JP4848136B2 - Oil separator - Google Patents

Oil separator Download PDF

Info

Publication number
JP4848136B2
JP4848136B2 JP2005132278A JP2005132278A JP4848136B2 JP 4848136 B2 JP4848136 B2 JP 4848136B2 JP 2005132278 A JP2005132278 A JP 2005132278A JP 2005132278 A JP2005132278 A JP 2005132278A JP 4848136 B2 JP4848136 B2 JP 4848136B2
Authority
JP
Japan
Prior art keywords
hole
outer cylinder
mixture
oil separator
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005132278A
Other languages
Japanese (ja)
Other versions
JP2006308227A (en
Inventor
康弘 和田
孝幸 桑原
勝博 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005132278A priority Critical patent/JP4848136B2/en
Publication of JP2006308227A publication Critical patent/JP2006308227A/en
Application granted granted Critical
Publication of JP4848136B2 publication Critical patent/JP4848136B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

本発明は、オイルセパレータに関するものであり、更に詳しくは、空気調和装置の冷媒回路に用いられる圧縮機から排出される潤滑油を簡易な構造で取り除くオイルセパレータに関する。   The present invention relates to an oil separator, and more particularly to an oil separator that removes lubricating oil discharged from a compressor used in a refrigerant circuit of an air conditioner with a simple structure.

冷媒を圧縮する圧縮機において、冷媒中に潤滑油を混入させ、当該潤滑油によって圧縮機の各種機構を滑らかに作動させる技術が従来から用いられている。しかし、潤滑油を混入させたままの冷媒をそのまま冷媒回路で循環させると、回路中の蒸発器や凝縮器等の熱交換部に潤滑油が付着し、蒸発器等の熱交換性能が低下してしまう。そこで、そのような性能低下を防止するために、一般的に、当該潤滑油を冷媒から分離するオイルセパレータが用いられる。   2. Description of the Related Art Conventionally, in a compressor that compresses a refrigerant, a technique in which lubricating oil is mixed into the refrigerant and various mechanisms of the compressor are smoothly operated by the lubricating oil has been conventionally used. However, if the refrigerant mixed with the lubricating oil is circulated in the refrigerant circuit as it is, the lubricating oil will adhere to the heat exchanging parts such as the evaporator and condenser in the circuit, and the heat exchanging performance of the evaporator and the like will deteriorate. End up. Therefore, in order to prevent such performance degradation, an oil separator that separates the lubricating oil from the refrigerant is generally used.

オイルセパレータは、円筒形状の外筒と、この外筒と同心状に配設された内筒とを有し、圧縮機と独立した装置として設けられるタイプ、設置スペースとの関係から圧縮機の内部に上記外筒と内筒とが構築されるタイプ、または内筒が無く、外筒のみで構築されるタイプがある。これらのオイルセパレータは、冷媒と潤滑油との混合物から潤滑油を遠心分離させるものであり、分離された潤滑油は、当該オイルセパレータ下部の貯油部に溜まり、再び圧縮機の吸入口に循環させられる。   The oil separator has a cylindrical outer cylinder and an inner cylinder arranged concentrically with the outer cylinder. The oil separator is a type provided as a device independent of the compressor, and the interior of the compressor due to the relationship with the installation space. There is a type in which the outer cylinder and the inner cylinder are constructed, or a type in which there is no inner cylinder and only the outer cylinder is constructed. These oil separators are used for centrifuging lubricating oil from a mixture of refrigerant and lubricating oil, and the separated lubricating oil is accumulated in an oil storage section below the oil separator and is circulated again to the suction port of the compressor. It is done.

上記遠心分離作用は、外筒に導入された冷媒と潤滑油との混合物が、内筒外壁の周りや外筒内壁等を螺旋状に下方に向けて旋回する際の遠心力を利用する。すなわち、オイルセパレータは、比重の高い霧状の潤滑油が、旋回による遠心力によって冷媒から分離され、内筒の外壁面や外筒の内壁面をたどって下方に流れるしくみとなっている。上記混合物が導入される導入口は、当該混合物が円滑に螺旋運動するように(導入口から吐出口へと旋回・分離行程を経ずに吐出される流れを防ぐ為に)、斜め下方向(吐出口から遠ざかる方向)に向けて穿たれるのが一般的である(たとえば、特許文献1)。   The centrifugal separation action utilizes centrifugal force when the mixture of the refrigerant and the lubricating oil introduced into the outer cylinder swirls around the outer wall of the inner cylinder or the inner wall of the outer cylinder spirally downward. That is, the oil separator has a mechanism in which mist-like lubricating oil having a high specific gravity is separated from the refrigerant by centrifugal force due to swirling and flows downward along the outer wall surface of the inner cylinder and the inner wall surface of the outer cylinder. The introduction port into which the mixture is introduced has a diagonally downward direction (in order to prevent the flow discharged from the introduction port to the discharge port without going through the swivel / separation process) so that the mixture smoothly spirals ( It is common to pierce in the direction away from the discharge port (for example, Patent Document 1).

特開2003−336588号公報JP 2003-336588 A

しかしながら、オイルセパレータの外筒は、円筒形状をしているために、冷媒と潤滑油の混合物を、長手方向でいう下方に向けて(吐出口から遠ざかる方向に)吹き出させる導入口を斜めに穿つことは、手間がかかり、加工工数を増やすことになって、コスト競争の激しい自動車部品や家電製品の部品としてのオイルセパレータとしては好ましくなかった。特に、圧縮機ケースの深い部分に内蔵されるオイルセパレータの外筒に斜めに導入口を穿つことは、工具の挿入角度の関係上、困難であった。   However, since the outer cylinder of the oil separator has a cylindrical shape, the inlet port through which the mixture of the refrigerant and the lubricating oil is blown downward in the longitudinal direction (in a direction away from the discharge port) is obliquely formed. This is not preferable as an oil separator as a part of an automobile part or a home appliance with intense cost competition because it takes time and increases the number of processing steps. In particular, it is difficult to make the introduction port obliquely in the outer cylinder of the oil separator built in the deep part of the compressor case because of the insertion angle of the tool.

そこで、この発明は、上記に鑑みてなされたものであって、冷媒と潤滑油の混合物を導入する導入口を外筒に対して斜めに穿たなくても、当該混合物を螺旋旋回させる(導入口から吐出口へと旋回・分離行程を経ずに吐出される流れを防ぐ)ことができるオイルセパレータを提供することを目的とする。   Therefore, the present invention has been made in view of the above, and the mixture is spirally swirled without introducing an inlet for introducing the mixture of the refrigerant and the lubricating oil obliquely with respect to the outer cylinder (introduction). An object of the present invention is to provide an oil separator capable of preventing a flow discharged from a mouth to a discharge port without going through a swivel / separation process.

上述の目的を達成するために、この発明にかかるオイルセパレータは、吐出口から遠ざかる方向に長い断面を有し、外筒の中心軸に直交する平面と平行となる方向で当該外筒の表面から真っ直ぐに穿設工具を挿入したときに当該穿設工具の側面が当該外筒の内壁をえぐる位置に穿たれる長孔であって、前記吐出口から遠ざかる方向にある位置の孔ほど、前記長孔の深さが大きくなっており、当該深さが滑らかに遷移しているようにしたものである。 In order to achieve the above-described object, an oil separator according to the present invention has a long cross section in a direction away from a discharge port , and is parallel to a plane perpendicular to the central axis of the outer cylinder from the surface of the outer cylinder. When the drilling tool is inserted straight, a long hole that is drilled in a position where the side surface of the drilling tool goes around the inner wall of the outer cylinder, and the longer the hole is in the direction away from the discharge port , the longer The depth of the hole is increased, and the depth transitions smoothly.

オイルセパレータの外筒は、表面から吐出口から遠ざかる方向に長い断面を有する長孔が穿たれる。そして、外筒の軸に直交する平面と平行となる方向で、外筒の表面から真っ直ぐに穿設工具を挿入したときに、当該工具の側面が外筒の内壁をえぐる位置に長孔は穿たれる。また、この長孔は、吐出口から遠ざかる方向にある位置の部分ほど、深さが大きくなっており、当該深さが滑らかに遷移している。長孔が上記のようになっていると、長孔から導入される混合物が、上記えぐる部分に形成される壁部にぶつかる。そして、当該壁部は、斜めに形成されるから、これに沿って潤滑油の混合物の流れが形成される。したがって、結局、流れを曲げたい方向に、混合物の流れが曲げられことになる。   The outer cylinder of the oil separator is provided with a long hole having a long cross section in a direction away from the discharge port from the surface. Then, when a drilling tool is inserted straight from the surface of the outer cylinder in a direction parallel to the plane perpendicular to the axis of the outer cylinder, the long hole is drilled at a position where the side surface of the tool surrounds the inner wall of the outer cylinder. Be drunk. Further, the depth of the long hole is larger at a position in a direction away from the discharge port, and the depth transitions smoothly. When the long hole is configured as described above, the mixture introduced from the long hole collides with the wall portion formed in the hollow portion. And since the said wall part is formed diagonally, the flow of the mixture of lubricating oil is formed along this. Accordingly, the flow of the mixture is bent in the direction in which the flow is desired to be bent.

以上説明したように、この発明に係るオイルセパレータによれば、冷媒と潤滑油の混合物を導入する導入口を外筒の中心軸に対して斜めに穿たなくても、当該混合物を螺旋旋回させることができる。つまり、導入口を吐出口から遠ざかる方向に設置しなくても、冷媒と潤滑油との混合物を外筒の内壁に沿って螺旋運動させ、それによって潤滑油を遠心分離させることができ、混合物が導入口から吐出口へと旋回・分離行程を経ずに吐出されることを防ぐことができる。   As described above, according to the oil separator of the present invention, the mixture is spirally swirled even if the introduction port for introducing the mixture of the refrigerant and the lubricating oil is not formed obliquely with respect to the central axis of the outer cylinder. be able to. That is, even if the introduction port is not installed in the direction away from the discharge port, the mixture of the refrigerant and the lubricating oil can be spirally moved along the inner wall of the outer cylinder, whereby the lubricating oil can be centrifuged, It is possible to prevent discharge from the introduction port to the discharge port without going through a turning / separating process.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

図1−1〜1−3は、参考例1に係るオイルセパレータを示す斜視図、断面図、および側面図である。このオイルセパレータは、外筒のみを有し、内筒を有しないタイプである。このオイルセパレータの外筒1の一部には、ドリル等の穿工具の挿入方向に対して直角となる平面を形作る肉盛り座部2が設けられる。なお、当該肉盛り座部2は、加工を容易にするために一般に設けられるもので、参考例1に係るオイルセパレータに必ず必要となるものではない。 FIGS. 1-1 to 1-3 are a perspective view, a cross-sectional view, and a side view showing an oil separator according to Reference Example 1. FIGS. This oil separator is a type having only an outer cylinder and no inner cylinder. This part of the outer cylinder 1 of the oil separator, padding seat 2 that forms a plane at right angles to the insertion direction of the puncture set tool such as a drill is provided. In addition, the said meat seat part 2 is generally provided in order to make a process easy, and is not necessarily required for the oil separator which concerns on the reference example 1. FIG .

図1−1〜1−3に示すように、外筒1には、2つの孔が設けられる。第一の孔3は、外筒1の中心軸に直交する平面と平行となる方向で、かつ外筒1の断面円形内壁の接線方向で、外筒1の壁を貫く孔である。ここでは、当該第一の孔3の深さは、外筒1の半径と等しくしてある。これ以上の深さだと、対面する内壁にくい込み、内面に余計な圧損や流れの乱れを生じさせてしまうからである。   As shown in FIGS. 1-1 to 1-3, the outer cylinder 1 is provided with two holes. The first hole 3 is a hole that penetrates the wall of the outer cylinder 1 in a direction parallel to a plane orthogonal to the central axis of the outer cylinder 1 and in a tangential direction of the circular inner wall of the outer cylinder 1. Here, the depth of the first hole 3 is made equal to the radius of the outer cylinder 1. This is because if the depth is more than this, the inner walls facing each other will be difficult to insert, causing excessive pressure loss and turbulence in the inner surface.

第二の孔4は、径が第一の孔3よりも相対的に小さく、第一の孔3と交わらずに、第一の孔3に対して冷媒と潤滑油の混合物を向けさせる方向にずれた位置で、第一の孔3と平行で、かつ断面円形である内壁13の接線方向で、外筒1の壁を貫くものである。また、第二の孔4の深さは、第一の孔3と同様に、外筒1の半径と等しくなっている。第一の孔3に対して冷媒と潤滑油の混合物を向けさせる方向とは、通常オイルセパレータの長手方向で下方であり、導入口から導入される当該混合物が十分に遠心分離せずに吐出口から出ていかないように、十分な遠心分離作用を施すべく、吐出口から遠ざかる方向をいう。   The second hole 4 is relatively smaller in diameter than the first hole 3, and does not intersect the first hole 3, so that the mixture of the refrigerant and the lubricating oil is directed to the first hole 3. In the shifted position, it penetrates the wall of the outer cylinder 1 in the tangential direction of the inner wall 13 that is parallel to the first hole 3 and has a circular cross section. Further, the depth of the second hole 4 is equal to the radius of the outer cylinder 1, similarly to the first hole 3. The direction in which the mixture of the refrigerant and the lubricating oil is directed to the first hole 3 is usually downward in the longitudinal direction of the oil separator, and the mixture introduced from the introduction port is not sufficiently centrifuged and discharged from the discharge port. This means the direction away from the discharge port in order to provide sufficient centrifugal separation so that it does not come out of the outlet.

第一の孔3が外筒1の内壁13に顔を出す部分5から外筒1内に導入される冷媒と潤滑油の混合物(以下、単に混合物という。)は、そのまま真っ直ぐに進もうとするが、すぐ下にある第二の孔4の影響により、図の下方に曲がる速度成分が生じて、下方に向けて螺旋運動を開始する。   A mixture of refrigerant and lubricating oil (hereinafter simply referred to as a mixture) introduced into the outer cylinder 1 from the portion 5 where the first hole 3 faces the inner wall 13 of the outer cylinder 1 tries to go straight as it is. However, due to the influence of the second hole 4 immediately below, a velocity component that bends downward in the figure is generated, and the spiral motion is started downward.

ここで、第二の孔4の影響とは、静圧の影響である。以下、当該影響について説明する。第二の孔4は、第一の孔3よりも面積が小さく、外筒1の外側から導入される混合物にとって、第二の孔4は、第一の孔3よりも圧力損失が大きくなっている。ここで、外筒1の外部における冷媒の圧力をHPとし、外筒1の内部における冷媒の圧力をMPとすると(HP>MP)、第一の孔3及び第二の孔4における圧力バランスは、それぞれ式(1)、式(2)のようになる。
HP=MP+ρV1 2/2+ΔP1・・・(1)
HP=MP+ρV2 2/2+ΔP2・・・(2)
ここで、ρは冷媒の密度であり、V1、V2は、それぞれ第一の孔3、第二の孔4から外筒1内へ流入する冷媒の流速であり、ΔP1、ΔP2は、それぞれ第一の孔3、第二の孔4の圧力損失である。
Here, the influence of the second hole 4 is the influence of static pressure. Hereinafter, the influence will be described. The second hole 4 has a smaller area than the first hole 3, and the pressure loss of the second hole 4 is larger than that of the first hole 3 for the mixture introduced from the outside of the outer cylinder 1. Yes. Here, when the pressure of the refrigerant outside the outer cylinder 1 is HP and the pressure of the refrigerant inside the outer cylinder 1 is MP (HP> MP), the pressure balance in the first hole 3 and the second hole 4 is , Respectively, as shown in equations (1) and (2).
HP = MP + ρV 1 2/ 2 + ΔP1 ··· (1)
HP = MP + ρV 2 2/ 2 + ΔP2 ··· (2)
Here, ρ is the density of the refrigerant, V1 and V2 are the flow rates of the refrigerant flowing into the outer cylinder 1 from the first hole 3 and the second hole 4, respectively, and ΔP1 and ΔP2 are respectively the first This is the pressure loss of the hole 3 and the second hole 4.

ΔP1<ΔP2とすると、式(1)、式(2)から、V1>V2となる。外筒1内には、すでに冷媒の旋回流が存在する。この旋回流の流速(旋回流速度)をV0とする。第一の孔3及び第二の孔4から新しく外筒1内へ流入する冷媒は、前記旋回流速度V0と略等しくなる。第一の孔3から外筒1内へ流入する冷媒の流速(以下、第一の速度という。)V1は、第二の孔4から外筒1内へ流入する冷媒の流速(以下、第二の速度という。)V2よりも大きい。このため、第一の速度V1及び第二の速度V2が、旋回流速度V0になったときには、第一の孔3から外筒1内へ流入する冷媒の流れ(以下、第一流れという。)の静圧Ps1は、第二の孔4から外筒1内へ流入する冷媒の流れ(以下、第二流れという。)の静圧Ps2よりも大きくなる(ベルヌーイの定理)。   Assuming ΔP1 <ΔP2, V1> V2 is obtained from the equations (1) and (2). A swirling flow of the refrigerant already exists in the outer cylinder 1. The flow velocity (swirl flow velocity) of this swirling flow is V0. The refrigerant newly flowing into the outer cylinder 1 from the first hole 3 and the second hole 4 becomes substantially equal to the swirl flow velocity V0. The flow rate of refrigerant flowing into the outer cylinder 1 from the first hole 3 (hereinafter referred to as the first speed) V1 is the flow rate of refrigerant flowing into the outer cylinder 1 from the second hole 4 (hereinafter referred to as the second speed). It is larger than V2. For this reason, when the first speed V1 and the second speed V2 become the swirl flow speed V0, the flow of the refrigerant flowing into the outer cylinder 1 from the first hole 3 (hereinafter referred to as the first flow). The static pressure Ps1 is larger than the static pressure Ps2 of the flow of refrigerant flowing into the outer cylinder 1 from the second hole 4 (hereinafter referred to as second flow) (Bernoulli's theorem).

すなわち、第一の孔3が外筒1の内壁13に顔を出す部分5から外筒1内に導入される混合物の流れ10は、すぐ下にある孔6(4)から導入される混合物の流れ11に、静圧の違いによって、引き寄せられ、図に点線で示したように、図の下方に曲がる。このような作用を発生させるため、参考例1では、第一の孔3と第二の孔4との間隔は、第二の孔4から導入される混合物周辺の圧力変化が第一の孔3から導入される混合物に影響を及ぼす距離であることが必要となる。離れすぎていると、速度の違いによる圧力変化が互いに影響を及ぼすことなく、流れを曲げるまでには至らないからである。この観点からは、第一の孔3と第二の孔4との中心間距離Lは、(第一の孔の半径)+(第二の孔の半径)<L<(第一の孔の直径)とするのが理想である。 That is, the flow 10 of the mixture introduced into the outer cylinder 1 from the portion 5 where the first hole 3 faces the inner wall 13 of the outer cylinder 1 is the mixture flow introduced from the hole 6 (4) immediately below. The flow 11 is attracted by the difference in static pressure and bends downward in the figure as indicated by the dotted line in the figure. In order to generate such an action, in Reference Example 1 , the distance between the first hole 3 and the second hole 4 is such that the pressure change around the mixture introduced from the second hole 4 is the first hole 3. It is necessary that the distance affects the mixture to be introduced. This is because if the distance is too far, the pressure change due to the difference in speed does not affect each other and the flow is not bent. From this point of view, the center-to-center distance L between the first hole 3 and the second hole 4 is (radius of the first hole) + (radius of the second hole) <L <(of the first hole). (Diameter) is ideal.

上記のように、大きさの異なる孔3、4を形成するには、ドリルの径を変えるのが一般的であるが、同一のドリルで、完全に外筒を貫通する手前で加工を止めると、ドリルの先端のみによって小さな孔が穿設可能となる。このようにすれば、ドリル交換の手間も省け、加工工数をさらに減少させることができる。   As described above, in order to form the holes 3 and 4 having different sizes, it is common to change the diameter of the drill. However, if the machining is stopped before completely penetrating the outer cylinder with the same drill, A small hole can be drilled only by the tip of the drill. In this way, the labor for exchanging the drill can be saved, and the number of processing steps can be further reduced.

このように、参考例1にかかるオイルセパレータは、混合物を導入する導入口を外筒に対して斜めに穿たなくても、当該混合物を吐出口から遠ざかる方向で十分な螺旋旋回をさせ、潤滑油を遠心分離させることができるという効果を有する。これにより、オイルセパレータに穿つ孔の加工も容易となり、加工数減少による加工コストの低減を実現できる。 As described above, the oil separator according to the reference example 1 allows sufficient spiral rotation in the direction of moving the mixture away from the discharge port without lubrication without introducing the introduction port for introducing the mixture obliquely with respect to the outer cylinder. The effect is that the oil can be centrifuged. Thereby, the processing of the hole made in the oil separator is facilitated, and the processing cost can be reduced by reducing the number of processing.

図2−1〜2−3は、この発明の実施例に係るオイルセパレータを示す斜視図、断面図、および側面図である。肉盛り座部2の形成は参考例1と同様なので、ここでは説明を省略する。また、参考例1と同一の部分には、同一の符号を付して説明を省略する。 FIGS. 2-1 to 2-3 are a perspective view, a sectional view, and a side view showing an oil separator according to Embodiment 1 of the present invention. Since the formation of the raised seat portion 2 is the same as in Reference Example 1, the description thereof is omitted here. Also, the same parts as those in Reference Example 1 are denoted by the same reference numerals, and the description thereof is omitted.

この発明にかかるオイルセパレータの外筒1は、肉盛り座部2の表面から、長孔21が穿たれる。上記図に示すように、この長孔21は、混合物の流れを曲げたい方向、つまり、吐出口から遠ざかる方向で、図でいうところの下方に長い断面を有する。そして、外筒1の軸に直交する平面と平行となる方向で、外筒1の表面(肉盛り座部2)から真っ直ぐにドリル等の穿設工具を挿入したときに当該穿設工具の側面が外筒1の内壁をえぐる位置に当該長孔21は穿たれる。つまり、図2−3のように、側面から見た場合に、長孔21から内壁の断面が見える位置に、当該長孔21が穿たれる。   The outer cylinder 1 of the oil separator according to the present invention is provided with a long hole 21 from the surface of the built-up seat portion 2. As shown in the above figure, the long hole 21 has a long cross section in the downward direction as shown in the figure in the direction in which the flow of the mixture is to be bent, that is, in the direction away from the discharge port. Then, when a drilling tool such as a drill is inserted straight from the surface of the outer cylinder 1 (the built-up seat 2) in a direction parallel to the plane orthogonal to the axis of the outer cylinder 1, the side surface of the drilling tool The long hole 21 is formed at a position around the inner wall of the outer cylinder 1. That is, as shown in FIG. 2-3, when viewed from the side, the long hole 21 is formed at a position where the cross section of the inner wall can be seen from the long hole 21.

そして、混合物の流れを曲げたい方向(吐出口から遠ざかる方向で図の下方)にある位置の部分ほど、当該長孔21の深さが大きくなっており、当該深さが滑らかに遷移している。長孔21の深さの具体的な値は、この発明において本質的ではないが、長孔21が外筒1の内壁13をえぐる深さと、混合物の流れ曲がり具合とのバランスを考慮して、決定するのが好ましい。ここでは、一般的な位置として、図2−2に示すように、外筒1の径の、およそ半分となる位置で孔が終わるようにした。なお、上記深さの滑らかな遷移には、ドリルやリーマの先端角度を利用すると加工が容易である。 And the part of the position which exists in the direction which wants to bend the flow of a mixture (the direction which is far from a discharge outlet in the figure) has the depth of the said long hole 21, and the said depth is changing smoothly. . The specific value of the depth of the long hole 21 is not essential in the present invention, but considering the balance between the depth at which the long hole 21 penetrates the inner wall 13 of the outer cylinder 1 and the degree of bending of the flow of the mixture. Is preferably determined. Here, as a general position, as shown in FIG. 2B, the hole ends at a position that is approximately half the diameter of the outer cylinder 1. The smooth transition of the depth can be easily processed by using the tip angle of a drill or reamer.

長孔21が上記のようになっていると、当該長孔21から導入される混合物が、長孔21が内壁13をえぐる部分24の流れ方向終端に形成される壁部22にぶつかる。そして、当該壁部22は、深さの違いから斜めに形成されるので、これに沿って、流れが形成される。したがって、結局、流れを曲げたい方向(図の下方)に、混合物の流れ23が曲げられことになり、外筒1の下方に向く速度成分により、当該混合物は、螺旋状に内壁13を伝わるようになる。   When the long hole 21 is configured as described above, the mixture introduced from the long hole 21 collides with the wall portion 22 formed at the end in the flow direction of the portion 24 around the inner wall 13. And since the said wall part 22 is formed diagonally from the difference in depth, a flow is formed along this. Therefore, eventually, the flow 23 of the mixture is bent in the direction in which the flow is desired to be bent (downward in the figure), and the mixture is spirally transmitted through the inner wall 13 by the velocity component directed downward of the outer cylinder 1. become.

このように、実施例1にかかるオイルセパレータは、混合物を導入する導入口を外筒に対して斜めに穿たなくても、当該混合物を螺旋旋回させることができるという効果を有する。これにより、オイルセパレータに穿つ孔の加工も容易となり、加工コストの低減を実現できる。 As described above, the oil separator according to Example 1 has an effect that the mixture can be spirally rotated without the introduction port for introducing the mixture being obliquely bored with respect to the outer cylinder. Thereby, the processing of the hole made in the oil separator is facilitated, and the processing cost can be reduced.

図3−1〜3−3は、参考例2に係るオイルセパレータを示す斜視図、断面図、および側面図である。肉盛り座部2の形成は参考例1等と同様なので、ここでは説明を省略する。また、参考例1と同一の部分には、同一の符号を付して説明を省略する。 FIGS. 3-1 to 3-3 are a perspective view, a sectional view, and a side view showing an oil separator according to Reference Example 2. FIGS. Since the formation of the raised seat portion 2 is the same as in Reference Example 1 and the like, the description thereof is omitted here. Also, the same parts as those in Reference Example 1 are denoted by the same reference numerals, and the description thereof is omitted.

参考例2にかかるオイルセパレータの外筒1は、肉盛り座部2の表面から、長孔31が穿たれる。図3−2、3−3に示すように、この長孔31は、外筒1を側面から見た場合、混合物の流れを曲げたい方向、つまり、図の下方に対して直角方向に一定角度傾いた断面形状を有する。混合物の流れを曲げたい方向と反対方向の端に位置する部分31aの長孔31は、外筒1の中心軸に直交する平面と平行となる方向で外筒1を貫いている。また、混合物の流れを曲げたい方向の端に位置する部分31bの長孔31は、外筒1の中心軸に直交する平面と平行となる方向で、かつ外筒1の断面円形内壁13の接線方向で、外筒1の壁を貫くようにしてある。なお、上記部分31aの長孔31の深さは、外筒1の半径と同一として、対面となる内壁13には穿たず、混合物の流れに余計な影響を与えないようにしている。 The outer cylinder 1 of the oil separator according to the reference example 2 is provided with a long hole 31 from the surface of the build-up seat portion 2. As shown in FIGS. 3-2 and 3-3, when the outer cylinder 1 is viewed from the side surface, the long hole 31 has a certain angle in a direction in which the flow of the mixture is to be bent, that is, in a direction perpendicular to the lower side of the figure. Has an inclined cross-sectional shape. The long hole 31 of the portion 31 a located at the end opposite to the direction in which the flow of the mixture is to be bent penetrates the outer cylinder 1 in a direction parallel to a plane perpendicular to the central axis of the outer cylinder 1. Further, the long hole 31 of the portion 31b located at the end in the direction in which the flow of the mixture is to be bent is parallel to the plane perpendicular to the central axis of the outer cylinder 1 and is tangent to the circular inner wall 13 of the cross section of the outer cylinder 1 In the direction, it penetrates the wall of the outer cylinder 1. The depth of the long hole 31 in the portion 31a is the same as the radius of the outer cylinder 1, so that it does not pierce the facing inner wall 13 and does not adversely affect the flow of the mixture.

長孔31が上記のようになっていると、混合物の流れを曲げたい方向の端に位置する部分31bの長孔31を通って導入される混合物は、円筒内壁13に沿って流れる。これに対し、混合物の流れを曲げたい方向と反対側の端に位置する部分31aの長孔31を通って導入される混合物は、孔の真っ正面にある部分33の内壁13に衝突し、動圧が下がる分だけ静圧が高くなる(ベルヌーイの定理)。これにより、内壁13の長手方向で静圧の勾配ができて、混合物の流れに下方成分が生じる。したがって、結局、全体として流れを曲げたい方向(図の下方)に、混合物の流れ34が曲げられことになり、混合物は、螺旋状に内壁13を伝わり、遠心分離作用により、潤滑油が分離される。 When the long hole 31 is configured as described above, the mixture introduced through the long hole 31 of the portion 31 b located at the end in the direction in which the flow of the mixture is to be bent flows along the cylindrical inner wall 13. On the other hand, the mixture introduced through the long hole 31 of the portion 31a located at the end opposite to the direction in which the flow of the mixture is to be bent collides with the inner wall 13 of the portion 33 in front of the hole, and moves. The static pressure increases as the pressure decreases (Bernoulli's theorem). This creates a static pressure gradient in the longitudinal direction of the inner wall 13 and produces a lower component in the flow of the mixture. Thus, after all, in the direction you want to bend the flow as a whole (Fig lower), will be Ru bent flow 34 of the mixture, the mixture is transmitted to the inner wall 13 in a spiral, by centrifugal action, the lubricating oil is separated Is done.

また、長孔31が上記のようになっていると、当該長孔31の上部となる部分31aと下部となる部分31bとで、孔の深さ異なることになる。孔の深さ(長さ)が異なれば、混合物の速度分布も異なり、圧力差にも変化が起きる。したがって、孔の深さ(長さ)の変化にも考慮して、長孔31の上記幾何学的な配置を決定することが重要である。なお、ここでは、長孔31を採用したが、これを複数に分離したような複数の孔としても、上記と同様に、混合物の流れを曲げることができる。 Further, when the long hole 31 is configured as described above, the depth of the hole is different between the upper portion 31 a and the lower portion 31 b of the long hole 31. If the depth (length) of the hole is different, the velocity distribution of the mixture is also different, and the pressure difference also changes. Therefore, it is important to determine the geometrical arrangement of the long holes 31 in consideration of changes in the depth (length) of the holes. In addition, although the long hole 31 was employ | adopted here, the flow of a mixture can be bent similarly to the above also as a some hole which separated this into the plurality.

このように、参考例2にかかるオイルセパレータは、混合物を導入する導入口を外筒に対して斜めに穿たなくても、当該混合物を螺旋旋回させることができるという効果を有する。これにより、オイルセパレータに穿つ孔の加工も容易となり、加工数減少による加工コストの低減を実現できる。 As described above, the oil separator according to Reference Example 2 has an effect that the mixture can be spirally rotated without the introduction port for introducing the mixture being obliquely bored with respect to the outer cylinder. Thereby, the processing of the hole made in the oil separator is facilitated, and the processing cost can be reduced by reducing the number of processing.

図4−1〜4−3は、参考例に係るオイルセパレータを示す斜視図、断面図、および側面図である。肉盛り座部2の形成は参考例1等と同様なので、ここでは説明を省略する。また、参考例1と同一の部分には、同一の符号を付して説明を省略する。 4A to 4C are a perspective view, a cross-sectional view, and a side view showing an oil separator according to Reference Example 3. FIG. Since the formation of the raised seat portion 2 is the same as in Reference Example 1 and the like, the description thereof is omitted here. Also, the same parts as those in Reference Example 1 are denoted by the same reference numerals, and the description thereof is omitted.

参考例にかかるオイルセパレータの外筒1は、肉盛り座部2の表面から、複数の孔41、42、43が穿たれる。図4−3に示すように、これらの孔41、42、43は、外筒1を側面から見た場合、冷媒と潤滑油の混合物の流れを曲げたい方向に対して直角方向で外筒1の軸方向に一定角度傾いて並設される。また、これらの孔41、42、43は、外筒1の軸に直交する平面と平行となる方向で、外筒1を貫いている。なお、ここでは孔を3つ穿設した場合を示したが、原理的にこの数に限るものではない。 The outer cylinder 1 of the oil separator according to the reference example 3 has a plurality of holes 41, 42, 43 formed from the surface of the build-up seat 2. As shown in FIG. 4-3, when the outer cylinder 1 is viewed from the side, these holes 41, 42 and 43 are formed in the direction perpendicular to the direction in which the flow of the mixture of refrigerant and lubricating oil is desired to be bent. Are arranged side by side with a certain angle in the axial direction. Further, these holes 41, 42, 43 penetrate the outer cylinder 1 in a direction parallel to a plane orthogonal to the axis of the outer cylinder 1. In addition, although the case where three holes were drilled was shown here, the number is not limited to this number in principle.

孔41、42、43が上記のようになっていると、それぞれの孔41、42、43から導入される混合物は、孔の真っ正面にある部分44、45、46の内壁13にそれぞれぶつかり、動圧が下がる分だけ静圧が高くなる。その静圧の上昇する度合いは、衝突の度合い、すなわち孔41、42、43の正面にある内壁13の角度によって変わる。具体的には、孔41から導入される混合物が内壁13に衝突する場合が、最も正面の内壁13の角度が大きいので、静圧が上昇しやすい。他方、孔43から導入される混合物は、内壁13の略接線方向に導入されるから、衝突とまではいかず、内壁13に沿って流れて静圧は上昇しにくい。このような原理から、当該静圧の高い方から低い方へ、混合物は流れ方向が変わる。したがって、結局、全体として流れを曲げたい方向(図の下方)に、混合物の流れ47、48、49が曲げられることになり、当該混合物は、螺旋状に内壁13を伝わるようになる。   When the holes 41, 42, 43 are as described above, the mixture introduced from the respective holes 41, 42, 43 hits the inner wall 13 of the portions 44, 45, 46 in front of the holes, respectively. The static pressure increases as the dynamic pressure decreases. The degree of increase in the static pressure varies depending on the degree of collision, that is, the angle of the inner wall 13 in front of the holes 41, 42, and 43. Specifically, when the mixture introduced from the hole 41 collides with the inner wall 13, the static pressure tends to increase because the angle of the inner wall 13 on the front side is the largest. On the other hand, since the mixture introduced from the hole 43 is introduced substantially in the tangential direction of the inner wall 13, the mixture does not collide but flows along the inner wall 13 and hardly increases the static pressure. From this principle, the flow direction of the mixture changes from the higher static pressure to the lower static pressure. Therefore, eventually, the flow 47, 48, 49 of the mixture is bent in the direction in which the flow is desired to be bent as a whole (downward in the figure), and the mixture is transmitted along the inner wall 13 in a spiral shape.

混合物の流れを曲げたい方向の端に位置する孔43は、できるだけ、外筒1の内壁の接線方向にした方が、当該内壁に沿った流れが残りやすく、孔42から導入される混合物の静圧上昇との間で差が生じやすいので好ましい。孔の数を2つにして、一方の孔を当該接線方向としたのが、図5−1〜5−3、および図6−1〜6−3である。具体的に、図5−1〜5−3は、孔51が接線方向に穿たれた孔であり、当該孔51が、孔52よりも低い位置(混合物の流れを曲げたい方向の位置)に穿たれている。これは、図4−1等の孔43が内壁接線方向に穿たれたものと考えればよい。   If the hole 43 located at the end in the direction in which the flow of the mixture is to be bent is made tangential to the inner wall of the outer cylinder 1 as much as possible, the flow along the inner wall tends to remain, and the static of the mixture introduced from the hole 42 can be reduced. It is preferable because a difference is easily generated between the pressure increase. FIGS. 5-1 to 5-3 and FIGS. 6-1 to 6-3 show that the number of holes is two and one of the holes is in the tangential direction. Specifically, FIGS. 5-1 to 5-3 are holes in which the hole 51 is formed in the tangential direction, and the hole 51 is located at a position lower than the hole 52 (position in a direction in which the flow of the mixture is desired to be bent). It is worn. It can be considered that this is because the holes 43 in FIG.

また、孔52は、孔51に対して、水平方向で角度を有するように穿たれている(図5−2、5−3参照)。このようにしても、孔51と孔52とから導入される混合物の流れに、静圧の差が生じ、外筒1の中心軸方向における両孔51、52の位置の違いから、混合物の流れは図の下方に曲がる。孔52の孔51に対する上記水平方向の角度は、図6−1〜6−3の孔62の孔61に対する角度のように、できるだけ急角度にして、内壁13にぶつかるようにした方が、混合物の流れの動圧成分が静圧成分に変わりやすく、孔61との静圧の差が大きくなるので好ましい。   Further, the hole 52 is formed so as to have an angle in the horizontal direction with respect to the hole 51 (see FIGS. 5-2 and 5-3). Even in this case, a difference in static pressure occurs in the flow of the mixture introduced from the hole 51 and the hole 52, and the flow of the mixture is caused by the difference in the positions of both the holes 51 and 52 in the central axis direction of the outer cylinder 1. Turn down in the figure. The horizontal angle of the hole 52 with respect to the hole 51 is as steep as possible, such as the angle of the hole 62 with respect to the hole 61 in FIGS. This is preferable because the dynamic pressure component of the flow is easily changed to a static pressure component, and the difference in static pressure from the hole 61 is increased.

このように、参考例3、4にかかるオイルセパレータは、混合物を導入する導入口を外筒に対して斜めに穿たなくても、当該混合物を螺旋旋回させることができるという効果を有する。これにより、オイルセパレータに穿つ孔の加工も容易となり、加工数減少による加工コストの低減を実現できる。なお、上記複数の孔は、これらを繋げるような1つの長孔にしても同一の効果が得られる。 As described above, the oil separator according to Reference Examples 3 and 4 has an effect that the mixture can be spirally rotated without the introduction port for introducing the mixture being obliquely bored with respect to the outer cylinder. Thereby, the processing of the hole made in the oil separator is facilitated, and the processing cost can be reduced by reducing the number of processing. Note that the same effect can be obtained even if the plurality of holes are one long hole that connects them.

以上のように、本発明にかかるオイルセパレータは、自動車部品や家電製品の部品としての空気調和装置に用いられるオイルセパレータに有用であり、特に、圧縮機内部に構築されるオイルセパレータの生産、使用に適している。   As described above, the oil separator according to the present invention is useful for an oil separator used in an air conditioner as a part of an automobile part or a home appliance, and particularly, the production and use of an oil separator built inside a compressor. Suitable for

参考例1に係るオイルセパレータを示す斜視図である。5 is a perspective view showing an oil separator according to Reference Example 1. FIG. 参考例1に係るオイルセパレータを示す断面図である。5 is a cross-sectional view showing an oil separator according to Reference Example 1. FIG. 参考例1に係るオイルセパレータを示す側面図である。5 is a side view showing an oil separator according to Reference Example 1. FIG. この発明の実施例1に係るオイルセパレータを示す斜視図である。It is a perspective view which shows the oil separator which concerns on Example 1 of this invention. この発明の実施例1に係るオイルセパレータを示す断面図である。It is sectional drawing which shows the oil separator which concerns on Example 1 of this invention. この発明の実施例1に係るオイルセパレータを示す側面図である。It is a side view which shows the oil separator which concerns on Example 1 of this invention. 参考例2に係るオイルセパレータを示す斜視図である。 10 is a perspective view showing an oil separator according to Reference Example 2. FIG. 参考例2に係るオイルセパレータを示す断面図である。 10 is a cross-sectional view showing an oil separator according to Reference Example 2. FIG. 参考例2に係るオイルセパレータを示す側面図である。 10 is a side view showing an oil separator according to Reference Example 2. FIG. 参考例に係るオイルセパレータを示す斜視図である。10 is a perspective view showing an oil separator according to Reference Example 3. FIG. 参考例に係るオイルセパレータを示す断面図である。It is sectional drawing which shows the oil separator which concerns on the reference example 3 . 参考例に係るオイルセパレータを示す側面図である。10 is a side view showing an oil separator according to Reference Example 3. FIG. 参考例に係るオイルセパレータを示す斜視図である。10 is a perspective view showing an oil separator according to Reference Example 4. FIG. 参考例に係るオイルセパレータを示す断面図である。It is sectional drawing which shows the oil separator which concerns on the reference example 4 . 参考例に係るオイルセパレータを示す側面図である。It is a side view which shows the oil separator which concerns on the reference example 4 . 図5−1のオイルセパレータの変形例を示す斜視図である。It is a perspective view which shows the modification of the oil separator of FIGS. 図5−2のオイルセパレータの変形例を示す断面図である。It is sectional drawing which shows the modification of the oil separator of FIG. 図5−3のオイルセパレータの変形例を示す側面図である。It is a side view which shows the modification of the oil separator of FIGS. 5-3.

1 外筒
2 盛り座部
3、4、5、6、41、42、43、51、52、61、62 孔
13 内壁
21、31 長孔
22 壁部
DESCRIPTION OF SYMBOLS 1 Outer cylinder 2 Seat part 3, 4, 5, 6, 41, 42, 43, 51, 52, 61, 62 Hole 13 Inner wall 21, 31 Long hole 22 Wall part

Claims (1)

吐出口から遠ざかる方向に長い断面を有し、
外筒の中心軸に直交する平面と平行となる方向で当該外筒の表面から真っ直ぐに穿設工具を挿入したときに当該穿設工具の側面が当該外筒の内壁をえぐる位置に穿たれる長孔であって、
前記吐出口から遠ざかる方向にある位置の孔ほど、前記長孔の深さが大きくなっており、当該深さが滑らかに遷移していることを特徴とするオイルセパレータ。
It has a long cross section in the direction away from the discharge port,
When the drilling tool is inserted straight from the surface of the outer cylinder in a direction parallel to the plane orthogonal to the central axis of the outer cylinder, the side surface of the drilling tool is drilled at a position that passes through the inner wall of the outer cylinder. A long hole,
The oil separator, wherein the hole located at a position away from the discharge port has a larger depth of the elongated hole, and the depth smoothly transitions.
JP2005132278A 2005-04-28 2005-04-28 Oil separator Expired - Fee Related JP4848136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132278A JP4848136B2 (en) 2005-04-28 2005-04-28 Oil separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132278A JP4848136B2 (en) 2005-04-28 2005-04-28 Oil separator

Publications (2)

Publication Number Publication Date
JP2006308227A JP2006308227A (en) 2006-11-09
JP4848136B2 true JP4848136B2 (en) 2011-12-28

Family

ID=37475311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132278A Expired - Fee Related JP4848136B2 (en) 2005-04-28 2005-04-28 Oil separator

Country Status (1)

Country Link
JP (1) JP4848136B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270847B2 (en) * 2007-02-14 2013-08-21 サンデン株式会社 Oil separator built-in compressor
KR101342649B1 (en) * 2011-10-21 2013-12-17 엘지전자 주식회사 air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2202468A (en) * 1987-03-25 1988-09-28 Smidth & Co As F L Cyclone
JP2000291554A (en) * 1999-04-02 2000-10-17 Bosch Automotive Systems Corp Compressor
JP2000297773A (en) * 1999-04-14 2000-10-24 Bosch Automotive Systems Corp Compressor
JP3593594B2 (en) * 2000-07-21 2004-11-24 株式会社日立製作所 Gas-liquid separator
JP4585149B2 (en) * 2001-06-27 2010-11-24 三菱重工業株式会社 Compressor
JP4218373B2 (en) * 2002-03-12 2009-02-04 パナソニック株式会社 Compressor

Also Published As

Publication number Publication date
JP2006308227A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP5858187B2 (en) Oil separator
JP5718226B2 (en) Cyclone separator with two gas outlets and separation method
JP2009262027A (en) Gas-liquid separator
JP2006275452A (en) Expansion valve
JP4848136B2 (en) Oil separator
JP2008190459A (en) Compressor with built-in oil separator
JP2011202876A (en) Centrifugal oil separator and outdoor unit of air conditioning device
JP2006266524A (en) Accumulator
JP2006214700A (en) Accumulator
JP5270847B2 (en) Oil separator built-in compressor
CN111512101A (en) Separator and refrigeration cycle device
JP6219032B2 (en) Oil separator
JP2005069654A (en) Oil separator
JP2008045763A (en) Oil separator
TW202000293A (en) Filtration system
JP2005106019A (en) Oil separator and pcv system
JP2012077974A (en) Oil separating means and refrigerating apparatus equipped with the same
WO2018173492A1 (en) Muffler, and air conditioner
KR100690684B1 (en) Oil seperator
JP2006112672A (en) Accumulator for refrigeration device
KR20210015339A (en) Axial flow cyclone apparatus
KR100715043B1 (en) Oil Separator for Air Conditioner
JP5814616B2 (en) Oil separator, compression refrigeration apparatus and air compression apparatus
CN111707025A (en) Liquid storage device, refrigeration system assembly and refrigerator
JP2000274912A (en) Ventilating device for refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4848136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees