JP4851362B2 - リング型ネットワークシステム - Google Patents

リング型ネットワークシステム Download PDF

Info

Publication number
JP4851362B2
JP4851362B2 JP2007043870A JP2007043870A JP4851362B2 JP 4851362 B2 JP4851362 B2 JP 4851362B2 JP 2007043870 A JP2007043870 A JP 2007043870A JP 2007043870 A JP2007043870 A JP 2007043870A JP 4851362 B2 JP4851362 B2 JP 4851362B2
Authority
JP
Japan
Prior art keywords
node
frame
transmission
relay
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007043870A
Other languages
English (en)
Other versions
JP2007306542A (ja
Inventor
和生 増濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007043870A priority Critical patent/JP4851362B2/ja
Publication of JP2007306542A publication Critical patent/JP2007306542A/ja
Application granted granted Critical
Publication of JP4851362B2 publication Critical patent/JP4851362B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Small-Scale Networks (AREA)

Description

この発明は、複数の通信ノードが伝送路を介してリング状に接続されてデータ通信を行うリング型ネットワークシステムに関し、とくにフレーム送信する際の送信周期の決定に関するものである。
従来のリング型ネットワークシステムにおいては、リング状に接続された機器が自ノードの送信周期タイミングで通信フレームを送出していた。
例えば、特許文献1に示されたものや、物理層にIEEE802.3が使用可能なリング型ネットワークとしてIEEE802.17で規格化されたRPR(Resilient Packet Ring)がある。RPRについては非特許文献1に簡易に紹介されている。
特開平8−70312号公報(第5〜9頁、図1) Optcom、2005年2月号/3月号
従来のリング型ネットワークシステムでは、自ノードの送信周期タイミング(送信周期は固定)で通信フレームを送出するため、全ノードの送出タイミングが非同期となり、通信フレーム衝突による通信遅延が増大し、バッファメモリがオーバした場合は、フレーム廃棄になることもあった。
産業用のネットワークでは、高速大容量通信が必要不可欠であり、且つ通信フレーム衝突時のフレーム廃棄もできる限り避けたいというニーズもあるため、送信周期が固定値(パラメータ)の場合、最大接続ノード数を考慮したマージンの大きい送信周期を選択するしかなく、例えば1Gbps等の物理層をもつ通信システムでも、その通信帯域を最大限に活用することができなかった。
特許文献1では、リング型多重伝送方式における送信周期を可変にする方式が記載されているが、技術分野が自動車内であることから消費電流の低減を目的とした送信周期可変方式であり、各ノードがフレーム中の情報により起動か待機かを判別して待機状態になると、フレームの送信周期を延ばすようにしている。
特許文献1は、このように各ノードが待機状態になったとき、送信周期を延ばすようにしたものに過ぎず、中継処理と自ノードの送信処理の衝突をなくして、フレームが廃棄されることを無くするように送信周期を調整するものではなかった。
この発明は、上記のような課題を解決するためになされたものであり、送信周期を調整して、中継処理と自ノードの送信処理の衝突を減らし、フレームの廃棄を少なくして、高速大容量通信が可能なリング型ネットワークシステムを得ることを目的としている。
この発明に係わるリング型ネットワークシステムにおいては、複数のノードが伝送路を
介してリング状に接続されてリング型ネットワークを構成し、各ノードが各自の送信周期で非同期にフレームを送信するリング型ネットワークシステムにおいて、ノードは、宛先アドレスと送信元アドレスを自ノードとする周回フレームを低周期で送信し、周回フレームの送信から受信までの遅延に基き、フレームがリング型ネットワークを一周するときの周回遅延量を把握し、この把握した周回遅延量に基き、送信周期を決定するものである。
この発明は、以上説明したように、複数のノードが伝送路を介してリング状に接続されてリング型ネットワークを構成し、各ノードが各自の送信周期で非同期にフレームを送信するリング型ネットワークシステムにおいて、ノードは、宛先アドレスと送信元アドレスを自ノードとする周回フレームを低周期で送信し、周回フレームの送信から受信までの遅延に基き、フレームがリング型ネットワークを一周するときの周回遅延量を把握し、この把握した周回遅延量に基き、送信周期を決定するので、中継処理と送信処理の衝突を減らし、フレーム廃棄を少なくすることができる。
実施の形態1.
以下、この発明の実施の形態1を図を使用して説明する。
図1は、この発明の実施の形態1によるリング型ネットワークシステムを示す構成図である。
図1において、ノード装置100(100−1〜100−n)は、リング状の伝送路に接続され、リング型ネットワークを構成する。図1では、ノード#1(100−1)が伝送路内での周回フレームの送信/受信ノードとして動作する。
図2は、この発明の実施の形態1によるリング型ネットワークシステムの伝送路上の周回フレームのフォーマットを示す図である。
図2において、IEEE802.3の物理ヘッダとRPR(IEEE802.17)のRPRヘッダを使用した例を示す。本発明では、周回フレームには、RPRヘッダ内の宛先アドレスと送信元アドレスのいずれにも自ノードのアドレスを入れ、RPRヘッダ内に周回フレームを示す種別を入れる。ノード#1(100−1)が送信した周回フレームを、リング周回してノード#1(100−1)で受信し、そこでフレーム廃棄する。
図3は、この発明の実施の形態1によるリング型ネットワークシステムのノード装置の内部ブロックを示すブロック図である。
図3において、前ノードからのフレームが入力されるフレーム入力部110、入力されたフレームが一時記憶されるバッファメモリ111、バッファメモリ111のデータをデータ保存メモリ118に書き込むメモリ書き込み制御部112、自ノードからフレームを出力するフレーム出力部113、自ノードの送信フレームと中継フレームを選択する送信選択部114、自ノードの送信するフレームを生成するフレーム生成部115、データ保存メモリ118からデータを読み出すメモリ読み出し制御部116、フレーム入力部110に入力されたフレームをフレーム出力部113に中継するフレーム中継部117、送信周期を計測するタイマ部120、タイマ値と送信周期パラメータ122が合致したときフレームの送信要求を行う送信周期生成部121、ノード立ち上げ時の送信周期である送信周期パラメータ122を有している。
図4は、この発明の実施の形態1によるリング型ネットワークシステムのリング周回におけるフレームの遅延時間の遷移事例を示すイメージ図である。
図4において、100は図1におけるものと同一のものである。図4では、送信、中継、受信の各ノードの括弧内にリング内を周回する場合の累積遅延時間が示されている。ノード装置の一つである送信/受信ノードから送信された周回フレームが中継ノードをリング周回して、再び送信/受信ノードに受信されるまでの遅延時間の遷移事例を示している。
図5は、この発明の実施の形態1によるリング型ネットワークシステムのリング周回する場合の各ノード装置の処理タイミングを示す図である。
図5においては、横軸に時間経過を示し、送信/中継/受信ノードの処理時間をそれぞれ横棒で示す。ノード装置の一つである送信/受信ノードから送信された周回フレームが、中継ノードをリング周回して、再び送信/受信ノードに受信されるまでの処理タイミングが示されている。
図6は、この発明の実施の形態1によるリング型ネットワークシステムのノード装置の動作を示すフローチャートである。
次に、動作について説明する。
以下に、各ノードがフレーム送信する際の送信周期の決定方法について説明する。ここで、図1のノード#1(100−1)が、伝送路内で周回フレームを低周期で送信するとともに、これを受信するパケット送信/受信ノードとして動作し、このノード#1(100−1)が送信周期を決定する場合について説明する。
図1において、パケット送信/受信ノードに設定されたノード#1(100−1)は、そのノードの送信周期タイミングに従い、図2のようなフォーマットの周回フレームを低周期で送出し、順次、接続された次ノードに中継していき、送信したノード#1にフレームが返ってきたら、ノード#1は、返ってきたフレームを廃棄し、次の周回フレームの送信周期タイミングが来たら、再び周回フレームを送出し、この動作を繰り返す。
この過程の中で、送信周期として、ノード立上げ時には送信周期パラメータ122を使用する。そして、自ノードが送信した周回フレームを受信する毎に、その周回フレームがリング周回する遅延時間(リング周回遅延)にマージンを足した送信周期になるように送信周期を更新し、一定時間後には最適な送信周期を決定できるようにする。
また、この過程の中で、リング周回遅延は、送信ノード及び中継ノードから周回フレームが送信される毎に更新される周回フレーム内のリング内累積遅延とノード内初期時間(初期遅延時間)を使って計算される。これは、中継ノードでは、周回フレームを受信した時間を周回フレーム内のノード内初期時間に付加してノード内処理を行い、フレーム出力部113で出力する時間からノード内初期時間を引いたノード内処理時間を算出し、周回フレーム内のリング内累積遅延(前回値)にノード内処理時間を足した遅延時間を、次のリング内累積遅延(更新値)に変えてから周回フレームを送信する。送信ノードでは、データ保存メモリ118から送信データを読み出し、ノード内処理時間を付加し、出力時にリング内累積遅延を付加する。
次に、送信/受信ノードの動作の詳細を説明する。
図3において、フレーム送信時には、送信周期パラメータ122に従い、タイマ部120でカウントするタイマ値と逐次比較して、タイマ値と送信周期パラメータ122が合致した時に送信周期生成部121が送信要求する。この送信要求がある度に、メモリ読み出し制御116がデータ保存メモリ118から自ノードの送信データを読み出し、周回フレームの場合には、フレーム生成部115でリング内初期時間、種別を含むヘッダ等の情報を付加し、送信選択部114を経由して、フレーム出力部113が、リング内累積遅延を周回フレームに付加して次ノードへ送信する。
フレーム受信時には、フレーム入力部110を経由してフレームが入力され、速度調整のために、これを一旦バッファメモリ111に溜め込み、メモリ書き込み制御部112によりデータ保存メモリ118に書き込む。この時、周回フレームは、次ノードに中継することなく廃棄する。また、メモリ書き込み制御部112は、周回フレームにあるリング内累積遅延とフレーム入力部110で受信してからデータ保存メモリ118に書き込むまでのノード内遅延時間を足してから、次の送信周期を決定する(決定方法は後述)。
次に、中継ノードの動作の詳細を説明する。
図3において、前ノードから受信されたフレームは、フレーム入力部110を経由し速度調整のために一旦バッファメモリ111に溜め込まれ、フレーム中継部117が送信選択部114に中継要求を出して許可が得られてから、バッファメモリ111の通信フレームを、フレーム出力部113を経由して次ノードに中継させる。この時、周回フレームのリング内累積遅延は、送信ノードと同様な処理で、フレーム出力部113が更新する。
次に、リング周回する周回フレームの遅延時間の遷移事例を説明する。
図4に示すように、例えば送信ノード#1は、送信処理に2μsかかり、以降の中継ノード#2〜#nは、一律3μsかかるとすると、受信ノード#1で受信される時には、26μsのリング内累積遅延となり、例えば受信処理で4μsかかるとすると、リング周回遅延は、30μsかかることになる。
このようなリング周回遅延を元に、次の送信周期を計算する。
次に、リング周回遅延から送信周期を算出する方法について、図5に基き説明する。
リング周回遅延Trは、図5のように、
送信時間+(中継時間×中継ノード数)+受信時間
により算出されるが、中継ノードで中継処理と送信処理の衝突(送信/中継衝突)があるかないかによって、その時間は一定しない。
そのため、リング周回遅延TrとマージンTmを足した時間を送信周期Tsに決定する。このマージンTmは、ネットワークシステム固有の数値とするが、例えば最大接続ノード数における全ての中継ノードで送信/中継衝突が発生する最悪ケースで計算した衝突時間を設定する。
次に、図6のフローチャートを用いて、ノード動作について詳述する。
図6では、各ノードでは、受信フレームがあった時の処理と、タイマ値が送信周期になった時の処理がある。これらの二つの処理は、並列実行されるため、受信/中継/送信処理を別々に実行することができる。
図6で、まず、ノードを立ち上げる(ステップS1)。次いで、送信周期パラメータ122の取得により送信周期の初期設定を行う(ステップS2)。次いで、タイマ部120を起動する(ステップS3)。受信フレームがあれば(ステップS4)、バッファメモリ111へ書き込み(ステップS5)、送信選択部114による出力選択で、送信データがなくなるまで待ち(ステップS6)、なくなれば、データ保存メモリ118に受信データを保存し(ステップS7)、受信フレームの中継処理を行う(ステップS8)。
ステップS4で、受信フレームがなければ、タイマ値が送信周期になったことを確認して(ステップS9)現在のタイマ値を取得し(ステップS10)、データ保存メモリ118から送信データを読み出し、これを基にしたフレーム生成を行う(ステップS12)。ステップS9で、タイマ値が送信周期になっていなければ、タイマ値をインクリメントして(ステップS11)、ステップS4に戻る。
ステップS8の受信フレームの中継処理に続き、受信フレームが周回フレームであれば、リング内累積遅延の前回値を取得し(ステップS13)、今回のリング内累積遅延が前回のリング内累積遅延より大きい場合は(ステップS14)、送信周期の拡大処理を行って(ステップS15)、ステップS4に戻り、前回遅延より大きくない場合には(ステップS14)、送信周期の短縮処理を行って(ステップS16)、ステップS4に戻る。
ステップS12の後、ステップ8の中継か、ステップS12の送信かの出力選択を行い(ステップS17)、周回フレームの場合には、リング内累積遅延を追加して(ステップS18)、この周回フレームを出力する(ステップS19)。全データを送信完了したら(ステップS20)、ステップS4に戻り、全データを送信完了していなければ、ステップS12に戻る。
実施の形態1によれば、周回フレームを送受信するノードで、リング内累積遅延時間を計算し、送信周期を増減させることにより、通信フレームが流れていない無駄な時間帯を無くし、ネットワーク通信帯域を最大限に活用できるようになる。
実施の形態2.
実施の形態1では、送信周期をリング内周回遅延から計算したが、実施の形態2は、さらに中継処理のパケット数から送信タイミングの位相をずらすことにより、送信/中継衝突回数を減らし、リング内周回遅延を短縮できるようにしたものである。
図7は、この発明の実施の形態2によるリング型ネットワークシステムの送信タイミングの取り方を説明する図である。
図7では、送信半周期Ts/2毎に中継処理パケット数をカウントし、送信周期の前半周期と後半周期で中継処理パケット数が少ない方に送信タイミングの位相をずらすイメージを示している。
図8は、この発明の実施の形態2によるリング型ネットワークシステムのノード装置の動作を示すフローチャートである。
図9は、この発明の実施の形態2によるリング型ネットワークシステムのノード装置の内部ブロックを示すブロック図である。
図9において、110〜118、120〜122は図3におけるものと同一のものである。図9では、フレーム中継部117の処理結果を元に中継処理パケット数をカウントする中継処理カウンタ123を設けている。
実施の形態2は、中継処理カウンタ123を設けて、前半周期と後半周期で少ない方に送信タイミングをずらす指示を送信周期生成部121に行う。送信周期生成部121は、この指示に従い送信タイミングの位相をずらすようにする。
次に、図8のフローチャートにより、実施の形態2の動作をより詳しく説明する。
送信周期の半周期になる毎に、中継処理カウンタ123で逐次計算している中継処理パケット数の累積値を保存し、中継処理カウンタ123をクリアすると共に、送信周期が来る毎に、前回保存した累積値(半周期の前半の累積値)と今回の累積値(半周期の後半の累積値)を比較して、半周期の前半のパケット数が多い場合は送信タイミングの位相を進めて(図7で右にずらす)、半周期の後半のパケット数が多い場合は、位相を遅らせる(図7で左にずらす)処理を示している。
図8で、まず、送信周期の初期設定を行う(ステップS21)。このときデフォルト位相を0とする。次いで、タイマ部120を起動する(ステップS22)。中継処理カウンタ123による中継処理パケット数のカウントを開始する(ステップS23)。
送信周期の半周期になったかどうかにより(ステップS24)、半周期になっていないときは、タイマ値をインクリメントして(ステップS25)、半周期になっているかどうかを判定し(ステップS24)、半周期になったら、中継処理パケット数の累計値を保存すると共に中継処理カウンタ123をクリアする(ステップS26)。次いで、タイマ値が送信周期になったかどうかを判定し(ステップS27)、送信周期になっていなければ、ステップS24に戻り、送信周期になっていれば、半周期の前半のパケット数が半周期の後半のパケット数より多いかどうかにより(ステップS28)、多いときは送信タイミングの位相を進め(ステップS29)、多くないときは、送信タイミングの位相を遅らせて(ステップS30)、ステップS24に戻る。
実施の形態2によれば、半周期毎の中継処理パケット数を比較して、送信タイミングを進めるかまたは遅らせるかの調整を行い、中継処理の少ないときに送信し、送信衝突を避けることができる。
実施の形態3.
実施の形態3は、全ノードに優先度を設定し、中継ノードでのパケットの衝突を優先度毎にカウントして、各ノードの送信周期を調整するものである。
図10は、この発明の実施の形態3によるリング型ネットワークシステムの伝送路上の周回フレームのフォーマットを示す図である。
図10において、図2の周回フレームに、さらにRPR/MACヘッダに自ノードの優先度を設け、ペイロードに高優先パケット衝突数と、中優先パケット衝突数と、低優先パケット衝突数と(以下、高優先/中優先/低優先パケット衝突数)を設けている。
図11は、この発明の実施の形態3によるリング型ネットワークシステムのノード装置の内部ブロックを示すブロック図である。
図11において、110〜118、120〜122は図3におけるものと同一のものである。図11では、自ノード内でのパケットの衝突をカウントし、周回フレームに加算する中継衝突カウンタ124と、優先度毎の衝突パケット数の累積数を判断して送信周期を増減させる優先度判定部125を設けている。
実施の形態3は、図10に示すように、周回フレームの中に、自ノードの優先度と、その周回フレームが中継される度に、該当する優先度のパケット数がカウントアップされる高優先/中優先/低優先パケット衝突数を付加する。これらを付加した周回フレームをリング内を周回させ、各ノードは、周回フレームを受信する度に、高優先/中優先/低優先パケット衝突数から、送信周期を増減させるようにする。
これにより、自ノードより優先度の高い通信フレームの送信/中継衝突回数を減らし、リング内周回遅延を短縮すると共に、高優先の通信フレームの廃棄を無くせるようにする(通信フレームの廃棄は、バッファメモリ111のデータフルで発生する)。通信フレームの優先度は、ネットワークシステム毎に固有であり、例えばノード単位で優先度を高優先/中優先/低優先に区別し、フレーム生成部115が通信フレームに付加する。
次に、図11を用いてこれについて詳述する。
先ず、送信処理において、フレーム生成部115が自ノードの優先度を周回フレームに付加し、高優先/中優先/低優先パケット衝突数を、それぞれ0クリアしてから送信する。
次に、中継ノードにおいて、フレーム中継部117が送信選択部114で送信処理と競合して、中継処理が待たされる度に、中継衝突カウンタ124が自ノードの優先度を参照し、その優先度に該当する優先度のパケット衝突数を、+1カウントアップして周回フレームに書き戻すようにして、中継を行う。
また、周回フレームの受信時及び中継時には、中継衝突カウンタ124は、中継された周回フレームの高優先/中優先/低優先パケット衝突数を優先度判定部125に伝えて、その優先度判定部125では、高優先/中優先/低優先パケット衝突数を累積する。そして、自ノードの優先度よりも高いパケット衝突数(例えば自ノード優先度が中優先なら高優先は高い)が一定閾値(例えば1秒間に10,000パケット)を超えた場合に送信周期を延ばして、自ノードの優先度よりも低いパケット衝突数(例えば低優先)が一定閾値(例えば1秒間に100パケット)以下になった時に送信周期を短くする処理を行う。
実施の形態3によれば、各ノードに優先度を設け、これにより、中継時のパケット衝突回数を優先度毎にカウントし、各ノードは、これに応じた送信周期を調整することにより、優先度に応じて適切な送信周期とすることができる。
実施の形態4.
実施の形態1、実施の形態3では、送信周期を増減することにより、ネットワークシステムで最適な通信帯域を決定するようにしたが、実施の形態4は、受信ノードの都合により(例えばノード起動時等で他ノードが送信する通信データの更新を早くしたい時など)、あるノードの送信周期を早くしたい場合や遅くしたい場合に、受信ノード側から図12に示す周回フレームを使って、送信周期を制御できるようにしたものである。
図12は、この発明の実施の形態4によるリング型ネットワークシステムの伝送路上の周回フレームのフォーマットを示す図である。
図12において、図10のフォーマットに加えて、送信周期を制御したい送信ノードを示す送信周期制御ノードアドレスと、送信周期をどれだけ増減させるかを示す送信周期Up/Down指示(例えば10なら+10μs送信周期を延ばす)をペイロードに設けている。
図13は、この発明の実施の形態4によるリング型ネットワークシステムのノード装置の内部ブロックを示すブロック図である。
図13において、110〜118、120〜122、124、125は図11におけるものと同一のものである。図13では、受信ノード側で送信ノード側の送信周期を制御する場合に用いる他ノード指示判定部126と、送信ノード側で、受信ノード側からの指示を翻訳する他ノード指示翻訳部127を設けている。
図13の他ノード指示判定部126で、送信周期を制御したいイベント(例えばノード起動時)を判定し、フレーム生成部115に伝えて、そのフレーム生成部115で、その送信周期制御ノードアドレスと送信周期Up/Down指示を周回フレームに付加して送信する。
中継ノードを経由して受信ノード(送信周期制御ノード)で受信された周回フレームは、他ノード指示翻訳部127で、送信周期制御ノードアドレスと送信周期Up/Down指示から、送信周期をどのように増減させればよいか決定し、送信周期パラメータ122を変更すると共に、送信周期生成部121で送信周期を増減制御する。
実施の形態4によれば、受信ノード側から、送信ノード側の送信周期を制御することができる。
実施の形態5.
以下、この発明の実施の形態5について、図14を基本にし、図2と図14〜図17を使用して説明する。
図14は、この発明の実施の形態5によるリング型ネットワークシステムのリング周回におけるフレームの遅延を示すイメージ図である。
図14において、ノード装置100(100−1〜100−4)は、リング状の伝送路に接続され、図1のn=4の構成である。ノード#1(100−1)が伝送路内でパケット送信/受信ノードとして動作する。
伝送路上を流すフレームのフォーマットは、図2と同じである。ここではイーサネット(登録商標)(IEEE802.2)の物理ヘッダとRPR(IEEE802.17)のRPRヘッダを使用している。本発明では、RPRヘッダ内の宛先アドレスと送信元アドレスのいずれにも自ノードのアドレスを入れ、あるノード#1(100−1)が送信したフレームを、リング周回して送信ノード#1(100−1)で受信し、そこでフレーム廃棄する。
図15は、この発明の実施の形態5によるリング型ネットワークシステムのノード内部ブロックを示すブロック図である。
図15において、110〜118、120〜122は図3におけるものと同一のものである。図15では、フレームの中継時に、そのフレームが送信されてからの累積遅延時間を計測する中継遅延計測部128が設けられている。
図16は、この発明の実施の形態5によるリング型ネットワークシステムの中継遅延計測内容を示す図である。
図16において、図15の中継遅延計測部128の内容を示したものである。各ノード#1〜#4が、それぞれ、フレームを中継する毎に、そのフレームが送信されてからの遅延時間(累積中継遅延時間)を計算し、保持する。
図17は、この発明の実施の形態5によるリング型ネットワークシステムのリング周回する場合の各ノード装置の処理タイミングを示す図である。
図17においては、図14のノード#1〜#4がそれぞれ送信するフレームが中継ノードをリング周回して、再び送信/受信ノードに受信されるまでの処理タイミングを示している。
次に、動作について説明する。
図14において、パケット送信/受信ノードに設定されたノード#1(100−1)は、そのノードの送信周期タイミングに従い、図2に示されたフォーマットのフレームを送出し、順次接続された次ノードに中継していき、送信元のノード#1にフレームが返ってきたら、ノード#1は、該フレームを廃棄し、送信周期タイミングが来たら再びフレームを送出し、最初はその動作を繰り返す。
この過程の中で、送信周期タイミングは、ノード立上げ時は送信周期パラメータ122を使用するが、各ノードが送信したフレームを中継する毎に、そのフレームが送信されてからの累積遅延時間(累積中継遅延)を計算し、累積中継遅延が最も少ないフレームが全て中継された時に自ノード送信タイミングを生成する中継遅延計測部128が、送信周期生成部121に送信タイミングを伝達し、送信周期タイミングを最適化する。
上記過程の中で、累積中継遅延を計算する上で元となるリング内累積遅延は実施の形態1同様に計算され、送信/中継ノードからフレームが送信される毎に更新されるフレーム内のリング内累積遅延とノード内初期遅延時間を使って計算される。
すなわち、送信ノードでデータ保存メモリ118から読み出すか、中継ノードでフレームを受信した時間をフレーム内のノード内初期時間に付加してノード内処理を行い、フレーム出力部113で出力する時間から前記ノード内初期時間を引いたノード内処理時間を算出し、フレーム内のリング内累積遅延(前回値)にノード内処理時間を足した遅延時間を次のリング内累積遅延(更新値)に変えてからフレームを送信する。リング内周回遅延は、フレーム出力部113で計算されるが、累積中継遅延はフレーム中継部117で同じアルゴリズムで計算される。
次に、送信/受信ノードの動作の詳細を説明する。
図15において、最初のフレーム送信時には、送信周期パラメータ122に従い、タイマ部120でカウントするタイマ値と逐次比較して、タイマ値と送信周期パラメータ122が合致した時に送信周期生成部121が送信要求する。この送信要求がある度に、メモリ読み出し制御部116がデータ保存メモリ118から自ノードの送信データを読み出し、フレーム生成部115でリング内初期時間、ヘッダ等の情報を付加し、送信選択部114を経由して、フレーム出力部113がリング内累積遅延をフレームに付加して、次ノードへ送信する。
フレーム受信時には、フレーム入力部110を経由して入力され、速度調整のために一旦バッファメモリ111に溜め込み、メモリ書き込み制御部112により、データ保存メモリ118に書き込む。
この時、フレームは、次ノードに中継することなく廃棄する。また、メモリ書き込み制御部112は、フレームにあるリング内累積遅延とフレーム入力部110で受信してからデータ保存メモリ118に書き込むまでのノード内遅延時間を足してから、リング内周回遅延を登録するが、本発明では前記リング内周回遅延を使用しない。最初のフレーム送信タイミングは、送信周期パラメータ122で決定されるが、時間経過することでフレーム中継処理されると、累積中継遅延に従った送信周期タイミングでフレーム送信することになる。この動作説明は後述する。
次に、中継ノードの動作の詳細を説明する。
図15において、前ノードから受信されたフレームは、入力部110を経由し、速度調整のために一旦バッファメモリ111に溜め込まれ、中継部117が送信選択部114に中継要求を出して許可が得られてから、バッファメモリ111のフレームをフレーム出力部113を経由して、次ノードに中継させる。この時、リング内累積遅延は、送信ノードと同様な処理でフレーム出力部113が更新する。
次に、リング周回するフレームの遅延時間の遷移事例を説明する。
図14において、例えば送信ノード#1は、送信処理に2μsかかり、以降の中継ノード#2〜#4は、一律3μsかかるとすると、受信ノード#1で受信される時には11μsのリング内累積遅延となり、例えば受信処理で4μsかかるとすると、リング周回遅延は15μsかかることになる。このリング内周回遅延を元に、次の累積中継遅延を計算する。
次に、リング周回するフレームの累積中継遅延の遷移事例を説明する。
図14において、ノード#2が送信したフレームは、ノード#3⇒#4を経由してノード#1で中継されるため、累積中継遅延は11μsとなり、以下同様にノード#3は、8μs、ノード#4は5μsになる。
これらの累積中継遅延は、中継部117をフレームが通過する度に、実施の形態1のリング内周回遅延と同じアルゴリズムで、中継遅延計測部128が計算して、図16のようなテーブルを生成する。この作成したテーブルを元に累積中継遅延が最も少ないノード#4から送信されるフレームが到着し、中継した直後(以下、このタイミングを中継後送信タイミングと呼ぶ)、自ノードが送信できることを認識できる。累積中継遅延を元に、次の送信タイミングを計算する。
次に、中継後送信タイミングから送信タイミングを算出する方法について説明する。
図17において、横軸に時間経過を示し、ノード#1〜#4の処理時間をそれぞれ横棒で示す。例えばノード#1がフレームを送信する場合、最初の送信では送信周期パラメータ122に従って送信し、ノード#2→#3→#4を経由して自ノード#1でフレームは受信後に廃棄される。
以下、ノード#2〜#4も同じ処理を行い、全てのノードでフレームの中継処置が行われ、累積中継遅延が登録される。累積中継遅延が登録されれば、中継後送信タイミングにより、自ノードがフレームを送信すべきタイミングを全てのノードが知ることができる。図17における中継後送信タイミングは、ノード#1が#4、ノード#2が#1、ノード#3が#2、ノード#4が#3となる。この時、送信周期生成部121は、送信周期パラメータ122に設定されている周期内に1回以上の中継後送信タイミングがあった時は、送信周期パラメータ122に従う送信要求は無視することにする。
実施の形態5によれば、このようにして、フレームを送受信する各ノードで、累積中継遅延を計算し、中継後送信タイミングを生成させることにより、フレームの送信/中継の衝突を無くして、通信データのゆらぎを無くすだけでなく、送信周期の高速化が図れることにより、ネットワーク通信帯域を最大限に活用できるようにする。
実施の形態6.
実施の形態5では、中継後送信タイミングを累積中継遅延から計算したが、実施の形態6は、送信周期パラメータ122で最初に決定した順番通りに、中継後送信タイミングを生成することにより、中継遅延を計算させるという複雑な処理を介することなく、通信データのゆらぎ撲滅と送信周期の高速化を図るようにした。
図18は、この発明の実施の形態6によるリング型ネットワークシステムのノード内部ブロックを示すブロック図である。
図18において、110〜118、120〜122は図3におけるものと同一のものである。図18では、中継部117の処理結果を元に、中継処理したフレームを時系列で記録する中継処理トレース部129を設け、実施の形態5の中継遅延計測部128と同じ様に、中継後送信タイミングを生成し、自ノードがフレームを送信する送信タイミングを生成する。
図19は、この発明の実施の形態6によるリング型ネットワークシステムの中継処理トレース内容を示す図である。
図19は、図18における中継処理トレース部129の内容を示したものである。各ノードに到着したフレームの送信元のノードを時系列順に記憶している。
図20は、この発明の実施の形態6によるリング型ネットワークシステムのリング周回する場合の各ノードの処理タイミングを示す図である。
図20は、図14において、ノード#1〜#4がそれぞれ送信するフレームが中継ノードをリング周回して、再び送信/受信ノードに受信されるまでの処理タイミングを示している。
次に、動作について説明する。
図18において、最初のフレーム送信時には、送信周期パラメータ122に従い、タイマ部120でカウントするタイマ値と逐次比較して、タイマ値と送信周期パラメータ122が合致した時に送信周期生成部121が送信要求する。
ノード#1〜#4の送信周期は、それぞれ非同期であるため、中継処理されるフレームの到着順序はランダムである。この到着順序を中継処理トレース部129で記録するとともに、送信周期パラメータ122に従う送信周期タイミングを知ることにより、自ノードがフレームを送信する直前に中継されるフレームを認識し、このフレームを中継した直後を中継後送信タイミングとして扱う。以下の処理は、実施の形態5と同じである。
次に、中継処理トレース部129の処理動作について、図19を用いて説明する。
中継処理トレース部129でトレースする最初と最後は、送信周期生成部121が要求する自ノードがフレームを送信するタイミングである(図19中の時系列順=1と5)。中継処理トレース部129は、ノード#2〜#4が送信するフレームを中継した時にその送信元ノードを時系列で記録する。図19では、ノード#4⇒ノード#2⇒ノード#3の順番で記録された例を示している。
以上のような中継処理トレース部129によりトレースされた、フレーム中継される順序は、ノード#4⇒#2⇒#3⇒#1(自ノード)と認識し、ノード#1の中継後送信タイミングは、ノード#3が送信するフレームを中継した直後とする。
次に、中継後送信タイミングから送信タイミングを算出する方法について説明する。
図20において、横軸に時間経過を示し、ノード#1〜#4の処理時間をそれぞれ横棒で示す。
例えばノード#1がフレームを送信する場合、最初の送信では、送信周期パラメータ122に従って送信し、ノード#2→#3→#4を経由して自ノード#1で、フレームは、受信後に廃棄される。
以下、ノード#2〜#4も同じ処理を行い、全てのノードで1回以上のフレームの中継処置が行われ、中継処理トレースが登録される。中継処理トレースが登録されれば、中継後送信タイミングにより、自ノードがフレームを送信すべきタイミングを全てのノードが知ることができる。
図20における中継後送信タイミングは、ノード#1が#3、ノード#2が#4、ノード#3が#2、ノード#4が#1となる。この時、送信周期生成部121は、送信周期パラメータ122に設定されている周期内に1回以上の中継後送信タイミングがあった時は、送信周期パラメータ122に従う送信要求は無視することにする。
実施の形態6によれば、このようにして、フレームを送受信及び中継する各ノードで、中継処理トレースを記録し、中継後送信タイミングを生成させることにより、フレームの送信/中継の衝突を無くして、通信データのゆらぎを無くすだけでなく、送信タイミングの高速化が図れることにより、ネットワーク通信帯域を最大限に活用できるようになる。
実施の形態5と比較して、累積中継遅延を計算するという手間が省略できるため、比較的簡単な処理で実現する長所はあるが、送信順番がランダムになるため、通信帯域で無駄になる時間が発生するという欠点もある。例えば、図20では、ノード#4によるフレーム2の送信を、ノード#3によるフレーム4の送信と、ノード#1によるフレーム1の送信の間にした方が効率的である。
実施の形態7.
実施の形態5、実施の形態6とも、中継後送信タイミングに従い、安定的に送信している状態で、図14におけるノード#4が突然ネットワークから離脱した場合、実施の形態5では、ノード#1(実施の形態6ではノード#2)が送信できなくなることが考えられる。実施の形態7は、このような場合に対処するものである。
図21は、この発明の実施の形態7によるリング型ネットワークシステムのノード内部ブロックを示すブロック図である。
図21において、110〜118、120〜122、128は図15におけるものと同一のものである。図21では、送信周期パラメータ122で設定された送信周期以内に中継後送信タイミングが来なかった時にタイムアウト信号を送信周期生成部121に伝達するタイムアウト計測部130を設け、予め決められた送信周期以内の送信を保証できるネットワークシステムを提供するようにしたものである。
図22は、この発明の実施の形態7によるリング型ネットワークシステムのリング周回する場合の各ノード装置の処理タイミングを示す図である。
図22において、番号は図20のフレーム番号を示している。図22は、図14においてノード#4がネットワークから離脱した時でも、予め決められた送信周期以内でノード#1〜#3が送信停止することなく、それぞれ送信するフレームが中継ノードをリング周回して、再び送信/受信ノードに受信されるまでの処理タイミングである。
ノード#4が送信するフレームがノード#1に届かなくなってから、予め決められた送信周期(パラメータによる送信周期Tp:送信周期の初期値)以内にノード#1が送信することにより、以後もノード#1〜#3で送受信できていることを示している。
実施の形態7によれば、タイムアウト計測部130を設け、予め決められた送信周期以内の送信を保証できるネットワークシステムを提供することができる。
実施の形態8.
実施の形態7では、図14におけるノード#4が突然ネットワークから離脱した場合でも、送信周期パラメータ122で設定された送信周期以内に送受信が復旧できることを述べたが、送受信の復旧時間が長いという問題があった。これに対し、実施の形態8では、送受信の復旧時間を累積中継遅延から最短の送信周期を求め、例えばその最短送信周期の2倍をタイムアウト値とすることにより、送受信の復旧時間を短縮できるようにした。
図23は、この発明の実施の形態8によるリング型ネットワークシステムのノード内部ブロックを示すブロック図である。
図23において、110〜118、120〜122、128、130は図21におけるものと同一のものである。図23では、実施の形態5における中継遅延計測部128から累積中継遅延から最短送信周期Tsを算出するとともに、例えばその最短送信周期Tsの2倍をタイムアウト値として、送信周期パラメータ122を自動更新するパラメータ更新部131を設け、送受信の復旧時間を短縮できるようにしたものである。
図24は、この発明の実施の形態8によるリング型ネットワークシステムのリング周回する場合の各ノード装置の処理タイミングを示す図である。
図24において、番号は図20のフレーム番号を示している。
図24は、図14においてノード#4がネットワークから離脱した時でも、パラメータ更新部131で決められた送信周期以内でノード#1〜#3が送信停止することなく、それぞれ送信するフレームが中継ノードをリング周回して、再び送信/受信ノードに受信されるまでの処理タイミングである。
ノード#4が送信するフレームが届かなくなってから、パラメータ更新部131で決められた送信周期以内にノード#1が送信することにより、以後もノード#1〜#3で送受信できていることを示している。
実施の形態8によれば、送受信の復旧時間を累積中継遅延から最短の送信周期を求め、例えばその最短送信周期の2倍をタイムアウト値とすることにより、送受信の復旧時間を短縮できるネットワークシステムを提供することができる。
この発明の実施の形態1によるリング型ネットワークシステムを示す構成図である。 この発明の実施の形態1によるリング型ネットワークシステムの伝送路上の周回フレームのフォーマットを示す図である。 この発明の実施の形態1によるリング型ネットワークシステムのノード装置の内部ブロックを示すブロック図である。 この発明の実施の形態1によるリング型ネットワークシステムのリング周回におけるフレームの遅延時間の遷移事例を示すイメージ図である。 この発明の実施の形態1によるリング型ネットワークシステムのリング周回する場合の各ノード装置の処理タイミングを示す図である。 この発明の実施の形態1によるリング型ネットワークシステムのノード装置の動作を示すフローチャートである。 この発明の実施の形態2によるリング型ネットワークシステムの送信タイミングの取り方を説明する図である。 この発明の実施の形態2によるリング型ネットワークシステムのノード装置の動作を示すフローチャートである。 この発明の実施の形態2によるリング型ネットワークシステムのノード装置の内部ブロックを示すブロック図である。 この発明の実施の形態3によるリング型ネットワークシステムの伝送路上の周回フレームのフォーマットを示す図である。 この発明の実施の形態3によるリング型ネットワークシステムのノード装置の内部ブロックを示すブロック図である。 この発明の実施の形態4によるリング型ネットワークシステムの伝送路上の周回フレームのフォーマットを示す図である。 この発明の実施の形態4によるリング型ネットワークシステムのノード装置の内部ブロックを示すブロック図である。 この発明の実施の形態5によるリング型ネットワークシステムのリング周回におけるフレームの遅延を示すイメージ図である。 この発明の実施の形態5によるリング型ネットワークシステムのノード内部ブロックを示すブロック図である。 この発明の実施の形態5によるリング型ネットワークシステムの中継遅延計測内容を示す図である。 この発明の実施の形態5によるリング型ネットワークシステムのリング周回する場合の各ノード装置の処理タイミングを示す図である。 この発明の実施の形態6によるリング型ネットワークシステムのノード内部ブロックを示すブロック図である。 この発明の実施の形態6によるリング型ネットワークシステムの中継処理トレース内容を示す図である。 この発明の実施の形態6によるリング型ネットワークシステムのリング周回する場合の各ノードの処理タイミングを示す図である。 この発明の実施の形態7によるリング型ネットワークシステムのノード内部ブロックを示すブロック図である。 この発明の実施の形態7によるリング型ネットワークシステムのリング周回する場合の各ノード装置の処理タイミングを示す図である。 この発明の実施の形態8によるリング型ネットワークシステムのノード内部ブロックを示すブロック図である。 この発明の実施の形態8によるリング型ネットワークシステムのリング周回する場合の各ノード装置の処理タイミングを示す図である。
符号の説明
100 ノード、110 フレーム入力部、111 バッファメモリ、
112 メモリ書込み制御部、113 フレーム出力部、114 送信選択部、
115 フレーム生成部、116 メモリ読み出し制御部、117 中継部、
118 データ保存メモリ、120 タイマ部、121 送信周期生成部、
122 送信周期パラメータ、123 中継処理カウンタ、
124 中継衝突カウンタ、125 優先度判定部、
126 他ノード指示判定部、127 他ノード指示翻訳部、
128 中継遅延計測部、129 中継処理トレース部、130 タイムアウト計測部、
131 パラメータ更新部。

Claims (4)

  1. 複数のノードが伝送路を介してリング状に接続されてリング型ネットワークを構成し、各ノードが各自の送信周期で非同期にフレームを送信するリング型ネットワークシステムにおいて、上記ノードは、宛先アドレスと送信元アドレスを自ノードとする周回フレームを低周期で送信し、上記周回フレームの送信から受信までの遅延に基き、上記フレームが上記リング型ネットワークを一周するときの周回遅延量を把握し、この把握した周回遅延量に基き、上記送信周期を決定することを特徴とするリング型ネットワークシステム。
  2. 複数のノードが伝送路を介してリング状に接続されてリング型ネットワークを構成し、各ノードが各自の送信周期で非同期にフレームを送信するリング型ネットワークシステムにおいて、上記ノードは、他ノードからのフレームを中継する度に中継したフレーム数を上記送信周期の前半と後半とでカウントする中継処理カウンタを有し、上記フレームが上記リング型ネットワークを一周するときの周回遅延量に基き、上記送信周期を決定するとともに、上記中継処理カウンタの上記送信周期の前半と後半の上記カウント数に応じて自ノードの送信タイミングを調整することを特徴とするリング型ネットワークシステム。
  3. 上記ノードは、上記周回フレームの送信に当たり、自ノードの優先度及び優先度毎のパケット衝突数を付加し、この優先度が付加された周回フレームを中継する他ノードは、送信するフレームと上記中継する周回フレームが競合する度に自身の優先度に対応する優先度のパケット衝突数をカウントアップして上記周回フレームを中継すると共に、各ノードは上記周回フレームを受信したとき、上記優先度毎のパケット衝突数に応じて上記送信周期を増減することを特徴とする請求項1記載のリング型ネットワークシステム。
  4. 上記ノードは、上記周回フレームに他ノードの上記送信周期を増減する情報を付加し、この周回フレームを受信した上記他ノードは、上記情報に応じて上記送信周期を増減することを特徴とする請求項1または請求項3記載のリング型ネットワークシステム。
JP2007043870A 2006-04-12 2007-02-23 リング型ネットワークシステム Expired - Fee Related JP4851362B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043870A JP4851362B2 (ja) 2006-04-12 2007-02-23 リング型ネットワークシステム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006109777 2006-04-12
JP2006109777 2006-04-12
JP2007043870A JP4851362B2 (ja) 2006-04-12 2007-02-23 リング型ネットワークシステム

Publications (2)

Publication Number Publication Date
JP2007306542A JP2007306542A (ja) 2007-11-22
JP4851362B2 true JP4851362B2 (ja) 2012-01-11

Family

ID=38840063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043870A Expired - Fee Related JP4851362B2 (ja) 2006-04-12 2007-02-23 リング型ネットワークシステム

Country Status (1)

Country Link
JP (1) JP4851362B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6471021B2 (ja) * 2015-03-30 2019-02-13 本田技研工業株式会社 通信システム
JP7207165B2 (ja) 2019-05-27 2023-01-18 富士通株式会社 パケット処理装置およびネットワークシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597974B2 (ja) * 1977-03-26 1984-02-22 三菱電機株式会社 ル−プ伝送システムの同期装置
JPS5769955A (en) * 1980-10-20 1982-04-30 Ricoh Co Ltd Loop type packet communication system
JPS5769954A (en) * 1980-10-20 1982-04-30 Ricoh Co Ltd Loop type packet communication system
JPS60160742A (ja) * 1984-01-31 1985-08-22 Nec Corp ル−プネツトワ−クシステム

Also Published As

Publication number Publication date
JP2007306542A (ja) 2007-11-22

Similar Documents

Publication Publication Date Title
US5919250A (en) Data transmission system used for plant control and based on local area network
JPH0373636A (ja) データ同期伝送方式
JP2007228491A (ja) ネットワーク中継装置
US20160127067A1 (en) Method for operating a node of a communications network, a node and a communications network
JP4851362B2 (ja) リング型ネットワークシステム
JP2008306648A (ja) データ中継装置及びデータ中継方法並びに通信ネットワークシステム
JP4652314B2 (ja) イーサoamスイッチ装置
JP7299106B2 (ja) 中継器および通信システム
JP5019984B2 (ja) 通信装置およびソースクロック再生方法
JP5117432B2 (ja) リング型ネットワークシステム
JP6600594B2 (ja) 中継システムおよび中継装置
JP4896057B2 (ja) 送信タイミング変更型ネットワーク装置及びシステム
JP4731344B2 (ja) リング型ネットワークシステム
JP7294949B2 (ja) 中継器および通信システム
JP2011109491A (ja) リング型ネットワークシステム
WO2023040650A1 (zh) 一种报文周期的确定方法及其相关装置
JPH0669932A (ja) Lan用リピータ装置のプリアンブル復元再生方式
US20230171198A1 (en) Communication control device, information processing device, communication control method, and information processing method
WO2023116126A1 (zh) 时间触发调度方法、节点、电子设备和存储介质
JP5060633B2 (ja) ネットワーク中継装置
JP2010262439A (ja) 情報処理装置、情報処理方法およびプログラム
JP6824027B2 (ja) 通信装置、その制御方法、およびプログラム
Silvestre et al. Impact of the use of large frame sizes in fieldbuses for multimedia applications
Do et al. Performance Analysis of Frame Merging Methods on Time-Sensitive Networking (TSN)
Higaki NeBuST: low-latency congested sensor data transmission protocol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees