JP4862978B2 - Vibration detection device for processing machine - Google Patents

Vibration detection device for processing machine Download PDF

Info

Publication number
JP4862978B2
JP4862978B2 JP2001181940A JP2001181940A JP4862978B2 JP 4862978 B2 JP4862978 B2 JP 4862978B2 JP 2001181940 A JP2001181940 A JP 2001181940A JP 2001181940 A JP2001181940 A JP 2001181940A JP 4862978 B2 JP4862978 B2 JP 4862978B2
Authority
JP
Japan
Prior art keywords
vibration
sensor
rotating shaft
processing machine
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001181940A
Other languages
Japanese (ja)
Other versions
JP2002370141A (en
Inventor
忍 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001181940A priority Critical patent/JP4862978B2/en
Publication of JP2002370141A publication Critical patent/JP2002370141A/en
Application granted granted Critical
Publication of JP4862978B2 publication Critical patent/JP4862978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転軸を有し、当該回転軸によって工具またはワークを回転駆動することにより工具とワークとを相対回転させ、機械加工を行う加工機の、振動検出を正確に行うための装置に関するものである。
【0002】
【従来の技術】
従来から、研削加工、ミーリング加工など広く機械加工における被加工物と工具との接触確認等を行う目的で、加工機の振動検出装置が用いられている。かかる振動検出装置には、通常、AE(Acoustic Emission)センサが用いられている。AEセンサは、水晶、ニオブ酸リチウム、チタン酸バリウム等の電圧単結晶に機械的応力が加えられることにより誘電分極を生じ、電界が発生することを利用し、機械エネルギを電気エネルギに変化するものである。そして、AEセンサに伝達される振動(機械エネルギ)を電圧の変化として把握し、振動検出を行うものである。そして、検出された振動に基づき、加工条件の最適化を図っている。
【0003】
図3には、このAEセンサを振動検出装置として備える、従来の加工機を示している。砥石1を回転駆動する回転軸2のケース3は、矢印A,Bで示す方向にスライド可能に支持されている。また、ワークWは、コレット等を用いたクランプ装置4を備える回転軸ケース5によって一端部を支持され、他端部は矢印Cで示す方向にスライド可能な芯押台6の、センタ7によって支持されている。また、AEセンサ8を砥石1の回転軸のケース3に、AEセンサ9をワークWの回転軸ケース5に、AEセンサ10を芯押台6に取付け、各AEセンサ8〜10の検出信号に基づき、砥石1とワークWとの接触を検知している。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の振動検出装置の設置場所は、AEセンサ8,9,10が何れも振動の発生源(砥石1とワークWとの接触点)から遠い。このため、各AEセンサ8,9,10に振動が伝達されるまでの過程で、得たい振動の減衰や不要な外乱振動の混入の影響を受けて、各AEセンサが検出する振動成分に、劣化を来たすことになる。例えば、AEセンサ8の場合、振動発生源である砥石1から、砥石押さえ11、回転軸2、ベアリング(図示省略)、ケース3の各部材を介して振動が伝達されるため、これらの各部材の固有振動数や質量、ヤング率、弾性係数等の物性の影響による振動の減衰や、ベアリング玉の回転振動や回転軸2を駆動するモータの振動等、外乱振動の侵入を避けることができない。
【0005】
しかも、従来の振動検出装置は、AEセンサ8,9,10に伝達された時点で既に劣化している振動を、AEセンサによって電気信号に変換し、その電気信号を更に電気的フィルタ処理することにより、得たい振動成分のみ取り出す手法を採っている。しかし、伝達過程で得たい振動と同一周波数の外乱振動が混入しているような場合には、その外乱振動のみ分離することは不可能であり、また、振動の減衰により、得たい振動成分が電気的に分離できないレベルへと減少していたり、またはノイズ成分以下になっているような場合には、得たい振動成分の検出は、全く不可能となる。
【0006】
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、回転軸を有し、当該回転軸によって工具またはワークを回転駆動することにより工具とワークとを相対回転させ、機械加工を行う加工機の、振動検出を行う際に、振動の減衰や外乱振動の侵入を避け、より高精度な振動検出を可能とすることにある。
【0007】
【課題を解決するための手段】
上記課題を解決するための、本発明の請求項1に係る加工機の振動検出装置は、
回転軸を有する加工機の振動検出装置であって、振動発生源となる部材と直接的に接する部材を、振動検出手段として用い、当該部材で検出した振動を電気信号として取り出すAEセンサを備えることを特徴とするものである。
【0008】
本発明によれば、振動発生源となる部材と直接的に接する部材を、振動検出手段として用い、当該部材で検出した振動を前記AEセンサで電気信号として取り出すので、前記AEセンサで振動検出を行う際に、振動の減衰や外乱振動の侵入を避け、かつ、振動成分の劣化を可能な限り抑えることができる。
【0009】
また、前記部材は、特定の振動成分の分離を、それ自体の機械的構造のみによって行うものである。本発明によれば、前記振動発生源となる部材と直接的に接する部材において、特定の振動成分の分離を行うことにより、前記AEセンサには、主に分離された特定の振動成分が伝達されることとなる。しかも、前記特定の振動成分の分離を、前記部材自体の機械的構造のみによって行うことで、電気的処理の場合のように、処理回路等の特性に影響を受けることなく、かかる振動成分の分離を行うことが可能となる。
【0010】
また、前記部材は、特定の振動成分の増幅を、それ自体の機械的構造のみによって行うものである。本発明によれば、前記振動発生源となる部材と直接的に接する部材において、特定の振動成分の増幅を行うことにより、前記AEセンサには、主に分離された特定の振動成分が、増幅されて伝達されることとなる。しかも、前記特定の振動成分の増幅を、前記部材自体の機械的構造のみによって行うことで、電気的処理の場合のように、処理回路等の特性に影響を受けることなく、かかる振動成分の増幅を行うことが可能となる。
【0011】
また、前記部材は、特定の振動周波数で共鳴する内径および長さを有する共鳴管を、防振材を介して軸心部に内蔵し、該共鳴管の端部を前記AEセンサへの振動伝達部とした、中空の回転軸であることを特徴とする。本発明によれば、前記中空の回転軸の軸芯部に内蔵した、特定の振動周波数で共鳴する内径および長さを有する共鳴管により、前記AEセンサには、主に分離された特定の振動成分が、増幅されて伝達されることとなる。また、前記特定の振動成分の分離・増幅を、当該中空の回転軸自体の、機械的構造のみによって行うことが可能となる。
【0012】
また、前記共鳴管の端部を塞ぐ振動板を備え、該振動板と前記AEセンサとは非接触とし、両者の間には、クーラントまたはグリスが介在し得るだけの隙間を設けているものである。この構成により、クーラントを用いた加工を行う際に、当該クーラントが前記共鳴管に侵入することによる、振動成分の分離・増幅特性の変化を防ぐ。
なお、加工の際にクーラントを用いない場合には、振動板は特に設ける必要はない。かかる場合には、共鳴管の端部とAEセンサとの間の僅かな隙間に、グリスを塗付し、中空の回転軸で拾った振動を、共鳴管の端部からグリスを介して、AEセンサで電気信号として取り出すこととする。
【0013】
また、本発明の請求項に係る加工機の振動検出装置は、請求項1記載の加工機の振動検出装置において、前記回転軸は、それ自体に工具の取り付け手段を備えるものである。本発明によれば、ワークと共に機械加工の際の振動発生源を構成する工具を、前記回転軸自体が備える工具の取り付け手段で支持することで、前記AEセンサで振動検出を行う際に、振動の減衰や外乱振動の侵入を避け、かつ、振動成分の劣化を可能な限り抑えることができる。
【0014】
また、本発明の請求項に係る加工機の振動検出装置は、請求項1または2記載の加工機の振動検出装置において、前記回転軸は、それ自体にワークの取り付け手段を備えるものである。本発明によれば、工具と共に機械加工の際の振動発生源を構成するワークを、前記回転軸自体が備えるワークの取り付け手段で支持することで、前記AEセンサで振動検出を行う際に、振動の減衰や外乱振動の侵入を避け、かつ、振動成分の劣化を可能な限り抑えることができる。
【0015】
また、回転軸を有する加工機の振動検出方法であって、振動発生源となる部材と直接的に接し、特定の振動周波数を良好に伝達する直径および長さを有する中実の回転軸によって、振動を拾い、特定の振動成分の分離を当該回転軸自体の機械的構造のみによって行い、分離された特定の振動成分を、前記中実の回転軸の端部から、AEセンサにより電気信号として取り出すことを特徴とする。
【0016】
本発明によれば、振動発生源となる部材と直接的に接する中実の回転軸によって振動を拾い、当該回転軸で拾った振動を、その端部から前記AEセンサで電気信号として取り出すので、前記AEセンサで振動検出を行う際に、振動の減衰や外乱振動の侵入を避け、振動成分の劣化を可能な限り抑えることができる。また、前記中実の回転軸が特定の振動周波数を良好に伝達する直径および長さを有することによって、前記AEセンサには、主に分離された特定の振動成分が伝達されることとなる。しかも、前記特定の振動成分の分離を、前記中実の回転軸自体の、機械的構造のみによって行うことにより、電気的処理の場合のように、処理回路等の特性に影響を受けることなく、かかる振動成分の分離を行うことが可能となる。
【0017】
また、回転軸を有する加工機の振動検出方法であって、振動発生源となる部材と直接的に接し、特定の振動周波数で共鳴する内径および長さを有する共鳴管を軸心部に内蔵する中空の回転軸によって、振動を拾い、特定の振動成分の分離・増幅を当該回転軸自体の機械的構造のみによって行い、分離・増幅された特定の振動成分を、前記回転軸の端部から、AEセンサにより電気信号として取り出すことを特徴とする。
【0018】
本発明によれば、振動発生源となる部材と直接的に接する中空の回転軸によって振動を拾い、当該回転軸で拾った振動を、その端部から前記AEセンサで電気信号として取り出すので、前記AEセンサで振動検出を行う際に、振動の減衰や外乱振動の侵入を避け、振動成分の劣化を可能な限り抑えることができる。また、前記中空の回転軸の軸心部に内蔵する、特定の振動周波数で共鳴する内径および長さを有する共鳴管によって、前記AEセンサには、主に分離された特定の振動成分が、増幅されて伝達される。しかも、前記特定の振動成分の分離を、前記中空の回転軸自体の、機械的構造のみによって行うことにより、電気的処理の場合のように、処理回路等の特性に影響を受けることなく、かかる振動成分の分離を行うことが可能となる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。ここで、従来技術と同一部分及び相当する部分については同一符号で示し、詳しい説明は省略する。
【0020】
図1には、本発明の実施の形態に係る、振動検出装置を備える加工機の断面図を、概略的に示している。砥石1を一端部に固定する中空軸12は、ケース13に、ベアリング14,15を介して回転自在に支持されている。中空軸12の軸芯部には、防振材16を介して、特定の振動周波数で共鳴する内径および長さを有する共鳴管17を設けている。さらに、共鳴管17の端部を振動板18で塞ぎ、クーラントを用いた加工を行う際に、当該クーラントが共鳴管17に侵入することを防止している。そして、共鳴管17の端部を塞ぐ振動板18を、AEセンサ19への振動伝達部としている。なお、振動板18とAEセンサ19とは非接触とし、両者の間には、加工の際に用いるクーラントが介在し得るように、僅かな隙間eを設けている。
【0021】
図1において、符号20で示す部分は、中空軸12を駆動するためのプーリであり、図示しないモータの駆動力が、ベルト21によってプーリ20に伝達される。なお、AEセンサ19を、中空軸12の砥石押さえ11側の端部に設けることとしてもよい。また、ワークWのクランプ装置、芯押台、センタ等は、図3に示す従来例と同一の物を用いることが可能であることから、図示を省略している。
【0022】
上記構成をなす本発明の実施の形態により得られる作用効果は、以下の通りである。まず、振動発生源となる部材である砥石1と、直接的に接する中空の回転軸12によって振動を検出する。続いて、中空の回転軸12で検出した振動を、中空の回転軸12の端部に設けた振動板18から、クーラントを介して、AEセンサ19で電気信号として取り出す。よって、AEセンサ19で振動検出を行う際に、振動の減衰や外乱振動の侵入を避け、振動成分の劣化を可能な限り抑えることができる。
【0023】
この際、中空の回転軸12の軸心部に内蔵する、特定の振動周波数で共鳴する内径および長さを有する共鳴管17によって、AEセンサ19には、主に分離された特定の振動成分が伝達されることとなる。
【0024】
図2には、本発明の実施の形態に係る振動検出装置によって得られる振動の波形を示している。図2(a)のグラフは、全周波数域の振動成分を示すものであり、空転時の波形を実線で、砥石1とワークWとが接触した時の波形を点線で示している。図中、領域Aの周波数帯域で表われる振動は、ベアリング14,15の振動成分である。また、領域Bの周波数帯域で表われる振動は、中空軸12の回転による振動成分である。さらに、領域Cの周波数帯域で表われる振動は、高次波成分である。そして、領域Dの周波数帯域で表われる振動が、砥石1とワークWとが接触することにより生ずる固有振動の振動成分である。
【0025】
一方、図2(b)のグラフは、中空軸12の共鳴管17によって、必要な振動周波数を分離・増幅した後の振動成分を示したものであり、空転時の波形を実線で、砥石1とワークWとが接触した時の波形を点線で示している。このように、領域Dの、砥石1とワークWとが接触することにより生ずる固有振動の振動成分のみが顕著に表われる。しかも、かかる特定の振動成分の分離を、中空の回転軸12自体の、機械的構造(中空軸12の軸芯部に、防振材16を介して、特定の振動周波数で共鳴する内径および長さを有する共鳴管17を設けた構造。)のみによって行うことが可能となる。よって、従来のごとく、電気的フィルタ処理等をすることにより、得たい振動成分のみ取り出す手法のごとく、処理回路等の特性に影響を受けることなく、かかる振動成分の分離を行うことが可能となる。
【0026】
以上のごとく、本発明の実施の形態によれば、機械加工を行う加工機の、振動検出を行う際に、振動の減衰や外乱振動の侵入を避け、より高精度な振動検出が可能となる。よって、検出された高精度の振動成分に基づき、加工条件の最適化を図ることができる。しかも、必要な振動成分の検出感度も大きく向上するため、たとえば、クーラントを用いた加工を行う際には、砥石1がワークWに実際に接触する直前の、クーラントのクサビ効果に起因する振動成分等の、比較的小さな振動であっても、正確に検出することも可能となる。よって、早送りから低速の研削送りへと送り速度を変化させるタイミングを最適化させ、加工サイクルタイムの短縮を図ることも可能となる。
【0027】
また、共鳴管17の端部を振動板18で塞ぐことで、クーラントを用いた加工を行う際に、クーラントが共鳴管17に侵入することによる、振動成分の分離・増幅特性の変化を防いでいる。
【0028】
なお、加工の際にクーラントを用いない場合には、振動板18は特に設ける必要はない。かかる場合には、共鳴管17の端部とAEセンサ19との間の僅かな隙間に、グリスを塗付し、中空の回転軸12で拾った振動を、共鳴管17の端部からグリスを介して、AEセンサ19で電気信号として取り出すこととする。
【0029】
さらに、本発明の実施の形態に係る振動検出装置を備える加工機では、中空軸12に変えて中実軸を用いる場合もある。この場合には、中実軸として、特定の振動周波数を良好に伝達する直径および長さを有するものを用い、その端部を前記AEセンサ19への振動伝達部とする。かかる場合には、AEセンサ19には、主に分離された特定の振動成分が伝達されることとなるので、得たい振動周波数を増幅させることなく取り出すことが可能な場合に、特に、有効である。
【0030】
すなわち、本発明の実施の形態では、振動発生源となる部材である砥石1と直接的に接する部材は、中空の回転軸12に限定されるものではなく、例えば、振動を機械的に伝達できる手段であって、当該振動伝達手段が、得たい振動の共振点(共振周波数)の整数倍の振動をそのものの固有振動数と合致させるものであれば良い。かかる条件を満たせば、例えば、ワークを把持するクランプ装置からAEセンサによって振動を検出することも可能である。
【0031】
さらに、本発明の実施の形態に係る発明は、回転軸を有し、当該回転軸によって工具またはワークを回転駆動することにより工具とワークとを相対回転させ、機械加工を行う加工機全般に適用することが可能であり、例えば、フライス盤の回転軸にも用いることができる。
【0032】
【発明の効果】
本発明はこのように構成したので、以下のような効果を有する。まず、本発明の請求項1に係る加工機の振動検出装置によれば、回転軸を有し、当該回転軸によって工具またはワークを回転駆動することにより工具とワークとを相対回転させ、機械加工を行う加工機の、振動検出を行う際に、振動の減衰や外乱振動の侵入を避け、より高精度な振動検出をすることが可能となる。
【0033】
また、前記AEセンサに、主に分離された特定の振動成分が伝達され、より高精度な振動検出をすることが可能となる。しかも、前記特定の振動成分の分離を、前記部材自体の機械的構造のみによって行うことで、電気的処理の場合のように、処理回路等の特性に影響を受けることなく、かかる振動成分の分離を行うことが可能となり、高精度な振動検出を安定的に行うことが可能となる。
【0034】
また、前記AEセンサに、主に分離された特定の振動成分が増幅されて伝達され、比較的小さな振動であっても、より高精度な振動検出をすることが可能となる。しかも、前記特定の振動成分の分離を、前記部材自体の機械的構造のみによって行うことで、電気的処理の場合のように、処理回路等の特性に影響を受けることなく、かかる振動成分の分離を行うことが可能となる。そして、高精度な振動検出を安定的に行うことが可能となる。
【0035】
また、前記AEセンサに、主に分離された特定の振動成分が増幅されて伝達され、比較的小さな振動であっても、より高精度な振動検出をすることが可能となる。しかも、前記特定の振動成分の分離を、前記部材自体の機械的構造のみによって行うことで、電気的処理の場合のように、処理回路等の特性に影響を受けることなく、かかる振動成分の分離を行うことが可能となる。そして、高精度な振動検出を安定的に行うことが可能となる。
【0036】
また、クーラントを用いた加工を行う際にも、当該クーラントが前記共鳴管に侵入することによる、振動成分の分離・増幅特性の変化を防ぎ、高精度な振動検出を安定的に行うことが可能となる。
【0037】
また、本発明の請求項に係る加工機の振動検出装置によれば、前記AEセンサで振動検出を行う際に、振動発生源となる部材である工具の取り付け手段を備える部材によって振動を拾うことで、振動の減衰や外乱振動の侵入を避け、かつ、振動成分の劣化を可能な限り抑えることができる。よって、高精度な振動検出をすることが可能となる。
【0038】
また、本発明の請求項に係る加工機の振動検出装置によれば、前記AEセンサで振動検出を行う際に、振動発生源となる部材であるワークの取り付け手段を備える部材によって振動を拾うことで、振動の減衰や外乱振動の侵入を避け、かつ、振動成分の劣化を可能な限り抑えることができる。よって、高精度な振動検出をすることが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る、振動検出装置を備える加工機の断面を示す概略図である。
【図2】 図1に示す加工機の振動検出装置によって得られる振動の波形を示すグラフであり、(a)は全周波数域の振動成分を、(b)は必要な振動周波数を分離・増幅した後の振動成分を示すものである。
【図3】 従来の、振動検出装置を備える加工機の模式図である。
【符号の説明】
1 砥石
11 砥石押さえ
12 中空軸
13 ケース
14,15 ベアリング
16 防振材
17 共鳴管
18 振動板
19 AEセンサ
20 駆動プーリ
21 ベルト
W ワーク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for accurately detecting vibrations of a processing machine that has a rotating shaft and rotates the tool or the workpiece relative to each other by rotating the tool or the workpiece relative to each other to perform machining. Is.
[0002]
[Prior art]
Conventionally, a vibration detection device for a processing machine has been used for the purpose of confirming contact between a workpiece and a tool in a wide range of machining such as grinding and milling. An AE (Acoustic Emission) sensor is usually used for such a vibration detection device. An AE sensor is a device that changes mechanical energy into electrical energy by using dielectric polarization generated by applying mechanical stress to a voltage single crystal such as quartz, lithium niobate, barium titanate, etc., and generating an electric field. It is. Then, vibration (mechanical energy) transmitted to the AE sensor is grasped as a change in voltage, and vibration detection is performed. Then, the machining conditions are optimized based on the detected vibration.
[0003]
FIG. 3 shows a conventional processing machine provided with this AE sensor as a vibration detection device. A case 3 of a rotating shaft 2 that rotationally drives the grindstone 1 is supported so as to be slidable in directions indicated by arrows A and B. The workpiece W is supported at one end by a rotating shaft case 5 having a clamping device 4 using a collet or the like, and the other end is supported by a center 7 of a tailstock 6 slidable in a direction indicated by an arrow C. Has been. Further, the AE sensor 8 is attached to the case 3 of the rotating shaft of the grindstone 1, the AE sensor 9 is attached to the rotating shaft case 5 of the workpiece W, and the AE sensor 10 is attached to the tailstock 6, and the detection signals of the AE sensors 8 to 10 are detected. Based on this, contact between the grindstone 1 and the workpiece W is detected.
[0004]
[Problems to be solved by the invention]
However, the installation location of the conventional vibration detection device is far from the vibration generation source (the contact point between the grindstone 1 and the workpiece W) in each of the AE sensors 8, 9, and 10. For this reason, in the process until the vibration is transmitted to each AE sensor 8, 9, 10, the vibration component detected by each AE sensor is affected by the attenuation of the desired vibration and the mixing of unnecessary disturbance vibrations. It will cause deterioration. For example, in the case of the AE sensor 8, since the vibration is transmitted from the grindstone 1 which is a vibration generation source through the grindstone retainer 11, the rotating shaft 2, the bearing (not shown), and the case 3, the respective members. Intrusion of disturbance vibrations such as vibration attenuation due to the influence of physical properties such as natural frequency, mass, Young's modulus, and elastic modulus, and rotation vibration of bearing balls and vibration of the motor driving the rotating shaft 2 cannot be avoided.
[0005]
In addition, the conventional vibration detection device converts vibration already deteriorated at the time of transmission to the AE sensors 8, 9, and 10 into an electrical signal by the AE sensor, and further electrically filters the electrical signal. Thus, a method of extracting only the vibration component desired to be obtained is adopted. However, when disturbance vibration of the same frequency as the vibration to be obtained in the transfer process is mixed, it is impossible to separate only the disturbance vibration, and the vibration component to be obtained is reduced by the vibration attenuation. In the case where the level is reduced to a level that cannot be electrically separated, or is below the noise component, the desired vibration component cannot be detected at all.
[0006]
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to have a rotating shaft, and to rotate the tool or the workpiece relative to each other by rotating the tool or the workpiece by the rotating shaft. The object of the present invention is to enable vibration detection with higher accuracy by avoiding vibration attenuation and disturbance vibration when performing vibration detection of a processing machine that performs processing.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a vibration detection device for a processing machine according to claim 1 of the present invention provides:
A vibration detection apparatus for a processing machine having a rotating shaft, comprising a member that directly contacts a member that is a vibration generation source as vibration detection means, and an AE sensor that extracts vibration detected by the member as an electrical signal. It is characterized by.
[0008]
According to the present invention, a member that is in direct contact with a member that is a vibration generation source is used as a vibration detection unit, and vibration detected by the member is extracted as an electrical signal by the AE sensor. Therefore, vibration detection is performed by the AE sensor. When performing, vibration attenuation and disturbance vibration can be avoided, and deterioration of vibration components can be suppressed as much as possible.
[0009]
Moreover, the said member isolate | separates a specific vibration component only by its own mechanical structure. According to the present invention, the separated specific vibration component is mainly transmitted to the AE sensor by separating the specific vibration component in the member that directly contacts the member that is the vibration generation source. The Rukoto. In addition, since the specific vibration component is separated only by the mechanical structure of the member itself, the vibration component is separated without being affected by characteristics of a processing circuit or the like as in the case of electrical processing. Can be performed.
[0010]
Further, the member performs amplification of a specific vibration component only by its own mechanical structure. According to the present invention, a specific vibration component is mainly amplified in the AE sensor by amplifying a specific vibration component in a member that is in direct contact with the member that is the vibration generation source. Will be transmitted. Moreover, the amplification of the specific vibration component is performed only by the mechanical structure of the member itself, so that the vibration component is amplified without being affected by the characteristics of the processing circuit or the like as in the case of electrical processing. Can be performed.
[0011]
The member includes a resonance tube having an inner diameter and a length that resonates at a specific vibration frequency in a shaft center portion through a vibration isolator, and transmits an end of the resonance tube to the AE sensor. It is characterized by being a hollow rotating shaft. According to the present invention, a specific vibration mainly separated from the AE sensor is provided by the resonance tube having an inner diameter and a length that resonates at a specific vibration frequency, which is built in the shaft core portion of the hollow rotating shaft. The component is amplified and transmitted. Further, the specific vibration component can be separated and amplified only by the mechanical structure of the hollow rotating shaft itself.
[0012]
Also includes a vibration plate which closes the end of the resonance tube, and the AE sensor with the diaphragm and a non-contact, between the two, in shall have a gap of only coolant or grease may intervene is there. With this configuration, when performing processing using a coolant, the separation of the vibration component and the change in the amplification characteristics due to the coolant entering the resonance tube are prevented.
If no coolant is used during processing, the diaphragm need not be provided. In such a case, grease is applied to a slight gap between the end of the resonance tube and the AE sensor, and vibrations picked up by the hollow rotating shaft are transferred from the end of the resonance tube to the AE via the grease. It is assumed that an electrical signal is taken out by the sensor.
[0013]
According to claim 2 of the present invention, in the vibration detecting device for a processing machine according to claim 1 , the rotating shaft is provided with a tool mounting means in itself. According to the present invention, when a tool that constitutes a vibration generation source in machining with a workpiece is supported by a tool mounting means provided in the rotary shaft itself, vibration is detected when vibration detection is performed by the AE sensor. Damping and disturbance vibrations can be avoided, and deterioration of vibration components can be suppressed as much as possible.
[0014]
According to a third aspect of the present invention, there is provided the processing machine vibration detecting device according to the first or second aspect , wherein the rotary shaft is provided with a work attaching means. . According to the present invention, when a workpiece that constitutes a vibration generation source in machining with a tool is supported by a workpiece attachment means provided in the rotary shaft itself, vibration is detected when vibration detection is performed by the AE sensor. Damping and disturbance vibrations can be avoided, and deterioration of vibration components can be suppressed as much as possible.
[0015]
Further, it is a vibration detection method of a processing machine having a rotating shaft, which is in direct contact with a member that is a vibration generation source, and by a solid rotating shaft having a diameter and a length that transmits a specific vibration frequency satisfactorily, The vibration is picked up, the specific vibration component is separated only by the mechanical structure of the rotating shaft itself, and the separated specific vibration component is taken out from the end of the solid rotating shaft as an electric signal by the AE sensor. It is characterized by that.
[0016]
According to the present invention, the vibration is picked up by the solid rotation shaft that is in direct contact with the member that is the vibration generation source, and the vibration picked up by the rotation shaft is taken out as an electrical signal from the end by the AE sensor. When performing vibration detection with the AE sensor, it is possible to avoid vibration attenuation and disturbance vibration, and suppress deterioration of vibration components as much as possible. In addition, since the solid rotating shaft has a diameter and a length that favorably transmits a specific vibration frequency, a specific vibration component separated mainly is transmitted to the AE sensor. In addition, the separation of the specific vibration component is performed only by the mechanical structure of the solid rotating shaft itself, without being affected by the characteristics of the processing circuit and the like as in the case of electrical processing, Such vibration components can be separated.
[0017]
The present invention also relates to a vibration detection method for a processing machine having a rotating shaft, in which a resonance tube having an inner diameter and a length that is in direct contact with a member that is a vibration generation source and resonates at a specific vibration frequency is built in the shaft center. The hollow rotating shaft picks up the vibration, and the specific vibration component is separated and amplified only by the mechanical structure of the rotating shaft itself, and the separated and amplified specific vibration component from the end of the rotating shaft, It is characterized in that it is extracted as an electrical signal by an AE sensor.
[0018]
According to the present invention, the vibration is picked up by the hollow rotating shaft that is in direct contact with the member that is the source of vibration generation, and the vibration picked up by the rotating shaft is taken out as an electric signal from the end by the AE sensor. When performing vibration detection with the AE sensor, it is possible to avoid vibration attenuation and disturbance vibration, and to suppress deterioration of vibration components as much as possible. In addition, a specific vibration component separated mainly is amplified in the AE sensor by a resonance tube having an inner diameter and a length that resonates at a specific vibration frequency, which is built in the axial center of the hollow rotation shaft. To be transmitted. In addition, since the specific vibration component is separated only by the mechanical structure of the hollow rotating shaft itself, it is not affected by the characteristics of the processing circuit or the like as in the case of electrical processing. It is possible to separate vibration components.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Here, the same parts as those in the prior art and corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.
[0020]
FIG. 1 schematically shows a cross-sectional view of a processing machine including a vibration detection device according to an embodiment of the present invention. A hollow shaft 12 for fixing the grindstone 1 to one end is rotatably supported by a case 13 via bearings 14 and 15. A resonance tube 17 having an inner diameter and a length that resonates at a specific vibration frequency is provided on the shaft core portion of the hollow shaft 12 via a vibration isolator 16. Further, the end of the resonance tube 17 is closed with the diaphragm 18 to prevent the coolant from entering the resonance tube 17 when processing using the coolant is performed. A diaphragm 18 that closes the end of the resonance tube 17 is used as a vibration transmission unit to the AE sensor 19. The diaphragm 18 and the AE sensor 19 are not in contact with each other, and a slight gap e is provided between the diaphragm 18 and the coolant so that coolant used in processing can be interposed.
[0021]
In FIG. 1, a portion denoted by reference numeral 20 is a pulley for driving the hollow shaft 12, and a driving force of a motor (not shown) is transmitted to the pulley 20 by the belt 21. The AE sensor 19 may be provided at the end of the hollow shaft 12 on the side of the grindstone holder 11. Further, the workpiece W clamping device, the tailstock, the center, and the like are not shown because they can be the same as the conventional example shown in FIG.
[0022]
The effects obtained by the embodiment of the present invention having the above-described configuration are as follows. First, vibration is detected by the grindstone 1 that is a member that is a source of vibration generation and the hollow rotating shaft 12 that is in direct contact. Subsequently, the vibration detected by the hollow rotating shaft 12 is taken out as an electric signal by the AE sensor 19 from the diaphragm 18 provided at the end of the hollow rotating shaft 12 through the coolant. Therefore, when vibration detection is performed by the AE sensor 19, it is possible to avoid vibration attenuation and disturbance vibration, and suppress deterioration of vibration components as much as possible.
[0023]
At this time, the AE sensor 19 has a specific vibration component mainly separated by the resonance tube 17 having an inner diameter and a length that resonates at a specific vibration frequency, which is housed in the axial center of the hollow rotating shaft 12. Will be transmitted.
[0024]
FIG. 2 shows a vibration waveform obtained by the vibration detection apparatus according to the embodiment of the present invention. The graph of FIG. 2A shows vibration components in the entire frequency range, and the waveform at the time of idling is indicated by a solid line, and the waveform when the grindstone 1 and the workpiece W are in contact is indicated by a dotted line. In the figure, the vibration that appears in the frequency band of region A is the vibration component of the bearings 14 and 15. Further, the vibration that appears in the frequency band of the region B is a vibration component due to the rotation of the hollow shaft 12. Furthermore, the vibration that appears in the frequency band of region C is a higher-order wave component. The vibration that appears in the frequency band of the region D is a vibration component of the natural vibration that occurs when the grindstone 1 and the workpiece W come into contact with each other.
[0025]
On the other hand, the graph of FIG. 2B shows the vibration component after the necessary vibration frequency is separated and amplified by the resonance tube 17 of the hollow shaft 12. The waveform when the workpiece W and the workpiece W come into contact with each other is indicated by a dotted line. In this way, only the vibration component of the natural vibration generated by the contact between the grindstone 1 and the workpiece W in the region D appears significantly. In addition, the separation of the specific vibration component is performed by the mechanical structure of the hollow rotary shaft 12 itself (the inner diameter and length that resonates at a specific vibration frequency on the shaft core portion of the hollow shaft 12 via the vibration isolator 16). This is possible only by a structure provided with a resonant tube 17 having a thickness. Therefore, by performing an electrical filter process or the like as in the prior art, it becomes possible to separate such vibration components without being affected by the characteristics of the processing circuit or the like, as in the method of extracting only the desired vibration component. .
[0026]
As described above, according to the embodiment of the present invention, when detecting vibration of a machine that performs machining, it is possible to detect vibration with higher accuracy while avoiding vibration attenuation and disturbance vibration. . Therefore, the machining conditions can be optimized based on the detected highly accurate vibration component. In addition, since the detection sensitivity of the necessary vibration component is greatly improved, for example, when performing processing using the coolant, the vibration component due to the wedge effect of the coolant immediately before the grindstone 1 actually contacts the workpiece W. Even a relatively small vibration such as can be accurately detected. Therefore, it is possible to optimize the timing for changing the feed rate from fast feed to low-speed grinding feed and to shorten the machining cycle time.
[0027]
In addition, by closing the end of the resonance tube 17 with the diaphragm 18, when processing using the coolant, the separation of the vibration component and the change in the amplification characteristics due to the penetration of the coolant into the resonance tube 17 are prevented. Yes.
[0028]
If no coolant is used during processing, the diaphragm 18 does not need to be provided. In such a case, grease is applied to a slight gap between the end of the resonance tube 17 and the AE sensor 19, and vibrations picked up by the hollow rotating shaft 12 are removed from the end of the resonance tube 17. Therefore, the AE sensor 19 takes it out as an electrical signal.
[0029]
Furthermore, in a processing machine provided with the vibration detection device according to the embodiment of the present invention, a solid shaft may be used instead of the hollow shaft 12. In this case, a solid shaft having a diameter and a length that transmits a specific vibration frequency satisfactorily is used, and its end is used as a vibration transmission portion to the AE sensor 19. In such a case, since the separated specific vibration component is mainly transmitted to the AE sensor 19, it is particularly effective when the vibration frequency to be obtained can be extracted without being amplified. is there.
[0030]
That is, in the embodiment of the present invention, the member that is in direct contact with the grindstone 1 that is a member that is a vibration generation source is not limited to the hollow rotating shaft 12, and for example, vibration can be mechanically transmitted. Any means may be used as long as the vibration transmission means matches a vibration that is an integral multiple of the resonance point (resonance frequency) of the vibration to be obtained with its own natural frequency. If this condition is satisfied, for example, vibration can be detected by an AE sensor from a clamping device that grips a workpiece.
[0031]
Furthermore, the invention according to the embodiment of the present invention is applicable to all processing machines that have a rotating shaft and rotate the tool or the workpiece by the rotating shaft to relatively rotate the tool and the workpiece to perform machining. For example, it can be used for a rotating shaft of a milling machine.
[0032]
【Effect of the invention】
Since this invention was comprised in this way, it has the following effects. First, according to the vibration detection apparatus for a processing machine according to claim 1 of the present invention, the rotating machine has a rotating shaft, the tool or the work is rotated by the rotating shaft, and the tool and the work are relatively rotated, and machining When performing vibration detection of the processing machine that performs the above, it is possible to avoid vibration attenuation and disturbance vibration and to detect vibration with higher accuracy.
[0033]
In addition, a specific vibration component separated mainly is transmitted to the AE sensor, and it becomes possible to detect vibration with higher accuracy. In addition, since the specific vibration component is separated only by the mechanical structure of the member itself, the vibration component is separated without being affected by characteristics of a processing circuit or the like as in the case of electrical processing. It becomes possible to perform highly accurate vibration detection stably.
[0034]
In addition, a specific vibration component separated mainly is amplified and transmitted to the AE sensor, so that it is possible to detect vibration with higher accuracy even with relatively small vibration. In addition, since the specific vibration component is separated only by the mechanical structure of the member itself, the vibration component is separated without being affected by characteristics of a processing circuit or the like as in the case of electrical processing. Can be performed. And it becomes possible to perform highly accurate vibration detection stably.
[0035]
In addition, a specific vibration component separated mainly is amplified and transmitted to the AE sensor, so that it is possible to detect vibration with higher accuracy even with relatively small vibration. In addition, since the specific vibration component is separated only by the mechanical structure of the member itself, the vibration component is separated without being affected by characteristics of a processing circuit or the like as in the case of electrical processing. Can be performed. And it becomes possible to perform highly accurate vibration detection stably.
[0036]
In addition, when machining with coolant, it is possible to prevent vibration component separation and amplification characteristics from changing due to the coolant entering the resonance tube, and to stably perform highly accurate vibration detection. It becomes.
[0037]
According to the vibration detection device for a processing machine according to claim 2 of the present invention, when the vibration is detected by the AE sensor, vibration is picked up by a member having a tool attachment means which is a member that is a vibration generation source. Thus, vibration attenuation and disturbance vibration can be avoided, and deterioration of the vibration component can be suppressed as much as possible. Therefore, highly accurate vibration detection can be performed.
[0038]
Further, according to the vibration detection device for a processing machine according to claim 3 of the present invention, when the vibration is detected by the AE sensor, the vibration is picked up by a member provided with a work attaching means which is a member that is a vibration generation source. Thus, vibration attenuation and disturbance vibration can be avoided, and deterioration of the vibration component can be suppressed as much as possible. Therefore, highly accurate vibration detection can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a cross section of a processing machine including a vibration detection device according to an embodiment of the present invention.
FIG. 2 is a graph showing a vibration waveform obtained by the vibration detection device of the processing machine shown in FIG. 1, wherein (a) separates and amplifies vibration components in the entire frequency range, and (b) separates and amplifies necessary vibration frequencies. This shows the vibration component after the operation.
FIG. 3 is a schematic view of a conventional processing machine equipped with a vibration detection device.
[Explanation of symbols]
1 Whetstone
11 Wheel holder
12 hollow shaft
13 cases
14, 15 Bearing
16 Anti-vibration material
17 Resonance tube
18 Diaphragm
19 AE sensor
20 Drive pulley
21 Belt W Work

Claims (3)

回転軸を有する加工機の振動検出装置であって、振動発生源となる部材と直接的に接する部材を、振動検出手段として用い、当該部材で検出した振動を電気信号として取り出すAEセンサを備え、前記部材は、特定の振動成分の分離または増幅を、それ自体の機械的構造のみによって行うための、特定の振動周波数で共鳴する内径および長さを有する共鳴管を、防振材を介して軸心部に内蔵し、該共鳴管の端部を前記AEセンサへの振動伝達部とした、中空の回転軸であり、前記共鳴管の端部を塞ぐ振動板を備え、該振動板と前記AEセンサとは非接触とし、両者の間には、クーラントまたはグリスが介在し得るだけの隙間を設けていることを特徴とする加工機の振動検出装置。A vibration detection device for a processing machine having a rotating shaft, comprising a member that directly contacts a member that is a vibration generation source as a vibration detection means, and an AE sensor that extracts vibration detected by the member as an electrical signal, The member has a resonance tube having an inner diameter and a length that resonates at a specific vibration frequency for separating or amplifying a specific vibration component only by its own mechanical structure, and is pivoted through a vibration isolator. A hollow rotating shaft built in the core and having an end portion of the resonance tube as a vibration transmission portion to the AE sensor, comprising a vibration plate that closes the end portion of the resonance tube, and the vibration plate and the AE A vibration detection device for a processing machine, characterized in that a clearance is provided between the sensor and the sensor so that coolant or grease can be interposed between the sensor and the sensor . 前記回転軸は、それ自体に工具の取り付け手段を備えることを特徴とする請求項1記載の加工機の振動検出装置。The vibration detecting device for a processing machine according to claim 1 , wherein the rotating shaft is provided with a tool attachment means. 前記回転軸は、それ自体にワークの取り付け手段を備えることを特徴とする請求項1または2記載の加工機の振動検出装置。The vibration detecting device for a processing machine according to claim 1 or 2 , wherein the rotating shaft is provided with a workpiece attaching means.
JP2001181940A 2001-06-15 2001-06-15 Vibration detection device for processing machine Expired - Fee Related JP4862978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001181940A JP4862978B2 (en) 2001-06-15 2001-06-15 Vibration detection device for processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001181940A JP4862978B2 (en) 2001-06-15 2001-06-15 Vibration detection device for processing machine

Publications (2)

Publication Number Publication Date
JP2002370141A JP2002370141A (en) 2002-12-24
JP4862978B2 true JP4862978B2 (en) 2012-01-25

Family

ID=19022128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001181940A Expired - Fee Related JP4862978B2 (en) 2001-06-15 2001-06-15 Vibration detection device for processing machine

Country Status (1)

Country Link
JP (1) JP4862978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103786093A (en) * 2014-03-05 2014-05-14 威海华东数控股份有限公司 Graphical detection display method for real-time monitoring of grinding state

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104551981B (en) * 2014-12-24 2017-01-25 上海交通大学 Precision grinding and detection integrated electric spindle
CN110222311B (en) * 2019-05-29 2022-03-08 北京工业大学 Method for evaluating main influence parameters of bolt looseness under vibration working condition and relaxing and reducing main influence parameters of bolt looseness
CN113958880A (en) * 2021-11-25 2022-01-21 西南石油大学 Protective device and method for safe operation of parallel oil and gas pipelines in mountainous area

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279258A (en) * 1989-04-07 1990-11-15 Daishowa Seiki Co Ltd Detecting device for tool damage in machine tool
JPH0679623A (en) * 1992-09-07 1994-03-22 Kurenooton Kk Device for detecting contact of rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103786093A (en) * 2014-03-05 2014-05-14 威海华东数控股份有限公司 Graphical detection display method for real-time monitoring of grinding state

Also Published As

Publication number Publication date
JP2002370141A (en) 2002-12-24

Similar Documents

Publication Publication Date Title
US5361543A (en) Device for ultrasonic erosion of a workpiece
US7066028B2 (en) Acoustic sensor for monitoring machining processes in machining tools
US6993854B2 (en) Centrifugal dryer, manufacturing method for semiconductor device and semiconductor manufacturing apparatus
JP4862978B2 (en) Vibration detection device for processing machine
JP2014240840A (en) Rotational testing system
JP2002066879A (en) Acoustic emission detecting device for machine tool
US5618993A (en) Ultrasonic detection apparatus and method for detecting acoustic emission
JPWO2007080692A1 (en) AE sensor and AE sensor operation state confirmation method
JP3912505B2 (en) Rolling device with sensor
JP2822876B2 (en) Surface potential sensor
KR102482384B1 (en) Built-in motor ultrasonic vibration spindle apparatus
JP4075030B2 (en) Rolling bearing device
KR100674683B1 (en) Dynamic Characteristics Identification System of High-Speed M/T Spindles
JP5365497B2 (en) Vibration measuring apparatus and vibration measuring method
JPS5815135A (en) Torque meter for grinder
KR100853285B1 (en) Vibration monitoring device for high speed air spindle
JP2004205315A (en) Motion evaluating method for bearing structure
JPH0753877Y2 (en) Spindle shaft rotation abnormality detection device
JP2003149084A (en) Apparatus and method for inspecting bearing device
JPH10138200A (en) Slicing method and slicing device
JP2003144977A (en) Centrifuge
JP2003075298A (en) Equipment for inspecting vibration characteristics
CN113316883B (en) Vibration noise reduction device, electric compressor provided with same, and vibration noise reduction method
SU1038819A1 (en) Roller bearing vibration diagnostic method
KR100355760B1 (en) Method and apparatus for controlling state of ball bearing using exciter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees