JP4861096B2 - Seismic reinforcement frame using tendon and its construction method - Google Patents

Seismic reinforcement frame using tendon and its construction method Download PDF

Info

Publication number
JP4861096B2
JP4861096B2 JP2006232282A JP2006232282A JP4861096B2 JP 4861096 B2 JP4861096 B2 JP 4861096B2 JP 2006232282 A JP2006232282 A JP 2006232282A JP 2006232282 A JP2006232282 A JP 2006232282A JP 4861096 B2 JP4861096 B2 JP 4861096B2
Authority
JP
Japan
Prior art keywords
column
tension
reinforcing
compression
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006232282A
Other languages
Japanese (ja)
Other versions
JP2008057125A (en
Inventor
康晴 木曽
真 藤澤
玄之 荒木
智文 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2006232282A priority Critical patent/JP4861096B2/en
Publication of JP2008057125A publication Critical patent/JP2008057125A/en
Application granted granted Critical
Publication of JP4861096B2 publication Critical patent/JP4861096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

この発明は建物等、建築・土木構造物全般の耐震性能を向上させる目的で構造物に付加される、緊張材を用いた耐震補強架構及びその施工方法に関するものである。   The present invention relates to a seismic reinforcement frame using a tension material, which is added to a structure for the purpose of improving the seismic performance of buildings and civil engineering structures in general, and a construction method thereof.

例えば建物の耐震性能を向上させる目的で既存建物を耐震補強する場合、通常は既存の柱と梁からなるフレームが負担すべき地震力が軽減されるよう、フレームの構面内や構面外にブレース、またはブレースを含む補強架構を新たに架設することが行われる(非特許文献1、特許文献1、特許文献2参照)。   For example, when retrofitting an existing building for the purpose of improving the seismic performance of the building, it is usually placed inside or outside the frame so that the seismic force that the frame consisting of existing columns and beams should bear is reduced. A brace or a reinforcing frame including a brace is newly installed (see Non-Patent Document 1, Patent Document 1, and Patent Document 2).

一方、既存建物内での生活や執務、営業の継続性を確保する上では、建物の使用状態を維持しながら既存建物を耐震補強することが必要であり、それには補強架構をフレームの構面外に付加せざるを得ない。フレームの構面外に付加される補強架構はその本体である付加フレームにブレースを組み込む形が一般的である(特許文献3、特許文献4参照)。   On the other hand, in order to ensure the continuity of life, work, and sales in the existing building, it is necessary to seismically reinforce the existing building while maintaining the usage state of the building. It must be added outside. In general, a reinforcing frame added outside the frame surface is configured such that a brace is incorporated in an additional frame as a main body (see Patent Document 3 and Patent Document 4).

ブレース、またはブレースを有する補強架構を付加する方法では、フレーム構面内のいずれの向きの変形時にも抵抗できるよう、ブレースには引張力と圧縮力に抵抗し得る、断面の大きい部材が用いられる。しかしながら、非特許文献1、特許文献1、特許文献2のように既存建物の構面外(外周)に、構面に沿って補強架構を付加する方法によれば、ブレースがフレームの開口を横切る形になるため、既存建物の美観、採光性、通風性、使い勝手等の建築的な機能を阻害することが避けられない。   In the method of adding a brace or a reinforcing frame having a brace, a member having a large cross-section that can resist tensile force and compressive force is used for the brace so that it can resist deformation in any direction within the frame surface. . However, according to the method of adding a reinforcing frame along the construction surface outside the construction surface (outer periphery) of the existing building as in Non-Patent Literature 1, Patent Literature 1, and Patent Literature 2, the brace crosses the opening of the frame. Since it becomes a shape, it is inevitable to hinder the architectural functions of existing buildings such as aesthetics, daylighting, ventilation and usability.

これに対し、出願人はブレースとして緊張材を用いることにより建物内での使用状態を継続しながら、上記建築的な機能を最大限に確保することが可能な耐震補強架構を先に提案している(特許文献5参照)。   On the other hand, the applicant first proposed a seismic reinforcement frame that can secure the above-mentioned architectural functions to the maximum while maintaining the state of use in the building by using a tension material as a brace. (See Patent Document 5).

「日経アーキテクチュア」、1979年6月11日号、日経BP社、p.42−48“Nikkei Architecture”, June 11, 1979, Nikkei Business Publications, p.42-48 特許第3124515号公報Japanese Patent No. 3124515 特許第3369387号公報Japanese Patent No. 3369387 特許3367011号公報Japanese Patent No. 3367011 特開2000−145162号公報JP 2000-145162 A 特開2005−163432号公報(請求項1〜4、段落0052〜0069、図1〜図5)JP-A-2005-163432 (Claims 1-4, paragraphs 0052-0069, FIGS. 1-5)

特許文献5ではブレースとして、緊張状態で高い弾性復元性を有する緊張材を使用することで、フレームの相対変位を抑制しながら、変位後にフレームを原位置に復帰させる機能を発揮させることを特徴としている(段落0007〜0009)。   In Patent Document 5, as a brace, by using a tension material having a high elastic restoring property in a tension state, a function of returning the frame to the original position after the displacement is exhibited while suppressing the relative displacement of the frame. (Paragraphs 0007 to 0009).

緊張材は既存フレームの柱に沿って構築される補強柱に定着されることから、補強柱に関して対称に架設される場合には、緊張力の水平成分を相殺させることができる。しかしながら、対称に架設される両緊張材の鉛直成分が補強柱で負担されるため、補強柱の負担が大きくなり、必然的に断面が大きくなる。   Since the tension member is fixed to the reinforcing column constructed along the column of the existing frame, the horizontal component of the tension force can be canceled when it is installed symmetrically with respect to the reinforcing column. However, since the vertical components of both tendons laid symmetrically are borne by the reinforcing pillar, the burden on the reinforcing pillar is increased, and the cross section is inevitably increased.

補強柱の断面が大きいため、例えば外壁からバルコニーが張り出す場合のように、補強柱が既存建物の構面(外壁)から距離を置いて構築されるような場合には、建物内からの眺望、既存建物に対する採光や通風への更なる配慮が必要と考えられる。   If the reinforcement pillar is constructed at a distance from the construction surface (outer wall) of the existing building, for example, when a balcony protrudes from the outer wall, the view from the building is large. Therefore, further consideration should be given to lighting and ventilation for existing buildings.

また緊張材端部の定着部では緊張材に与えられる緊張力の反力としての圧縮力に対する抵抗力を補強柱に付与しながら、緊張材端部を定着するための定着面を形成するために、図5−(a)、(b)に示すように補強柱から側面(表面)へ突出する凸部を形成することが必要となっている。   In addition, in order to form a fixing surface for fixing the end of the tendon while applying a resistance to the compressive force as a reaction force of the tension applied to the tendon at the fixing portion at the end of the tendon As shown in FIGS. 5A and 5B, it is necessary to form a convex portion protruding from the reinforcing column to the side surface (surface).

この場合、緊張力の反力は凸部を含めた緊張材の定着長の区間で負担されるが、凸部と緊張材の定着端部が補強柱の側面に突出するために、構造物の外観上の見栄えが低下し、構造物のデザインに制約を加える結果を招いている。緊張材の定着長の区間は緊張力の反力である圧縮力を負担できるボリューム(体積)を有している。   In this case, the reaction force of the tension force is borne in the section of the tension material fixing length including the convex part, but the convex part and the fixing end part of the tension material protrude to the side surface of the reinforcing column. The appearance of the appearance has been reduced, resulting in a restriction on the design of the structure. The section of the fixing length of the tendon has a volume (volume) that can bear a compressive force that is a reaction force of the tension.

本発明は上記背景より、特許文献5の補強柱が有する難点を克服する形態の耐震補強架構とその施工方法を提案するものである。   In view of the above background, the present invention proposes a seismic reinforcement frame in a form that overcomes the difficulties of the reinforcement pillars of Patent Document 5 and a construction method thereof.

請求項1に記載の緊張材を用いた耐震補強架構は、柱・梁からなるフレームの構面外に構築される補強柱と、基礎の周辺に構築され、前記補強柱を支持する補強基礎と、前記補強柱と前記補強基礎との間に、鉛直に対し、傾斜して張架される1本、もしくは複数本の緊張材とを備え、前記補強柱がその成方向、もしくは幅方向に間隔を置いて並列する複数本の柱部材と、その軸方向の一部区間に挟み込まれ、前記並列する柱部材間の前記緊張材の張架位置に介在する圧縮材から構成され
前記各緊張材が前記並列する柱部材と前記圧縮材を挿通して前記柱部材に定着され、前記圧縮材がそれを挟む前記並列する柱部材から緊張材の反力としての圧縮力を受けていることを構成要件とする。複数本の柱部材は補強柱の成方向、もしくは幅方向に互いに間隔を置いて並列し、その材軸方向の一部の区間に圧縮材が介在し、柱部材に挟み込まれる。
A seismic reinforcement frame using the tendon according to claim 1, a reinforcement column constructed outside the frame surface composed of columns and beams, a reinforcement foundation constructed around the foundation and supporting the reinforcement column, And one or a plurality of tension members that are inclined with respect to the vertical between the reinforcing column and the reinforcing foundation, and the reinforcing columns are spaced in the direction of formation or in the width direction. A plurality of pillar members arranged in parallel with each other, and sandwiched between a part of the axial direction of the pillar member, and composed of a compression material interposed in a tension position of the tension material between the parallel pillar members ,
Each of the tension members passes through the parallel column members and the compression member and is fixed to the column members, and the compression member receives a compression force as a reaction force of the tension members from the parallel column members sandwiching the compression member. and configuration requirements that you are. The plurality of column members are arranged parallel to each other in the direction in which the reinforcing columns are formed or in the width direction, and a compression material is interposed in a part of the material axis direction and is sandwiched between the column members.

補強柱が複数本の柱部材から構成され、隣接する柱部材間に圧縮材が介在することで、緊張力の反力(圧縮力)を負担すべきボリューム(体積)を圧縮材の断面積と長さ、及び柱部材の断面積を利用して確保することが可能になる。この結果、補強柱の側面(表面)に図5における凸部を形成することが不要になる。図3では2本の柱部材とその間の圧縮材により、緊張材の架設方向に発生する圧縮力を負担するためのボリュームが確保されている。補強柱側面への凸部の形成が不要になることで、構造物の外観上の見栄えが向上し、デザインへの制約が解消される。   The reinforcing column is composed of a plurality of column members, and the compression material is interposed between adjacent column members, so that the volume (volume) that should bear the reaction force (compression force) of the tension force is defined as the cross-sectional area of the compression material. It becomes possible to ensure by using the length and the cross-sectional area of the column member. As a result, it is not necessary to form the convex portion in FIG. 5 on the side surface (surface) of the reinforcing column. In FIG. 3, the volume for bearing the compressive force which generate | occur | produces in the construction direction of a tension | tensile_strength is ensured by the two pillar members and the compression material between them. By eliminating the need to form convex portions on the side surfaces of the reinforcing columns, the appearance of the structure is improved and the design constraints are eliminated.

また補強柱の、圧縮材が介在する区間以外の区間では柱部材が間隔を置いて並列するだけであるから、柱部材間の空間が開放することになる。柱部材間が開放することで、補強柱が1本の部材で構成される場合より、構造物内からの眺望と、構造物内への採光性及び通風性が向上する。   In addition, in the sections other than the section in which the compression material is interposed between the reinforcing columns, the column members are merely arranged in parallel at intervals, so that the space between the column members is opened. By opening the space between the pillar members, the view from the inside of the structure, and the lighting and ventilation of the structure are improved as compared with the case where the reinforcing pillar is constituted by one member.

圧縮材はそれを挟む柱部材間で、主として緊張材の反力としての圧縮力を負担する。圧縮材の材料は問われず、コンクリート製の場合と鋼製の場合がある。圧縮材の長さと厚さ(幅)は隣接する柱部材間に確保されるべき距離その他の条件によって決められる。   The compression material bears a compression force mainly as a reaction force of the tension material between the column members sandwiching the compression material. The material of the compression material is not limited and may be made of concrete or steel. The length and thickness (width) of the compression material are determined by the distance to be secured between adjacent column members and other conditions.

また圧縮材が柱部材に挟持される方向の厚さを調整することで、図3−(a)に示すように補強柱を構成する一方の柱部材の側面から圧縮材側へ入り込んだ位置から、他方の柱部材の側面までの間に、緊張材による圧縮力を負担するためのボリュームを確保することができるため、緊張材の端部を補強柱の側面から突出させることも解消される。具体的には請求項2に記載のように緊張材が定着される柱部材に側面から凹部が形成され、この凹部に緊張材の端部が定着されることにより、緊張材端部の補強柱側面からの突出を回避することが可能になる。   Further, by adjusting the thickness in the direction in which the compressed material is sandwiched between the column members, as shown in FIG. 3- (a), from the position where the compressed material enters the compressed material side from the side surface of one of the column members constituting the reinforcing column. Since the volume for bearing the compressive force by the tendon material can be ensured between the side surfaces of the other column member, the protruding end of the tendon material from the side surface of the reinforcing column is also eliminated. Specifically, as described in claim 2, a recess is formed from the side surface of the column member to which the tension material is fixed, and the end of the tension material is fixed to the recess, whereby the reinforcement column at the end of the tension material Protrusion from the side surface can be avoided.

請求項2では緊張材端部の補強柱側面への突出も解消されることで、緊張材端部を保護するための止水処理、及びそのための部品等も柱部材の凹部内に納めることが可能になるため、構造物の外観上の見栄えと意匠設計上の自由度が一層向上する。   In claim 2, the protrusion of the end of the tendon to the side of the reinforcing column is also eliminated, so that the water stop treatment for protecting the end of the tendon, and the components for that purpose can be accommodated in the recess of the column member. Therefore, the appearance of the structure and the degree of freedom in design can be further improved.

緊張材にはPC鋼材の他、ガラスやグラファイト、アラミド、金属の繊維を用いた繊維強化材料が使用され、緊張材はフレームに強度(耐力)を付加する働きをする。加えて、ブレースとして用いられるH形鋼等の鋼材に比べれば、緊張力を与えられた状態で高い弾性復元性を有することから、緊張された状態で補強柱を介してフレームの柱に連結されることで、フレームの層間変位を抑制しながら、変位後のフレームを原位置に復帰させる機能を発揮する。   In addition to PC steel materials, fiber reinforcement materials using glass, graphite, aramid, and metal fibers are used as the tension material, and the tension material acts to add strength (proof strength) to the frame. In addition, compared to steel materials such as H-section steel used as braces, it has high elastic resiliency in a tensioned state, so it is connected to the column of the frame via a reinforcing column in a tensioned state. Thus, the function of returning the displaced frame to the original position is exhibited while suppressing the interlayer displacement of the frame.

緊張材は使用状態で緊張力を与えられていることで、地震時に緊張材に圧縮力が作用したときには与えられた引張力の大きさの(伸び変形を生じている)範囲で圧縮力を受けることができる。その範囲では緊張材が座屈することもないため、耐震補強架構は全体で平常時と地震時のいずれも力の釣合いを保つことが可能で、不釣合が生ずることはない。緊張材はまた、弾性範囲で使用されることで、緊張状態から更に地震時の引張力を負担することができ、そのときにも降伏に至ることはなく、残留変形を生ずることなく元の状態に復帰することが可能である。   Because the tension material is given a tension force in the state of use, when a compression force acts on the tension material during an earthquake, it receives a compression force in the range of the magnitude of the applied tensile force (which causes elongation deformation). be able to. In that range, the tension members do not buckle, so that the seismic reinforcement frame can keep the balance of force both during normal times and during earthquakes, and there is no unbalance. The tension material can also be used in the elastic range, so that it can bear the tensile force in the event of an earthquake from the tension state, and at that time, it will not yield and will remain in its original state without causing residual deformation. It is possible to return to

平常時に緊張材に緊張力が与えられていることで、緊張材の上端部が定着される補強柱には緊張力の鉛直成分である鉛直下向きの力と水平成分である水平力が作用する。鉛直下向きの力は補強柱に圧縮力として負担され、最終的には地盤、または杭で負担される。水平力は補強基礎と緊張材が補強柱に関して対称に配置される場合には補強柱において相殺され、対称に配置されない場合には補強柱が接合されたフレームの梁に圧縮力として、または引張力として負担される。   Since tension force is applied to the tension material in normal times, a vertical downward force that is a vertical component of the tension force and a horizontal force that is a horizontal component act on the reinforcing column to which the upper end portion of the tension material is fixed. The vertically downward force is borne as a compressive force on the reinforcing column, and finally borne by the ground or pile. The horizontal force is canceled out in the reinforcing column when the reinforcing foundation and the tension material are arranged symmetrically with respect to the reinforcing column, and as a compressive force or tensile force when the reinforcing column is not arranged symmetrically, As borne.

緊張材の下端部が定着される補強基礎にも緊張力の鉛直成分である鉛直上向きの力(引き抜き力)と水平成分である水平力が作用するが、鉛直上向きの力は補強基礎の下に構築される杭、またはアースアンカーが負担し、水平力は地盤、または杭が負担する。   The vertical upward force (pull-out force), which is the vertical component of the tension force, and the horizontal force, which is the horizontal component, also act on the reinforcement foundation to which the lower end of the tendon is fixed, but the vertical upward force is below the reinforcement foundation. The pile to be constructed or earth anchor bears, and the horizontal force is borne by the ground or pile.

フレームに接合された補強柱と補強基礎間に緊張材が緊張状態で架設されていることで、構造物が既存建物である場合には既存建物に入力し、耐震補強架構に伝達される地震力に対しては上記のように引張側となる緊張材が更なる引張力を負担する。また圧縮側となる緊張材が圧縮力を受けることができるため、引張側と圧縮側の両緊張材を通じて地震力が補強基礎に伝達され、補強基礎で負担される。補強基礎に伝達された地震力は最終的には地盤で負担される。   Seismic force that is input to the existing building and transmitted to the seismic reinforcement frame when the structure is an existing building because the tension material is installed in tension between the reinforcing column joined to the frame and the reinforcing foundation. On the other hand, as described above, the tension material on the tension side bears a further tensile force. Further, since the tension material on the compression side can receive the compression force, the seismic force is transmitted to the reinforcement foundation through both the tension material on the tension side and the compression side, and is borne by the reinforcement foundation. The seismic force transmitted to the reinforcement foundation is ultimately borne by the ground.

緊張材が地震力に抵抗することに伴い、補強柱には緊張材の抵抗力の鉛直成分である鉛直方向下向きの圧縮力が作用するが、平常時と同様に鉛直下向きの力は補強柱に圧縮力として負担され、水平力は補強柱において相殺されるか、補強柱が接合されたフレームの梁に圧縮力として、または引張力として負担される。   As the tendon resists the seismic force, a vertical downward compressive force, which is the vertical component of the tendon's resistance, acts on the reinforcement column, but the vertical downward force is applied to the reinforcement column as usual. It is borne as a compressive force, and the horizontal force is canceled by the reinforcing column, or is applied as a compressive force or a tensile force to the beam of the frame to which the reinforcing column is joined.

一方、補強基礎の、緊張材の連結部分には緊張材から鉛直方向上向きの力(引き抜き力)と、地震力の作用の向きと同一向きの水平力が作用し、補強基礎には補強基礎を転倒させようとするモーメントと滑動させようとする水平力が作用するが、ここでも平常時と同様に鉛直上向きの力は補強基礎の下に構築される杭、またはアースアンカーで負担され、水平力は地盤、または杭で負担される。   On the other hand, in the reinforcement foundation, a vertical upward force (pull-out force) from the tension material and a horizontal force in the same direction as the action of the seismic force are applied to the connection portion of the tension material. The moment to fall and the horizontal force to slide are applied, but here again, as in normal times, the vertical upward force is borne by the pile built under the reinforcement foundation or the earth anchor, and the horizontal force Is borne by the ground or pile.

耐震補強架構が構造物の地上部分にのみ構築され、地中の基礎部分までに構築されない形式の場合には、耐震補強架構付加後の基礎と地上の架構との整合性が取れないことが多い。これに対し、本発明では補強基礎が構造物の基礎の周辺に構築され、補強柱と緊張材から伝達される地震力を負担し、あるいは地盤に伝達するのに十分な耐力を備え得るため、地上の耐震補強架構と補強基礎との整合性が取れ、地上の架構が負担する地震力を確実に地盤に伝達することが可能である。   When the seismic strengthening frame is constructed only on the ground part of the structure and not on the foundation part in the ground, the foundation after the seismic strengthening frame is often not consistent with the ground structure. . On the other hand, in the present invention, the reinforcement foundation is constructed around the foundation of the structure and can bear the seismic force transmitted from the reinforcement column and the tension material, or can have sufficient proof strength to transmit to the ground. The ground seismic reinforcement frame and the reinforcement foundation can be matched, and the seismic force borne by the ground frame can be reliably transmitted to the ground.

このように構造物に入力する地震力が補強柱と緊張材を通じて補強基礎に伝達され、最終的に地盤で負担されることで、構造物のフレームが負担すべき地震力が軽減されるため、フレームの地震力に対する安全性、すなわち耐震性能が向上する。   In this way, the seismic force that is input to the structure is transmitted to the reinforcement foundation through the reinforcing columns and tension members, and is finally borne by the ground, so the seismic force that the frame of the structure should bear is reduced. The safety against the seismic force of the frame, that is, the seismic performance is improved.

また耐震補強架構を構成する補強柱が例えばフレームの柱に沿った形で構築されることで、補強柱がフレームの開口を閉塞する形にならないようにすることが可能である。特に地震力に対する抵抗要素として引張力と圧縮力に抵抗する、予め緊張力が与えられた断面の小さいPC鋼材等の緊張材が用いられることで、緊張材がフレームの開口を横切る形になる場合でも、緊張材が既存建物の美観、採光性、通風性等の建築的な機能に影響を与えることが少なく、建築的な機能が最大限に確保される。   Moreover, it is possible to prevent the reinforcing column from closing the opening of the frame by constructing the reinforcing column that constitutes the earthquake-resistant reinforcing frame along the column of the frame, for example. Especially when the tension material crosses the opening of the frame by using a tension material such as PC steel with a small cross section that has been given a tension force in advance as a resistance element against seismic force. However, the tension material hardly affects the architectural functions such as aesthetics, lighting, and ventilation of the existing building, and the architectural functions are ensured to the maximum.

加えて構造物が既存建物である場合には、耐震補強架構が既存建物のフレームの構面外に構築されることで、建物内での使用状態を阻害することがないため、使用状態を継続しながら、既存建物を耐震補強することが可能である。   In addition, if the structure is an existing building, the seismic reinforcement frame is built outside the frame of the frame of the existing building, so it will not hinder the usage status inside the building, so the usage status will continue. However, it is possible to seismically strengthen existing buildings.

請求項1、もしくは請求項2に記載の緊張材を用いた耐震補強架構は請求項3に記載のように、柱・梁からなるフレームの構面外に、成方向、もしくは幅方向に間隔を置いて並列する複数本の柱部材と、その軸方向の一部区間に挟み込まれる圧縮材から構成される補強柱を構築する工程と、基礎の周辺に前記補強柱を支持する補強基礎を構築する工程と、前記補強柱と前記補強基礎との間に、鉛直に対して傾斜する1本、もしくは複数本の緊張材を張架する工程を経ることにより完成する。補強柱を構築する工程においては、前記並列する柱部材間の前記緊張材の張架位置に圧縮材を介在させると共に、前記緊張材を、前記並列する柱部材と前記圧縮材を挿通させて前記柱部材に定着させ、前記圧縮材にそれを挟む前記並列する柱部材から緊張材の反力としての圧縮力を受けさせることが行われる。

The seismic strengthening frame using the tension material according to claim 1 or claim 2 has a gap in the direction of formation or in the width direction outside the frame surface composed of columns and beams as described in claim 3. A step of constructing a reinforcing column composed of a plurality of column members arranged in parallel and a compression material sandwiched between a part of the axial direction of the column member, and a reinforcing foundation for supporting the reinforcing column around the foundation It is completed by passing through a process and the process of extending | stretching one or several tension material which inclines with respect to perpendicular | vertical between the said reinforcement pillar and the said reinforcement foundation. In the step of constructing the reinforcing column , the compression material is interposed at the tension position of the tension material between the column members arranged in parallel, and the tension material is inserted through the column member and the compression material in parallel. Fixing to a column member and receiving a compressive force as a reaction force of a tension member from the parallel column members sandwiching the column member between the column members are performed.

補強柱が複数本の柱部材から構成され、柱部材間に圧縮材が介在することで、緊張力の反力を負担すべき長さを補強柱において確保することができるため、補強柱の側面に凸部を形成することが不要になる。この結果、構造物の外観上の見栄えが向上し、デザインへの制約を解消することができる。   Since the reinforcing column is composed of a plurality of column members and a compression material is interposed between the column members, the length that should bear the reaction force of the tension force can be secured in the reinforcing column. It is not necessary to form a convex portion on the surface. As a result, the appearance of the structure can be improved and restrictions on the design can be eliminated.

また補強柱の内、材軸方向には圧縮材以外の区間が開放するため、構造物内からの眺望、及び構造物内への採光と通風を確保することができる。   Moreover, since sections other than the compression material are opened in the material axis direction in the reinforcing pillar, it is possible to ensure a view from the inside of the structure, and lighting and ventilation in the structure.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は柱10aと梁10bからなるフレーム10の構面外に構築される補強柱2と、基礎11の周辺に構築され、補強柱2を支持する補強基礎5と、補強柱2と補強基礎5との間に、鉛直に対し、傾斜して張架される1本、もしくは複数本の緊張材6とを備え、補強柱2が複数本の柱部材3と、隣接する柱部材3、3間の緊張材6の張架位置に介在する圧縮材4から構成されている耐震補強架構1の具体例を示す。図2は図1の緊張材6を通る縦断面を示す。耐震補強架構1は主として既存の構造物を対象とするが、新設の構造物に対しても適用される。   FIG. 1 shows a reinforcing column 2 constructed outside the frame 10 composed of a column 10a and a beam 10b, a reinforcing foundation 5 constructed around the foundation 11 and supporting the reinforcing column 2, and a reinforcing column 2 and a reinforcing foundation. 5, one or a plurality of tension members 6 that are inclined with respect to the vertical, and a reinforcing column 2 includes a plurality of column members 3 and adjacent column members 3, 3. The specific example of the earthquake-proof reinforcement frame 1 comprised from the compression material 4 interposed in the tension position of the tension material 6 between is shown. FIG. 2 shows a longitudinal section through the tendon 6 of FIG. The seismic strengthening frame 1 is mainly intended for existing structures, but is also applicable to new structures.

フレーム10は既存と新設を問わず、鉄筋コンクリート造、鉄骨鉄筋コンクリート造、鉄骨造、あるいは鋼管コンクリート造等で構築される。補強柱2と補強基礎5は鉄骨造、または鉄筋コンクリート造、あるいは鉄骨鉄筋コンクリート造、もしくは鋼管コンクリート造等で構築され、コンクリート造の場合は現場打ちコンクリート造とプレキャストコンクリート製の場合がある。緊張材6には前記の通り、PC鋼材や繊維強化材料が使用される。   The frame 10 is constructed of a reinforced concrete structure, a steel reinforced concrete structure, a steel frame structure, a steel pipe concrete structure, or the like regardless of whether the frame 10 is existing or newly installed. The reinforcing column 2 and the reinforcing foundation 5 are constructed of a steel structure, a reinforced concrete structure, a steel reinforced concrete structure, a steel pipe concrete structure, or the like. As described above, PC steel or fiber reinforced material is used for the tension material 6.

補強柱2は成方向、もしくは幅方向に複数本の柱部材3に分割されるが、緊張材6に与えられる緊張力の反力を材軸方向の圧縮力として負担することから、複数本の柱部材3が集合したときの全柱部材3の断面積の総和はこの圧縮力に抵抗できるだけの大きさを持つ。全柱部材3によって緊張力の反力を負担できれば、補強柱2の分割数と各柱部材3の断面形状は問われない。図面では補強柱2を2本の柱部材3に分割し、その間に圧縮材4を介在させているため、1本の柱部材3を長方形の断面形状にしているが、補強柱2は3本以上の柱部材3に分割され、長方形以外の断面に形成されることもある。   The reinforcing column 2 is divided into a plurality of column members 3 in the composition direction or the width direction. However, since the reaction force of the tension force applied to the tension member 6 is borne as a compression force in the material axis direction, The sum of the cross-sectional areas of all the column members 3 when the column members 3 are assembled has a size that can resist this compressive force. If the reaction force of the tension force can be borne by all the column members 3, the number of divisions of the reinforcing columns 2 and the cross-sectional shape of each column member 3 are not questioned. In the drawing, the reinforcing column 2 is divided into two column members 3, and a compression material 4 is interposed between them, so that one column member 3 has a rectangular cross-sectional shape, but there are three reinforcing columns 2. It is divided into the above column members 3 and may be formed in a cross section other than a rectangle.

補強柱2、すなわち柱部材3と圧縮材4は主として材軸方向圧縮力を負担することから、鉄筋コンクリート造で構築、または製作されるが、鉄骨で、または両者の複合構造で構築、もしくは製作されることもある。圧縮材4は柱部材3とは別体、もしくは一体で製作され、現場において隣接する柱部材3、3間に挟まれた形で柱部材3、3に一体化する場合と、予め柱部材3、3に一体化させられている場合がある。また補強柱2は現場で構築される他、図1〜図3に示すように層単位の長さで、もしくはより細分化された長さで予め製作され、現場で互いに接合されることもある。   Since the reinforcing column 2, that is, the column member 3 and the compression member 4 mainly bears the compressive force in the axial direction of the material, it is constructed or manufactured by reinforced concrete, but it is constructed or manufactured by a steel frame or a composite structure of both. Sometimes. The compression member 4 is manufactured separately from or integrally with the column member 3, and is integrated with the column members 3 and 3 in a form sandwiched between the adjacent column members 3 and 3 at the site. 3 may be integrated. In addition to the construction of the reinforcing pillar 2, the reinforcing pillar 2 may be pre-manufactured in a layer unit length as shown in FIG. 1 to FIG. .

圧縮材4の断面積と断面形状、及び厚さ、もしくは幅と材軸方向の長さは柱部材3の断面形状と緊張材6に導入される緊張力の大きさ等によって決められる。例えば図5に示す従来の緊張材に導入される緊張力と同一の緊張力を緊張材6に導入すると仮定したとき、従来の定着部において、補強柱に緊張材の架設方向に必要とされる、圧縮力負担のためのボリュームと同等程度のボリュームが確保されるように圧縮材4の寸法が決められる。   The cross-sectional area and cross-sectional shape, thickness, or width and length in the material axial direction of the compression member 4 are determined by the cross-sectional shape of the column member 3 and the magnitude of the tension force introduced into the tension member 6. For example, when it is assumed that the same tension force as the tension force introduced to the conventional tension material shown in FIG. 5 is introduced to the tension material 6, it is necessary in the conventional fixing portion in the direction in which the tension material is installed in the reinforcing column. The size of the compression material 4 is determined so that a volume equivalent to the volume for compressing force is secured.

図3における柱部材3の幅が図5に示す従来の補強柱の幅と同等で、柱部材3の厚さが従来の補強柱の成の半分であるとすれば、図5における凸部の、補強柱側面からの突出長さ(厚さ)に相当する厚さを圧縮材4が有すればよいことになる。この場合、図5における凸部の定着端面は緊張材の材軸に対して垂直な面をなしているため、圧縮材4が凸部の厚さと同等程度の厚さを有すれば、図3−(b)に示すように柱部材3の側面から、緊張材6を定着させるための空間として切欠き部3aを形成することができる。結果として緊張材6の端部を柱部材3の側面から突出しないように柱部材3内に納めることができる。   If the width of the column member 3 in FIG. 3 is the same as the width of the conventional reinforcing column shown in FIG. 5 and the thickness of the column member 3 is half that of the conventional reinforcing column, the convex portion in FIG. The compression material 4 only needs to have a thickness corresponding to the protruding length (thickness) from the side of the reinforcing column. In this case, since the fixing end surface of the convex portion in FIG. 5 forms a surface perpendicular to the material axis of the tendon material, if the compression material 4 has a thickness comparable to the thickness of the convex portion, FIG. -As shown in (b), the notch 3a can be formed from the side surface of the column member 3 as a space for fixing the tendon 6. As a result, the end portion of the tendon 6 can be stored in the column member 3 so as not to protrude from the side surface of the column member 3.

柱部材3の切欠き部3aは三角柱状、または円柱を斜めに切断した形状等に形成され、緊張材6の材軸に直交する面が緊張材6の定着面となる。緊張材6はこの定着面にナットや楔により定着され、端部に止水処理が施される。切欠き部3aは止水処理後、モルタル等の充填材で埋められることもある。   The notch 3a of the column member 3 is formed in a triangular prism shape or a shape obtained by obliquely cutting a cylinder, and a surface perpendicular to the material axis of the tension member 6 is a fixing surface of the tension member 6. The tendon 6 is fixed to the fixing surface with a nut or a wedge, and a water stop treatment is applied to the end. The notch 3a may be filled with a filler such as mortar after the water stop treatment.

補強基礎5は補強柱2を支持することから、補強柱2の下に構築され、緊張材6毎に独立して、または図4に示すように緊張材6の本数に応じて連続して構築される。補強基礎5の形態は緊張材6の架設方法と架設本数によって決められる。補強基礎5の下には沈下に対する抵抗力や引き抜きに対する抵抗力を持たせるために、必要に応じて杭12やアースアンカー13が打設、もしくは構築される。補強基礎5は構造物の基礎11から独立して構築される場合と、図2に示すように基礎11に一体化させられる場合がある。   Since the reinforcing foundation 5 supports the reinforcing pillar 2, it is constructed under the reinforcing pillar 2, and is constructed independently for each of the tension members 6 or continuously according to the number of the tension members 6 as shown in FIG. Is done. The form of the reinforcing foundation 5 is determined by the construction method and the number of constructions of the tension members 6. Under the reinforcing foundation 5, piles 12 and earth anchors 13 are placed or constructed as necessary in order to provide resistance to subsidence and resistance to withdrawal. The reinforcing foundation 5 may be constructed independently from the foundation 11 of the structure, or may be integrated with the foundation 11 as shown in FIG.

緊張材6は補強柱2と補強基礎5との間に架設されるため、補強柱2の、緊張材6の挿通部分には挿通孔が形成される。この挿通孔には緊張材6の防錆等のためにシース7が配置される。   Since the tension member 6 is installed between the reinforcing column 2 and the reinforcement foundation 5, an insertion hole is formed in the insertion portion of the reinforcement column 2 through the tension member 6. A sheath 7 is disposed in the insertion hole for rust prevention of the tendon 6 and the like.

緊張材6は図4−(a)、(b)に示すように補強柱2の両側に架設される場合と、(c)、(d)に示すように補強柱2の片側に架設される場合がある。(a)は補強柱2の片側に関して複数本の緊張材6を分散させて架設し、緊張材6の補強基礎5側の端部を1箇所に集中させて定着させた場合、(b)は複数本の緊張材6を互いに平行に架設し、各緊張材6を独立させて補強基礎5に定着させた場合である。   The tension members 6 are erected on both sides of the reinforcing column 2 as shown in FIGS. 4A and 4B, and are erected on one side of the reinforcing column 2 as shown in FIGS. There is a case. (A) is a case where a plurality of tension members 6 are dispersed and installed on one side of the reinforcing column 2 and the end of the tension member 6 on the reinforcing base 5 side is concentrated and fixed in one place. This is a case where a plurality of tendon members 6 are laid in parallel to each other, and the respective tendon members 6 are made independent and fixed to the reinforcing foundation 5.

補強基礎5と緊張材6が補強柱2の両側に、対称に配置される図4−(a)、(b)の場合、補強柱2が負担する鉛直下向きの力は補強柱2の片側にのみ配置される場合の2倍になるものの、補強柱2には圧縮力として作用するため、補強柱2内で処理され、水平力は補強柱2において相殺される。このため、フレーム10には負担が生じない上、水平力が補強基礎5には圧縮力として作用するため、補強基礎5内で処理される利点がある。   In the case of FIGS. 4A and 4B in which the reinforcing foundation 5 and the tension member 6 are arranged symmetrically on both sides of the reinforcing column 2, the vertical downward force borne by the reinforcing column 2 is applied to one side of the reinforcing column 2. However, since it acts as a compressive force on the reinforcing column 2, it is processed in the reinforcing column 2, and the horizontal force is offset in the reinforcing column 2. For this reason, since there is no burden on the frame 10 and the horizontal force acts as a compressive force on the reinforcing foundation 5, there is an advantage that it is processed in the reinforcing foundation 5.

また補強基礎5における鉛直上向きの力が補強柱2に関してほぼ対称に作用することから、補強基礎5に転倒モーメントが生ずることがないため、転倒モーメントに対する対策は不要であり、補強基礎5には部分的な浮き上がりに対する抵抗力のみを持たせればよいことになる。   Further, since the vertically upward force on the reinforcing foundation 5 acts almost symmetrically with respect to the reinforcing column 2, no tipping moment is generated in the reinforcing foundation 5, so no countermeasure against the tipping moment is required. Therefore, it is only necessary to have resistance against the typical lift.

図4−(b)の場合には緊張材6が補強基礎5に分散して定着されることで、緊張材6からの引き抜き力が補強基礎5に分散して作用し、一定着箇所当たりの引き抜き力が、集中して定着される(a)の場合より低減されるため、緊張材6の定着部において浮き上がりに抵抗するためのアースアンカー13を設置する必要性がなくなるか、低減される。また補強柱2の片側に関して緊張材6が平行に張架されることで、緊張材6を補強柱2の片側において2方向に張架することもできる。その場合、緊張材6の張架本数を多くすることができるため、構造物の耐震性能を一層向上させることも可能になる。   In the case of FIG. 4- (b), the tension material 6 is dispersed and fixed on the reinforcement base 5, so that the pulling force from the tension material 6 is dispersed and acts on the reinforcement base 5, and the tension material 6 per fixed wearing place. Since the pulling force is reduced as compared with the case (a) where the pulling force is concentrated and fixed, the necessity of installing the ground anchor 13 for resisting the lifting at the fixing portion of the tension member 6 is eliminated or reduced. Further, the tension member 6 can be stretched in two directions on one side of the reinforcement column 2 by stretching the tension member 6 in parallel with respect to one side of the reinforcement column 2. In that case, since the number of tension members 6 can be increased, it is possible to further improve the seismic performance of the structure.

図4−(c)は補強柱2からフレーム10の構面に対し、外側へ向けて緊張材6を架設した場合、(d)はフレーム10の構面に対し、内側へ向けて架設した場合である。   4 (c) shows a case where the tension member 6 is installed outward from the reinforcing pillar 2 with respect to the construction surface of the frame 10, and FIG. 4 (d) shows a case where the tension material 6 is installed inward with respect to the construction surface of the frame 10. It is.

図4−(c)の場合には、平常時において緊張材6の緊張力の水平成分がフレーム10の梁10bに引張力として作用するため、フレーム10が鉄骨造の場合には必要ないが、鉄筋コンクリート造の場合には引張力に対する抵抗要素としての鋼材等の補強材15をフレームの梁に沿って付加することもある。また緊張材6が補強柱2からフレーム10の構面の外側へ向けて張架されることで、緊張材6がフレーム10の開口を横切る形にならないため、緊張材6が構造物の美観、採光性、通風性等の建築的な機能への影響を最小限にすることができる。   In the case of FIG. 4- (c), since the horizontal component of the tension force of the tension member 6 acts as a tensile force on the beam 10b of the frame 10 in a normal state, it is not necessary when the frame 10 is a steel structure. In the case of a reinforced concrete structure, a reinforcing material 15 such as a steel material as a resistance element against a tensile force may be added along the beam of the frame. Further, since the tension material 6 is stretched from the reinforcing pillar 2 toward the outside of the frame 10, the tension material 6 does not cross the opening of the frame 10. The influence on architectural functions such as lighting and ventilation can be minimized.

図4−(d)の場合には、平常時に緊張材6の緊張力の水平成分がフレーム10の梁10bに圧縮力として作用するため、フレーム10が鉄筋コンクリート造の場合には必要ないが、鉄骨造の場合には圧縮力に対する抵抗要素や座屈止めを梁10bに沿って付加することもある。   In the case of FIG. 4- (d), since the horizontal component of the tension force of the tension member 6 acts as a compressive force on the beam 10b of the frame 10 in normal times, it is not necessary when the frame 10 is a reinforced concrete structure. In the case of construction, a resistance element against a compressive force and a buckling stop may be added along the beam 10b.

緊張材6はまた、図3−(a)の2本の緊張材6、6をその立面上の交点に関して上下対称に配置されること、すなわち補強柱2の片側において2方向に向けて架設されることもある。   The tension members 6 are also arranged so that the two tension members 6 and 6 in FIG. 3A are symmetrically arranged in the vertical direction with respect to the intersection on the elevation surface, that is, are laid in two directions on one side of the reinforcing column 2. Sometimes it is done.

図1、図2はまた、補強柱2がフレーム10から距離を置いた位置に構築され、フレーム10から張り出して構築される張出部材8に一体化した場合の耐震補強架構1の例を示している。張出部材8は主に既存建物に耐震補強架構1を付加する場合に構築される。既存建物の外周部にバルコニー14がある場合、張出部材8はバルコニー14を構造材として利用できるよう、バルコニー14との一体性を確保するように構築される。   1 and 2 also show an example of the seismic reinforcement frame 1 when the reinforcing pillar 2 is constructed at a position away from the frame 10 and integrated with the projecting member 8 constructed by projecting from the frame 10. ing. The overhang member 8 is mainly constructed when the seismic reinforcement frame 1 is added to an existing building. When the balcony 14 is present at the outer peripheral portion of the existing building, the overhang member 8 is constructed so as to ensure the integrity with the balcony 14 so that the balcony 14 can be used as a structural material.

張出部材8はフレーム10の柱10a、または梁10bから構面外へ突出する形で構築されるが、フレーム10に入力する地震力が補強柱2に流れるようにフレーム10との一体性が確保される。   The overhanging member 8 is constructed so as to protrude from the column 10a or the beam 10b of the frame 10 to the outside of the structural surface. However, the overhang member 8 is integrated with the frame 10 so that the seismic force input to the frame 10 flows to the reinforcing column 2. Secured.

図面では既存フレームの梁10bの側面にプレキャストコンクリート製の、または現場打ちコンクリート造の張出部材8を配置、または構築し、梁10bと張出部材8を構面外方向に貫通するPC鋼材等の引張材9を緊張し、張出部材8を梁10bに圧着接合することによって張出部材8をフレーム10に一体化させている。張出部材8と補強柱2の柱部材3との一体性も同様に、張出部材8と柱部材3を貫通する引張材9を緊張すること等によって確保される。   In the drawing, a precast concrete or cast-in-place concrete overhanging member 8 is arranged or constructed on the side surface of the beam 10b of the existing frame, and a PC steel material that penetrates the beam 10b and the overhanging member 8 in the outward direction of the surface. The tension member 9 is tensioned, and the extension member 8 is integrated with the frame 10 by pressure-bonding the extension member 8 to the beam 10b. Similarly, the integrity of the overhang member 8 and the column member 3 of the reinforcing column 2 is ensured by, for example, tensioning the tension member 9 penetrating the overhang member 8 and the column member 3.

本発明の耐震補強架構の例を示した立面図である。It is the elevation which showed the example of the earthquake-proof reinforcement frame of this invention. 図1の縦断面図である。It is a longitudinal cross-sectional view of FIG. (a)は図1における緊張材定着部の詳細を示した立面図、(b)は(a)の水平断面図である。(A) is the elevation which showed the detail of the tension material fixing | fixed part in FIG. 1, (b) is the horizontal sectional view of (a). (a)〜(d)は本発明の耐震補強架構における緊張材の架設例を示した立面図である。(A)-(d) is the elevation view which showed the example of construction of the tension material in the earthquake-proof reinforcement frame of this invention. 従来の耐震補強架構における緊張材定着部の詳細を示した立面図、(b)は(a)の水平断面図である。The elevation which showed the detail of the tension material fixing | fixed part in the conventional earthquake-proof reinforcement frame, (b) is a horizontal sectional view of (a).

符号の説明Explanation of symbols

1………耐震補強架構
2………補強柱
3………柱部材
3a……切欠き部
4………圧縮材
5………補強基礎
6………緊張材
7………シース
8………張出部材
9………引張材
10……フレーム
11……基礎
12……杭
13……アースアンカー
14……バルコニー
15……補強材
DESCRIPTION OF SYMBOLS 1 ......... Aseismic reinforcement frame 2 ......... Reinforcement pillar 3 ......... Column member 3a ...... Notch part 4 ......... Compression material 5 ......... Reinforcement foundation 6 ......... Strength material 7 ... …… Sheath 8 ... …… Extension member 9 ……… Tensile material 10 …… Frame 11 …… Foundation 12 …… Pile 13 …… Earth anchor 14 …… Balcony 15 …… Reinforcing material

Claims (3)

柱・梁からなるフレームの構面外に構築される補強柱と、基礎の周辺に構築され、前記補強柱を支持する補強基礎と、前記補強柱と前記補強基礎との間に、鉛直に対し、傾斜して張架される1本、もしくは複数本の緊張材とを備え、前記補強柱はその成方向、もしくは幅方向に間隔を置いて並列する複数本の柱部材と、その軸方向の一部区間に挟み込まれ、前記並列する柱部材間の前記緊張材の張架位置に介在する圧縮材から構成され
前記各緊張材は前記並列する柱部材と前記圧縮材を挿通して前記柱部材に定着され、前記圧縮材はそれを挟む前記並列する柱部材から緊張材の反力としての圧縮力を受けていることを特徴とする緊張材を用いた耐震補強架構。
A reinforcement column constructed outside the frame surface composed of columns and beams, a reinforcement foundation constructed around the foundation and supporting the reinforcement column, and between the reinforcement column and the reinforcement foundation with respect to the vertical One or a plurality of tendons stretched in an inclined manner, and the reinforcing column is composed of a plurality of column members juxtaposed at intervals in the composition direction or the width direction, and the axial direction thereof It is sandwiched between some sections, and is composed of a compression material that is interposed at the tension position of the tension material between the parallel column members ,
Each of the tension members is fixed to the column member through the parallel column member and the compression member, and the compression member receives a compression force as a reaction force of the tension member from the parallel column member sandwiching the compression member. Retrofit Frames using tendons, characterized in that there.
前記緊張材が定着される前記柱部材に側面から凹部が形成され、この凹部に前記緊張材の端部が定着されていることを特徴とする請求項1に記載の緊張材を用いた耐震補強架構。   The seismic reinforcement using the tension material according to claim 1, wherein a recess is formed from a side surface of the column member to which the tension material is fixed, and an end of the tension material is fixed to the recess. Frame. 柱・梁からなるフレームの構面外に、成方向、もしくは幅方向に間隔を置いて並列する複数本の柱部材と、その軸方向の一部区間に挟み込まれる圧縮材から構成される補強柱を構築する工程と、基礎の周辺に前記補強柱を支持する補強基礎を構築する工程と、前記補強柱と前記補強基礎との間に、鉛直に対して傾斜する1本、もしくは複数本の緊張材を張架する工程とを含み、
前記補強柱を構築する工程において、前記並列する柱部材間の前記緊張材の張架位置に圧縮材を介在させると共に、前記緊張材を、前記並列する柱部材と前記圧縮材を挿通させて前記柱部材に定着させ、前記圧縮材にそれを挟む前記並列する柱部材から緊張材の反力としての圧縮力を受けさせることを特徴とする緊張材を用いた耐震補強架構の施工方法。
Reinforcement pillar composed of multiple pillar members arranged in parallel with a gap in the direction of formation or width, and a compression material sandwiched in a partial section in the axial direction outside the frame surface composed of pillars and beams A step of constructing a reinforcing foundation for supporting the reinforcing column around the foundation, and one or a plurality of tensions inclined between the reinforcing column and the reinforcing foundation. Including stretching a material,
In the step of constructing the reinforcing column , a compression material is interposed at a tensioning position of the tension material between the parallel column members, and the tension material is inserted through the parallel column member and the compression material. A method for constructing an earthquake-proof reinforcement frame using a tension member , wherein the column member is fixed, and the compression member receives a compression force as a reaction force of the tension member from the parallel pillar members sandwiching the compression member .
JP2006232282A 2006-08-29 2006-08-29 Seismic reinforcement frame using tendon and its construction method Active JP4861096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006232282A JP4861096B2 (en) 2006-08-29 2006-08-29 Seismic reinforcement frame using tendon and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006232282A JP4861096B2 (en) 2006-08-29 2006-08-29 Seismic reinforcement frame using tendon and its construction method

Publications (2)

Publication Number Publication Date
JP2008057125A JP2008057125A (en) 2008-03-13
JP4861096B2 true JP4861096B2 (en) 2012-01-25

Family

ID=39240208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006232282A Active JP4861096B2 (en) 2006-08-29 2006-08-29 Seismic reinforcement frame using tendon and its construction method

Country Status (1)

Country Link
JP (1) JP4861096B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6342743B2 (en) * 2014-08-01 2018-06-13 株式会社竹中工務店 Existing building reinforcement structure
JP6452349B2 (en) * 2014-08-26 2019-01-16 株式会社竹中工務店 Bending reinforcement structure of existing tower structure
JP6854117B2 (en) * 2016-12-14 2021-04-07 株式会社竹中工務店 Peripheral column reinforcement structure
JP6448832B1 (en) * 2018-03-19 2019-01-09 株式会社ランドビジネス Seismic reinforcement structure of building
CN109972857B (en) * 2019-04-30 2024-03-19 同济大学建筑设计研究院(集团)有限公司 Embedded steel type underpinning node

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3023709B2 (en) * 1991-02-06 2000-03-21 清水建設株式会社 Frame structure
JP3565582B2 (en) * 1994-08-17 2004-09-15 株式会社エスイー Cable laying method
JP4128517B2 (en) * 2003-12-04 2008-07-30 鹿島建設株式会社 Seismic strengthening frame using tendons

Also Published As

Publication number Publication date
JP2008057125A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5213248B2 (en) Seismic reinforcement structure for existing buildings
JP2006312859A (en) Aseismatic reinforcing structure and aseismatic reinforcing method for existing building
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
US11352790B2 (en) Method of introducing prestress to beam-column joint of PC structure in triaxial compression
JP4861096B2 (en) Seismic reinforcement frame using tendon and its construction method
KR101547109B1 (en) Seismic reinforcement method of building using out-frame and high ductile link member
US8196368B2 (en) Ductile seismic shear key
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP5759608B1 (en) Reinforcement structure of existing building
JP4128517B2 (en) Seismic strengthening frame using tendons
JP2008214973A (en) Seismic-control bridge pier structure
KR101027378B1 (en) Earthquake-proof wall using block and steel wire and it's construction method
KR101139761B1 (en) Reinforcing wall for construction
JP4597660B2 (en) Building having seismic reinforcement structure and method for seismic reinforcement of building
KR101652621B1 (en) Aseismic structure for existing building
KR102093322B1 (en) Buttress assembly for seismic reinforcing of building having non-bearing walls
KR102408922B1 (en) Seismic retrofit structure using PC panels
JP4272253B1 (en) Reinforcement structure of existing building
JP5411375B1 (en) Buildings using seismic control columns
JP5676800B1 (en) Method of introducing PS into constructed building later and its building
JP6399623B1 (en) Damping and seismic reinforcement structure for concrete structures
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
JP2012207389A (en) Seismic strengthening construction method for existing building
JP5301746B1 (en) Buildings using steel columns with seismic prestressing
JP2004197373A (en) Earthquake resistant reinforcement method of existing concrete container structure and earthquake resistant reinforcement structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Ref document number: 4861096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250