JP4854240B2 - Ultrafine particles by pressure vibration and spray granulation - Google Patents

Ultrafine particles by pressure vibration and spray granulation Download PDF

Info

Publication number
JP4854240B2
JP4854240B2 JP2005263069A JP2005263069A JP4854240B2 JP 4854240 B2 JP4854240 B2 JP 4854240B2 JP 2005263069 A JP2005263069 A JP 2005263069A JP 2005263069 A JP2005263069 A JP 2005263069A JP 4854240 B2 JP4854240 B2 JP 4854240B2
Authority
JP
Japan
Prior art keywords
spherical
ultrafine particles
particles
holes
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005263069A
Other languages
Japanese (ja)
Other versions
JP2006077252A (en
Inventor
精鎮 絹田
西野  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optnics Precision Co Ltd
Original Assignee
Optnics Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optnics Precision Co Ltd filed Critical Optnics Precision Co Ltd
Priority to JP2005263069A priority Critical patent/JP4854240B2/en
Publication of JP2006077252A publication Critical patent/JP2006077252A/en
Application granted granted Critical
Publication of JP4854240B2 publication Critical patent/JP4854240B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing spherical ultrafine particles, which is advantageous in that (1) spherical and flaky ultrafine particles can be produced without pulverization in a pressurized vibration injection granulation device, (2) spherical ultrafine particles having a sharp spherical size distribution can be produced without any sieving process, (3) spherical ultrafine particles, which are very close to a truly round shape and have a particle diameter of 100 nm to 50,000 nm depending upon the contemplated application can be produced, and (4) the production of spherical ultrafine particles on a commercial scale can be realized at a low cost. <P>SOLUTION: The spherical ultrafine particles are characterized by being in a form having the roundness of 0.9 to 1.0 and a particle diameter of 0.01 &mu;m to 10 &mu;m without pulverization in the pressurized vibration injection granulation device. The spherical ultrafine particles can be produced by using a base having special through-holes and through-hole density in a nozzle. This base nozzle has a through-hole diameter of 0.05 &mu;m to 50 &mu;m, a through-hole aspect ratio (ratio between a through-hole diameter and length) of 5 to 200, and a through-hole density of 100 to 7,000/cm<SP>2</SP>. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、ニッケル水素電池(Ni-mH)のような電池、セラミックコンデンサや電気二重層キャパシタのような電子部品用、医薬用、触媒用等の球状単体金属、球状活性炭、球状多孔質シリカ、プリンター用球状各種トナー等のような球状超微粒子原料を無粉砕で調製可能な微粒子の形状とその製法に関し、又、本発明の応用展開として、無粉砕で薄状、鱗片状の超微粒子の提供も可能にするものである。   The present invention relates to a battery such as a nickel metal hydride battery (Ni-mH), a spherical simple metal such as a ceramic capacitor or an electric double layer capacitor such as a ceramic capacitor or an electric double layer capacitor, a pharmaceutical or a catalyst, a spherical activated carbon, a spherical porous silica, Spherical ultrafine particle raw materials such as various toners for printers can be prepared without pulverization and the production method thereof, and as an application development of the present invention, provision of non-pulverized thin and scale-like ultrafine particles Is also possible.

従来の技術は、球状粒子を形成する原料の融点により製法が異なっている。半田等の金属球状粉末や多孔質シリカゲルの球状粒子は、半田では、280℃〜330℃の温度で、シリカゲルではアルカリリッチの低軟化点ガラスを700℃〜900℃の温度で、耐熱性のスプレーノズルを用いて、雰囲気制御を行い噴霧方式で生産されている。   The conventional technique differs in the production method depending on the melting point of the raw material for forming the spherical particles. Metal spherical powder such as solder and spherical particles of porous silica gel are heat resistant sprays at a temperature of 280 ° C. to 330 ° C. for solder, and an alkali-rich low softening point glass at a temperature of 700 ° C. to 900 ° C. for silica gel. The nozzle is used to control the atmosphere and is produced by a spray method.

また、フェノール樹脂の球状粒子は、カネボウ(株)製のベルパールSや群栄化学工業(株)製のマリリンHF−050Wが市販されている。これらの製法は、レゾール樹脂とホルマリンのようなアルデヒドを乳化重合する工程で高速回転させ微粒化重合している。しかし、特開2003−203829号公報には、これらの粒状粒子の大きさは、30μm〜500μmの大きな粒子のため3〜8μmの実用粒径まで再粉砕してから、電子部品材料に用いられる。また、特開平11−1314では、フェノール樹脂にセルロース誘導体と溶媒を混合させ、相互に層分離させ、フェノール樹脂を硬化させ、その後、溶媒、セルロースを除去する方法が提案されている。この方法は、工程が複雑で、かつ、樹脂の微粒化工程が記載されず、何故、微粒化粒子の形成が可能になるかが明確でない。
このように粒子径が9μm以下の超微粒子を無粉砕で、製造する方法は、現在迄に提案及び実用化されていないのが現状である。
As for the spherical particles of the phenol resin, Bell Pearl S manufactured by Kanebo Co., Ltd. and Marilyn HF-050W manufactured by Gunei Chemical Industry Co., Ltd. are commercially available. In these production methods, a resol resin and an aldehyde such as formalin are rotated and polymerized at a high speed in a step of emulsion polymerization. However, according to Japanese Patent Application Laid-Open No. 2003-203829, these granular particles are large particles of 30 μm to 500 μm, and are used for electronic component materials after being pulverized to a practical particle size of 3 to 8 μm. Japanese Patent Laid-Open No. 11-1314 proposes a method in which a phenol derivative is mixed with a cellulose derivative and a solvent, the layers are separated from each other, the phenol resin is cured, and then the solvent and cellulose are removed. In this method, the process is complicated, and the resin atomization process is not described, and it is not clear why the formation of atomized particles is possible.
Thus, the present method has not been proposed and put to practical use so far for producing ultrafine particles having a particle diameter of 9 μm or less without pulverization.

現在、市販の活性炭を例に挙げると平均粒径が5〜10μm粒子で粉砕分級コストは30%で、3〜5μmの粒子サイズでは粉砕分級価格が活性炭価格の50%を占めている。また、活性炭は、非常に活性を有するため粉砕分級工程で雰囲気中のガス成分を吸着したり、表面酸化を受け不活性に成る場合が少なくない。   In the case of commercially available activated carbon, for example, the average particle size is 5 to 10 μm and the pulverization classification cost is 30%. For the particle size of 3 to 5 μm, the pulverization classification price accounts for 50% of the activated carbon price. In addition, activated carbon is very active, and therefore, in many cases, the activated carbon adsorbs gas components in the atmosphere in the pulverization classification process or becomes inactive due to surface oxidation.

特開2003−203829JP 2003-203829 A 特開平11−1314JP-A-11-1314

単体金属、合金、ガラス及び有機化合物のような融点を有する物質をその融点以上の温度で、スプレーノズルで微粒化する従来の方法は、物質の物性にも依存するが、通常、量産に成功している粒子径は数mmのものが大部分で、100μm〜500μmの粒子径は、実験室レベルが現状である。従って、10μm以下の粒子を無粉砕で量産する方法は未開発であった。また、高温スプレーノズル方法は、ノズルの磨耗と腐食が激しく、製造した粒子径が大きく、粒度分布の分布幅が大きく、設定範囲内の粒度分布を有する粒子を製造することは、篩別機を使用しても、極めて困難であった。特に、100〜1000nmオーダーの球状粉粒体は、工業的粉砕機、篩別機ともに未開発の状態である。
また、上記の従来例で、第2、第3物質を用いて、乳化重合時に高速回転し、微粒化粒子を得る方法も工程が複雑で、不純物の除去が困難で、また、粉砕工程を経ないと微粒化は、困難であった。
Conventional methods of atomizing substances with melting points such as single metals, alloys, glass and organic compounds at temperatures above the melting point with spray nozzles usually depend on the physical properties of the substances, but are usually successful in mass production. Most of the particle diameters are several millimeters, and the particle diameters of 100 μm to 500 μm are currently at the laboratory level. Therefore, a method for mass-producing particles of 10 μm or less without pulverization has not been developed. In addition, the high temperature spray nozzle method has severe nozzle wear and corrosion, the produced particle size is large, the particle size distribution width is large, and particles having a particle size distribution within the set range are produced by using a sieving machine. Even when used, it was extremely difficult. In particular, spherical powders of the order of 100 to 1000 nm are in an undeveloped state for both industrial pulverizers and sieving machines.
Further, in the above conventional example, the method of obtaining the atomized particles by using the second and third substances and rotating at high speed during the emulsion polymerization is complicated, and it is difficult to remove impurities. Otherwise, atomization was difficult.

本発明は、これらの従来の課題を解決し、以下の特性改善を目標とする。1)無粉砕で球状及び鱗片状の超微粒子を得る。2)篩別工程無しに、シャープな球形粒度分布を有する球状超微粒子を得る。3)極めて真円に近似した球状超微粒子を得る。粒子径が目的用途により、100nm〜50000nm、4)低コストでの工業的生産を可能にする。   The present invention solves these conventional problems and aims to improve the following characteristics. 1) Spherical and scale-like ultrafine particles are obtained without grinding. 2) Spherical ultrafine particles having a sharp spherical particle size distribution are obtained without a sieving step. 3) Spherical ultrafine particles very close to a perfect circle are obtained. Depending on the intended use, the particle size is 100 nm to 50000 nm, and 4) enables low-cost industrial production.

尚、本発明の超微粒子の真円度とは、電子顕微鏡画像上の粒子の投影断面積に等しい円の周長を粒子の投影輪郭長で除した値として定義される。また、真円度の精度上、100〜150個の粒子の計測の平均値を示すものである。   The roundness of the ultrafine particles of the present invention is defined as a value obtained by dividing the circumference of a circle equal to the projected sectional area of the particle on the electron microscope image by the projected contour length of the particle. Moreover, the average value of the measurement of 100-150 particle | grains is shown on the precision of roundness.

本発明の課題解決の手段として、特殊な貫通孔と貫通孔密度を有する基盤をノズルに用いることを特徴としている。この基盤ノズルは、貫通孔の穴径が0.05μm〜50μmで、貫通孔のアスペクト比(穴径と貫通孔の長さの比)が、5〜200で有し、貫通孔の密度が100〜7000個/cm2の貫通孔密度を有する基盤をノズルに用いる。 As a means for solving the problems of the present invention, a substrate having a special through hole and a through hole density is used for the nozzle. This base nozzle has a through hole having a hole diameter of 0.05 μm to 50 μm, an aspect ratio of the through hole (ratio of the hole diameter to the length of the through hole) of 5 to 200, and the density of the through holes is 100. A substrate having a through hole density of ˜7000 / cm 2 is used for the nozzle.

本発明では、この多数の貫通孔を有する基盤ノズルを圧電素子やモーター駆動により周期的に微振動させ、粉末原料からなる液状のスラリー状物質を多数の貫通孔を有するノズル開孔部で、定量的に、周期的にスラリーを切断し、球状の液滴とし、その後、乾燥、還元、酸化、熱処理、炭化、活性炭化等の工程を経る製造方法により、無粉砕で、目的の球状超微粒子を得ることができる。   In the present invention, the base nozzle having a large number of through holes is periodically vibrated by a piezoelectric element or a motor to quantitatively measure a liquid slurry-like substance made of a powder raw material at a nozzle opening portion having a large number of through holes. In addition, the slurry is periodically cut into spherical droplets, and then the desired spherical ultrafine particles are obtained without pulverization by a production method through processes such as drying, reduction, oxidation, heat treatment, carbonization, and activated carbonization. Obtainable.

なお、特に、本発明は、単位時間当たりの量産性を高め、品質の向上を図るため加圧下で振動を行い高粘度原料を高速度で噴射造粒を可能にする方法を提案するものである。さらに、本発明は、その工程中、必要に応じて、噴射造粒部に、外部電源を用いてコロナ放電により、印荷(直接または誘導荷電)させ、ノズルから噴出された霧化粒子には、荷電され、粒子相互が再結合しないように構成するのもその特徴の一つである。   In particular, the present invention proposes a method that enables high-speed injection granulation of a high-viscosity raw material by vibrating under pressure in order to increase mass productivity per unit time and improve quality. . Further, according to the present invention, during the process, if necessary, the spray granulation unit is subjected to imprinting (direct or induction charging) by corona discharge using an external power source, and the atomized particles ejected from the nozzle One of the features is that the particles are charged so that the particles do not recombine with each other.

本発明は、本文明細書に記載のように、高粘度原料溶液を用いて、加圧振動及び噴射造粒する製造することより、50μm以下の超微粒子を無粉砕で高効率に工業的に生産可能な方法を提供し、なおかつ、目的用途により、真円度が低い粒子(ディンプル、表面凹凸、突起等)が求められたり、鱗片状の形状が求められる工業的用途にも柔軟に対応可能な工業的生産方法を提供するものである。さらに、本発明が開示する製造方法は、低コストでの工業生産が可能で、来るべき次世代のナノテク時代に最適の材料生産技術を提供可能な工業的価値、極めて大なるものである。   As described in this specification, the present invention industrially produces ultrafine particles of 50 μm or less without pulverization and high efficiency by producing a high-viscosity raw material solution using pressure vibration and spray granulation. Possible methods, and can be flexibly adapted to industrial applications where particles with low roundness (dimples, surface irregularities, protrusions, etc.) are required or scale-like shapes are required depending on the intended application An industrial production method is provided. Furthermore, the manufacturing method disclosed in the present invention is extremely large in industrial value that can provide industrial production at a low cost and can provide an optimum material production technique in the next generation nanotechnology era.

本発明の効果を更に高めるためにメッシュノズル部を弾性体を介して、貯液槽と接合させる。弾性体は、金属性箔体からなるダイヤフラムや耐熱耐薬品性の合成ゴム等で構成するのが好ましい。   In order to further enhance the effects of the present invention, the mesh nozzle portion is joined to the liquid storage tank via an elastic body. The elastic body is preferably composed of a diaphragm made of a metallic foil, a heat-resistant and chemical-resistant synthetic rubber, or the like.

本発明で使用する多数の貫通孔を有するノズルの製法は、基本的には電鋳法で生産される。貫通孔の穴径は、0.05μm〜50μmが好ましい。0.05μm以下は、量産性が悪く、5μm以上では、強度が必要になる。アスペクト比は、5〜200が好ましい。
アスペクト比が5以下では、真円度が低下する。アスペクト比が200以上は、ノズルの加工が困難でコスト高となる。工業的量産を配慮するとアスペクト比は、5〜200が好ましい。また、ノズルの穴密度は、量産効果を勘案すると100〜7000個/cm2が好ましい。
The method for producing a nozzle having a large number of through holes used in the present invention is basically produced by electroforming. The diameter of the through hole is preferably 0.05 μm to 50 μm. If it is 0.05 μm or less, mass productivity is poor, and if it is 5 μm or more, strength is required. The aspect ratio is preferably 5 to 200.
When the aspect ratio is 5 or less, the roundness decreases. When the aspect ratio is 200 or more, it is difficult to process the nozzle and the cost becomes high. In consideration of industrial mass production, the aspect ratio is preferably 5 to 200. Further, the hole density of the nozzle is preferably 100 to 7000 / cm 2 considering the mass production effect.

ノズルの基盤の材質は、ニッケル、ニッケル基合金、チタン、タンタルのような弁作用金属及びその合金及び白金族、白金族基合金、炭素材料、SiC等で構成することが好ましい。量産性とコストを考慮するとニッケル、ニッケル基合金、チタン、タンタルのような弁作用金属及びその合金及び白金族、白金族基合金、炭素材料等が経済的である。   The material of the nozzle base is preferably made of a valve action metal such as nickel, nickel-base alloy, titanium or tantalum and alloys thereof, platinum group, platinum group base alloy, carbon material, SiC, or the like. Considering mass productivity and cost, valve action metals such as nickel, nickel-base alloys, titanium, and tantalum and alloys thereof, and platinum groups, platinum group alloys, carbon materials, and the like are economical.

本発明が応用可能な材料は、有機物、無機物、セラミックス及びこれらのスラリー状の液状物が本発明の原料材料である。これらの諸材料を多数の貫通孔を有するノズルを通過させ、その後、所定の粒子に無粉砕で加工する。   The materials to which the present invention can be applied are organic materials, inorganic materials, ceramics, and these slurry-like liquid materials. These materials are passed through a nozzle having a large number of through holes, and then processed into predetermined particles without pulverization.

本発明では、これらのスラリー状の液状物をチタン酸バリウムやPZT等を使用した超音波振動子やモーター駆動で、定速度で、加圧下で圧送されたスラリー状液状物を一定間隔で切断し、超微粒子を形成させる。この工程の高効率化を図る目的で、すなわち、定速度振動の効率化を図るため、弾性体を介して、多孔体からなるノズルを接合することを特徴としている。この弾性体として、金属から成るダイヤフラムを用いることが好ましい。   In the present invention, these slurry-like liquid materials are cut at regular intervals by slurry-like liquid materials fed under pressure at a constant speed by an ultrasonic vibrator or motor drive using barium titanate, PZT or the like. To form ultrafine particles. For the purpose of improving the efficiency of this process, that is, in order to improve the efficiency of constant speed vibration, a nozzle made of a porous body is joined through an elastic body. It is preferable to use a metal diaphragm as the elastic body.

本発明で、上記のノズルは、外部電源で、400〜5000Vの電圧でコロナ放電により印荷され、ノズルから定量的に切断された球状粒子は、荷電されているために相互に再結合することなく次の工程である乾燥、焼成、還元、炭化、賦活等の工程に進行する。   In the present invention, the above-mentioned nozzle is externally powered and charged by corona discharge at a voltage of 400 to 5000 V, and the spherical particles quantitatively cut from the nozzle are recharged because they are charged. Without proceeding to the next step such as drying, firing, reduction, carbonization, activation and the like.

本発明で使用する熱硬化性樹脂は、フェノール樹脂、フリフラール樹脂、メラミン樹脂、尿素樹脂、エポキシ樹脂、アルキド樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、キシレン樹脂、ウレタン樹脂等の単体または複合化された樹脂を使用する。超微粒子状の炭素を必要とする場合には、フェノール樹脂、フリフラール樹脂等の炭化収率の高いものを選択する。また、抵抗の低い炭素系超微粒子が必要な場合は、石油系タール、石炭系タール、ナフタレンピッチ、アンスラセンピツチを原料に用いる。   The thermosetting resin used in the present invention is a simple substance or a composite of phenol resin, furfural resin, melamine resin, urea resin, epoxy resin, alkyd resin, unsaturated polyester resin, silicone resin, xylene resin, urethane resin, etc. Use resin. When ultrafine carbon is required, one having a high carbonization yield such as phenol resin or furfural resin is selected. When carbon-based ultrafine particles with low resistance are required, petroleum-based tar, coal-based tar, naphthalene pitch, and anthracene pitch are used as raw materials.

これらの液状スラリーの粘度は、150〜3000cpが好ましいが、量産性を勘案すると150〜1000cpが大量生産に適合している。   The viscosity of these liquid slurries is preferably 150 to 3000 cp, but 150 to 1000 cp is suitable for mass production considering mass productivity.

本発明の主な目的は、球状超微粒子であるが、本発明で、霧化球状粒子を反応させる液層に界面活性剤を添加させる濃度により、球状〜卵状〜鱗片状に任意に形状を変化させることが可能である。この場合の界面活性剤は、非イオン及び両イオン界面活性剤、フッ素系界面活性剤を用いる。   The main object of the present invention is spherical ultrafine particles, but in the present invention, the shape can be arbitrarily formed into a spherical shape, an egg shape, or a scale shape depending on the concentration at which the surfactant is added to the liquid layer for reacting the atomized spherical particles. It is possible to change. As the surfactant in this case, nonionic and amphoteric surfactants and fluorosurfactants are used.

以下、本発明の実施の形態を下記の工程構成図により詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the following process configuration diagrams.

(実施例1 本発明の主要工程図)
図1は本発明の加圧振動噴射造粒装置の概念図である。貯液タンク1は、加圧原料導入口2から加圧原料溶液(原料液A)が加圧原料貯液槽3に貯液される。この加圧原料溶液は貯液タンク3に接合された弾性体ダイヤフラム4を通過して、貫通孔メッシュ6で、圧電振動体7の振動エネルギーにより、球状微粒化粒子10となる。なお、弾性体4は、弾性体接合部5にて、貯液タンク1に固定されている。
(Example 1 main process diagram of the present invention)
FIG. 1 is a conceptual diagram of a pressurized vibration injection granulator of the present invention. In the liquid storage tank 1, the pressurized raw material solution (raw material liquid A) is stored in the pressurized raw material storage tank 3 from the pressurized raw material inlet 2. The pressurized raw material solution passes through the elastic diaphragm 4 joined to the liquid storage tank 3, and becomes spherical atomized particles 10 by the vibration energy of the piezoelectric vibrator 7 through the through-hole mesh 6. The elastic body 4 is fixed to the liquid storage tank 1 at the elastic body joint portion 5.

圧電振動部7は、電源8から原料溶液の濃度、粘度に応じて、数100KHzの電圧が供給される。霧化粒子荷電部9(図2)で、コロナ放電により帯電粒子11となり、霧化粒子10が相互に凝集しないように帯電させる。   The piezoelectric vibration unit 7 is supplied with a voltage of several hundreds KHz from the power source 8 according to the concentration and viscosity of the raw material solution. In the atomized particle charging unit 9 (FIG. 2), charged particles 11 are formed by corona discharge and charged so that the atomized particles 10 do not aggregate with each other.

霧化粒子荷電部9を通過した帯電霧化粒子11は、反応槽12に導入され、反応溶液(B)は反応溶液導入口13から反応槽12に導入され、サイクロン式反応槽14で反応し、反応貯液槽15に貯液される。この反応液は、パイプ16と、移送ポンプ17及び移送パイプ18で、次の工程に移送される。   The charged atomized particles 11 that have passed through the atomized particle charging unit 9 are introduced into the reaction vessel 12, and the reaction solution (B) is introduced into the reaction vessel 12 through the reaction solution inlet 13 and reacted in the cyclone reaction vessel 14. The liquid is stored in the reaction liquid storage tank 15. This reaction liquid is transferred to the next step by the pipe 16, the transfer pump 17, and the transfer pipe 18.

反応槽14はサイクロンの形状でなくても良いがこのような形状は、微粒子の均一化に効果的であつた。その理由は、原料液Aの微粒子と反応液Bとの薄層の膜反応が均一反応を容易にさせるものと考えられる。図1には示されていないが、この後の工程は、先願の工程図のように固体と液体を分離し、固体球状粒子は、濾過工程、乾燥工程を経て、目的の球状超微粒子を得る。   The reaction vessel 14 does not have to be in the shape of a cyclone, but such a shape was effective for homogenizing fine particles. The reason is considered that the thin film reaction between the fine particles of the raw material liquid A and the reaction liquid B facilitates the uniform reaction. Although not shown in FIG. 1, in the subsequent process, the solid and liquid are separated as in the process chart of the prior application, and the solid spherical particles are subjected to a filtration process and a drying process to obtain the desired spherical ultrafine particles. obtain.

(実施例2)
本発明の荷電部(図1における荷電部9)を図2で荷電方法(絶縁槽の概念図)を詳細に説明する。絶縁体で構成された帯電層21には電源22から供給された高圧電源を帯電槽21に部分埋設された対極23と、絶縁シールド24aで周囲と絶縁され、且つ霧化粒子25の中央部に設置されたコロナ放電先端部電極24との間でコロナ放電を行い、霧化粒子25をマイナスに帯電させる。電源は、原料の種類と粘度により変化するが、通常数100KVの荷電でコロナ放電を行うのが本発明では安全で、効果的である。
(Example 2)
The charging method (charging unit 9 in FIG. 1) of the present invention will be described in detail with reference to FIG. The charging layer 21 made of an insulator is insulated from the surroundings by a counter electrode 23 partially embedded in the charging tank 21 with a high-voltage power source supplied from a power source 22 and an insulating shield 24a, and at the center of the atomized particles 25. Corona discharge is performed between the installed corona discharge tip electrode 24 and the atomized particles 25 are negatively charged. Although the power source varies depending on the type and viscosity of the raw material, it is safe and effective in the present invention to perform corona discharge with a charge of several hundred KV.

(実施例3)
本発明の主要部のその他の概念図を図3に示す。圧送された原料溶液を、弾性体35を介して接合された貫通孔を有するメッシュ34を圧電素子36の動力で加圧下で振動を与え、霧化し、微粒化を行う。圧電素子36として、例えば、圧電セラミックス素子を使用することができる。この微粒子に電極23及び24によりコロナ放電により霧化粒子25に帯電させる。尚、電極23及び24は、絶縁シールド23a、24aで周囲に対してそれぞれ絶縁状態が保たれている。電極24の先端部は、針状であることが好ましく、針状電極は、コロナ放電を効率的に行い霧化粒子25の凝集を防止させる。尚、弾性体35として、有機溶媒耐性を有するゴム及び/或いは金属から構成されるダイヤフラムを使用することができる。
(Example 3)
FIG. 3 shows another conceptual diagram of the main part of the present invention. A mesh 34 having a through hole joined with the raw material solution fed through the elastic body 35 is vibrated under pressure by the power of the piezoelectric element 36, atomized, and atomized. As the piezoelectric element 36, for example, a piezoelectric ceramic element can be used. The fine particles are charged to the atomized particles 25 by corona discharge with the electrodes 23 and 24. The electrodes 23 and 24 are kept in an insulated state with respect to the surroundings by insulating shields 23a and 24a. The tip of the electrode 24 is preferably acicular, and the acicular electrode efficiently corona discharges and prevents the atomized particles 25 from aggregating. Note that a diaphragm made of rubber and / or metal having resistance to organic solvents can be used as the elastic body 35.

(実施例4)
実施例4では、図1及び図2で示した加圧振動噴射造粒装置を用いて、フェノール樹脂の球状粒子とカーボントナーの球状粒子を製造した。
Example 4
In Example 4, spherical particles of phenol resin and spherical particles of carbon toner were produced using the pressure vibration jet granulator shown in FIGS. 1 and 2.

表1のNo.1〜No.4は、フェノール樹脂原料のレゾール樹脂(A液)の粘度を60〜500cpに変化させ、加圧振動噴射造粒による製造試験を行った。ノズルの条件は、5μmの貫通孔で、穴密度が6000個/cm2で、ホルマリン(B液)で反応させた。常圧(1kg/cm2)の条件では、生産量が0〜15g/15minであつたが、圧力を2〜5kg/cm2に変化させるとほぼ、圧力に比例して、フェノールの球状粒子が30〜550g/15minの生産量が得られた。得られた球状粒子は、真円度も優れたものであつた。 No. in Table 1 1-No. No. 4 changed the viscosity of the resole resin (liquid A), which is a phenol resin raw material, to 60 to 500 cp, and performed a production test by pressure vibration jet granulation. The nozzle conditions were 5 μm through holes, a hole density of 6000 holes / cm 2 , and a reaction with formalin (liquid B). Under normal pressure (1 kg / cm 2 ) conditions, the production amount was 0 to 15 g / 15 min. However, when the pressure was changed to 2 to 5 kg / cm 2 , the spherical particles of phenol were almost proportional to the pressure. A yield of 30-550 g / 15 min was obtained. The obtained spherical particles had excellent roundness.

Figure 0004854240
Figure 0004854240

表1のNo.5〜No.8は、黒色のカーボントナーの製造を行った。前記のフェノールの球状粒子を650℃で焼成し、炭化収率50%で、カーボントナー原料を得て、公知のワックス、接着剤、分散剤、溶剤を用いて、トナー原料スラリーを作成し、ノズル条件として、7μmの貫通孔で、穴密度5000個/cm2で製造を行った。粘度は、300〜1500cpに変化させ、スラリーの圧力は、1〜5kg/cm2の条件で製造した。その結果、常圧では粘度が高く、殆ど、製造出来なかったが、圧力を2〜5kgに昇圧することにより、圧力とスラリー粘度に比例して、13〜365g/15minの球状トナーを無粉砕で、無分級で得られた。 No. in Table 1 5-No. No. 8 produced black carbon toner. The above spherical spherical particles of phenol are fired at 650 ° C. to obtain a carbon toner raw material with a carbonization yield of 50%, and a toner raw material slurry is prepared using a known wax, adhesive, dispersant, and solvent, and a nozzle As a condition, a 7 μm through hole was manufactured at a hole density of 5000 holes / cm 2 . The viscosity was changed to 300-1500 cp, and the slurry pressure was 1-5 kg / cm 2 . As a result, the viscosity was high at normal pressure and could hardly be produced. Obtained without classification.

(実施例5 銀の球状超微粒子の製造)
原料液Aとして15重量%濃度の硝酸銀アンモニア溶液を用い、反応溶液Bとして濃度7.5g/lが溶液グリオキザール液を用いて、図1の加圧振動噴射造粒装置により、銀の球状超微粒子を製造した。得られた銀粒子は、平均粒径が50μm以下であり、真円度も優れたものであった。
Example 5 Production of Silver Ultrafine Particles
A spherical ultrafine particle of silver is produced by using a pressure-vibration jet granulator of FIG. 1 using a 15 wt% silver nitrate ammonia solution as the raw material liquid A and a solution glyoxal liquid having a concentration of 7.5 g / l as the reaction solution B. Manufactured. The obtained silver particles had an average particle diameter of 50 μm or less and excellent roundness.

本発明は、本文明細書に記載のように加圧振動噴射造粒装置を用いて、50μ以下の超微粒子を無粉砕、無分級で高効率に工業的に生産可能な方法を提供し、なおかつ、目的用途により、真円度が低い粒子が求められたり、鱗片状の形状が求められる工業的用途にも柔軟に対応可能な工業的生産方法を提供するものである。さらに、本発明方法は、低コストでの工業生産が可能で、極めて優れた省エネルギー化、炭酸ガスの削減を可能で、来るべき次世代のナノテク時代に最適に材料生産技術を提供可能な工業的価値、極めて大なるものである。   The present invention provides a method capable of industrially producing ultrafine particles of 50 μm or less without pulverization, non-classification and high efficiency using a pressure vibration injection granulator as described in the present specification, and The present invention provides an industrial production method that can flexibly cope with an industrial application in which particles having low roundness are required or a scaly shape is required depending on the intended application. Furthermore, the method of the present invention enables industrial production at a low cost, enables extremely excellent energy saving and reduction of carbon dioxide gas, and can provide material production technology optimally in the coming next generation nanotechnology era. Value is tremendous.

本発明の加圧振動噴射造粒装置の概念図Conceptual diagram of pressurized vibration injection granulator of the present invention 本発明のコロナ帯電装置の構成図Configuration diagram of corona charging device of the present invention 本発明の加圧振動噴射造粒装置の第2の概念図The 2nd conceptual diagram of the pressurization vibration injection granulation device of the present invention.

符号の説明Explanation of symbols

1 貯液タンク
2 加圧原料(A液)導入口
3 加圧原料液タンク
4 弾性体
5 弾性体接合部
6 貫通孔を有する本発明の金属メッシュ
7 圧電振動体
8 電源
9 霧化粒子荷電部
10 霧化粒子
11 帯電粒子
12 反応槽
13 反応溶液導入口
14 サイクロン式反応槽
15 反応貯液槽
16 パイプ
17 移送ポンプ
18 移送パイプ
21 帯電槽
22 電源部
23 電極24の対電極(正極)
23a 絶縁シールド
24 コロナ放電電極(負極)
24a 絶縁シールド
25 霧化粒子
34 金属メッシュ
35 弾性体
36 圧電素子
DESCRIPTION OF SYMBOLS 1 Liquid storage tank 2 Pressurized raw material (A liquid) inlet 3 Pressurized raw material liquid tank 4 Elastic body 5 Elastic body joint part 6 Metal mesh of this invention which has a through-hole 7 Piezoelectric vibrator 8 Power supply 9 Atomized particle charge part DESCRIPTION OF SYMBOLS 10 Atomization particle 11 Charged particle 12 Reaction tank 13 Reaction solution inlet 14 Cyclone type reaction tank 15 Reaction storage tank 16 Pipe 17 Transfer pump 18 Transfer pipe 21 Charge tank 22 Power supply part 23 Power supply part 23 Counter electrode (positive electrode)
23a Insulation shield 24 Corona discharge electrode (negative electrode)
24a Insulation shield 25 Atomized particles 34 Metal mesh 35 Elastic body 36 Piezoelectric element

Claims (3)

加圧下で圧送されたスラリー状の液状物が貯液される貯液タンクと、
前記貯液タンクと筒状の弾性体を介して接合され、前記弾性体内を通過した前記液状物が通過される多数の貫通孔を有する基盤ノズルと、
前記液状物の濃度、粘度に応じて電源から電圧が供給され、前記基盤ノズルを定速度振動させることで前記液状物を前記貫通孔に通過させ球状微粒子化粒子を形成する圧電振動部と、
コロナ放電により前記球状微粒子化粒子を帯電させて帯電霧化粒子にする霧化粒子荷電部と、
を備えた加圧振動噴射造粒装置。
A liquid storage tank in which a slurry-like liquid material pumped under pressure is stored ;
A base nozzle having a number of through-holes that are joined to the liquid storage tank via a cylindrical elastic body and through which the liquid material that has passed through the elastic body passes ;
The concentration of the liquid material is supplied voltage from the power source depending on the viscosity, and the piezoelectric vibrating portion for forming said base nozzle the liquid was passed through the through hole by causing the constant velocity vibration spherical fine particles,
An atomized particle charging unit that charges the spherical micronized particles by corona discharge to form charged atomized particles ;
A pressure vibration jet granulation apparatus comprising:
前記基盤ノズルは、貫通孔の穴径が0.05μm〜50μmで、貫通孔のアスペクト比が5〜200で、貫通孔の孔密度が100〜7000個/cmの開孔密度を有することを特徴とする請求項1記載の加圧振動噴射造粒装置。 The base nozzle has a hole diameter of through holes of 0.05 to 50 μm, an aspect ratio of the through holes of 5 to 200, and an opening density of 100 to 7000 holes / cm 2. 2. The pressurized vibration injection granulator according to claim 1. 前記弾性体は、金属製ダイヤフラムであることを特徴とする請求項1又は請求項2記載の加圧振動噴射造粒装置。   3. The pressurized vibration injection granulator according to claim 1, wherein the elastic body is a metal diaphragm.
JP2005263069A 2005-09-09 2005-09-09 Ultrafine particles by pressure vibration and spray granulation Expired - Fee Related JP4854240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263069A JP4854240B2 (en) 2005-09-09 2005-09-09 Ultrafine particles by pressure vibration and spray granulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263069A JP4854240B2 (en) 2005-09-09 2005-09-09 Ultrafine particles by pressure vibration and spray granulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004261756A Division JP4762517B2 (en) 2004-09-09 2004-09-09 Method for producing toner for printer

Publications (2)

Publication Number Publication Date
JP2006077252A JP2006077252A (en) 2006-03-23
JP4854240B2 true JP4854240B2 (en) 2012-01-18

Family

ID=36156952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263069A Expired - Fee Related JP4854240B2 (en) 2005-09-09 2005-09-09 Ultrafine particles by pressure vibration and spray granulation

Country Status (1)

Country Link
JP (1) JP4854240B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009191A1 (en) * 2006-07-28 2010-01-14 Mitsubishi Materials Corporation Fine silver particles, production method thereof, and production apparatus therefor
JP5224022B2 (en) * 2006-07-28 2013-07-03 三菱マテリアル株式会社 Method and apparatus for producing silver fine particles
JP2009020349A (en) * 2007-07-12 2009-01-29 Ricoh Co Ltd Method for producing toner, toner and developer
JP5033590B2 (en) * 2007-11-12 2012-09-26 株式会社リコー Toner production method and toner
JP5434061B2 (en) * 2007-12-19 2014-03-05 株式会社リコー Electrophotographic developer carrier manufacturing method, electrophotographic developer carrier, electrophotographic developer, electrophotographic developing method, process cartridge
JP5224104B2 (en) * 2008-04-16 2013-07-03 株式会社リコー Toner manufacturing method and toner
KR101502867B1 (en) 2008-10-30 2015-03-18 주식회사 탑 엔지니어링 Head apparatus and liqiud crystal dispenser having the same
KR101645347B1 (en) * 2014-11-17 2016-08-04 재단법인 포항산업과학연구원 DEVICE FOR producing anisotropic micro carbon spheres, AND THE Method
JP6443774B2 (en) * 2017-07-03 2018-12-26 株式会社リコー Particle production method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243943A (en) * 1988-04-12 1990-02-14 Mitsuboshi:Kk Preparation of ultrafine powder
JP3201818B2 (en) * 1992-03-10 2001-08-27 大川原化工機株式会社 Spray pyrolysis method and apparatus
JP3363938B2 (en) * 1993-03-29 2003-01-08 日鉄鉱業株式会社 Method for producing spherical iron nitride fine particles by sintering method
DE19928392A1 (en) * 1999-06-22 2000-12-28 Merck Patent Gmbh Spray pyrolysis or spray drying apparatus used in the production of inorganic oxides and mixed oxides or powder material comprises a reaction tube located in an outer tube, an atomizing system, gas inlet supports, and gas inlet slits
DE60140625D1 (en) * 2000-08-15 2010-01-07 Univ Illinois PROCESS FOR PRODUCING MICROPARTICLES
JP5113308B2 (en) * 2001-08-29 2013-01-09 智彦 羽柴 Ultrafine particle production equipment
JP3957581B2 (en) * 2002-07-19 2007-08-15 電気化学工業株式会社 Method for producing spherical silica powder

Also Published As

Publication number Publication date
JP2006077252A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4854240B2 (en) Ultrafine particles by pressure vibration and spray granulation
CN100584444C (en) Spherical superfine particle and its manufacturing method
CN103785860B (en) Metal dust of 3D printer and preparation method thereof
JP5201313B2 (en) Electrode for electrochemical device and method for producing the same
KR101157144B1 (en) A Dispersing Apparatus for Nano Powders Using Intensity Focused Ultrasonics Wave and A Dispersing Method Using Thereof
JP2007273639A (en) Composite particle for electrode of electrochemical device
JP7043774B2 (en) Aerosol film forming equipment and aerosol film forming method
CN112221438A (en) Superfine microsphere powder material and preparation method thereof
CN103130211A (en) Preparation method of graphene
JP2009190903A (en) Method for attaching ultrafine metal particles and carbon composite material with attached ultrafine metal particles
JP2006167593A (en) Spherical ultrafine particle and its manufacturing method
JP2007051018A (en) Method for producing carbon material thin film
JP4987027B2 (en) Method for producing spherical ultrafine particles
JPWO2013118758A1 (en) Electrochemical device electrode composite particle manufacturing apparatus and electrochemical device electrode composite particle manufacturing method
CN106460218A (en) Capacitive metal porous body-forming apparatus and capacitive metal porous body-forming method using same
JP4581990B2 (en) Electrostatic atomizer
Chen et al. Study on distribution characteristics of diamond particles under high-voltage electrostatic field
US20190055423A1 (en) Wear-resistant and low-friction polymer composite comprising nano-diamond powder treated with hydrogen plasma, and method for producing polymer composite
JPH06277486A (en) Production of superfine particle
Bortolani et al. Synthesis of spherical lead zirconate titanate (PZT) nanoparticles by electrohydrodynamic atomisation
Jayasinghe et al. Electrospraying: an in-situ polymerisation route for fabricating high macroporous scaffolds
US20220080434A1 (en) Powder layer composite, coating film, powder coating method, and powder coating apparatus
US20230175774A1 (en) Atomizing spray dryer
US20240123458A1 (en) Powder layer composite, coating film, powder coating method, and powder coating apparatus
JP3763802B2 (en) Atomizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090724

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090724

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4854240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees