JP4848487B2 - Positive electrode for lithium secondary battery and lithium secondary battery - Google Patents

Positive electrode for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP4848487B2
JP4848487B2 JP2007003953A JP2007003953A JP4848487B2 JP 4848487 B2 JP4848487 B2 JP 4848487B2 JP 2007003953 A JP2007003953 A JP 2007003953A JP 2007003953 A JP2007003953 A JP 2007003953A JP 4848487 B2 JP4848487 B2 JP 4848487B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
composite oxide
mass
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007003953A
Other languages
Japanese (ja)
Other versions
JP2007128906A (en
Inventor
尚登 赤羽
秀一 和田
博行 戸城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2007003953A priority Critical patent/JP4848487B2/en
Publication of JP2007128906A publication Critical patent/JP2007128906A/en
Application granted granted Critical
Publication of JP4848487B2 publication Critical patent/JP4848487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、高容量で、充放電特性に優れたリチウム二次電池を構成するためのリチウム二次電池用正極と、これを用いたリチウム二次電池に関する。   The present invention relates to a positive electrode for a lithium secondary battery for constituting a lithium secondary battery having high capacity and excellent charge / discharge characteristics, and a lithium secondary battery using the same.

4V級の電圧と高容量を特長とするリチウムイオン二次電池の正極活物質には、Liイオンのインターカレーションに有効な化合物としてLiMn、LiMnO、LiCoO、LiCo1−xNi、LiNiO等が一般に用いられている。これらの中でも特に岩塩構造型のLiCoOはLiに対し3.5V以上の高い放電電位を与え、かつ高容量を有する点で優れている(例えば、特許文献1参照。)。
特開昭55−136131号公報
The positive electrode active material of a lithium ion secondary battery characterized by 4V class voltage and high capacity includes LiMn 2 O 4 , LiMnO 2 , LiCoO 2 , LiCo 1-x Ni as compounds effective for Li ion intercalation. x O 2, LiNiO 2 or the like is generally used. Among these, especially the rock salt structure type LiCoO 2 is excellent in that it gives a high discharge potential of 3.5 V or more to Li and has a high capacity (for example, see Patent Document 1).
JP-A-55-136131

しかし、LiCoOは、電池の過充電事故などを契機として一部のLiCoO粒子が電解液と異常反応して発熱し、これが周辺のLiCoO粒子に次々と伝播するという熱暴走が発生し易い欠点がある。 However, LiCoO 2 is subject to thermal runaway in which some LiCoO 2 particles react abnormally with the electrolyte and generate heat due to an overcharge accident of the battery, etc., and this propagates to surrounding LiCoO 2 particles one after another. There are drawbacks.

そこで、LiCoOに比べて電解液との異常反応が発生しにくいマンガンを原料とするスピネル構造型のLiMnを正極活物質に用いたリチウム二次電池が提案されている(例えば、特許文献2、特許文献3参照。)。また、コバルト酸化物にマンガン酸化物を混合して正極活物質に用いる方法も知られている(例えば、特許文献4参照。)。
特開平3−147276号公報 特開平4−123769号公報 特開平5−13107号公報
Therefore, a lithium secondary battery using spinel structure type LiMn 2 O 4 made of manganese, which is less likely to cause an abnormal reaction with the electrolyte than LiCoO 2 as a raw material, has been proposed (for example, a patent) Reference 2 and Patent Reference 3). Also known is a method in which manganese oxide is mixed with cobalt oxide and used as a positive electrode active material (see, for example, Patent Document 4).
Japanese Patent Laid-Open No. 3-147276 JP-A-4-123769 JP-A-5-13107

しかし、LiMnはLiCoOに比べて体積当りの容量が小さく、また放電が高電位部と低電位部の2段階で起こるため、電圧変化が平坦でなく階段状になるなどの問題点を有する。 However, LiMn 2 O 4 has a smaller capacity per volume than LiCoO 2, and discharge occurs in two stages, a high potential part and a low potential part, so that the voltage change is not flat but stepped. Have

近年、熱的安定性と高容量を両立させるため、リチウム・ニッケル複合酸化物の層状の結晶構造を保持しつつ、熱的安定性の高いマンガンでニッケルを所定量置換させた一般組成式Li1+x+αNi(1−x−y+δ)/2Mn(1−x−y−δ)/2(但し、MはCr、Fe、Co、Alからなる群から選ばれる少なくとも一つであり、0≦x≦0.1、0≦y≦0.4、−0.05≦α≦0.05、−0.1≦δ≦0.1)で表されるマンガン含有リチウム・ニッケル複合酸化物を正極活物質とすることが検討されている。しかし、このマンガン含有リチウム・ニッケル複合酸化物は、初期充放電効率が低いことによる容量低下が大きく、また大電流を流した際に電圧降下が大きいため負荷特性が悪くなる欠点がある。 In recent years, in order to achieve both thermal stability and high capacity, a general composition formula Li 1 + x + α in which a predetermined amount of nickel is substituted with manganese having high thermal stability while maintaining a layered crystal structure of a lithium / nickel composite oxide. Ni (1-x-y + δ) / 2 M y Mn (1-x-y-δ) / 2 O 2 ( where, M is at least one selected from the group consisting Cr, Fe, Co, from Al, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.4, −0.05 ≦ α ≦ 0.05, −0.1 ≦ δ ≦ 0.1) Is considered to be a positive electrode active material. However, this manganese-containing lithium / nickel composite oxide has a drawback that the capacity deterioration due to low initial charge / discharge efficiency is large, and the load characteristics are poor because the voltage drop is large when a large current is passed.

そこで、本発明は、高容量で、負荷特性が低下せず、熱的安定性が高いリチウム二次電池を構成することのできる正極を提供するものである。   Therefore, the present invention provides a positive electrode capable of constituting a lithium secondary battery having a high capacity, no deterioration in load characteristics, and high thermal stability.

本発明は、正極活物質が一般組成式Li1+x+αNi(1−x−y+δ)/2Mn(1−x−y−δ)/2(但し、但し、MはCoであり、0≦x≦0.1、0≦y≦0.4、−0.05≦α≦0.05、−0.1≦δ≦0.1)で表されるマンガン含有リチウム・ニッケル複合酸化物と、リチウム・コバルト複合酸化物とで構成されるリチウム二次電池用正極であって、前記マンガン含有リチウム・ニッケル複合酸化物と前記リチウム・コバルト複合酸化物の全質量に対して、前記マンガン含有リチウム・ニッケル複合酸化物の質量の割合が、10質量%以上50質量%未満であり、前記マンガン含有リチウム・ニッケル複合酸化物の平均粒子径が、前記リチウム・コバルト複合酸化物の平均粒子径の1/40以上1/2以下であることを特徴とするリチウム二次電池用正極を提供する。

The present invention, the positive electrode active material is the general composition formula Li 1 + x + α Ni ( 1-x-y + δ) / 2 M y Mn (1-x-y-δ) / 2 O 2 ( where, however, M is Co, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.4, −0.05 ≦ α ≦ 0.05, −0.1 ≦ δ ≦ 0.1) And a lithium secondary battery positive electrode composed of a lithium-cobalt composite oxide, wherein the manganese-containing lithium-nickel composite oxide and the total mass of the lithium-cobalt composite oxide contain the manganese. The mass ratio of the lithium / nickel composite oxide is 10% by mass or more and less than 50% by mass, and the average particle size of the manganese-containing lithium / nickel composite oxide is equal to the average particle size of the lithium / cobalt composite oxide. 1/40 to 1/2 A positive electrode for a lithium secondary battery is provided.

本発明によれば、高容量で、負荷特性が低下することがなく、熱的安定性が高いリチウム二次電池を構成することができる。   ADVANTAGE OF THE INVENTION According to this invention, a lithium secondary battery with high capacity | capacitance, a load characteristic does not fall, and thermal stability is high can be comprised.

本発明のリチウム二次電池用正極の一例は、マンガン含有リチウム・ニッケル複合酸化物とリチウム・コバルト複合酸化物とからなる正極活物質を用い、かつマンガン含有リチウム・ニッケル複合酸化物とリチウム・コバルト複合酸化物の全質量に対して、マンガン含有リチウム・ニッケル複合酸化物の質量の割合を50質量%未満、より好ましくは40質量%以下とし、マンガン含有リチウム・ニッケル複合酸化物の平均粒子径を、リチウム・コバルト複合酸化物の平均粒子径の1/2以下、より好ましくは1/3以下としたことを特徴とする。   An example of the positive electrode for a lithium secondary battery according to the present invention uses a positive electrode active material composed of a manganese-containing lithium / nickel composite oxide and a lithium / cobalt composite oxide, and includes a manganese-containing lithium / nickel composite oxide and lithium / cobalt. The ratio of the mass of the manganese-containing lithium / nickel composite oxide to the total mass of the composite oxide is less than 50% by mass, more preferably 40% by mass or less, and the average particle size of the manganese-containing lithium / nickel composite oxide is The average particle diameter of the lithium-cobalt composite oxide is 1/2 or less, more preferably 1/3 or less.

すなわち、図1に模式的に示すように、本実施形態のリチウム二次電池の正極において、リチウム・コバルト複合酸化物粒子1と、マンガン含有リチウム・ニッケル複合酸化物粒子2とを混在させたとき、複数のリチウム・コバルト複合酸化物粒子1の間の機械的接触は、より小粒子径のマンガン含有リチウム・ニッケル複合酸化物粒子2が間に挿入されることによって阻害される。このため、電池が加熱されるなどして電極が昇温したときに、リチウム・コバルト複合酸化物粒子1の1つが電解液と異常反応して発熱しても、上記で挿入された熱的に安定なマンガン含有リチウム・ニッケル複合酸化物粒子2が異常反応・発熱などの伝播を阻害するため、熱暴走が発生しにくいという効果が得られる。なお、図1において、3は電子伝導助剤である鱗片状黒鉛、4は導電性基体であるアルミニウム箔である。   That is, as schematically shown in FIG. 1, when the lithium / cobalt composite oxide particles 1 and the manganese-containing lithium / nickel composite oxide particles 2 are mixed in the positive electrode of the lithium secondary battery of the present embodiment. The mechanical contact between the plurality of lithium-cobalt composite oxide particles 1 is hindered by insertion of manganese-containing lithium / nickel composite oxide particles 2 having a smaller particle diameter therebetween. For this reason, even when one of the lithium-cobalt composite oxide particles 1 abnormally reacts with the electrolyte and generates heat when the temperature of the electrode rises due to heating of the battery or the like, Since the stable manganese-containing lithium / nickel composite oxide particles 2 inhibit the propagation of abnormal reactions and heat generation, an effect that thermal runaway hardly occurs can be obtained. In FIG. 1, 3 is scaly graphite which is an electron conduction aid, and 4 is an aluminum foil which is a conductive substrate.

この熱暴走の発生を抑制するためには、マンガン含有リチウム・ニッケル複合酸化物の平均粒子径を、リチウム・コバルト複合酸化物の平均粒子径の1/2以下、より好ましくは1/3以下とする必要がある。なお、マンガン含有リチウム・ニッケル複合酸化物の平均粒子径が小さすぎると電解液との接触面積が増大して異常反応が発生し易くなり、かえって安全性が低下するという不都合があるので、その平均粒子径の下限値は、リチウム・コバルト複合酸化物の平均粒子径の1/40以上であることが好ましい。   In order to suppress the occurrence of this thermal runaway, the average particle diameter of the manganese-containing lithium / nickel composite oxide is 1/2 or less, more preferably 1/3 or less of the average particle diameter of the lithium / cobalt composite oxide. There is a need to. In addition, if the average particle size of the manganese-containing lithium-nickel composite oxide is too small, the contact area with the electrolytic solution increases and an abnormal reaction is likely to occur. The lower limit of the particle diameter is preferably 1/40 or more of the average particle diameter of the lithium-cobalt composite oxide.

また、正極活物質中に容量密度の高いリチウム・コバルト複合酸化物を全正極活物質質量に対する質量比で50質量%以上混合して用いることにより高容量を得ることができ、かつ、初期充放電効率と大電流を流した際の電圧降下を少なくすることができる。   In addition, a high capacity can be obtained by using a lithium-cobalt composite oxide having a high capacity density in the positive electrode active material in a mass ratio of 50% by mass or more based on the total mass of the positive electrode active material. Efficiency and a voltage drop when a large current is passed can be reduced.

このため、マンガン含有リチウム・ニッケル複合酸化物とリチウム・コバルト複合酸化物の全質量に対して、マンガン含有リチウム・ニッケル複合酸化物の質量の割合を50質量%未満とすることが必要であり、特に10〜40質量%であることが好ましい。マンガン含有リチウム・ニッケル複合酸化物の含有量が50質量%以上では、初期充放電効率と大電流を流した際の電圧降下が大きくなるおそれがあり、また、マンガン含有リチウム・ニッケル複合酸化物の含有量が10質量%より少ない場合は、リチウム・コバルト複合酸化物粒子の1つが電解液と異常反応して発熱した時の、マンガン含有リチウム・ニッケル複合酸化物粒子による異常反応・発熱の伝播を阻害する効果が急減してしまい、電池の熱的安定性が低下するおそれがある。   Therefore, it is necessary to make the proportion of the mass of the manganese-containing lithium / nickel composite oxide less than 50% by mass with respect to the total mass of the manganese-containing lithium / nickel composite oxide and the lithium / cobalt composite oxide, In particular, the content is preferably 10 to 40% by mass. When the content of the manganese-containing lithium / nickel composite oxide is 50% by mass or more, the initial charge / discharge efficiency and the voltage drop when a large current is passed may increase. When the content is less than 10% by mass, when one of the lithium / cobalt composite oxide particles reacts abnormally with the electrolyte and generates heat, the manganese-containing lithium / nickel composite oxide particles cause an abnormal reaction / propagation of heat. There is a risk that the inhibiting effect is rapidly reduced, and the thermal stability of the battery is lowered.

上記マンガン含有リチウム・ニッケル複合酸化物は、リチウム・マンガン複合酸化物(LiMnO)の熱的安定性とリチウム・ニッケル複合酸化物(LiNiO)の高容量を両立させるために、リチウム・ニッケル複合酸化物の層状の結晶構造を保持しつつ、熱的安定性の高いマンガンでニッケルを所定量置換させたものである。また、上記リチウム・コバルト複合酸化物は、一般組成式LiCoOで表され、xが0.98〜1.02の範囲にあるものが一般に使用される。 The manganese-containing lithium / nickel composite oxide is a lithium / nickel composite oxide in order to achieve both the thermal stability of the lithium / manganese composite oxide (LiMnO 2 ) and the high capacity of the lithium / nickel composite oxide (LiNiO 2 ). A predetermined amount of nickel is substituted with manganese having high thermal stability while maintaining the layered crystal structure of the oxide. The lithium-cobalt composite oxide is generally represented by the general composition formula Li x CoO 2 and x is generally in the range of 0.98 to 1.02.

上記マンガン含有リチウム・ニッケル複合酸化物は、一般組成式Li1+x+αNi(1−x−y+δ)/2Mn(1−x−y−δ)/2で表される層状型の化合物であるが、そのNiMnの部分はCr、Fe、Co、Al等の他の元素で置換することができる。そのような置換元素との組み合わせを例示すると、例えば、NiCoMn、NiFeMn、NiAlMn、NiFeCoMn、NiCoAlMn、NiFeAlMn、NiFeCoAlMn等が挙げられる。上記置換元素の導入は、酸化物等の形態で焼成時に添加すればよいが、上記元素を含む共沈化合物を原料に使用するのが望ましい。なお、上記置換元素の置換量は、上記一般組成式において0≦y≦0.4の範囲内とすればよく、また、マンガンの価数変化を抑制するためにも3価の遷移金属元素を導入することが好ましい。但し、0≦x≦0.1、−0.05≦α≦0.05、−0.1≦δ≦0.1である。 The manganese-containing lithium-nickel composite oxide, the general formula Li 1 + x + α Ni ( 1-x-y + δ) / 2 M y Mn (1-x-y-δ) / 2 O layered form of the compound represented by 2 However, the NiMn portion can be replaced with other elements such as Cr, Fe, Co, and Al. Examples of such combinations with substitution elements include NiCoMn, NiFeMn, NiAlMn, NiFeCoMn, NiCoAlMn, NiFeAlMn, and NiFeCoAlMn. The substitution element may be introduced in the form of an oxide or the like during firing, but it is desirable to use a coprecipitation compound containing the element as a raw material. The substitution amount of the substitution element may be within the range of 0 ≦ y ≦ 0.4 in the general composition formula, and a trivalent transition metal element may be used in order to suppress a change in the valence of manganese. It is preferable to introduce. However, 0 ≦ x ≦ 0.1, −0.05 ≦ α ≦ 0.05, and −0.1 ≦ δ ≦ 0.1.

上記マンガン含有リチウム・ニッケル複合酸化物及びリチウム・コバルト複合酸化物は、各元素を含む化合物を所定量混合して焼成することにより得られる。リチウム源としては、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウム等が使用でき、それらの中でも炭酸リチウムが特に好ましい。また、マンガン源及びニッケル源としては、例えば、等量のマンガンとニッケルが均一分布した化合物が挙げられ、それらの中でも共沈させたマンガン・ニッケルの水酸化物が特に好ましい。そして、コバルト源としては、例えば、炭酸コバルト、水酸化コバルト、硝酸コバルト等が使用できる。   The manganese-containing lithium / nickel composite oxide and the lithium / cobalt composite oxide can be obtained by mixing a predetermined amount of a compound containing each element and baking. Examples of the lithium source include lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, and lithium oxalate. Lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide and the like can be used, and among these, lithium carbonate is particularly preferable. Further, examples of the manganese source and the nickel source include compounds in which equal amounts of manganese and nickel are uniformly distributed, and among them, a co-precipitated manganese / nickel hydroxide is particularly preferable. And as a cobalt source, cobalt carbonate, cobalt hydroxide, cobalt nitrate, etc. can be used, for example.

上記化合物の焼成条件は特に限定されることはないが、750〜850℃で5〜15時間焼成することが好ましい。また、焼成時の雰囲気も特に限定されることはないが、空気中で行うことが好ましい。空気中で行うことにより反応の進行が容易になって、層状型のマンガン含有リチウム・ニッケル複合酸化物を不純物の含有量が少ない状態で得ることができる。   The firing conditions for the above compound are not particularly limited, but it is preferably fired at 750 to 850 ° C. for 5 to 15 hours. Also, the atmosphere during firing is not particularly limited, but it is preferably performed in air. By carrying out in air, the progress of the reaction is facilitated, and a layered manganese-containing lithium / nickel composite oxide can be obtained in a state where the content of impurities is low.

また、空気の流量としては、0.1cm/分以上にすることが好ましく、1cm/分以下がより好ましい。ガス流量が少ない場合には不純物が残存するおそれがあり、多すぎる場合にはマンガンの価数を制御できないなどの問題がある。また、3価のMnの生成を抑制するためにも、焼成は2回行うことが好ましく、特に500〜800℃で仮焼してから、再度焼成を行うのが好ましい。そして、焼成を2回行う場合、2回目の焼成温度を1回目の焼成温度よりも高くすることが好ましく、特に最初の焼成温度を750〜800℃にし、2回目の焼成温度を800〜850℃にするのが好ましい。 Further, the flow rate of air is preferably 0.1 cm 3 / min or more, and more preferably 1 cm 3 / min or less. When the gas flow rate is low, impurities may remain, and when it is too high, there is a problem that the valence of manganese cannot be controlled. Moreover, in order to suppress the production | generation of trivalent Mn, it is preferable to perform baking twice, and it is preferable to perform baking again, especially after calcining at 500-800 degreeC. And when performing baking twice, it is preferable to make the 2nd baking temperature higher than the 1st baking temperature, especially the 1st baking temperature shall be 750-800 degreeC, and the 2nd baking temperature should be 800-850 degreeC. Is preferable.

正極は、例えば、上記正極活物質を含み、必要に応じて鱗片状黒鉛、カーボンブラックなどの電子伝導助剤を含み、さらにバインダを含む塗料を導電性基体上に塗布して乾燥することにより、導電性基体上に少なくとも正極活物質とバインダを含有する塗膜を形成する工程を経てシート状正極として作製される。   The positive electrode includes, for example, the above-described positive electrode active material, and optionally includes an electron conduction aid such as flaky graphite and carbon black, and further, a coating containing a binder is applied onto the conductive substrate and dried. A sheet-like positive electrode is produced through a step of forming a coating film containing at least a positive electrode active material and a binder on a conductive substrate.

上記正極と対向させる負極の活物質としては、リチウムイオンをドープ・脱ドープできるものであればよく、そのような負極活物質としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭等の炭素系材料が使用できる。また、リチウムやリチウム含有化合物も負極活物質として用いることができる。そのリチウム含有化合物としては、リチウム合金とそれ以外のものとがある。リチウム合金としては、例えば、リチウム−アルミニウム、リチウム−鉛、リチウム−インジウム、リチウム−ガリウム、リチウム−インジウム−ガリウム等の合金が挙げられる。リチウム合金以外のリチウム含有化合物としては、例えば、錫酸化物、珪素酸化物、ニッケル−珪素系合金、マグネシウム−珪素系合金、タングステン酸化物、リチウム鉄複合酸化物等が挙げられる。これらの負極活物質のうち、黒鉛が容量密度が大きい点で特に好ましい。なお、上記負極活物質には、その製造直後にリチウムを含んでいないものもあるが、活物質として作用する際にはリチウムを含んだ状態になる。   The negative electrode active material facing the positive electrode may be any material that can be doped / undoped with lithium ions. Examples of such a negative electrode active material include graphite, pyrolytic carbons, cokes, and glassy carbon. In addition, a carbon-based material such as a fired body of an organic polymer compound, mesocarbon microbeads, carbon fiber, activated carbon, or the like can be used. Lithium and lithium-containing compounds can also be used as the negative electrode active material. The lithium-containing compound includes a lithium alloy and other compounds. Examples of the lithium alloy include alloys such as lithium-aluminum, lithium-lead, lithium-indium, lithium-gallium, and lithium-indium-gallium. Examples of the lithium-containing compound other than the lithium alloy include tin oxide, silicon oxide, nickel-silicon alloy, magnesium-silicon alloy, tungsten oxide, and lithium iron composite oxide. Of these negative electrode active materials, graphite is particularly preferable because of its large capacity density. Note that some of the negative electrode active materials do not contain lithium immediately after the production thereof, but when acting as an active material, the negative electrode active materials are in a state containing lithium.

上記負極は、例えば、上記負極活物質に、バインダなどを加え、必要なら有機溶剤を追加投入しながら混合して塗料を調製し、その塗料を導電性基体上に塗布して乾燥することにより、塗膜を形成する工程を経てシート状負極として作製される。   The negative electrode is prepared by, for example, adding a binder to the negative electrode active material and mixing it while adding an organic solvent if necessary to prepare a paint, applying the paint on a conductive substrate and drying, It is produced as a sheet-like negative electrode through a step of forming a coating film.

本実施形態において正極や負極の作製にあたって使用するバインダとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、カルボキシメチルセルロース、スチレンブタジエンゴム等が挙げられる。   Examples of the binder used in the production of the positive electrode and the negative electrode in this embodiment include polyvinylidene fluoride, polytetrafluoroethylene, carboxymethyl cellulose, styrene butadiene rubber, and the like.

本実施形態の正極、負極を塗布形成する際の塗料の溶剤としては、バインダ材料を溶解させるのに適当な溶剤を使用することが好ましい。このような溶剤としては、例えば、N−メチルピロリドン、ジメチルアセトアミド、ジメチルアセトアミド、テトラヒドロフラン、トルエン、蒸留水などを単独または2種以上混合して用いることができる。   As a solvent for the coating material used for coating and forming the positive electrode and the negative electrode of the present embodiment, it is preferable to use an appropriate solvent for dissolving the binder material. As such a solvent, for example, N-methylpyrrolidone, dimethylacetamide, dimethylacetamide, tetrahydrofuran, toluene, distilled water and the like can be used alone or in combination of two or more.

また、正極や負極の作製にあたって使用する導電性基体としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル、チタンまたはそれらの合金等からなる箔、パンチドメタル、エキスパンドメタル、網等が使用できるが、正極の導電性基体としては特にアルミニウム箔が好ましく、負極の導電性基体としては特に銅箔が好ましい。   In addition, as the conductive substrate used in the production of the positive electrode and the negative electrode, for example, a foil made of aluminum, copper, stainless steel, nickel, titanium or an alloy thereof, a punched metal, an expanded metal, a net, or the like can be used. The positive electrode conductive substrate is particularly preferably an aluminum foil, and the negative electrode conductive substrate is particularly preferably a copper foil.

本実施形態において、上記塗料を導電性基体に塗布する際の塗布方法としては、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケータなどをはじめ、各種の塗布方法を採用することができる。   In the present embodiment, various coating methods such as an extrusion coater, a reverse roller, a doctor blade, an applicator and the like can be adopted as a coating method when the coating material is applied to the conductive substrate.

本実施形態の電解液としては、例えば、1,2−ジメトキシエタン、1,2−ジエトキシエタン、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどの単独または2種以上の混合溶媒に、例えば、LiCFSO、LiCSO3、LiClO、LiPF、LiBFなどの電解質を単独または2種以上を溶解させて調製した有機溶剤系の電解液が用いられる。 Examples of the electrolyte solution of the present embodiment include 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, diethyl carbonate, dimethyl carbonate, For example, an electrolyte such as LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiClO 4 , LiPF 6 , or LiBF 4 is dissolved alone or in two or more kinds in a mixed solvent such as ethyl methyl carbonate. The prepared organic solvent based electrolyte is used.

本実施形態のセパレータとしては、例えば、厚さ10〜50μmで、開孔率30〜70%の微多孔性ポリエチレンフィルムなどが好適に用いられる。   As the separator of the present embodiment, for example, a microporous polyethylene film having a thickness of 10 to 50 μm and a porosity of 30 to 70% is preferably used.

本実施形態のリチウム二次電池は、例えば、上記のようにして作製されるシート状正極とシート状負極との間にセパレータを介在させて渦巻状に捲回作製した渦巻状電極体を、ニッケルメッキを施した鉄やステンレス鋼あるいはアルミニウム製の電池ケース内に挿入し、電解液を注入し、封口する工程を経て作製される。また、上記電池には、通常、電池内部に発生したガスをある一定圧力まで上昇した段階で電池外部に排出して、電池の高圧下での破裂を防止するための防爆機構が取り付けられる。   The lithium secondary battery of the present embodiment includes, for example, a spiral electrode body wound in a spiral shape with a separator interposed between a sheet-like positive electrode and a sheet-like negative electrode produced as described above. It is manufactured through a process of inserting into a battery case made of plated iron, stainless steel or aluminum, injecting an electrolyte, and sealing. The battery is usually provided with an explosion-proof mechanism for discharging the gas generated inside the battery to a certain pressure and discharging it to the outside of the battery to prevent the battery from bursting under high pressure.

次に、本発明を実施例に基づき具体的に説明する。ただし、本発明は以下の実施例にのみ限定されるものではない。   Next, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.

(実施例1)
(1)正極の作製
マンガン含有リチウム・ニッケル複合酸化物(LiCo0.33Mn0.34Ni0.33)を下記の手法で合成した。マンガン源、ニッケル源およびコバルト源としては、マンガン、ニッケルおよびコバルトが均一分布した化合物が使用できるが、それらの中でもマンガン、ニッケルおよびコバルトを共沈させたマンガン−ニッケル−コバルトの水酸化物を用いた。
Example 1
(1) Production of positive electrode Manganese-containing lithium-nickel composite oxide (LiCo 0.33 Mn 0.34 Ni 0.33 O 2 ) was synthesized by the following method. As the manganese source, nickel source and cobalt source, compounds in which manganese, nickel and cobalt are uniformly distributed can be used. Among them, manganese-nickel-cobalt hydroxide co-precipitated with manganese, nickel and cobalt is used. It was.

先ず、マンガン−ニッケル−コバルト水酸化物と炭酸リチウムとを乳鉢中で混合・粉砕し、空気中にて900℃で12時間焼成を行い、再び乳鉢中で粉砕し、これを分粒して平均粒子径3μmのLiCo0.33Mn0.34Ni0.33の粉末を得た。 First, manganese-nickel-cobalt hydroxide and lithium carbonate are mixed and pulverized in a mortar, fired at 900 ° C. for 12 hours in the air, pulverized again in the mortar, sized and averaged. A powder of LiCo 0.33 Mn 0.34 Ni 0.33 O 2 having a particle diameter of 3 μm was obtained.

次に、水酸化コバルトと炭酸リチウムとを乳鉢中で混合し、空気中にて900℃で12時間焼成して再び乳鉢中で粉砕し、これを分粒して平均粒子径10μmのリチウム・コバルト複合酸化物(LiCoO)を得た。 Next, cobalt hydroxide and lithium carbonate are mixed in a mortar, calcined in air at 900 ° C. for 12 hours, ground again in a mortar, and sized to obtain lithium cobalt having an average particle size of 10 μm. A composite oxide (LiCoO 2 ) was obtained.

次に、正極活物質含有塗膜形成用の塗料を以下の組成で調製した。
(a)上記マンガン含有リチウム・ニッケル複合酸化物(正極活物質A):27.6質量部
(b)上記リチウム・コバルト複合酸化物(正極活物質B):64.4質量部
(c)正極活物質Aと正極活物質Bの質量比(A/B):30/70
(d)正極活物質Aと正極活物質Bの平均粒子径比(A/B):3/10
(e)鱗片状黒鉛(電子伝導助剤):5質量部
(f)ポリビニリデンフルオライド(バインダ):3質量部
(g)N−メチルピロリドン(溶剤):30質量部
Next, a coating material for forming a positive electrode active material-containing coating film was prepared with the following composition.
(A) Manganese-containing lithium / nickel composite oxide (positive electrode active material A): 27.6 parts by mass (b) Lithium / cobalt composite oxide (positive electrode active material B): 64.4 parts by mass (c) Positive electrode Mass ratio (A / B) of active material A and positive electrode active material B: 30/70
(D) Average particle size ratio (A / B) of positive electrode active material A and positive electrode active material B: 3/10
(E) flake graphite (electron conduction aid): 5 parts by mass (f) polyvinylidene fluoride (binder): 3 parts by mass (g) N-methylpyrrolidone (solvent): 30 parts by mass

上記塗料の調製は次に示すように行った。先ず、ポリビニリデンフルオライド3質量部をN−メチルピロリドン22質量部に溶解して12質量%溶液を調製した。次に、この溶液にマンガン含有リチウム・ニッケル複合酸化物27.6質量部と、リチウム・コバルト複合酸化物64.4質量部と、鱗片状黒鉛5質量部とを加え、さらに上記溶液を調製した残りのN−メチルピロリドン8質量部を加えて混合することによって塗料を調製した。そして、得られた塗料を厚さ15μmのアルミニウム箔にアプリケータを用いて塗布し、110℃に設定したホットプレート上で20分間乾燥した。同様に、アルミニウム箔の裏面側にも上記塗料を塗布し、110℃に設定したホットプレート上で20分間乾燥した。その後、100℃で8時間真空乾燥して正極活物質含有塗膜を両面に形成した。そして、この塗膜の形成後の電極体をロールプレスして、片面の塗膜厚みが72μm、全厚が159μm、電極単位面積あたりの活物質質量(片面)が20.19mgの両面塗布型のシート状正極を作製した。   The coating material was prepared as follows. First, 3 parts by mass of polyvinylidene fluoride was dissolved in 22 parts by mass of N-methylpyrrolidone to prepare a 12% by mass solution. Next, 27.6 parts by mass of manganese-containing lithium / nickel composite oxide, 64.4 parts by mass of lithium / cobalt composite oxide, and 5 parts by mass of flake graphite were added to this solution, and the above solution was prepared. A paint was prepared by adding and mixing the remaining 8 parts by weight of N-methylpyrrolidone. And the obtained coating material was apply | coated to the 15-micrometer-thick aluminum foil using an applicator, and it dried for 20 minutes on the hotplate set to 110 degreeC. Similarly, the said coating material was apply | coated also to the back surface side of the aluminum foil, and it dried for 20 minutes on the hotplate set to 110 degreeC. Then, it vacuum-dried at 100 degreeC for 8 hours, and formed the positive electrode active material containing coating film on both surfaces. Then, the electrode body after the formation of this coating film is roll-pressed, so that the coating thickness on one side is 72 μm, the total thickness is 159 μm, and the active material mass (single side) per electrode unit area is 20.19 mg. A sheet-like positive electrode was produced.

(2)負極の作製
負極活物質含有塗膜形成用の塗料を下記の組成で調製した。
(a)メソカーボンマイクロビーズ(負極活物質):95質量部
(b)ポリビニリデンフルオライド(バインダ):5質量部
(c)N−メチルピロリドン(溶剤):80質量部
(2) Production of Negative Electrode A paint for forming a negative electrode active material-containing coating film was prepared with the following composition.
(A) Mesocarbon microbeads (negative electrode active material): 95 parts by mass (b) Polyvinylidene fluoride (binder): 5 parts by mass (c) N-methylpyrrolidone (solvent): 80 parts by mass

上記塗料の調製は次に示すように行った。先ず、ポリビニリデンフルオライド5質量部をN−メチルピロリドン37重量部に溶解して12質量%の溶液を調製した。次に、この溶液にメソカーボンマイクロビーズを95質量部加え、さらに上記溶液を調製した残りのN−メチルピロリドンを43質量部加えて混合することによって塗料を調整した。そして、得られた塗料を厚さ10μmの銅箔にアプリケータを用いて塗布し、110℃に設定したホットプレート上で20分間乾燥した。同様に、銅箔の裏面側にも上記塗料を塗布し、110℃に設定したホットプレート上で20分間乾燥した。その後、100℃で8時間真空乾燥して負極活物質含有塗膜を両面に形成した。そして、この塗膜形成後の電極体をロールプレスして、片面の塗膜厚みが79.5μm、全厚が169μm、電極単位面積あたりの活物質質量(正極に対向する部分の片面)が10.24mgの両面塗布型のシート状負極を作製した。   The coating material was prepared as follows. First, 5 parts by mass of polyvinylidene fluoride was dissolved in 37 parts by weight of N-methylpyrrolidone to prepare a 12% by mass solution. Next, 95 parts by mass of mesocarbon microbeads was added to this solution, and 43 parts by mass of the remaining N-methylpyrrolidone prepared from the above solution was added and mixed to prepare a coating material. And the obtained coating material was apply | coated to the 10-micrometer-thick copper foil using an applicator, and it dried for 20 minutes on the hotplate set to 110 degreeC. Similarly, the said coating material was apply | coated also to the back surface side of copper foil, and it dried for 20 minutes on the hotplate set to 110 degreeC. Then, it vacuum-dried at 100 degreeC for 8 hours, and formed the negative electrode active material containing coating film on both surfaces. And the electrode body after this coating film formation is roll-pressed, the coating film thickness of one side is 79.5 micrometers, the total thickness is 169 micrometers, and the active material mass per electrode unit area (one side of the part facing a positive electrode) is 10. A 24 mg double-coated sheet-like negative electrode was produced.

(3)電池の作製
厚み15μmで開孔率50%の微多孔性ポリエチレンフィルムからなるシート状セパレータを上記シート状正極と上記シート状負極との間に介在させ、渦巻状に巻回して巻回構造の電極積層体を作製した。そして、この巻回構造の電極積層体を加圧して扁平状にした後、肉厚が0.3mm、開口部の大きさが縦5mm、横30mm、深さが48mmのアルミニウム製の角型電池ケースに挿入し、正極端子、負極端子にリード線を溶接した後、エチレンカーボネートとエチルメチルカーボネートとの混合溶媒(混合体積比で1:1)に1mol/dmのLiPFを溶解して調製した非水系の電解液を注入し、封口して本実施例のリチウム電池を作製した。
(3) Production of battery A sheet-like separator made of a microporous polyethylene film having a thickness of 15 μm and a porosity of 50% is interposed between the sheet-like positive electrode and the sheet-like negative electrode, and is wound in a spiral shape. An electrode laminate having a structure was prepared. And after pressurizing and flattening the electrode laminated body of this winding structure, the square battery made from aluminum whose thickness is 0.3 mm, the size of the opening is 5 mm in length, 30 mm in width, and 48 mm in depth After inserting the case and welding lead wires to the positive electrode terminal and the negative electrode terminal, 1 mol / dm 3 of LiPF 6 is dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (1: 1 by mixing volume ratio). The lithium battery of this example was fabricated by injecting and sealing the nonaqueous electrolyte solution.

図2は実施例1で作製したリチウム二次電池の平面図であり、図3は図2のA−A部の断面図である。図2、図3において、シート状の正極21とシート状の負極22は前述のようにセパレータ23を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極積層体26として、角形の電池ケース24に電解液とともに収容されている。ただし、図2、図3では、煩雑化を避けるため、正極21や負極22の作製にあたって使用した集電体(導電性基体)としての金属箔や電解液等は図示していない。また、電極積層体26の内周側の部分は断面にしていない。   2 is a plan view of the lithium secondary battery produced in Example 1, and FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2 and 3, the sheet-like positive electrode 21 and the sheet-like negative electrode 22 are spirally wound through the separator 23 as described above, and then pressed so as to be flattened, thereby forming a flat winding structure. The electrode laminate 26 is housed in a rectangular battery case 24 together with the electrolyte. However, in FIG. 2 and FIG. 3, in order to avoid complication, a metal foil, an electrolytic solution, and the like as a current collector (conductive base) used in manufacturing the positive electrode 21 and the negative electrode 22 are not illustrated. In addition, the inner peripheral portion of the electrode laminate 26 is not cross-sectional.

電池ケース24はアルミニウム合金で形成され、電池の外装材となるものであり、この電池ケース24は正極端子を兼ねている。また、電池ケース24の底部にはポリテトラフルオロエチレンシートからなる絶縁体25が配置され、正極21、負極22及びセパレータ23からなる扁平状巻回構造の電極積層体26からは正極21及び負極22のそれぞれ一端に接続された正極リード体27と負極リード体28が引き出されている。また、電池ケース24の開口部を封口するアルミニウム合金製の蓋板29には、ポリプロピレン製の絶縁パッキング30を介してステンレス鋼製の端子31が取り付けられ、この端子31には絶縁体32を介してステンレス鋼製のリード板33が取り付けられている。更に、この蓋板29は上記電池ケース24の開口部に挿入され、両者の接合部を溶接することによって、電池ケース24の開口部が封口され、電池内部が密閉されている。   The battery case 24 is formed of an aluminum alloy and serves as a battery exterior material. The battery case 24 also serves as a positive electrode terminal. An insulator 25 made of a polytetrafluoroethylene sheet is disposed at the bottom of the battery case 24, and the positive electrode 21 and the negative electrode 22 are formed from the flat electrode structure 26 made up of the positive electrode 21, the negative electrode 22, and the separator 23. A positive electrode lead body 27 and a negative electrode lead body 28 connected to one end of each are drawn out. A stainless steel terminal 31 is attached to an aluminum alloy lid plate 29 that seals the opening of the battery case 24 via an insulating packing 30 made of polypropylene. A stainless steel lead plate 33 is attached. Further, the lid plate 29 is inserted into the opening of the battery case 24, and the joint of the two is welded, whereby the opening of the battery case 24 is sealed and the inside of the battery is sealed.

なお、実施例1の電池では、正極リード体27を蓋板29に直接溶接することによって電池ケース24と蓋板29とが正極端子として機能し、負極リード体28をリード板33に溶接し、そのリード板33を介して負極リード体28と端子31とを導通させることによって端子31が負極端子として機能するようになっているが、電池ケース24の材質などによっては、その正極、負極が逆になる場合もある。   In the battery of Example 1, the battery case 24 and the lid plate 29 function as positive terminals by directly welding the positive electrode lead body 27 to the lid plate 29, and the negative electrode lead body 28 is welded to the lead plate 33. By connecting the negative electrode lead body 28 and the terminal 31 through the lead plate 33, the terminal 31 functions as a negative electrode terminal. However, depending on the material of the battery case 24, the positive electrode and the negative electrode are reversed. Sometimes it becomes.

(実施例2)
マンガン含有リチウム・ニッケル複合酸化物の組成を、LiCo0.16Mn0.42Ni0.42に変更した以外は、実施例1と同様にしてリチウム二次電池を作製した。
(Example 2)
A lithium secondary battery was produced in the same manner as in Example 1 except that the composition of the manganese-containing lithium / nickel composite oxide was changed to LiCo 0.16 Mn 0.42 Ni 0.42 O 2 .

(実施例3)
マンガン含有リチウム・ニッケル複合酸化物として、マンガンおよびニッケルを共沈させたマンガン−ニッケルの水酸化物を用いて作製した平均粒子径3μmのマンガン含有リチウム・ニッケル複合酸化物(LiMn0.5Ni0.5)を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
(Example 3)
Manganese-containing lithium / nickel composite oxide (LiMn 0.5 Ni 0) having an average particle diameter of 3 μm prepared using manganese-nickel hydroxide co-precipitated with manganese and nickel as the manganese-containing lithium / nickel composite oxide. .5 O 2 ) was used to produce a lithium secondary battery in the same manner as in Example 1.

(実施例4)
下記に示した以外は、実施例1と同様にしてリチウム二次電池を作製した。
Example 4
A lithium secondary battery was produced in the same manner as in Example 1 except for the following.

正極活物質含有塗膜形成用の塗料を以下の組成で調製した。
(a)実施例1で作製したマンガン含有リチウム・ニッケル複合酸化物(正極活物質A):9.2質量部
(b)実施例1で作製したリチウム・コバルト複合酸化物(正極活物質B):82.8質量部
(c)正極活物質Aと正極活物質Bの質量比(A/B):10/90
(d)正極活物質Aと正極活物質Bの平均粒子径比(A/B):3/10
(e)鱗片状黒鉛(電子伝導助剤):5質量部
(f)ポリビニリデンフルオライド(バインダ):3質量部
(g)N−メチルピロリドン(溶剤):30質量部
A coating material for forming a positive electrode active material-containing coating film was prepared with the following composition.
(A) Manganese-containing lithium / nickel composite oxide prepared in Example 1 (positive electrode active material A): 9.2 parts by mass (b) Lithium / cobalt composite oxide prepared in Example 1 (positive electrode active material B) : 82.8 parts by mass (c) Mass ratio of positive electrode active material A to positive electrode active material B (A / B): 10/90
(D) Average particle size ratio (A / B) of positive electrode active material A and positive electrode active material B: 3/10
(E) flake graphite (electron conduction aid): 5 parts by mass (f) polyvinylidene fluoride (binder): 3 parts by mass (g) N-methylpyrrolidone (solvent): 30 parts by mass

また、塗布、乾燥、ロールプレス後の片面の塗膜厚みが72μm、全厚が159μm、電極単位面積あたりの正極活物質質量(片面)が20.19mgの両面塗布型のシート状正極を作製する代わりに、片面の塗膜厚みが73μm、全厚が161μm、電極単位面積あたりの正極活物質質量(片面)が20.77mgの両面塗布型のシート状正極を作製し、片面の塗膜厚みが79.5μm、全厚が169μm、電極単位面積あたりの負極活物質質量(正極に対向する部分の片面)が10.24mgの両面塗布型のシート状負極を作製する代わりに、片面の塗膜厚みが78.5μm、全厚が167μm、電極単位面積あたりの負極活物質質量(正極に対向する部分の片面)が10.11mgの両面塗布型のシート状負極を作製した。なお、本実施例で塗膜厚みを上記のように変更したのは、正極と負極の容量比率を実施例1と同様とするためである。   In addition, a double-sided coated sheet-like positive electrode having a coating film thickness of 72 μm after coating, drying and roll pressing, a total thickness of 159 μm, and a positive electrode active material mass (single side) per electrode unit area of 20.19 mg is prepared. Instead, a double-sided coated sheet-like positive electrode having a single-side coating thickness of 73 μm, a total thickness of 161 μm, and a positive electrode active material mass (single side) per electrode unit area of 20.77 mg was prepared. Instead of producing a double-coated sheet-like negative electrode with 79.5 μm, total thickness of 169 μm, and negative electrode active material mass per electrode unit area (one side facing the positive electrode) of 10.24 mg, the coating thickness on one side Was a double-coated sheet-type negative electrode having a total thickness of 167 μm and a negative electrode active material mass per electrode unit area (one side of the portion facing the positive electrode) of 10.11 mg. The reason why the thickness of the coating film was changed as described above in the present example is to make the capacity ratio of the positive electrode and the negative electrode the same as in Example 1.

(実施例5)
正極活物質含有塗膜形成用の塗料を以下の組成で調製した以外は、実施例1と同様にしてリチウム二次電池を作製した。
(a)実施例1で作製したマンガン含有リチウム・ニッケル複合酸化物(正極活物質A):36.8質量部
(b)実施例1で作製したリチウム・コバルト複合酸化物(正極活物質B):55.2質量部
(c)正極活物質Aと正極活物質Bの質量比(A/B):40/60
(d)正極活物質Aと正極活物質Bの平均粒子径比(A/B):3/10
(e)鱗片状黒鉛(電子伝導助剤):5質量部
(f)ポリビニリデンフルオライド(バインダ):3質量部
(g)N−メチルピロリドン(溶剤):30質量部
(Example 5)
A lithium secondary battery was produced in the same manner as in Example 1 except that the coating material for forming the positive electrode active material-containing coating film was prepared with the following composition.
(A) Manganese-containing lithium / nickel composite oxide prepared in Example 1 (positive electrode active material A): 36.8 parts by mass (b) Lithium / cobalt composite oxide prepared in Example 1 (positive electrode active material B) : 55.2 parts by mass (c) Mass ratio of positive electrode active material A to positive electrode active material B (A / B): 40/60
(D) Average particle size ratio (A / B) of positive electrode active material A and positive electrode active material B: 3/10
(E) flake graphite (electron conduction aid): 5 parts by mass (f) polyvinylidene fluoride (binder): 3 parts by mass (g) N-methylpyrrolidone (solvent): 30 parts by mass

(実施例6)
リチウム・コバルト複合酸化物の平均粒子径を7μmとした以外は、実施例1と同様にしてリチウム二次電池を作製した。
(Example 6)
A lithium secondary battery was produced in the same manner as in Example 1 except that the average particle size of the lithium-cobalt composite oxide was 7 μm.

(比較例1)
下記に示した以外は、実施例1と同様にしてリチウム二次電池を作製した。
(Comparative Example 1)
A lithium secondary battery was produced in the same manner as in Example 1 except for the following.

正極活物質含有塗膜形成用の塗料を以下の組成で調製した。
(a)リチウム・コバルト複合酸化物(LiCoO):92質量部
(b)鱗片状黒鉛(電子伝導助剤):5質量部
(c)ポリビニリデンフルオライド(バインダ):3質量部
(d)N−メチルピロリドン(溶剤):30質量部
A coating material for forming a positive electrode active material-containing coating film was prepared with the following composition.
(A) Lithium / cobalt composite oxide (LiCoO 2 ): 92 parts by mass (b) Scale-like graphite (electron conduction aid): 5 parts by mass (c) Polyvinylidene fluoride (binder): 3 parts by mass (d) N-methylpyrrolidone (solvent): 30 parts by mass

また、塗布、乾燥、ロールプレス後の片面の塗膜厚みが72μm、全厚が159μm、電極単位面積あたりの正極活物質質量(片面)が20.19mgの両面塗布型のシート状正極を作製する代わりに、片面の塗膜厚みが74μm、全厚が163μm、電極単位面積あたりの正極活物質質量(片面)が21.22mgの両面塗布型のシート状正極を作製し、片面の塗膜厚みが79.5μm、全厚が169μm、電極単位面積あたりの負極活物質質量(正極に対向する部分の片面)が10.24mgの両面塗布型のシート状負極を作製する代わりに、片面の塗膜厚みが77.5μm、全厚が165μm、電極単位面積あたりの負極活物質質量(正極に対向する部分の片面)が9.95mgの両面塗布型のシート状負極を作製した。なお、本実施例で塗膜厚みを上記のように変更したのは、正極と負極の容量比率を実施例1と同様とするためである。   In addition, a double-sided coated sheet-like positive electrode having a coating film thickness of 72 μm after coating, drying and roll pressing, a total thickness of 159 μm, and a positive electrode active material mass (single side) per electrode unit area of 20.19 mg is prepared. Instead, a double-sided coated sheet-like positive electrode having a coating thickness of 74 μm on one side, a total thickness of 163 μm, and a positive electrode active material mass (single side) per electrode unit area of 21.22 mg was prepared. Instead of producing a double-coated sheet-like negative electrode with 79.5 μm, total thickness of 169 μm, and negative electrode active material mass per electrode unit area (one side facing the positive electrode) of 10.24 mg, the coating thickness on one side Was a sheet-form negative electrode with a coating thickness of 77.5 μm, a total thickness of 165 μm, and a negative electrode active material mass per electrode unit area (one side of the portion facing the positive electrode) of 9.95 mg. The reason why the thickness of the coating film was changed as described above in the present example is to make the capacity ratio of the positive electrode and the negative electrode the same as in Example 1.

(比較例2)
正極活物質含有塗膜形成用の塗料を以下の組成で調製した以外は、実施例1と同様にしてリチウム二次電池を作製した。
(a)実施例1で作製したマンガン含有リチウム・ニッケル複合酸化物(正極活物質A):64.4質量部
(b)実施例1で作製したリチウム・コバルト複合酸化物(正極活物質B):27.6質量部
(c)正極活物質Aと正極活物質Bの質量比(A/B):70/30
(d)正極活物質Aと正極活物質Bの平均粒子径比(A/B):3/10
(e)鱗片状黒鉛(電子伝導助剤):5質量部
(f)ポリビニリデンフルオライド(バインダ):3質量部
(g)N−メチルピロリドン(溶剤):30質量部
(Comparative Example 2)
A lithium secondary battery was produced in the same manner as in Example 1 except that the coating material for forming the positive electrode active material-containing coating film was prepared with the following composition.
(A) Manganese-containing lithium / nickel composite oxide prepared in Example 1 (positive electrode active material A): 64.4 parts by mass (b) Lithium / cobalt composite oxide prepared in Example 1 (positive electrode active material B) : 27.6 parts by mass (c) Mass ratio of positive electrode active material A to positive electrode active material B (A / B): 70/30
(D) Average particle size ratio (A / B) of positive electrode active material A and positive electrode active material B: 3/10
(E) flake graphite (electron conduction aid): 5 parts by mass (f) polyvinylidene fluoride (binder): 3 parts by mass (g) N-methylpyrrolidone (solvent): 30 parts by mass

(比較例3)
マンガン含有リチウム・ニッケル複合酸化物の平均粒子径を4μmとし、リチウム・コバルト複合酸化物の平均粒子径を7μmとした以外は、実施例1と同様にしてリチウム二次電池を作製した。
(Comparative Example 3)
A lithium secondary battery was produced in the same manner as in Example 1 except that the average particle size of the manganese-containing lithium / nickel composite oxide was 4 μm and the average particle size of the lithium / cobalt composite oxide was 7 μm.

次に、上記のようにして作製した実施例1〜6の電池および比較例1〜3の電池の放電容量、負荷特性を測定した。また、上記負荷特性の測定において、充放電電流をCで表示した場合、700mAを1Cとして充放電を行った。充電は1Cの電流制限回路を設けて4.2Vの定電圧で行い、放電は1Cの電流制限回路を設けて電池の電極間電圧が3Vに低下するまで行って放電容量を測定した。そして、負荷特性として、0.2Cおよび2Cの放電容量をそれぞれ測定し、(2Cの放電容量)/(0.2Cの放電容量)の比を求めた。   Next, the discharge capacities and load characteristics of the batteries of Examples 1 to 6 and the batteries of Comparative Examples 1 to 3 manufactured as described above were measured. Further, in the measurement of the load characteristics, when the charge / discharge current was indicated by C, charge / discharge was performed with 700 mA as 1C. Charging was performed at a constant voltage of 4.2 V by providing a 1 C current limiting circuit, and discharging was performed until a voltage between the electrodes of the battery was lowered to 3 V by providing a 1 C current limiting circuit. As load characteristics, discharge capacities of 0.2C and 2C were measured, respectively, and a ratio of (2C discharge capacity) / (0.2C discharge capacity) was obtained.

また、各電池の安全性を比較するため、充電電流を2Cに設定し、通常充電とは異なり4.2Vを超えても引き続き電池を充電するという過充電試験を行った。なお、この時の定電流電源は最大電圧12Vに設定した。電池ケースには熱電対を貼り付けて、過充電試験中の温度上昇を測定し、セパレータのシャットダウンにより充電が強制停止された以降の最大温度を求めた。実施例、比較例の各試験電池個数は10個である。   In addition, in order to compare the safety of each battery, an overcharge test was performed in which the charging current was set to 2C and the battery was continuously charged even when the voltage exceeded 4.2 V, unlike normal charging. The constant current power supply at this time was set to a maximum voltage of 12V. A thermocouple was attached to the battery case, the temperature rise during the overcharge test was measured, and the maximum temperature after charging was forcibly stopped by the shutdown of the separator was determined. The number of test batteries in Examples and Comparative Examples is ten.

以下、表1に実施例1〜6、比較例1〜3の正極塗膜の構成をまとめて示し、表2に上記電池特性の測定結果を示した。なお、表2において負荷特性は、(2Cの放電容量)/(0.2Cの放電容量)×100の値を示した。   Hereinafter, the configurations of the positive electrode coating films of Examples 1 to 6 and Comparative Examples 1 to 3 are collectively shown in Table 1, and Table 2 shows the measurement results of the battery characteristics. In Table 2, the load characteristic is a value of (2C discharge capacity) / (0.2C discharge capacity) × 100.

Figure 0004848487
Figure 0004848487

Figure 0004848487
Figure 0004848487

表2から明らかなように、実施例1〜実施例6の電池は、放電容量、負荷特性、安全性の全てにおいて満足できる結果を得た。これに対して、比較例1の電池では、負荷特性は良好であったが発熱が大きく、比較例2の電池では、放電容量と負荷特性が低下し、比較例3の電池では、負荷特性が低下して発熱も大きくなった。   As is clear from Table 2, the batteries of Examples 1 to 6 obtained satisfactory results in all of discharge capacity, load characteristics, and safety. On the other hand, the battery of Comparative Example 1 had good load characteristics but large heat generation, the battery of Comparative Example 2 had a reduced discharge capacity and load characteristics, and the battery of Comparative Example 3 had load characteristics. The temperature decreased and the fever increased.

以上のように本発明は、放電容量、負荷特性、安全性のバランスを向上させたリチウム二次電池を提供することができる。   As described above, the present invention can provide a lithium secondary battery with an improved balance of discharge capacity, load characteristics, and safety.

本発明の正極塗膜構造の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the positive electrode coating-film structure of this invention. 実施例1で作製したリチウム二次電池の平面図である。1 is a plan view of a lithium secondary battery produced in Example 1. FIG. 図2のA−A部の断面図である。It is sectional drawing of the AA part of FIG.

符号の説明Explanation of symbols

1 リチウム・コバルト複合酸化物粒子
2 マンガン含有リチウム・ニッケル複合酸化物粒子
3 鱗片状黒鉛
4 アルミニウム箔
21 正極
22 負極
23 セパレータ
24 電池ケース
25 絶縁体
26 電極積層体
27 正極リード体
28 負極リード体
29 蓋板
30 絶縁パッキング
31 端子
32 絶縁体
33 リード板
DESCRIPTION OF SYMBOLS 1 Lithium / cobalt composite oxide particle 2 Manganese-containing lithium / nickel composite oxide particle 3 Scale-like graphite 4 Aluminum foil 21 Positive electrode 22 Negative electrode 23 Separator 24 Battery case 25 Insulator 26 Electrode laminated body 27 Positive electrode lead body 28 Negative electrode lead body 29 Cover plate 30 Insulation packing 31 Terminal 32 Insulator 33 Lead plate

Claims (5)

正極活物質が一般組成式Li1+x+αNi(1−x−y+δ)/2Mn(1−x−y−δ)/2(但し、MはCoであり、0≦x≦0.1、0≦y≦0.4、−0.05≦α≦0.05、−0.1≦δ≦0.1)で表されるマンガン含有リチウム・ニッケル複合酸化物と、リチウム・コバルト複合酸化物とで構成されるリチウム二次電池用正極であって、
前記マンガン含有リチウム・ニッケル複合酸化物と前記リチウム・コバルト複合酸化物の全質量に対して、前記マンガン含有リチウム・ニッケル複合酸化物の質量の割合が、10質量%以上50質量%未満であり、
前記マンガン含有リチウム・ニッケル複合酸化物の平均粒子径が、前記リチウム・コバルト複合酸化物の平均粒子径の1/40以上1/2以下であることを特徴とするリチウム二次電池用正極。
The positive electrode active material is the general composition formula Li 1 + x + α Ni ( 1-x-y + δ) / 2 M y Mn (1-x-y-δ) / 2 O 2 ( where, M is Co, 0 ≦ x ≦ 0. 1, 0 ≦ y ≦ 0.4, −0.05 ≦ α ≦ 0.05, −0.1 ≦ δ ≦ 0.1) and a lithium-nickel composite oxide and a lithium-cobalt composite A positive electrode for a lithium secondary battery comprising an oxide,
The ratio of the mass of the manganese-containing lithium / nickel composite oxide to the total mass of the manganese-containing lithium / nickel composite oxide and the lithium / cobalt composite oxide is 10% by mass or more and less than 50% by mass,
The positive electrode for a lithium secondary battery, wherein an average particle size of the manganese-containing lithium / nickel composite oxide is from 1/40 to 1/2 of an average particle size of the lithium / cobalt composite oxide.
前記マンガン含有リチウム・ニッケル複合酸化物と前記リチウム・コバルト複合酸化物の全質量に対して、前記マンガン含有リチウム・ニッケル複合酸化物の質量の割合が、40質量%以下である請求項1に記載のリチウム二次電池用正極。   The mass ratio of the manganese-containing lithium / nickel composite oxide is 40% by mass or less with respect to the total mass of the manganese-containing lithium / nickel composite oxide and the lithium / cobalt composite oxide. Positive electrode for lithium secondary battery. 前記マンガン含有リチウム・ニッケル複合酸化物の平均粒子径が、前記リチウム・コバルト複合酸化物の平均粒子径の1/3以下である請求項1または2に記載のリチウム二次電池用正極。   3. The positive electrode for a lithium secondary battery according to claim 1, wherein an average particle diameter of the manganese-containing lithium / nickel composite oxide is 1/3 or less of an average particle diameter of the lithium / cobalt composite oxide. 前記置換元素Mが、3価の遷移金属元素を含むことを特徴とする請求項1〜3のいずれかに記載のリチウム二次電池用正極。   The positive electrode for a lithium secondary battery according to claim 1, wherein the substitution element M includes a trivalent transition metal element. 請求項1〜4のいずれかに記載のリチウム二次電池用正極、負極、セパレータおよび電解液を備えたリチウム二次電池。   The lithium secondary battery provided with the positive electrode for lithium secondary batteries in any one of Claims 1-4, a negative electrode, a separator, and electrolyte solution.
JP2007003953A 2007-01-12 2007-01-12 Positive electrode for lithium secondary battery and lithium secondary battery Expired - Lifetime JP4848487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003953A JP4848487B2 (en) 2007-01-12 2007-01-12 Positive electrode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003953A JP4848487B2 (en) 2007-01-12 2007-01-12 Positive electrode for lithium secondary battery and lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003181330A Division JP3996554B2 (en) 2003-06-25 2003-06-25 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2007128906A JP2007128906A (en) 2007-05-24
JP4848487B2 true JP4848487B2 (en) 2011-12-28

Family

ID=38151324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003953A Expired - Lifetime JP4848487B2 (en) 2007-01-12 2007-01-12 Positive electrode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4848487B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3793054B2 (en) * 2001-07-27 2006-07-05 日立マクセル株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2007128906A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP3233352B2 (en) Manufacturing method of non-aqueous solvent secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5315591B2 (en) Positive electrode active material and battery
JP4237074B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3032757B1 (en) Non-aqueous electrolyte secondary battery
US9379376B2 (en) Positive electrode containing lithium nickel composite oxide for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2009099523A (en) Lithium secondary battery
JP4929701B2 (en) Non-aqueous electrolyte secondary battery
JP2009043477A (en) Positive electrode active material, positive electrode as well as nonaqueous electrolyte battery using the same
JP2007103119A (en) Positive electrode material, positive electrode and battery
JP2003203631A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP5851801B2 (en) Lithium secondary battery
JP3996554B2 (en) Lithium secondary battery
JP2011014254A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP3951715B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
JP5017010B2 (en) Lithium secondary battery
JP2001351624A (en) Non-aqueous secondary battery and method for using it
WO2014103755A1 (en) Nonaqueous electrolyte secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP2005285720A (en) Non-aqueous electrolyte secondary battery
JP2017021941A (en) Nonaqueous electrolyte secondary battery
JP4447831B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2013137939A (en) Nonaqueous secondary battery
JP4848487B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP4983124B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte battery using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4848487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term