JP4852756B2 - Method for manufacturing element for organic sensor - Google Patents

Method for manufacturing element for organic sensor Download PDF

Info

Publication number
JP4852756B2
JP4852756B2 JP2006315347A JP2006315347A JP4852756B2 JP 4852756 B2 JP4852756 B2 JP 4852756B2 JP 2006315347 A JP2006315347 A JP 2006315347A JP 2006315347 A JP2006315347 A JP 2006315347A JP 4852756 B2 JP4852756 B2 JP 4852756B2
Authority
JP
Japan
Prior art keywords
organic
measured
sensor element
sintered body
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006315347A
Other languages
Japanese (ja)
Other versions
JP2008128868A (en
Inventor
皓一 新原
久幸 末松
常生 鈴木
忠親 中山
俊太郎 鈴木
崇弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2006315347A priority Critical patent/JP4852756B2/en
Publication of JP2008128868A publication Critical patent/JP2008128868A/en
Application granted granted Critical
Publication of JP4852756B2 publication Critical patent/JP4852756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、Ni、Fe及びOを含む粒子の焼結体又は薄膜からなり、有機物の吸着・脱離反応に伴う電気抵抗率の変化を測定することにより有機物を測定するセンサー用素子の製造方法に関する。 The present invention relates to a sensor element manufacturing method comprising a sintered body or a thin film of particles containing Ni, Fe and O, and measuring an organic substance by measuring a change in electrical resistivity accompanying an adsorption / desorption reaction of the organic substance. About.

環境問題の高まりとともに、有機物を測定対象とするセンサーが必要とされており、これまでに種々のセンサーが提案されている。(例えば、特許文献1〜3参照)
特開平5−18928号公報 特開2003−315300号公報 特開2003−262625号公報
As environmental problems increase, sensors for measuring organic substances are required, and various sensors have been proposed so far. (For example, see Patent Documents 1 to 3)
Japanese Patent Laid-Open No. 5-18928 JP 2003-315300 A JP 2003-262625 A

従来の有機物を測定対象とするセンサーは、沸点・融点が低い分子量の小さい有機物を測定するものであり、室温で使用可能なものが殆んどであり、沸点・融点が高く分子量が大きい有機物を測定対象とし、かつ高温で使用可能なセンサーは極めて少なかった。
特許文献1に記載されたセンサーは、炭素微小センサーであるために、高温での有機物センサーとしては機能するが、大気中で高温にすると燃焼してしまうためにその利用が困難であった。特許文献2には、Fe及びOを含む半導体からなるセンサーが記載されているが、このセンサーでは高価なNbやBaが必要であり、実用性に欠けるという問題点がある。また、特許文献3に記載のセンサーでは、測定対象とする有機物を捕集管から脱離させることが必要であり、その場測定ができなかった。
Conventional sensors that measure organic substances measure organic substances with a low boiling point / melting point and low molecular weight, and most of them can be used at room temperature, and organic substances with a high boiling point / melting point and high molecular weight can be used. There were very few sensors that could be measured and could be used at high temperatures.
The sensor described in Patent Document 1 functions as an organic sensor at a high temperature because it is a carbon microsensor, but is difficult to use because it burns when heated to high temperature in the atmosphere. Patent Document 2 describes a sensor made of a semiconductor containing Fe and O. However, this sensor requires expensive Nb and Ba and has a problem that it lacks practicality. Moreover, in the sensor described in Patent Document 3, it is necessary to desorb an organic substance to be measured from the collection tube, and in-situ measurement cannot be performed.

本発明者等は、これら従来技術の問題点を解消するために、Ni,Fe及びOからなる電気伝導性酸化物によりセンサーを構成することを、先に提案した。(特許文献4)
特開2003−128463号公報 このセンサーは、従来のセンサーよりも優れた性能を有するものではあるが、さらに高感度で沸点・融点が高く分子量が大きい有機物を測定することのできるセンサーが求められていた。
In order to solve these problems of the prior art, the present inventors have previously proposed that a sensor be constituted by an electrically conductive oxide composed of Ni, Fe and O. (Patent Document 4)
JP, 2003-128463, A Although this sensor has the performance superior to the conventional sensor, the sensor which can measure organic substance with higher sensitivity, boiling point, melting point, and high molecular weight is calculated | required. It was.

したがって、本発明は沸点・融点が高く分子量が大きい有機物を高感度で測定することができ、かつ高温でも使用可能なセンサー用素子を低コストで提供することを目的とする。   Accordingly, an object of the present invention is to provide a sensor element that can measure an organic substance having a high boiling point / melting point and a high molecular weight with high sensitivity and that can be used even at a high temperature.

本発明では、上記課題を解決するために、つぎの1〜5の構成を採用するものである。
1.Ni及びFeの硝酸塩をクエン酸水溶液に溶解し、エチレングリコールと重合した後に成形し、大気中で加熱して焼成することを特徴とする、Ni、Fe及びOを含む粒子の焼結体又は薄膜からなり、かさ密度が45−80%である有機物センサー用素子の製造方法。
2.Ni細線とFe細線をより合わせて充電されたコンデンサーに接続し、大気中でパルス通電加熱することにより急速蒸発・酸化させて酸化物粉末を合成し、これを成形後大気中で加熱して焼成することを特徴とする、Ni、Fe及びOを含む粒子の焼結体又は薄膜からなり、かさ密度が45−80%である有機物センサー用素子の製造方法。
3.前記粒子がNi,Fe及びOのみからなる粒子であることを特徴とする1又は2に記載の有機物センサー用素子の製造方法。
4.測定対象とする有機物の沸点が110〜500℃であることを特徴とする1〜3のいずれかに記載の有機物センサー用素子の製造方法。
5.測定対象とする有機物がキシレン又は酢酸ブチルであることを特徴とする4に記載の有機物センサー用素子の製造方法。
In the present invention, in order to solve the above-mentioned problems, the following configurations 1 to 5 are adopted.
1. A sintered or thin film of particles containing Ni, Fe and O, wherein Ni and Fe nitrates are dissolved in a citric acid solution, polymerized with ethylene glycol, molded, heated and fired in air And a method for producing an organic sensor element having a bulk density of 45-80%.
2. The Ni fine wire and Fe fine wire are combined and connected to a charged capacitor, and pulsed and heated in the atmosphere to rapidly evaporate and oxidize to synthesize oxide powder, which is then heated in the atmosphere and fired A method for producing an organic sensor element comprising a sintered body or thin film of particles containing Ni, Fe and O, and having a bulk density of 45-80%.
3. 3. The method for producing an organic sensor element according to 1 or 2 , wherein the particles are particles composed of only Ni, Fe and O.
4). The method for producing an organic sensor element according to any one of 1 to 3, wherein the organic substance to be measured has a boiling point of 110 to 500 ° C.
5). 5. The method for producing an organic sensor element according to 4, wherein the organic substance to be measured is xylene or butyl acetate .

本発明によれば、沸点・融点が高く分子量が大きい有機物を高感度で測定することができ、かつ高温でも使用可能なセンサー用素子を低コストで得ることができる。本発明の有機物センサー用素子は、測定温度90〜500℃、特に100〜350℃の範囲で、測定対象とする有機物の種類や測定条件、或いは素子の製造条件に応じた特定の温度±5℃で、対数電気抵抗率の傾きが0.02logΩcm/℃以上変化するものであり、測定対象とする有機物の有無を高感度で検知することができる。   According to the present invention, an organic substance having a high boiling point / melting point and a high molecular weight can be measured with high sensitivity, and a sensor element that can be used even at high temperatures can be obtained at low cost. The organic sensor element of the present invention has a measurement temperature of 90 to 500 ° C., particularly 100 to 350 ° C., and a specific temperature ± 5 ° C. according to the type of organic matter to be measured, the measurement conditions, or the manufacturing conditions of the element. Thus, the slope of the logarithmic electrical resistivity changes by 0.02 log Ωcm / ° C. or more, and the presence or absence of an organic substance to be measured can be detected with high sensitivity.

本発明の有機物センサー用素子は、Ni、Fe及びOを含む粒子の焼結体又は薄膜からなり、かさ密度が45−80%であることを特徴とする。
この有機センサー用素子は、次の錯体重合法、パルス細線放電法を用いて製造することができる。なお、これらの方法における具体的な数値は、好適な値を例示するものであり、本発明を限定するために記載したものではない。
(錯体重合法)
Ni及びFeの硝酸塩をNiとFeのモル比で1.00:2.00〜1.01:2.00となるようにクエン酸水溶液に溶解し、エチレングリコールと重合した後に、これにモル比で0〜0.07のZn又はMg酸化物粉末を加えて成形し、大気中で加熱してN,Cを脱離させて酸化物焼結体を得る。
(パルス細線放電法)
長さ25mm、直径0.20mmのNi細線と直径0.30mmのFe細線をより合わせて電極に設置し、大気中で6kvに充電した20μFのコンデンサーを接続してパルス通電加熱することにより急速蒸発・酸化させて酸化物粉末を合成し、これを成形後大気中で加熱して焼結体を得る。
The element for an organic sensor of the present invention comprises a sintered body or a thin film of particles containing Ni, Fe and O, and has a bulk density of 45-80%.
This element for organic sensors can be manufactured using the following complex polymerization method and pulse fine wire discharge method . In addition, the specific numerical value in these methods illustrates a suitable value, and is not described in order to limit this invention.
(Complex polymerization method)
Ni and Fe nitrates were dissolved in an aqueous citric acid solution so that the molar ratio of Ni and Fe was 1.00: 2.00 to 1.01: 2.00 and polymerized with ethylene glycol. Then, 0 to 0.07 Zn or Mg oxide powder is added and molded, and heated in the air to desorb N and C to obtain an oxide sintered body.
(Pulse wire discharge method)
Quickly evaporate by connecting a Ni fine wire with a length of 25 mm and a diameter of 0.20 mm and an Fe fine wire with a diameter of 0.30 mm to the electrode, and connecting a 20 μF capacitor charged to 6 kv in the atmosphere and heating with pulse current. -Oxidize to synthesize oxide powder, which is molded and heated in the atmosphere to obtain a sintered body.

つぎに、実施例により本発明をさらに説明するが、以下の具体例は本発明を限定するものではない。以下の実施例では、えられたセンサー用素子の電気抵抗率は、印加電圧10〜100mVの定電圧源と電流計を使用して測定した。また、温度上昇に伴って電気抵抗率の傾きの絶対値が増える場合を正、減る場合を負と表記した。
(実施例1)
硝酸ニッケル6水和物3.01gと硝酸第二鉄9水和物8.08gを、クエン酸水溶液(濃度823g/L)35mLに溶解させ、エチレングリコール12.5gと温度60〜110℃で150分間反応させた。得られたゲルを大気中600℃で60分間焼結することによって、かさ密度が50%で、厚さ3mm、直径10mmの焼結体を得た。この焼結体の粉末X線回折図形を図1に示す。ピーク位置とその強度比から、NiFeにNiOが1vol%含まれた物質であることが判明した。
EXAMPLES Next, the present invention will be further described with reference to examples, but the following specific examples are not intended to limit the present invention. In the following examples, the electrical resistivity of the obtained sensor element was measured using a constant voltage source with an applied voltage of 10 to 100 mV and an ammeter. In addition, the case where the absolute value of the slope of the electrical resistivity increases as the temperature increases is expressed as positive, and the case where the absolute value decreases decreases as negative.
Example 1
Nickel nitrate hexahydrate 3.01 g and ferric nitrate nonahydrate 8.08 g were dissolved in 35 mL of citric acid aqueous solution (concentration 823 g / L), and ethylene glycol 12.5 g and a temperature of 60 to 110 ° C. were 150. Reacted for 1 minute. The obtained gel was sintered in the atmosphere at 600 ° C. for 60 minutes to obtain a sintered body having a bulk density of 50%, a thickness of 3 mm, and a diameter of 10 mm. The powder X-ray diffraction pattern of this sintered body is shown in FIG. From the peak position and its intensity ratio, it was found that the NiFe 2 O 4 contained 1 vol% NiO.

この焼結体に酢酸ブチル(沸点125〜126℃)1mgを滴下し、大気中で100℃から350℃まで加熱しながら測定した電気抵抗率を図2に示す。190℃での電気抵抗率の傾きが−0.015logΩcm/℃から200℃で+0.025logΩcm/℃と変化し、195℃±5℃で0.04logΩcm/℃と正の変化を示したことが判明した。
比較のために、焼結体に酢酸ブチルを滴下しないで、同様に加熱して測定した電気抵抗率を図3に示す。この場合、電気抵抗率は温度上昇に対して単調に減少し、図2のような電気抵抗率の傾きの急変化はみられなかった。したがって、この焼結体を使用して上記温度範囲での電気抵抗率の変化を測定することによって、酢酸ブチルの検出が可能となる。
FIG. 2 shows the electrical resistivity measured while dropping 1 mg of butyl acetate (boiling point: 125 to 126 ° C.) into this sintered body and heating from 100 ° C. to 350 ° C. in the atmosphere. It was found that the slope of electrical resistivity at 190 ° C changed from -0.015 logΩcm / ° C to +0.025 logΩcm / ° C at 200 ° C, showing a positive change at 0.095 logΩcm / ° C at 195 ° C ± 5 ° C. did.
For comparison, FIG. 3 shows the electrical resistivity measured by heating in the same manner without dropping butyl acetate onto the sintered body. In this case, the electrical resistivity decreased monotonously with increasing temperature, and there was no sudden change in the slope of the electrical resistivity as shown in FIG. Therefore, it is possible to detect butyl acetate by measuring the change in electrical resistivity in the above temperature range using this sintered body.

(実施例2)
実施例1において、硝酸ニッケル6水和物の使用量を2.98gとした以外は、実施例1と同様にして焼結体を得た。この焼結体は、かさ密度50%で、NiFeのみにより構成されたものであった。
この焼結体にo−キシレン(沸点144℃)1mgを滴下し、実施例1と同様にして電気抵抗率を測定したところ、180℃±5℃で0.02logΩcm/℃の負の対数電気抵抗率の傾きの急変化が認められた。
(Example 2)
A sintered body was obtained in the same manner as in Example 1 except that the amount of nickel nitrate hexahydrate used was 2.98 g in Example 1. This sintered body had a bulk density of 50% and was composed only of NiFe 2 O 4 .
1 mg of o-xylene (boiling point 144 ° C.) was dropped into this sintered body, and the electrical resistivity was measured in the same manner as in Example 1. As a result, a negative logarithmic electrical resistance of 0.02 log Ωcm / ° C. at 180 ° C. ± 5 ° C. A sudden change in the slope of the rate was observed.

参考例1
ニッケルフェライト粉末を成形し、大気中600℃で1時間焼結し、直径10mm、厚さ3mm、かさ密度48%の焼結体を作製した。これに酢酸ブチル0.86mg、キシレン0.14mgを滴下し、実施例1と同様にして電気抵抗率を測定したところ、210℃±5℃で0.021logΩcm/℃の負の対数電気抵抗率の変化を示した。
( Reference Example 1 )
Nickel ferrite powder was molded and sintered in the atmosphere at 600 ° C. for 1 hour to produce a sintered body having a diameter of 10 mm, a thickness of 3 mm, and a bulk density of 48%. To this, 0.86 mg of butyl acetate and 0.14 mg of xylene were added dropwise, and the electrical resistivity was measured in the same manner as in Example 1. As a result, the negative logarithmic electrical resistivity of 0.021 log Ωcm / ° C. was measured at 210 ° C. ± 5 ° C. Showed changes.

参考例2
参考例1において、焼結温度を1000℃とした以外は同様にしてかさ密度51%の焼結体を作製し、同様に電気抵抗率の測定を行った。この結果、250℃±5℃で0.023logΩcm/℃の負の対数電気抵抗率の変化を示した。
( Reference Example 2 )
In Reference Example 1 , a sintered body having a bulk density of 51% was prepared in the same manner except that the sintering temperature was 1000 ° C., and the electrical resistivity was measured in the same manner. As a result, a change in negative logarithmic resistivity of 0.023 log Ωcm / ° C. at 250 ° C. ± 5 ° C. was shown.

実施例3
長さ25mm、直径0.20mmのNi細線と長さ25mm、直径0.30mmのFe細線をよりあわせ、圧力200Torr大気中において、6kVに充電した20μFのコンデンサーに接続し、パルス通電加熱によって細線を蒸発、酸化、微粒子化した。これを8回繰り返し、回収した粉末を酸化アルミニウム基板上に堆積させた。これを大気中600℃で1時間加熱し、20×20×0.3mmの薄膜状焼結体を作製した。これを実施例1と同様にして電気抵抗率を測定したところ、210℃±5℃で0.56logΩcm/℃の負の対数電気抵抗率の変化を示した。
( Example 3 )
A Ni thin wire with a length of 25 mm and a diameter of 0.20 mm and an Fe fine wire with a length of 25 mm and a diameter of 0.30 mm were combined and connected to a 20 μF capacitor charged at 6 kV in an atmosphere of 200 Torr. Evaporated, oxidized, and atomized. This was repeated 8 times, and the recovered powder was deposited on the aluminum oxide substrate. This was heated in the atmosphere at 600 ° C. for 1 hour to produce a 20 × 20 × 0.3 mm thin-film sintered body. When the electrical resistivity was measured in the same manner as in Example 1, it showed a change in negative logarithmic electrical resistivity of 0.56 log Ωcm / ° C. at 210 ° C. ± 5 ° C.

参考例3
参考例1において、酸化ニッケル0.007gとニッケルフェライト2.344gを混合した粉末を用いた以外は同様にして焼結体を作製し、同様に電気抵抗率の測定を行った。この結果、190℃±5℃で0.087logΩ/℃の負の対数電気抵抗率の変化を示した。
( Reference Example 3 )
A sintered body was prepared in the same manner as in Reference Example 1 except that a powder obtained by mixing 0.007 g of nickel oxide and 2.344 g of nickel ferrite was used, and the electrical resistivity was measured in the same manner. As a result, a change in negative logarithmic resistivity of 0.087 log Ω / ° C. was observed at 190 ° C. ± 5 ° C.

参考例4
参考例1において、酸化ニッケル0.222gとニッケルフェライト2.344gを混合した粉末を用いた以外は同様にして焼結体を作製し、同様に電気抵抗率の測定を行った。この結果、190℃±5℃で0.026logΩcm/℃の負の対数電気抵抗率の変化を示した。
( Reference Example 4 )
A sintered body was prepared in the same manner as in Reference Example 1 except that a powder obtained by mixing 0.222 g of nickel oxide and 2.344 g of nickel ferrite was used, and the electrical resistivity was measured in the same manner. As a result, a change in negative logarithmic resistivity of 0.026 log Ωcm / ° C. at 190 ° C. ± 5 ° C. was shown.

参考例5
参考例1において、酸化ニッケル粉末を用いた以外は同様にして焼結体を作製し、同様に電気抵抗率の測定を行なった。この結果、190℃±5℃で0.035logΩcm/℃の正の対数電気抵抗率の変化を示した。
( Reference Example 5 )
In Reference Example 1 , a sintered body was prepared in the same manner except that nickel oxide powder was used, and the electrical resistivity was measured in the same manner. As a result, a positive logarithmic electrical resistivity change of 0.035 log Ωcm / ° C. was observed at 190 ° C. ± 5 ° C.

実施例4
実施例2において、硝酸ニッケル6水和物と硝酸第ニ鉄9水和物をクエン酸水溶液に溶解後に、28mgのMgO粉末を添加し得られたゲルを用い、温度650℃で焼結した以外は同様にして焼結体を作製した。大気中での加熱温度を25℃から350℃までとした以外は同様にして電気抵抗率の測定を行った。この結果、90℃±5℃で、0.021logΩcm/℃の正の対数電気抵抗率の変化を示した。
( Example 4 )
In Example 2, after dissolving nickel nitrate hexahydrate and ferric nitrate nonahydrate in an aqueous citric acid solution, a gel obtained by adding 28 mg of MgO powder was used and sintered at a temperature of 650 ° C. In the same manner, a sintered body was produced. The electrical resistivity was measured in the same manner except that the heating temperature in the atmosphere was changed from 25 ° C. to 350 ° C. As a result, a positive logarithmic electrical resistivity change of 0.021 log Ωcm / ° C. was observed at 90 ° C. ± 5 ° C.

実施例5
実施例4において、硝酸ニッケル6水和物と硝酸第ニ鉄9水和物をクエン酸水溶液に溶解後に57mgのZnO粉末を添加し得られたゲルを用いた以外は同様にして焼結体を作製し、同様の測定を行った。この結果、100℃±5℃で、0.031logΩcm/℃の正の対数電気抵抗率の変化を示した。
( Example 5 )
In Example 4 , a sintered compact was similarly obtained except that a gel obtained by adding 57 mg of ZnO powder after dissolving nickel nitrate hexahydrate and ferric nitrate nonahydrate in an aqueous citric acid solution was used. The same measurement was performed. As a result, a positive logarithmic electrical resistivity change of 0.031 log Ωcm / ° C. was observed at 100 ° C. ± 5 ° C.

(比較例1)
参考例1と同一の粉末を1200℃で焼成し、かさ密度82%の焼結体を作製した。この焼結体を用いて参考例1と同様にして測定した結果、図3とほぼ同一の電気抵抗率温度依存性が発現し、有機物検知特性が非常に弱いことが判明した。
(Comparative Example 1)
The same powder as in Reference Example 1 was fired at 1200 ° C. to produce a sintered body having a bulk density of 82%. As a result of measurement using this sintered body in the same manner as in Reference Example 1 , it was found that substantially the same electrical resistivity temperature dependency as in FIG. 3 was developed, and the organic matter detection characteristics were very weak.

(比較例2)
参考例1と同一の粉末を500℃で焼成し、かさ密度35%の焼結体を作製した。この焼結体は、著しく強度が低いために電気抵抗率温度依存性測定が出来ず、有機物検知特性がないことが判明した。
(Comparative Example 2)
The same powder as in Reference Example 1 was fired at 500 ° C. to produce a sintered body having a bulk density of 35%. Since this sintered body is extremely low in strength, it cannot be measured for electric resistivity temperature dependency, and it has been found that there is no organic matter detection characteristic.

上記の各例にみられるように、本発明の有機物センサー用素子では、そのかさ密度を45−80%とすることによって、沸点・融点が高く分子量が大きい有機物を、高温環境下でも高感度で測定することができるものである。   As seen in each of the above examples, in the organic sensor element of the present invention, by setting the bulk density to 45-80%, an organic substance having a high boiling point / melting point and a high molecular weight can be obtained with high sensitivity even in a high temperature environment. It can be measured.

実施例1で得られた焼結体の粉末X線回折図である。2 is a powder X-ray diffraction pattern of the sintered body obtained in Example 1. FIG. 実施例1で得られた焼結体に酢酸ブチルを滴下して測定した電気抵抗率を示す図である。It is a figure which shows the electrical resistivity measured by dripping butyl acetate to the sintered compact obtained in Example 1. FIG. 実施例1で得られた焼結体に酢酸ブチルを滴下しないで測定した電気抵抗率を示す図である。It is a figure which shows the electrical resistivity measured without dripping butyl acetate in the sintered compact obtained in Example 1. FIG.

Claims (5)

Ni及びFeの硝酸塩をクエン酸水溶液に溶解し、エチレングリコールと重合した後に成形し、大気中で加熱して焼成することを特徴とする、Ni、Fe及びOを含む粒子の焼結体又は薄膜からなり、かさ密度が45−80%である有機物センサー用素子の製造方法。A sintered or thin film of particles containing Ni, Fe and O, wherein Ni and Fe nitrates are dissolved in a citric acid solution, polymerized with ethylene glycol, molded, heated and fired in air And a method for producing an organic sensor element having a bulk density of 45-80%. Ni細線とFe細線をより合わせて充電されたコンデンサーに接続し、大気中でパルス通電加熱することにより急速蒸発・酸化させて酸化物粉末を合成し、これを成形後大気中で加熱して焼成することを特徴とする、Ni、Fe及びOを含む粒子の焼結体又は薄膜からなり、かさ密度が45−80%である有機物センサー用素子の製造方法。The Ni fine wire and Fe fine wire are combined and connected to a charged capacitor, and pulsed and heated in the atmosphere to rapidly evaporate and oxidize to synthesize oxide powder, which is then heated in the atmosphere and fired A method for producing an organic sensor element comprising a sintered body or thin film of particles containing Ni, Fe and O, and having a bulk density of 45-80%. 前記粒子がNi,Fe及びOのみからなる粒子であることを特徴とする請求項1又は2に記載の有機物センサー用素子の製造方法。 The method for producing an organic sensor element according to claim 1 , wherein the particles are particles composed of only Ni, Fe, and O. 4 . 測定対象とする有機物の沸点が110〜500℃であることを特徴とする請求項1〜3のいずれかに記載の有機物センサー用素子の製造方法。 The method for producing an organic sensor element according to any one of claims 1 to 3, wherein the organic substance to be measured has a boiling point of 110 to 500 ° C. 測定対象とする有機物がキシレン又は酢酸ブチルであることを特徴とする請求項4に記載の有機物センサー用素子の製造方法。 5. The method for producing an organic sensor element according to claim 4, wherein the organic substance to be measured is xylene or butyl acetate .
JP2006315347A 2006-11-22 2006-11-22 Method for manufacturing element for organic sensor Active JP4852756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315347A JP4852756B2 (en) 2006-11-22 2006-11-22 Method for manufacturing element for organic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315347A JP4852756B2 (en) 2006-11-22 2006-11-22 Method for manufacturing element for organic sensor

Publications (2)

Publication Number Publication Date
JP2008128868A JP2008128868A (en) 2008-06-05
JP4852756B2 true JP4852756B2 (en) 2012-01-11

Family

ID=39554836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315347A Active JP4852756B2 (en) 2006-11-22 2006-11-22 Method for manufacturing element for organic sensor

Country Status (1)

Country Link
JP (1) JP4852756B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517995A (en) * 1974-06-14 1976-01-22 Hitachi Ltd Gasusensa zairyo
JPS5151995A (en) * 1974-11-01 1976-05-07 Hitachi Ltd Gasusensaazairyono seizohoho
JPS63286756A (en) * 1987-05-20 1988-11-24 Tokico Ltd Gas detector for oil vapor
JPH04348267A (en) * 1991-02-15 1992-12-03 Ricoh Co Ltd Gas sensor
JPH10279312A (en) * 1997-03-31 1998-10-20 Tdk Corp Spinel type ferrite
JP2003121411A (en) * 2001-10-16 2003-04-23 Tokuyama Corp Solid electrolyte type carbon dioxide sensor element
JP4009933B2 (en) * 2001-10-18 2007-11-21 八井 浄 Electrically conductive oxide and sensor composed of electrically conductive oxide

Also Published As

Publication number Publication date
JP2008128868A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
Joshi et al. One-step approach for preparing ozone gas sensors based on hierarchical NiCo 2 O 4 structures
Su et al. Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films
Chen et al. CO2 sensing properties and mechanism of PrFeO3 and NdFeO3 thick film sensor
JP3890413B2 (en) Gas sensor and manufacturing method thereof
JP7487104B2 (en) Annealed metal nanoparticle decorated nanotubes
US9671359B2 (en) Resistive type humidity sensor based on porous magnesium ferrite pellet
Qu et al. Highly sensitive and selective toluene sensor based on Ce-doped coral-like SnO2
KR20190136437A (en) Gas Detection Complex, Method for Manufacturing the Complex, Gas Sensor Including the Complex and Method for Manufacturing the Sensor
JP2011027458A (en) Humidity sensor
JP6224311B2 (en) Semiconductor gas sensor element
JP4852756B2 (en) Method for manufacturing element for organic sensor
US20160161443A1 (en) Gas sensor, method for manufacturing gas sensor, and method for detecting gas concentration
Jung et al. ZnO nanorod-based humidity sensors with fast response
JP4691687B2 (en) Organic-inorganic hybrid gas sensor material and manufacturing method thereof
JPS5814043B2 (en) humidity sensor element
US10883192B2 (en) Sintered electrically conductive oxide for oxygen sensor electrode, and oxygen sensor using the same
CN114402194B (en) Gas sensor and method for producing alkaline earth ferrite
EP0038078B1 (en) Gas sensor
Samarasekara et al. Effect of PEG binder on gas sensitivity of ferric oxide films synthesized by spin coating and doctor blade methods
JP4009933B2 (en) Electrically conductive oxide and sensor composed of electrically conductive oxide
JP7246084B2 (en) gas sensor
JP2005214868A (en) Carbon monoxide gas sensor and method of manufacturing p-type semiconductor
JP3424893B2 (en) NOx gas detection element
JPH0320659A (en) Gas sensor element
JP5207425B2 (en) Hydrogen gas sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150