスパッタ源である。
また、本発明は、前記遮蔽板は、前記ターゲットに印加される電圧に対する正電圧に接続されたスパッタ源である。
また、本発明は、前記遮蔽板は、前記スパッタ源が配置された真空槽と同電位にされたスパッタ源である。
また、本発明は、前記ターゲットは、容器状の筺体の内部に配置され、前記遮蔽板は前記筺体の開口に絶縁物を介して配置され、前記筺体と前記遮蔽板の間は絶縁されたスパッタ源である。
また、本発明は、前記開口部は複数の開口を並べて構成したスパッタ源である。
また、本発明は、筺体と、前記筺体内に配置されたターゲットと、前記筺体の一面に、前記ターゲットと離間して配置され、細長の開口部を有する遮蔽板とを有し、前記筺体内でプラズマを発生させ、前記ターゲットから放出されたスパッタリング粒子が前記開口部を通過して前記筺体の外に配置された成膜対象物表面に到達するように構成されたスパッタ源であって、前記遮蔽板は、前記ターゲットに印加される電圧に対する正電圧に接続されたスパッタ源である。
また、本発明は、前記遮蔽板は、前記スパッタ源が配置された真空槽と同電位にされたスパッタ源である。
また、本発明は、前記真空槽と前記遮蔽板は接地電位に接続され、前記ターゲットは前記接地電位に対して負電圧が印加されるスパッタ源である。
また、本発明は、前記遮蔽板は前記筺体の開口に絶縁物を介して配置され、前記筺体と前記遮蔽板の間は絶縁されたスパッタ源である。
また、本発明は、前記開口部は複数の開口を並べて構成したスパッタ源である。
また、本発明は、真空槽と、前記真空槽に配置された複数のスパッタ源とを有し、前記スパッタ源は、筺体と、前記筺体内に配置されたターゲットと、前記筺体の一面に、前記ターゲットと離間して配置され、細長の開口部を有する遮蔽板と、前記遮蔽板に形成された細長の開口部とを有し、前記筺体内でプラズマを発生させ、前記ターゲットから放出されたスパッタリング粒子は前記開口部を通過して成膜対象物表面に到達するように構成され、前記遮蔽板は、前記ターゲットに印加される電圧に対する正電圧に接続され、前記成膜対象物と前記スパッタ源とは、前記開口の長手方向と直角方向に相対的に移動されるように構成されたスパッタ装置である。
また、本発明は、前記遮蔽板と前記真空槽とは接地電位に接続されたスパッタ装置である。
また、本発明は、真空槽と、前記真空槽に配置された複数のスパッタ源とを有し、前記スパッタ源は、筺体と、前記筺体内に配置されたターゲットと、前記筺体の一面に、前記ターゲットと離間して配置され、細長の開口部を有する遮蔽板と、前記遮蔽板に形成された細長の開口部と、第一、第二のトラップ磁石部とを有し、前記ターゲットから放出されたスパッタリング粒子は前記開口部を通過して成膜対象物表面に到達するように構成され、前記スパッタ源は、前記ターゲットと、前記ターゲットと離間して配置され、細長の開口部を有する遮蔽板とを有し、前記筺体内でプラズマを発生させ、前記ターゲットから放出されたスパッタリング粒子が前記開口部を通過して成膜対象物表面に到達するように構成され、前記第一、第二のトラップ磁石部は前記開口部の長手方向に沿って、前記開口部の両脇に配置され、前記第一、第二のトラップ磁石部の前記開口部に面した側面には、異なる磁極が配置されたスパッタ装置である。
また、本発明は、前記遮蔽板は、前記ターゲットに印加される電圧に対する正電圧に接続されたスパッタ装置である。
また、本発明は、前記遮蔽板と前記真空槽とは接地電位に接続されたスパッタ装置である。
In order to solve the above problems, the present invention includes a housing, a target disposed in the housing, and a shielding plate disposed on one surface of the housing so as to be separated from the target and having an elongated opening. And a sputtering source configured to generate plasma in the housing and allow the sputtered particles emitted from the target to pass through the opening and reach the surface of the film formation target disposed outside the housing. The first and second trap magnet portions are arranged on both sides of the opening portion along the longitudinal direction of the opening portion, and face the opening portions of the first and second trap magnet portions. The sputter source is provided with different magnetic poles on the side surfaces.
Moreover, this invention is a sputtering source with which the said shielding board was connected to the positive voltage with respect to the voltage applied to the said target.
In the present invention, the shielding plate is a sputtering source having the same potential as the vacuum chamber in which the sputtering source is disposed.
According to the present invention, the target is disposed inside a container-shaped housing, the shielding plate is disposed in an opening of the housing via an insulator, and the sputtering source is insulated between the housing and the shielding plate. is there.
Further, the present invention is the sputtering source in which the opening is configured by arranging a plurality of openings.
The present invention also includes a housing, a target disposed in the housing, and a shielding plate disposed on one surface of the housing so as to be spaced apart from the target and having an elongated opening . A sputtering source configured to generate a plasma with the sputtering particles emitted from the target and pass through the opening to reach the surface of the film formation target disposed outside the housing , The shielding plate is a sputtering source connected to a positive voltage with respect to the voltage applied to the target.
In the present invention, the shielding plate is a sputtering source having the same potential as the vacuum chamber in which the sputtering source is disposed.
In the present invention, the vacuum chamber and the shielding plate are connected to a ground potential, and the target is a sputtering source to which a negative voltage is applied to the ground potential.
Further, the present invention is, before Symbol shielding plate is disposed through an insulator in an opening of the housing, the shielding plates and the housing is a sputtering source which is insulated.
Further, the present invention is the sputtering source in which the opening is configured by arranging a plurality of openings.
Further, the present invention has a vacuum chamber and a plurality of sputtering sources arranged in the vacuum chamber, the sputtering source is a housing, a target disposed in the housing, and one surface of the housing, wherein disposed apart from the target, a shielding plate having an opening elongated, having an opening elongated formed in the shielding plate to generate plasma within the housing, released from the target The sputtered particles pass through the opening and reach the surface of the film formation target, and the shielding plate is connected to a positive voltage with respect to a voltage applied to the target, and the film formation target and the The sputtering source is a sputtering apparatus configured to be relatively moved in a direction perpendicular to the longitudinal direction of the opening.
Moreover, the present invention is a sputtering apparatus in which the shielding plate and the vacuum chamber are connected to a ground potential.
Further, the present invention has a vacuum chamber and a plurality of sputtering sources arranged in the vacuum chamber, the sputtering source is a housing, a target disposed in the housing, and one surface of the housing, wherein disposed apart from the target has a shielding plate having an opening elongated, the the opening of the elongate formed in the shielding plate, a first, a second trap magnet portion, the front Symbol target sputtered particles emitted are configured so as to reach the film formation target surface through the opening from, the sputter source includes a said target is disposed apart from the target, elongated openings A shielding plate having, and generating plasma in the housing, the sputtering particles emitted from the target pass through the opening to reach the surface of the film formation target, the first, Second G The top magnet part is arranged on both sides of the opening part along the longitudinal direction of the opening part, and different magnetic poles are arranged on the side surfaces of the first and second trap magnet parts facing the opening part. Sputter apparatus.
Moreover, this invention is a sputtering device with which the said shielding board was connected to the positive voltage with respect to the voltage applied to the said target.
Moreover, the present invention is a sputtering apparatus in which the shielding plate and the vacuum chamber are connected to a ground potential.

有機薄膜表面にスパッタ法によって薄膜を形成する際、電子やイオンが有機薄膜表面に入射しないので、有機薄膜にダメージが生じない。   When a thin film is formed on the surface of the organic thin film by sputtering, electrons and ions do not enter the surface of the organic thin film, so that the organic thin film is not damaged.

本発明のスパッタ装置の一例An example of the sputtering apparatus of the present invention (a)、(b):本発明のスパッタ源の一例(a), (b): An example of the sputtering source of the present invention (a)、(b):本発明のスパッタ源の他の例(a), (b): Other examples of the sputtering source of the present invention 本発明のスパッタ源の他の例Other examples of the sputtering source of the present invention 本発明のスパッタ源の他の例Other examples of the sputtering source of the present invention

符号の説明Explanation of symbols

1……スパッタ装置
13〜16……スパッタ源
101……筺体
1051、1052……トラップ磁石
107a、107b……開口部
120……ターゲット部
122……ターゲット
1 ...... sputtering apparatus 13-16 ...... sputter source 101 ...... housing 105 1, 105 2 ...... trap magnets 107a, 107 b ...... opening 120 ...... target portion 122 ...... Target

図1を参照し、符号11〜13は本発明のスパッタ源であり、符号1は、そのスパッタ源11〜13を有する本発明のスパッタ装置である。
このスパッタ装置1は、真空槽10を有しており、該真空槽10内に、一乃至複数台のスパッタ源11〜13が配置されている。ここでは三台である。真空槽10には真空排気系25が接続されており、真空槽10内を真空排気できるように構成されている。
Referring to FIG. 1, reference numerals 11 to 13 are sputtering sources of the present invention, and reference numeral 1 is a sputtering apparatus of the present invention having the sputtering sources 11 to 13.
The sputtering apparatus 1 includes a vacuum chamber 10, and one to a plurality of sputtering sources 11 to 13 are disposed in the vacuum chamber 10. Here are three. An evacuation system 25 is connected to the vacuum chamber 10 so that the inside of the vacuum chamber 10 can be evacuated.

真空槽10には、搬入孔21と搬出孔22が設けられており、真空排気系25によって真空槽10内を真空排気し、所定圧力に達した後、搬入孔21に設けられた真空バルブを開け、搬入孔21に接続された前工程の有機薄膜製造装置から、成膜対象物30を真空槽内に搬入する。
搬入される成膜対象物30の表面には有機薄膜が形成されている。この有機薄膜は下方に向けられている。
The vacuum chamber 10 is provided with a carry-in hole 21 and a carry-out hole 22. After the vacuum chamber 10 is evacuated by a vacuum exhaust system 25 and reaches a predetermined pressure, a vacuum valve provided in the carry-in hole 21 is provided. The film-forming target 30 is carried into the vacuum chamber from the organic thin film manufacturing apparatus of the previous process connected to the carry-in hole 21.
An organic thin film is formed on the surface of the film formation target 30 to be carried. This organic thin film is directed downward.

各スパッタ源11〜13は、後述するようにスパッタリング粒子が放出されるように構成されている。スパッタ源11〜13内にスパッタリングガスを導入し、スパッタ源11〜13からスパッタリング粒子を放出させながら成膜対象物30を移動させ、各スパッタ源11〜13の上を順番に通過させると、成膜対象物30の有機薄膜の表面に導電性薄膜等のスパッタ薄膜が形成される。   Each sputtering source 11-13 is comprised so that sputtering particle | grains may be discharge | released so that it may mention later. When a sputtering gas is introduced into the sputter sources 11 to 13 and the film formation target 30 is moved while discharging the sputtered particles from the sputter sources 11 to 13 and passed over the sputter sources 11 to 13 in sequence, A sputtered thin film such as a conductive thin film is formed on the surface of the organic thin film of the film object 30.

有機薄膜表面にスパッタ膜が形成されると、搬出孔22に設けられた真空バルブが開けられ、スパッタ膜が形成された成膜対象物30は、搬出孔22から後工程の製造装置に搬送される。   When the sputtered film is formed on the surface of the organic thin film, the vacuum valve provided in the carry-out hole 22 is opened, and the film formation target 30 on which the sputtered film is formed is conveyed from the carry-out hole 22 to a manufacturing apparatus in a subsequent process. The

真空槽10内は、成膜対象物30を搬入孔21から搬入する際、及び搬出孔22から搬出する際でも真空雰囲気が維持される。
なお、符号23は成膜対象物30を保持するホルダ、符号24は成膜対象物を移動させる移動装置を示している。
A vacuum atmosphere is maintained in the vacuum chamber 10 even when the film formation target 30 is carried in from the carry-in hole 21 and carried out from the carry-out hole 22.
Reference numeral 23 denotes a holder for holding the film formation target 30, and reference numeral 24 denotes a moving device that moves the film formation target.

ここでは各スパッタ源11〜13は同じ構造であり、その外観を図2(a)に示し、内部を同図(b)に示す。
このスパッタ源11〜13は、細長の筺体101を有している。筺体101は容器状であり、該筺体101内の底壁上には細長のターゲット部120が配置されている。
Here, each of the sputter sources 11 to 13 has the same structure, and its external appearance is shown in FIG. 2 (a) and the inside is shown in FIG. 2 (b).
The sputter sources 11 to 13 have an elongated casing 101. The casing 101 has a container shape, and an elongated target portion 120 is disposed on the bottom wall in the casing 101.

ターゲット部120は、ターゲットホルダ121の表面上にターゲット122が固定され、裏面側にマグネトロン放電用磁石123が配置されて構成されている。
ターゲット122は細長い板状であり、筺体101の内部では、筺体101の長手方向に沿って配置されており、ターゲット122の表面は筺体101の開口に平行に向けられている。ここでは、ターゲット122は金属材料等の導電性材料である。
The target unit 120 is configured such that the target 122 is fixed on the surface of the target holder 121 and the magnetron discharge magnet 123 is disposed on the back surface side.
The target 122 has an elongated plate shape, and is arranged along the longitudinal direction of the casing 101 inside the casing 101, and the surface of the target 122 is directed parallel to the opening of the casing 101. Here, the target 122 is a conductive material such as a metal material.

真空槽10が接続された電位を接地電位としたとき、ターゲットホルダ121はスパッタ電源108に接続され、直流の負電圧、又はバイアス電圧を含む交流電圧を、ターゲットホルダ121を介してターゲット122に印加できるように構成されている。   When the potential to which the vacuum chamber 10 is connected is set to the ground potential, the target holder 121 is connected to the sputtering power source 108 and an AC voltage including a negative DC voltage or a bias voltage is applied to the target 122 via the target holder 121. It is configured to be able to.

筺体101が構成する容器の開口上には、絶縁物104を介して細長の遮蔽板103が配置され、筺体101の開口が遮蔽板103によって塞がれている。これにより、ターゲット122は、筺体101の側壁により、前後左右を囲まれているのに加え、ターゲット122の上方位置も、後述する開口部107aの部分を除き、遮蔽板103によって塞がれている。従って、ターゲット122の表面と筺体101の壁面と遮蔽板103とでターゲット122表面上の空間が取り囲まれている。この空間に後述のプラズマが形成される。   An elongated shielding plate 103 is disposed on the opening of the container formed by the housing 101 via an insulator 104, and the opening of the housing 101 is closed by the shielding plate 103. As a result, the target 122 is surrounded by the side wall of the housing 101 in front, rear, left and right, and the upper position of the target 122 is also blocked by the shielding plate 103 except for an opening 107a described later. . Therefore, the surface of the target 122 is surrounded by the surface of the target 122, the wall surface of the casing 101, and the shielding plate 103. Plasma described later is formed in this space.

筺体101と遮蔽板103は、少なくとも表面が導電性材料で構成されている。筺体101と遮蔽板103は、例えば金属で構成される。筺体101は遮蔽板103や真空槽10とは絶縁され、浮遊電位に置かれている。それに対し、この例では、遮蔽板103は真空槽10に電気的に接続されている。真空槽10は接地電位に置かれているから、遮蔽板103も設置電位に置かれている。
但し、遮蔽板103の電位は接地電位ではなく、ターゲット122への印加電圧よりも接地電位に近い電位であり、ターゲット122に対して正電圧であれば、接地電位に対して正電圧であってもよいし、接地電圧に対して負電圧であってもよい。筺体101は絶縁物であってもよい。遮蔽板103を接地電位以外の電圧にする場合には、遮蔽板をバイアス電源110に接続し、電圧を印加すればよい。
At least the surfaces of the casing 101 and the shielding plate 103 are made of a conductive material. The casing 101 and the shielding plate 103 are made of metal, for example. The casing 101 is insulated from the shielding plate 103 and the vacuum chamber 10 and is placed at a floating potential. On the other hand, in this example, the shielding plate 103 is electrically connected to the vacuum chamber 10. Since the vacuum chamber 10 is placed at the ground potential, the shielding plate 103 is also placed at the installation potential.
However, the potential of the shielding plate 103 is not a ground potential, but a potential closer to the ground potential than the voltage applied to the target 122. If the target 122 is a positive voltage, the potential is a positive voltage with respect to the ground potential. Alternatively, it may be a negative voltage with respect to the ground voltage. The casing 101 may be an insulator. In order to set the shielding plate 103 to a voltage other than the ground potential, the shielding plate is connected to the bias power source 110 and a voltage may be applied.

このスパッタ源11〜13では、ターゲット122は、ターゲットホルダ121の筺体101の開口側の面に配置され、マグネトロン放電用磁石123は、ターゲットホルダ121の筺体101の底壁側に向いた面に配置されている。ターゲット122表面と遮蔽板103の裏面とが平行に向かい合うようになっている。   In the sputtering sources 11 to 13, the target 122 is disposed on the surface of the target holder 121 on the opening side of the housing 101, and the magnetron discharge magnet 123 is disposed on the surface facing the bottom wall of the housing 101 of the target holder 121. Has been. The surface of the target 122 and the back surface of the shielding plate 103 face each other in parallel.

遮蔽板103の幅方向中央位置には、遮蔽板103の長手方向に沿って伸びる細長で、遮蔽板103を厚み方向に貫通する開口部107aが形成されている。絶縁物104は細長であり遮蔽板103と筺体101の上端の間に位置するものの、遮蔽板103の裏面は筺体101の内部空間に露出されているから、この開口部107aにより、筺体101の内部空間が、筺体101の外部の真空槽10の内部空間に接続されるように構成されている。   At the central position in the width direction of the shielding plate 103, an elongated portion 107a extending in the longitudinal direction of the shielding plate 103 and penetrating the shielding plate 103 in the thickness direction is formed. Although the insulator 104 is elongated and is located between the shielding plate 103 and the upper end of the housing 101, the back surface of the shielding plate 103 is exposed to the internal space of the housing 101. The space is configured to be connected to the internal space of the vacuum chamber 10 outside the housing 101.

遮蔽板103上の開口部107aの両脇位置には、開口部107aの長手方向に沿って、細長いトラップ磁石部1051、1052がそれぞれ配置されている。
即ち、二個のトラップ磁石部1051、1052は、長辺のうちの一辺に沿った側面が開口部107aに近い位置に配置されており、それと平行な他の長辺に沿った側面は、開口部107aに対して遠い位置に配置されている。
このトラップ磁石部1051、1052は細長い永久磁石で構成してもよいし、小さな永久磁石を細長く並べてもよい。また、電磁石で構成してもよい。
At both sides of the opening 107a on the shielding plate 103, elongated trap magnet portions 105 1 and 105 2 are arranged along the longitudinal direction of the opening 107a.
That is, the two trap magnet portions 105 1 , 105 2 are arranged such that the side surface along one side of the long sides is close to the opening 107a, and the side surface along the other long side parallel to it is These are disposed at positions far from the opening 107a.
The trap magnet portions 105 1 and 105 2 may be formed of elongated permanent magnets, or small permanent magnets may be elongated. Moreover, you may comprise with an electromagnet.

いずれにしろ、開口部107aの両側に配置された二個のトラップ磁石部1051、1052のうち、一方のトラップ磁石1051のN極は長手方向の一側面に沿って形成されており、他方のトラップ磁石1052では、少なくそれと反対の磁極(S極)が長手方向の一側面に沿って形成されている。In any case, of the two trap magnet portions 105 1 and 105 2 disposed on both sides of the opening 107a, the N pole of one trap magnet 105 1 is formed along one side surface in the longitudinal direction. In the other trap magnet 105 2 , at least the opposite magnetic pole (S pole) is formed along one side surface in the longitudinal direction.

二個のトラップ磁石1051、1052は、N極とS極が開口部107aに向けられた側面にそれぞれ配置されており、従って、開口部107a両脇のトラップ磁石1051、1052により、開口部107aを挟んで、互いに異なる極性の磁極が向き合うように構成されている。The two trap magnets 105 1 and 105 2 are respectively arranged on the side surfaces of the N pole and the S pole directed toward the opening 107a, and accordingly, the trap magnets 105 1 and 105 2 on both sides of the opening 107a The magnetic poles having different polarities face each other across the opening 107a.

これにより、開口部107aよりも上方であって、二個のトラップ磁石1051、1052の側面で挟まれた領域には、開口部107aの幅方向と平行(長手方向と垂直)な方向に伸びる磁力線が形成される。この磁力線は、遮蔽板103の表面やターゲット122の表面と略平行である。なお、ここでは、トラップ磁石1051、1052を遮蔽板103の表面上に配置することで、筺体101の外部に磁界を形成したが、プラズマに対する保護がされていれば、遮蔽板103の裏面側に配置し、開口部107aよりも下方であって、二個のトラップ磁石1051、1052の側面で挟まれた領域に磁力線を形成してもよい。As a result, the region above the opening 107a and sandwiched between the side surfaces of the two trap magnets 105 1 and 105 2 is parallel to the width direction of the opening 107a (perpendicular to the longitudinal direction). Elongating magnetic field lines are formed. The magnetic field lines are substantially parallel to the surface of the shielding plate 103 and the surface of the target 122. Here, the trap magnets 105 1 and 105 2 are arranged on the surface of the shielding plate 103 to form a magnetic field outside the housing 101. However, if the plasma is protected, the back surface of the shielding plate 103 is used. The magnetic field lines may be formed in a region disposed on the side and below the opening 107a and sandwiched between the side surfaces of the two trap magnets 105 1 and 105 2 .

更にまた、開口部107aの側面に第一、第二のトラップ磁石1051、1052を配置し、開口部107aの長手方向に沿って対向する側面に、N極とS極を配置してもよい。
要するに、開口部107aの内部を含む位置であって、開口部107aに近い位置に、開口部107aを覆うような磁力線を、遮蔽板103の表面と略平行に形成すればよい。
Furthermore, the first and second trap magnets 105 1 and 105 2 may be arranged on the side surface of the opening 107a, and the N pole and the S pole may be arranged on the side surfaces facing along the longitudinal direction of the opening 107a. Good.
In short, a magnetic force line covering the opening 107a may be formed substantially parallel to the surface of the shielding plate 103 at a position including the inside of the opening 107a and close to the opening 107a.

各スパッタ源11〜13の筺体101には、それぞれスパッタリングガス供給系109が接続されており、真空槽10の真空排気系25が動作し、各スパッタ源11〜13の筺体101の内部が真空槽10内部と一緒に真空排気され、所定の圧力に到達した後、スパッタリングガス供給系109により、真空雰囲気に置かれた各筺体101内にアルゴンガス等のスパッタリングガスが導入される。   Sputtering gas supply systems 109 are connected to the casings 101 of the respective sputtering sources 11 to 13, the vacuum exhaust system 25 of the vacuum chamber 10 is operated, and the insides of the casings 101 of the respective sputtering sources 11 to 13 are vacuum chambers. 10 is evacuated together with the inside thereof, and after reaching a predetermined pressure, a sputtering gas such as argon gas is introduced into each housing 101 placed in a vacuum atmosphere by a sputtering gas supply system 109.

そしてターゲット122に負電圧又は交流電圧が印加されると筺体101内部にプラズマが形成され、ターゲット122の表面がスパッタリングされ、ターゲット122を構成する材料のスパッタリング粒子がターゲット122表面から筺体101内に放出される。   When a negative voltage or an alternating voltage is applied to the target 122, plasma is formed inside the housing 101, the surface of the target 122 is sputtered, and sputtered particles of the material constituting the target 122 are emitted from the surface of the target 122 into the housing 101. Is done.

筺体101内部では、遮蔽板103とターゲット122との間に電界が形成されており、ターゲット122から放出されたスパッタリング粒子のうち、電荷/質量の値(電荷/質量比)が大きな負のイオンや大部分の電子は、遮蔽板103に吸引され、遮蔽板103に入射し、接地電位と遮蔽板との間に流れる電流となる。   In the housing 101, an electric field is formed between the shielding plate 103 and the target 122, and among the sputtered particles emitted from the target 122, negative ions having a large charge / mass value (charge / mass ratio), Most of the electrons are attracted to the shielding plate 103, enter the shielding plate 103, and become a current flowing between the ground potential and the shielding plate.

正のイオンや中性粒子、及び遮蔽板103に入射しなかった電荷/質量比の小さな負のイオンや電子のうち、開口部107aに向かって飛行するものは開口部107aを通過し、トラップ磁石1051、1052が形成する磁力線を横切ろうとする。Among the positive ions, neutral particles, and negative ions and electrons having a small charge / mass ratio that are not incident on the shielding plate 103, those flying toward the opening 107a pass through the opening 107a and are trap magnets. An attempt is made to cross the magnetic field lines formed by 105 1 and 105 2 .

このとき、電荷を有するイオンはその磁力線によって飛行方向が曲げられ、また、電子は磁力線によってトラップされ、トラップ磁石1051、1052や遮蔽板103や真空槽10に入射する。At this time, the flight direction of ions having electric charges is bent by the magnetic lines of force, and the electrons are trapped by the lines of magnetic force and enter the trap magnets 105 1 and 105 2 , the shielding plate 103, and the vacuum chamber 10.

中性粒子は磁力線の影響を受けず、直進する。成膜対象物30は、真空槽10の内部を移動しており、開口部107a上であって、有機薄膜が形成された成膜面を開口部107aに向け、開口部107aに面する位置を通過するため、直進し、二個のトラップ磁石1051、1052の側面で挟まれた領域を通過した中性粒子は、成膜対象物30の成膜面のうち、開口部107aと対向する位置に入射し、成膜対象物30の有機薄膜表面にスパッタ薄膜が成長する。Neutral particles are not affected by magnetic field lines and go straight. The film formation target 30 is moving inside the vacuum chamber 10 and is located on the opening 107a so that the film formation surface on which the organic thin film is formed faces the opening 107a and faces the opening 107a. In order to pass, the neutral particles that have traveled straight and passed through the region sandwiched between the side surfaces of the two trap magnets 105 1 and 105 2 face the opening 107 a in the film formation surface of the film formation target 30. The incident light enters the position, and a sputtered thin film grows on the surface of the organic thin film of the film formation target 30.

従って、成膜対象物30の成膜面には中性のスパッタリング粒子だけが入射し、電荷を有するイオンや電子は入射しないので、有機薄膜が荷電粒子によって損傷することがない。   Accordingly, only the neutral sputtering particles are incident on the film formation surface of the film formation target 30 and no charged ions or electrons are incident, so that the organic thin film is not damaged by the charged particles.

各スパッタ源11〜13は同じ構造であるが、ターゲット122は、同一の材料で構成されたターゲット122を配置しても、異なる材料で構成されたターゲットを配置してもよい。成膜対象物30が一乃至複数台のスパッタ源11〜13上を通過すると、各スパッタ源11〜13から放出された中性のスパッタ粒子により、スパッタ薄膜が形成される。異なる材料のターゲット122が配置されている場合は異種類の薄膜を積層させることができるから、例えば、最初に通過するスパッタ源11によって電子注入層が形成され、その後に通過するスパッタ源12、13によって電極膜が形成されるようにすることができる。   The sputter sources 11 to 13 have the same structure, but the target 122 may be a target 122 made of the same material or a target made of a different material. When the film formation target 30 passes over one or more sputter sources 11 to 13, a sputtered thin film is formed by the neutral sputtered particles emitted from the sputter sources 11 to 13. When the targets 122 of different materials are arranged, different types of thin films can be stacked. For example, the electron injection layer is formed by the sputtering source 11 that passes first, and the sputtering sources 12 and 13 that pass thereafter. Thus, an electrode film can be formed.

以上説明したスパッタ源11〜14は、ターゲット122に対して正電圧が印加される遮蔽板103と、トラップ磁石1051、1052の両方で荷電粒子が成膜対象物30に到達しないようにしていたが、いずれか一方でも効果があり、本発明に含まれる。The sputtering sources 11 to 14 described above prevent charged particles from reaching the film formation target 30 by both the shielding plate 103 to which a positive voltage is applied to the target 122 and the trap magnets 105 1 and 105 2. However, either one is effective and is included in the present invention.

また、以上説明したスパッタ源11〜13では、1台のスパッタ源11〜13では、細長の一個の開口によって一個の開口部107aが形成されていたが、図3(a)、(b)のスパッタ源14に示すように、複数の開口131を近接して一列、又は複数列に並べ、一個の開口部107bを構成してもよい。図3(a)、(b)の開口131は一列に並んでいる。   Further, in the sputter sources 11 to 13 described above, one sputter source 11 to 13 has one opening 107a formed by a single elongated opening. However, the sputter sources 11 to 13 shown in FIGS. As shown in the sputtering source 14, a plurality of openings 131 may be arranged close to each other in a single row or a plurality of rows to form a single opening 107 b. The openings 131 in FIGS. 3A and 3B are arranged in a line.

また、上記スパッタ源11〜13では、ターゲット部120が筺体101の底壁上に配置されていたが、本発明はそれに限定されるものではなく、長手方向の側面に沿って二個のターゲット部120を配置してもよい。
この場合、図4のスパッタ源15のように、長手方向の側面に沿った二台のターゲット部120のターゲット122を互いに平行に向き合わせて配置するとよい。例えば、筺体101の中心軸線に向けることもできる。
Moreover, in the said sputtering sources 11-13, although the target part 120 was arrange | positioned on the bottom wall of the housing 101, this invention is not limited to it, Two target parts are along a side surface of a longitudinal direction. 120 may be arranged.
In this case, like the sputtering source 15 in FIG. 4, the targets 122 of the two target units 120 along the side surfaces in the longitudinal direction may be arranged facing each other in parallel. For example, it can be directed to the central axis of the casing 101.

また、図5のスパッタ源16のように、長手方向の側面に沿ったターゲット部120に加え、更に、底壁上にも、ターゲット122が開口部107aに向けられたターゲット部120を配置してもよい。ターゲット122のスパッタされる面積が増すと、スパッタ粒子が多く放出されるので、成膜速度が向上する。   Further, in addition to the target portion 120 along the side surface in the longitudinal direction as in the sputtering source 16 of FIG. 5, a target portion 120 with the target 122 facing the opening 107 a is also arranged on the bottom wall. Also good. When the area of the target 122 to be sputtered increases, more sputtered particles are released, so that the deposition rate is improved.

なお、上記各実施例では、第一例のスパッタ源11〜13、及び他の例のスパッタ源14、15は、その全部を真空槽10の内部に配置されていたが、スパッタ源11〜15の一部が真空槽10の外部に突き出されていても、開口部17a、17bが真空槽10の内部に向けられていても、真空槽10に配置されているから、本発明のスパッタ装置に含まれる。   In each of the above embodiments, the sputter sources 11 to 13 of the first example and the sputter sources 14 and 15 of other examples are all disposed inside the vacuum chamber 10. Even if a part of the surface is protruded to the outside of the vacuum chamber 10 or the openings 17a and 17b are directed to the inside of the vacuum chamber 10, the vacuum chamber 10 is disposed. included.

Claims (15)

筺体と、
前記筺体内に配置されたターゲットと、
前記筺体の一面に、前記ターゲットと離間して配置され、細長の開口部を有する遮蔽板とを有し、
前記筺体内でプラズマを発生させ、前記ターゲットから放出されたスパッタリング粒子が前記開口部を通過して前記筺体の外に配置された成膜対象物表面に到達するように構成されたスパッタ源であって、
前記開口部の長手方向に沿って、前記開口部の両脇に第一、第二のトラップ磁石部が配置され、
前記第一、第二のトラップ磁石部の前記開口部に面した側面には、異なる磁極が配置されたスパッタ源。
The body,
A target disposed in the enclosure ;
A shield plate disposed on one surface of the housing and spaced apart from the target, and having an elongated opening;
A sputtering source configured to generate plasma in the housing and allow sputtering particles emitted from the target to pass through the opening and reach the surface of a film formation target disposed outside the housing. And
Along the longitudinal direction of the opening, first and second trap magnet parts are arranged on both sides of the opening,
A sputtering source in which different magnetic poles are arranged on the side surfaces of the first and second trap magnet portions facing the opening.
前記遮蔽板は、前記ターゲットに印加される電圧に対する正電圧に接続された請求項1記載のスパッタ源。  The sputtering source according to claim 1, wherein the shielding plate is connected to a positive voltage with respect to a voltage applied to the target. 前記遮蔽板は、前記スパッタ源が配置された真空槽と同電位にされた請求項2記載のスパッタ源。  The sputtering source according to claim 2, wherein the shielding plate has the same potential as a vacuum chamber in which the sputtering source is disposed. 前記ターゲットは、容器状の筺体の内部に配置され、
前記遮蔽板は前記筺体の開口に絶縁物を介して配置され、前記筺体と前記遮蔽板の間は絶縁された請求項2記載のスパッタ源。
The target is disposed inside a container-shaped housing,
The sputtering source according to claim 2, wherein the shielding plate is disposed in an opening of the casing via an insulator, and the casing and the shielding plate are insulated.
前記開口部は複数の開口を並べて構成した請求項1乃至請求項4のいずれか1項記載のスパッタ源。  The sputtering source according to claim 1, wherein the opening is configured by arranging a plurality of openings. 筺体と、
前記筺体内に配置されたターゲットと、
前記筺体の一面に、前記ターゲットと離間して配置され、細長の開口部を有する遮蔽板とを有し、
前記筺体内でプラズマを発生させ、前記ターゲットから放出されたスパッタリング粒子が前記開口部を通過して前記筺体の外に配置された成膜対象物表面に到達するように構成されたスパッタ源であって、
前記遮蔽板は、前記ターゲットに印加される電圧に対する正電圧に接続されたスパッタ源。
The body,
A target disposed in the enclosure ;
A shield plate disposed on one surface of the housing and spaced apart from the target, and having an elongated opening;
A sputtering source configured to generate plasma in the housing and allow sputtering particles emitted from the target to pass through the opening and reach the surface of a film formation target disposed outside the housing. And
The shielding plate is a sputtering source connected to a positive voltage with respect to a voltage applied to the target.
前記遮蔽板は、前記スパッタ源が配置された真空槽と同電位にされた請求項6記載のスパッタ源。  The sputtering source according to claim 6, wherein the shielding plate has the same potential as a vacuum chamber in which the sputtering source is disposed. 前記真空槽と前記遮蔽板は接地電位に接続され、
前記ターゲットは前記接地電位に対して負電圧が印加される請求項7記載のスパッタ源。
The vacuum chamber and the shielding plate are connected to a ground potential,
The sputtering source according to claim 7, wherein a negative voltage is applied to the target with respect to the ground potential.
記遮蔽板は前記筺体の開口に絶縁物を介して配置され、前記筺体と前記遮蔽板の間は絶縁された請求項6記載のスパッタ源。 Before SL shield is disposed through an insulator in an opening of the housing, the shielding plates and the housing is sputter source according to claim 6, wherein the insulated. 前記開口部は複数の開口を並べて構成した請求項6乃至請求項9のいずれか1項記載のスパッタ源。  The sputtering source according to claim 6, wherein the opening is configured by arranging a plurality of openings. 真空槽と、前記真空槽に配置された複数のスパッタ源とを有し、
前記スパッタ源は、
筺体と、前記筺体内に配置されたターゲットと、
前記筺体の一面に、前記ターゲットと離間して配置され、細長の開口部を有する遮蔽板と、
前記遮蔽板に形成された細長の開口部とを有し、
前記筺体内でプラズマを発生させ、前記ターゲットから放出されたスパッタリング粒子は前記開口部を通過して成膜対象物表面に到達するように構成され、
前記遮蔽板は、前記ターゲットに印加される電圧に対する正電圧に接続され、
前記成膜対象物と前記スパッタ源とは、前記開口の長手方向と直角方向に相対的に移動されるように構成されたスパッタ装置。
A vacuum chamber and a plurality of sputtering sources arranged in the vacuum chamber;
The sputter source is
A housing and a target disposed in the housing ;
A shielding plate disposed on one surface of the housing and spaced apart from the target, and having an elongated opening ;
Has an opening elongated formed in the shielding plate,
Plasma is generated in the housing, and the sputtered particles emitted from the target are configured to pass through the opening and reach the surface of the film formation target,
The shielding plate is connected to a positive voltage with respect to a voltage applied to the target;
The sputtering apparatus configured to relatively move the film formation target and the sputtering source in a direction perpendicular to the longitudinal direction of the opening.
前記遮蔽板と前記真空槽とは接地電位に接続された請求項11記載のスパッタ装置。  The sputtering apparatus according to claim 11, wherein the shielding plate and the vacuum chamber are connected to a ground potential. 真空槽と、前記真空槽に配置された複数のスパッタ源とを有し、
前記スパッタ源は、
筺体と、前記筺体内に配置されたターゲットと、
前記筺体の一面に、前記ターゲットと離間して配置され、細長の開口部を有する遮蔽板と、
前記遮蔽板に形成された細長の開口部と、
第一、第二のトラップ磁石部とを有し
前記ターゲットから放出されたスパッタリング粒子は前記開口部を通過して成膜対象物表面に到達するように構成され、
前記スパッタ源は、前記ターゲットと、
前記ターゲットと離間して配置され、細長の開口部を有する遮蔽板とを有し、
前記筺体内でプラズマを発生させ、前記ターゲットから放出されたスパッタリング粒子が前記開口部を通過して成膜対象物表面に到達するように構成され、
前記第一、第二のトラップ磁石部は前記開口部の長手方向に沿って、前記開口部の両脇に配置され、
前記第一、第二のトラップ磁石部の前記開口部に面した側面には、異なる磁極が配置されたスパッタ装置。
A vacuum chamber and a plurality of sputtering sources arranged in the vacuum chamber;
The sputter source is
A housing and a target disposed in the housing ;
A shielding plate disposed on one surface of the housing and spaced apart from the target, and having an elongated opening ;
An elongated opening formed in the shielding plate;
A first, a second trap magnet portion,
Sputtered particles emitted from the target are configured to pass through the opening and reach the film formation target surface,
The sputter source includes a target;
A shielding plate disposed apart from the target and having an elongated opening;
Plasma is generated in the housing, and the sputtering particles emitted from the target pass through the opening and reach the surface of the film formation target,
The first and second trap magnet parts are arranged on both sides of the opening part along the longitudinal direction of the opening part,
A sputtering apparatus in which different magnetic poles are arranged on side surfaces of the first and second trap magnet portions facing the opening.
前記遮蔽板は、前記ターゲットに印加される電圧に対する正電圧に接続された請求項13記載のスパッタ装置。  The sputtering apparatus according to claim 13, wherein the shielding plate is connected to a positive voltage with respect to a voltage applied to the target. 前記遮蔽板と前記真空槽とは接地電位に接続された請求項14記載のスパッタ装置。  The sputtering apparatus according to claim 14, wherein the shielding plate and the vacuum chamber are connected to a ground potential.
JP2006550687A 2004-12-28 2005-12-19 Sputtering source, sputtering apparatus, and thin film manufacturing method Expired - Fee Related JP4865570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550687A JP4865570B2 (en) 2004-12-28 2005-12-19 Sputtering source, sputtering apparatus, and thin film manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004378688 2004-12-28
JP2004378688 2004-12-28
JP2006550687A JP4865570B2 (en) 2004-12-28 2005-12-19 Sputtering source, sputtering apparatus, and thin film manufacturing method
PCT/JP2005/023276 WO2006070633A1 (en) 2004-12-28 2005-12-19 Sputtering source, sputtering system, method for forming thin film

Publications (2)

Publication Number Publication Date
JPWO2006070633A1 JPWO2006070633A1 (en) 2008-06-12
JP4865570B2 true JP4865570B2 (en) 2012-02-01

Family

ID=36614752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006550687A Expired - Fee Related JP4865570B2 (en) 2004-12-28 2005-12-19 Sputtering source, sputtering apparatus, and thin film manufacturing method

Country Status (5)

Country Link
JP (1) JP4865570B2 (en)
KR (1) KR101255375B1 (en)
CN (1) CN100557071C (en)
TW (1) TWI401329B (en)
WO (1) WO2006070633A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531599B2 (en) * 2005-03-17 2010-08-25 株式会社アルバック Sputtering source, sputtering equipment
JP2009138230A (en) * 2007-12-06 2009-06-25 Ulvac Japan Ltd Sputtering system and film deposition method
TWI512791B (en) * 2013-08-26 2015-12-11 Au Optronics Corp Method for manufacturing patterned layer and method for manufacturing electrochromic device
JP7138504B2 (en) * 2018-07-31 2022-09-16 キヤノントッキ株式会社 Film forming apparatus and electronic device manufacturing method
CN115404449B (en) * 2021-05-28 2023-12-01 鑫天虹(厦门)科技有限公司 Thin film deposition equipment capable of adjusting magnetic field distribution and magnetic field adjusting device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438996A (en) * 1987-08-04 1989-02-09 Japan Res Dev Corp Manufacture of thin film el element
JPS6438995A (en) * 1987-08-04 1989-02-09 Japan Res Dev Corp Manufacture of thin film el element
JPH10228981A (en) * 1997-02-13 1998-08-25 Tdk Corp Device for manufacturing organic electroluminescent element and its manufacture
JP2005142079A (en) * 2003-11-07 2005-06-02 Fuji Electric Holdings Co Ltd Sputtering device, sputtering method, manufacturing device of organic electroluminescence element, and manufacturing method of organic electroluminescence element

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401539A (en) * 1981-01-30 1983-08-30 Hitachi, Ltd. Sputtering cathode structure for sputtering apparatuses, method of controlling magnetic flux generated by said sputtering cathode structure, and method of forming films by use of said sputtering cathode structure
JPH01139762A (en) * 1987-11-25 1989-06-01 Matsushita Electric Ind Co Ltd Sputtering apparatus
JPH03243761A (en) * 1990-02-22 1991-10-30 Fuji Photo Film Co Ltd Sputtering device
GB9006073D0 (en) * 1990-03-17 1990-05-16 D G Teer Coating Services Limi Magnetron sputter ion plating
US5772858A (en) * 1995-07-24 1998-06-30 Applied Materials, Inc. Method and apparatus for cleaning a target in a sputtering source
JP3719797B2 (en) * 1996-11-08 2005-11-24 株式会社アルバック Method for forming conductive thin film on organic thin film surface
JPH10158821A (en) * 1996-11-27 1998-06-16 Tdk Corp Apparatus for production of organic el light emitting element and method therefor
US6193854B1 (en) * 1999-01-05 2001-02-27 Novellus Systems, Inc. Apparatus and method for controlling erosion profile in hollow cathode magnetron sputter source
TW413726B (en) * 1999-11-20 2000-12-01 Prec Instr Dev Ct Method for monitoring thickness uniformity of films based on spectroscopic measurement
TW589393B (en) * 2000-05-18 2004-06-01 Prec Instr Dev Ct Nat An improved process for deposition a thin film by sputtering
TWI223672B (en) * 2000-10-26 2004-11-11 Prec Instr Dev Ct Nat An improved process of ion-assistance sputtering deposition
JP2002339061A (en) 2001-05-16 2002-11-27 Canon Inc Thin film depositing method
TWI229138B (en) * 2001-06-12 2005-03-11 Unaxis Balzers Ag Magnetron-sputtering source
US6623610B1 (en) * 2002-03-02 2003-09-23 Shinzo Onishi Magnetron sputtering target for magnetic materials
TW593725B (en) * 2002-04-30 2004-06-21 Prodisc Technology Inc Coating device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438996A (en) * 1987-08-04 1989-02-09 Japan Res Dev Corp Manufacture of thin film el element
JPS6438995A (en) * 1987-08-04 1989-02-09 Japan Res Dev Corp Manufacture of thin film el element
JPH10228981A (en) * 1997-02-13 1998-08-25 Tdk Corp Device for manufacturing organic electroluminescent element and its manufacture
JP2005142079A (en) * 2003-11-07 2005-06-02 Fuji Electric Holdings Co Ltd Sputtering device, sputtering method, manufacturing device of organic electroluminescence element, and manufacturing method of organic electroluminescence element

Also Published As

Publication number Publication date
WO2006070633A1 (en) 2006-07-06
CN1993491A (en) 2007-07-04
JPWO2006070633A1 (en) 2008-06-12
KR20070099414A (en) 2007-10-09
KR101255375B1 (en) 2013-04-17
CN100557071C (en) 2009-11-04
TW200626738A (en) 2006-08-01
TWI401329B (en) 2013-07-11

Similar Documents

Publication Publication Date Title
US9556512B2 (en) Deposition system with electrically isolated pallet and anode assemblies
KR100659828B1 (en) Method and apparatus for ionized physical vapor deposition
US5948215A (en) Method and apparatus for ionized sputtering
US20150136585A1 (en) Method for sputtering for processes with a pre-stabilized plasma
JP4865570B2 (en) Sputtering source, sputtering apparatus, and thin film manufacturing method
WO2015134108A1 (en) Ion beam sputter deposition assembly, sputtering system, and sputter method of physical vapor deposition
US4716340A (en) Pre-ionization aided sputter gun
JP2015007263A (en) Organic device manufacturing device and organic device manufacturing method
KR101191073B1 (en) Sputter source, sputter device
US20100018857A1 (en) Sputter cathode apparatus allowing thick magnetic targets
RU2601903C2 (en) Method for deposition of thin-film coatings on surface of semiconductor heteroepitaxial structures by magnetron sputtering
JP3685670B2 (en) DC sputtering equipment
JP6330455B2 (en) Vacuum processing equipment
US20060081466A1 (en) High uniformity 1-D multiple magnet magnetron source
KR100963413B1 (en) Magnetron sputtering apparatus
US20240136151A1 (en) Resonant antenna for physical vapor deposition applications
WO2012086229A1 (en) Sputtering device
US20120111270A1 (en) Plasma processing chamber having enhanced deposition uniformity
JP2001140060A (en) System and method for electron gun vapor deposition
JPH0488164A (en) Apparatus for forming thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111011

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees