JP4847759B2 - Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus - Google Patents

Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus Download PDF

Info

Publication number
JP4847759B2
JP4847759B2 JP2006010104A JP2006010104A JP4847759B2 JP 4847759 B2 JP4847759 B2 JP 4847759B2 JP 2006010104 A JP2006010104 A JP 2006010104A JP 2006010104 A JP2006010104 A JP 2006010104A JP 4847759 B2 JP4847759 B2 JP 4847759B2
Authority
JP
Japan
Prior art keywords
unit
reforming
raw material
water
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006010104A
Other languages
Japanese (ja)
Other versions
JP2007191338A (en
Inventor
邦弘 鵜飼
幸宗 可児
英延 脇田
誠二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006010104A priority Critical patent/JP4847759B2/en
Publication of JP2007191338A publication Critical patent/JP2007191338A/en
Application granted granted Critical
Publication of JP4847759B2 publication Critical patent/JP4847759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、原料と水蒸気の改質反応により水素含有ガスを生成する水素製造装置の運転方法およびこの方法を採用した水素製造装置、更には前記水素製造装置から供給される水素含有ガスと酸素を用いて電気と熱を発生させる燃料電池発電装置に関する。   The present invention relates to a method for operating a hydrogen production apparatus that generates a hydrogen-containing gas by a reforming reaction between a raw material and steam, a hydrogen production apparatus that employs this method, and a hydrogen-containing gas and oxygen supplied from the hydrogen production apparatus. The present invention relates to a fuel cell power generator that uses electricity to generate heat.

小型装置でも高効率発電ができる燃料電池は、分散型エネルギー供給源の発電装置として開発が進められている。燃料電池発電時の燃料として用いられる水素ガスは、一般的なインフラとして整備されていないため、例えば都市ガス・LPG等の既存化石原料インフラから得られる原料を水蒸気改質反応させ、水素含有ガスを生成させる水素製造装置を併設する構成がとられることが多い。   Development of a fuel cell capable of high-efficiency power generation even with a small device is being developed as a power generator for a distributed energy supply source. Hydrogen gas used as fuel for fuel cell power generation has not been developed as a general infrastructure. For example, raw materials obtained from existing fossil raw material infrastructure such as city gas and LPG are subjected to a steam reforming reaction to generate hydrogen-containing gas. In many cases, a configuration in which a hydrogen production apparatus to be produced is provided is also provided.

原料改質により得られた水素含有ガスには、原料由来の二酸化炭素および一酸化炭素が含まれる。水素製造装置では、一酸化炭素濃度を低減するための一酸化炭素と水蒸気を水性ガスシフト反応させる変成部、および一酸化炭素を主に微量空気等の酸化剤で酸化させる選択酸化部を設ける構成がとられることが多い。それぞれの反応部には、反応を進行させるための各反応に適した触媒、例えば、改質部にはRu触媒やNi触媒、変成部にはCu−Zn触媒や貴金属系触媒、選択酸化部にはRu触媒等が用いられている。   The hydrogen-containing gas obtained by the raw material reforming includes carbon dioxide and carbon monoxide derived from the raw material. In the hydrogen production apparatus, there is a configuration in which a modification unit that performs a water gas shift reaction of carbon monoxide and water vapor to reduce the carbon monoxide concentration, and a selective oxidation unit that oxidizes carbon monoxide mainly with an oxidizing agent such as a minute amount of air. Often taken. In each reaction part, a catalyst suitable for each reaction for proceeding the reaction, for example, a Ru catalyst or Ni catalyst in the reforming part, a Cu-Zn catalyst or noble metal catalyst in the shift part, and a selective oxidation part Ru catalyst or the like is used.

ところで、分散型エネルギー供給源の長所は、必要な時に必要なエネルギーを得ることができる点であるため、エネルギー需要のない時は停止することが望ましいが、その一方で、頻繁な起動停止に対応することが必要となる。   By the way, the advantage of decentralized energy supply is that it can get the necessary energy when needed, so it is desirable to stop when there is no energy demand, but on the other hand, respond to frequent start and stop It is necessary to do.

水素製造装置では、前記のように改質部・変成部・選択酸化部の各反応部に触媒を用いるが、それらの触媒を安定的に動作させ水素含有ガスを生成するためには、反応に適した温度まで加熱する必要がある。しかし、装置停止時に触媒が冷却されるため、装置の起動時には、それら触媒を迅速に加熱しなければ安定的な水素生成は行えない。   In the hydrogen production apparatus, as described above, catalysts are used in the reaction sections of the reforming section, the transformation section, and the selective oxidation section. In order to operate these catalysts stably and generate a hydrogen-containing gas, the reaction is performed. It is necessary to heat to a suitable temperature. However, since the catalyst is cooled when the apparatus is stopped, stable hydrogen production cannot be performed unless the catalyst is heated quickly when the apparatus is started.

また、装置の起動停止には大きなリスクがあり、特に頻繁な起動停止では、水素製造装置に用いる前記触媒の活性低下が大きくなる可能性がある。例えば、起動停止時の装置内の加熱・冷却のアンバランスな状態が原因し、改質部で発生した水蒸気が他の触媒上(例えば、変成触媒)で凝縮し、凝縮水による触媒の酸化劣化等を引き起こす。また、装置停止後の温度低下により装置内が減圧状態になることで、装置内に空気が混入し触媒が酸化される等、触媒活性が低下する可能性がある。特に変成部は、用いる触媒量が多いため熱容量が大きくなり、温度上昇が遅いという課題があり、変成部に用いるCu−Zn触媒は空気で容易に酸化され、Cuの分散状態が悪化することで触媒活性が低下する。また、改質部や選択酸化部に用いるRu触媒も、空気酸化により触媒活性が低下する。しかし、装置の運転利便性を考えた場合、装置の起動停止は行えることが望ましく、触媒活性の低下がほとんど進行しない起動停止方法の確立が必要である。   In addition, there is a great risk in starting and stopping the apparatus, and particularly in the case of frequent start and stop, there is a possibility that the activity of the catalyst used in the hydrogen production apparatus is greatly reduced. For example, due to an unbalanced state of heating / cooling in the system when starting and stopping, water vapor generated in the reforming unit condenses on another catalyst (for example, a shift catalyst), and the oxidation deterioration of the catalyst due to condensed water Cause etc. Further, since the inside of the apparatus is depressurized due to the temperature drop after the apparatus is stopped, the catalyst activity may be reduced, for example, air is mixed in the apparatus and the catalyst is oxidized. Especially in the metamorphic part, there is a problem that the heat capacity increases because the amount of catalyst used is large and the temperature rises slowly, and the Cu-Zn catalyst used in the metamorphic part is easily oxidized with air, and the dispersed state of Cu deteriorates. The catalytic activity is reduced. In addition, the catalytic activity of the Ru catalyst used in the reforming section and the selective oxidation section is also reduced by air oxidation. However, considering the convenience of operation of the apparatus, it is desirable to be able to start and stop the apparatus, and it is necessary to establish a start and stop method in which the decrease in catalyst activity hardly proceeds.

そこで、装置停止時に、水素リッチガスの生成を行う改質器に原料ガスを供給し、内部に残留する水蒸気を置換する方法が提案されている(例えば、特許文献1参照)。また、装置起動時も原料ガスを供給し、酸化ガスを置換する運転方法も提案されている(例えば、特許文献2参照)。さらに、変成触媒での装置停止時の水蒸気凝縮酸化による活性低下を防止するため、装置停止後に変成部を原料でパージする方法も提案されている(例えば、特許文献3参照)。
特開2002−151124号公報 特開2002−93447号公報 特開2000−95504号公報
Therefore, a method has been proposed in which a raw material gas is supplied to a reformer that generates a hydrogen-rich gas and the water vapor remaining inside is replaced when the apparatus is stopped (see, for example, Patent Document 1). In addition, an operation method has also been proposed in which source gas is supplied and the oxidizing gas is replaced even when the apparatus is activated (for example, see Patent Document 2). Furthermore, in order to prevent a decrease in activity due to steam condensation oxidation when the apparatus is stopped with the shift catalyst, a method of purging the shift section with the raw material after the apparatus is stopped has also been proposed (for example, see Patent Document 3).
JP 2002-151124 A JP 2002-93447 A JP 2000-95504 A

従来の水素製造装置では、前述した水蒸気凝縮あるいは空気混入時による触媒酸化による活性低下を防止するために原料で装置内をパージする方法が提案され、起動および停止時の触媒活性の低下を防止するための簡便でかつ効果的な手段として確立されつつある。この原料パージ法では、原料の熱分解が進行しない装置温度が低い保管時は、不活性ガスと同等の水蒸気凝縮防止と触媒酸化防止特性を発揮する。   In the conventional hydrogen production apparatus, a method of purging the inside of the apparatus with raw materials in order to prevent the decrease in activity due to the above-described steam oxidation or catalytic oxidation due to air mixing is proposed to prevent a decrease in catalyst activity at the start and stop. Is being established as a simple and effective means for this. This raw material purge method exhibits the same water vapor condensation prevention and catalytic oxidation prevention characteristics as an inert gas during storage at a low apparatus temperature where the thermal decomposition of the raw material does not proceed.

しかし、装置起動時は水素含有ガスを迅速に安定発生させるため、装置を高温化する必要がある。この時、上述の特許文献に記載の発明のように装置の起動または停止時に装置内が原料パージされ、装置内に原料のみが存在する場合、熱分解による炭素析出で触媒活性を低下させる、あるいは析出した炭素蓄積によりガス流路を閉塞させる可能性がある。その結果、水素製造装置の特性が低下することとなる。この原料熱分解による炭素析出は、高温反応となる改質部で顕著に現れ、特に水蒸気発生が不安定な起動時には大きな問題となる。   However, it is necessary to increase the temperature of the apparatus in order to quickly and stably generate a hydrogen-containing gas when the apparatus is started. At this time, as in the invention described in the above-mentioned patent document, the inside of the apparatus is purged when starting or stopping the apparatus, and when only the raw material exists in the apparatus, the catalytic activity is reduced by carbon deposition by thermal decomposition, or There is a possibility of clogging the gas flow path due to the accumulated carbon. As a result, the characteristics of the hydrogen production apparatus are degraded. This carbon deposition due to the pyrolysis of the raw material appears remarkably in the reforming part that becomes a high temperature reaction, and becomes a big problem especially at the start-up when the generation of water vapor is unstable.

また、燃料電池で高効率発電するためには、装置起動時の消費エネルギー低減も重要な課題となる。水素製造装置は、例えば、メタンを主成分とする都市ガスを原料とする場合、改質部は約650℃、変成部は約200℃、選択酸化部は約100℃の高温の温度帯で反応を進行させる。すなわち、比較的高温で運転するため、水素含有ガスが供給できない起動時は各反応部の温度維持のために多くのエネルギーを消費することとなる。このため、装置の起動時間短縮は、起動時の消費エネルギーを低減する観点からも対応が望まれていた。   In addition, in order to generate high-efficiency with a fuel cell, reduction of energy consumption at the time of starting the apparatus is also an important issue. For example, in the case of using hydrogen gas as a main component, the hydrogen production apparatus reacts in a high temperature zone where the reforming section is about 650 ° C., the transformation section is about 200 ° C., and the selective oxidation section is about 100 ° C. To advance. That is, since the operation is performed at a relatively high temperature, a large amount of energy is consumed to maintain the temperature of each reaction part at the time of start-up where the hydrogen-containing gas cannot be supplied. For this reason, it has been desired to shorten the startup time of the apparatus from the viewpoint of reducing energy consumption during startup.

本発明は上記従来の課題を解決するものであり、原料と水を改質反応させ水素含有ガスを生成させる水素製造装置において、起動時の触媒活性の低下が少なく、かつ起動時間の短い運転方法および装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and in a hydrogen production apparatus that generates a hydrogen-containing gas by a reforming reaction between a raw material and water, an operation method with little reduction in catalyst activity at start-up and short start-up time. And an object to provide an apparatus.

上記従来の課題を解決するために、本発明の水素製造装置の運転方法は、
原料と水蒸気を改質触媒下で改質反応させて水素含有ガスを生成する改質部と、
少なくとも炭素および水素から構成される有機化合物を含む原料を前記改質部に供給する原料供給部と、
前記改質部に前記水蒸気を生成するための水を供給する水供給部と、
前記改質部に改質反応に必要な熱を供給する改質加熱部とを備えた水素製造装置の運転方法であって、
起動時に、前記改質部内に原料が、少なくとも前記改質部のガス通気経路内を置換する量存在するとともに、水が、改質部内に存在する原料中の炭素原子に対するモル比が2以上となるように存在し、かつ前記原料供給部および水供給部による原料および水の供給が停止された状態で、前記改質加熱部により前記改質部を加熱昇温させた後、前記原料供給部および前記水供給部により前記改質部へ原料および水の供給を行うことを特徴とする。
In order to solve the above conventional problems, the operation method of the hydrogen production apparatus of the present invention is as follows.
A reforming unit that generates a hydrogen-containing gas by reforming a raw material and steam under a reforming catalyst;
A raw material supply unit for supplying a raw material containing an organic compound composed of at least carbon and hydrogen to the reforming unit;
A water supply unit for supplying water for generating the water vapor to the reforming unit;
A method for operating a hydrogen production apparatus comprising a reforming heating section for supplying heat necessary for a reforming reaction to the reforming section,
At start-up , the raw material is present in the reforming part in an amount that replaces at least the gas ventilation path of the reforming part, and the molar ratio of water to carbon atoms in the raw material present in the reforming part is 2 or more. And the raw material supply unit and the water supply unit are heated to raise the temperature of the reforming unit with the raw material supply unit and the water supply unit being stopped. The raw material and water are supplied to the reforming section by the section and the water supply section.

本発明の水素製造装置の運転方法において、起動時に、前記原料供給部および水供給部により前記改質部へ原料および水を供給した後、前記原料供給部および水供給部からの原料および水の供給を停止することで、前記改質部内に原料および水が存在し、かつ前記原料供給部および水供給部による原料および水の供給が停止された状態にすることが好ましい。   In the operation method of the hydrogen production apparatus of the present invention, at the time of start-up, after the raw material and water are supplied to the reforming unit by the raw material supply unit and the water supply unit, the raw material and water from the raw material supply unit and the water supply unit It is preferable to stop the supply so that the raw material and water are present in the reforming unit, and the supply of the raw material and water by the raw material supply unit and the water supply unit is stopped.

同様に、起動時または停止動作時に前記原料でパージする場合、前記パージによって前記原料が存在する前記改質部に、前記水供給部より水を供給した後、前記水供給部からの水の供給を停止することで、前記改質部内に原料および水が存在し、かつ前記原料供給部および水供給部による原料および水の供給が停止された状態にすることが好ましい。   Similarly, when purging with the raw material during start-up or stop operation, water is supplied from the water supply unit to the reforming unit where the raw material is present by the purge, and then water is supplied from the water supply unit. It is preferable that the raw material and water are present in the reforming section, and the supply of the raw material and water by the raw material supply section and the water supply section is stopped by stopping.

発明の水素製造装置の運転方法において、前記改質部に供給される原料は、少なくとも前記改質部のガス通気経路内を置換する量である。同様に、前記改質部内に原料および水が存在し、かつ前記原料供給部および水供給部による原料および水の供給が停止された状態において、前記改質部内に存在する原料中の炭素原子に対する前記改質部内に存在する水のモル比2以上である。 Method of operating a hydrogen generating device of the present invention, the raw material supplied to the reforming unit, Ru amount der replacing at least said gas vent path of the reforming unit. Similarly, in the state where the raw material and water are present in the reforming unit, and the supply of the raw material and water by the raw material supply unit and the water supply unit is stopped, the carbon atoms in the raw material present in the reforming unit the molar ratio of water present in the reforming portion is Ru der 2 or more.

更に、本発明の水素製造装置の運転方法において、前記改質部に改質触媒の温度を検出する改質温度検出部を設け、前記改質加熱部による加熱により、前記改質温度検出部の検出温度が予め設定した起動動作値以上になった場合に、前記改質部へ原料および水の供給を行うことが好ましい。   Furthermore, in the operation method of the hydrogen production apparatus of the present invention, a reforming temperature detection unit that detects the temperature of the reforming catalyst is provided in the reforming unit, and heating of the reforming temperature detection unit is performed by heating by the reforming heating unit. It is preferable to supply the raw material and water to the reforming section when the detected temperature is equal to or higher than a preset starting operation value.

同様に、前記改質部への原料および水の供給は、前記改質部で生成された水素含有ガス中の一酸化炭素を変成触媒下で水蒸気変成反応させる変成部の温度が予め設定した起動動作値以上の場合に行うことが好ましい。   Similarly, the supply of raw material and water to the reforming section is started by setting the temperature of the shift section in which the carbon monoxide in the hydrogen-containing gas generated in the reforming section undergoes a steam shift reaction under a shift catalyst. It is preferable to carry out when the operation value is exceeded.

同様に、前記改質部への原料および水の供給は、前記原料と水を予熱して原料と水蒸気の混合気を生成する予熱部の温度が予め設定した起動動作値以上の場合に行うことが好ましい。   Similarly, the supply of the raw material and water to the reforming unit is performed when the temperature of the preheating unit that preheats the raw material and water to generate a mixture of the raw material and water vapor is equal to or higher than a preset starting operation value. Is preferred.

また本発明の水素製造装置の運転方法において、
前記改質部で生成された水素含有ガス中の一酸化炭素を変成触媒下で水蒸気変成反応させる変成部を備え、
前記改質加熱部による前記改質部を加熱昇温中に、前記変成触媒の加熱および前記原料供給部から前記変成部への原料の供給を開始し、前記改質部への原料および水の供給を行う際に前記原料供給部から前記変成部へ原料の供給を停止するようにしても良い。
In the operation method of the hydrogen production apparatus of the present invention,
A reforming section for performing a steam shift reaction of carbon monoxide in the hydrogen-containing gas generated in the reforming section under a shift catalyst;
While heating the temperature of the reforming unit by the reforming heating unit, heating of the shift catalyst and supply of the raw material from the raw material supply unit to the shift unit are started, and the raw material and water to the reforming unit are started. When supplying the raw material, the supply of the raw material from the raw material supply unit to the transformation unit may be stopped.

次に本発明の水素製造装置は、
原料と水蒸気を改質触媒下で改質反応させて水素含有ガスを生成する改質部と、
少なくとも炭素および水素から構成される有機化合物を含む原料を前記改質部に供給する原料供給部と、
前記改質部に前記水蒸気を生成するための水を供給する水供給部と、
前記改質部に改質反応に必要な熱を供給する改質加熱部と、
前記各部の動作を制御する制御部とを備え、
前記制御部は、起動時に前記改質部内に原料が、少なくとも前記改質部のガス通気経路内を置換する量存在するとともに、水が、改質部内に存在する原料中の炭素原子に対するモル比が2以上となるように存在し、かつ前記原料供給部および前記水供給部により原料および水の供給が停止された状態で、前記改質加熱部により前記改質部を加熱昇温させた後、前記原料供給手段および前記水供給手段により原料および水の供給を行うように制御することを特徴とする。
Next, the hydrogen production apparatus of the present invention is
A reforming unit that generates a hydrogen-containing gas by reforming a raw material and steam under a reforming catalyst;
A raw material supply unit for supplying a raw material containing an organic compound composed of at least carbon and hydrogen to the reforming unit;
A water supply unit for supplying water for generating the water vapor to the reforming unit;
A reforming heating section for supplying heat necessary for the reforming reaction to the reforming section;
A control unit for controlling the operation of each unit,
Wherein, in the reforming portion at startup, raw material, together present in an amount to replace at least the reforming section of the gas vent passage, the molar water, to carbon atoms in the raw material present in the reformer unit The reforming unit was heated to raise the temperature of the reforming unit in a state where the ratio was 2 or more and supply of the source and water was stopped by the source supply unit and the water supply unit Thereafter, the raw material supply means and the water supply means are controlled to supply the raw material and water.

更に本発明の燃料電池発電装置は、前記水素製造装置と、前記水素製造装置で製造された水素含有ガスを用いて発電する燃料電池とを備えたことを特徴とする。   Furthermore, the fuel cell power generator according to the present invention includes the hydrogen production device and a fuel cell that generates power using the hydrogen-containing gas produced by the hydrogen production device.

本発明の水素製造装置の運転方法によれば、装置起動時に装置内を置換した原料の熱分解による炭素析出を大幅に低減し、炭素析出による触媒活性の低下および、ガス流路閉塞やガス供給経路の圧損上昇を防止できる。また、装置の起動時間を短縮し起動エネルギーを削減することも可能となる。   According to the operation method of the hydrogen production apparatus of the present invention, the carbon deposition due to the thermal decomposition of the raw material substituted in the apparatus at the time of starting the apparatus is greatly reduced, the catalytic activity is decreased due to the carbon deposition, the gas flow path is blocked and the gas supply is performed. An increase in pressure loss of the path can be prevented. It is also possible to shorten the startup time of the apparatus and reduce the startup energy.

以下、本発明の水素製造方法およびその方法を採用した水素製造装置の実施の形態について図面を参照して説明する。
(実施の形態1)
Embodiments of a hydrogen production method of the present invention and a hydrogen production apparatus employing the method will be described below with reference to the drawings.
(Embodiment 1)

図1は本発明の実施の形態1における水素製造装置の構成図である。図1において、1は、メタンを主成分とする都市ガス、天然ガス、LPG等の炭化水素、メタノール等のアルコールあるいはナフサ成分等の、少なくとも炭素および水素から構成される有機化合物を含む原料と水蒸気の改質反応を主に進行させ、水素含有ガスを生成する改質部である。改質部1は、Ru系の改質触媒を充填した改質触媒部1aと、改質触媒部1aに設けられ、改質触媒の温度を測定する改質温度検出部1bとを有する。   FIG. 1 is a configuration diagram of a hydrogen production apparatus according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a raw material containing water and water vapor containing organic compounds composed of at least carbon and hydrogen, such as city gas mainly composed of methane, natural gas, hydrocarbon such as LPG, alcohol such as methanol or naphtha component, and the like. This is a reforming section that mainly proceeds with the reforming reaction to generate a hydrogen-containing gas. The reforming unit 1 includes a reforming catalyst unit 1a filled with a Ru-based reforming catalyst, and a reforming temperature detection unit 1b provided in the reforming catalyst unit 1a and measuring the temperature of the reforming catalyst.

2は改質反応に必要な水蒸気を生成するための水を改質部1に供給する水供給部である。水供給部2には、市水、水タンク等に例示される水供給源からの水の供給を調節する弁、流量調節器、ポンプ等が用いられる。一方、3は改質部1へ原料を供給する原料供給部である。原料供給部3には、都市ガスインフラ、プロパンボンベ等の原料供給源からの原料の供給を調節する弁、流量調整器、ポンプ等が用いられる。本実施の形態では、水として市水を活性炭およびイオン交換樹脂で浄化した水を供給し、原料として都市ガスをガスインフラから供給する構成とした。   A water supply unit 2 supplies water for generating water vapor necessary for the reforming reaction to the reforming unit 1. The water supply unit 2 includes a valve, a flow controller, a pump, and the like that adjust the supply of water from a water supply source exemplified by city water and a water tank. On the other hand, 3 is a raw material supply unit for supplying the raw material to the reforming unit 1. The raw material supply unit 3 includes a valve, a flow controller, a pump, and the like that adjust the supply of the raw material from a raw material supply source such as a city gas infrastructure and a propane cylinder. In the present embodiment, city water is supplied as purified water using activated carbon and ion exchange resin, and city gas is supplied from the gas infrastructure as a raw material.

4は、原料および水を予熱し、水蒸気と原料の混合気を生成させる予熱部であり、改質部1内に設置されている。また予熱部4を通過した後の混合気が改質触媒部1aに供給されるようにガス通気経路で接続させている。   4 is a preheating part which preheats a raw material and water, and produces | generates the air-fuel | gaseous mixture of water vapor | steam and a raw material, and is installed in the reforming part 1. FIG. Further, the gas mixture is connected through a gas ventilation path so that the air-fuel mixture after passing through the preheating unit 4 is supplied to the reforming catalyst unit 1a.

5は、改質部1の改質触媒に改質反応に必要な熱を供給する改質加熱部である。改質加熱部5は、原料の一部を燃焼させる、あるいは水素含有ガス供給先から戻される可燃成分を燃焼させる火炎バーナーと、燃焼空気供給用のシロッコファンを備える構成としたが、詳細な説明は省略する。図示しないが、水素生成時の熱効率を向上させるため、改質加熱部5の熱は改質部1を加熱した後、予熱部4での予熱に利用する構成とした。なお、予熱部4を改質触媒部1aと別構成物としたが、改質触媒部1aの構造と一体化し、改質触媒部1a内で混合気を発生させる構成としてもよい。   Reference numeral 5 denotes a reforming heating unit that supplies heat necessary for the reforming reaction to the reforming catalyst of the reforming unit 1. The reforming heating unit 5 is configured to include a flame burner for burning a part of the raw material or burning a combustible component returned from the hydrogen-containing gas supply destination, and a sirocco fan for supplying combustion air. Is omitted. Although not shown, in order to improve the thermal efficiency at the time of hydrogen generation, the heat of the reforming heating unit 5 is used for preheating in the preheating unit 4 after heating the reforming unit 1. Although the preheating unit 4 is a separate component from the reforming catalyst unit 1a, the preheating unit 4 may be integrated with the structure of the reforming catalyst unit 1a to generate an air-fuel mixture in the reforming catalyst unit 1a.

6は、改質部1で生成した水素含有ガス中の一酸化炭素を水蒸気変成反応させるCu−Zn系変成触媒を設けた変成部である。変成部6は、水素含有ガスの流れに対して変成部6の上流側に設けられ、変成部6の上流温度を測定する変成第1温度検出部6aと、水素含有ガスの流れに対して変成部6の下流側に設けられ、変成部6の下流温度を測定する変成第2温度検出部6bを備えている。   6 is a shift unit provided with a Cu—Zn shift catalyst that performs a steam shift reaction of carbon monoxide in the hydrogen-containing gas generated in the reformer 1. The shift unit 6 is provided on the upstream side of the shift unit 6 with respect to the flow of the hydrogen-containing gas, the shift first temperature detection unit 6a that measures the upstream temperature of the shift unit 6, and the shift with respect to the flow of the hydrogen-containing gas. Provided on the downstream side of the unit 6 is a modified second temperature detection unit 6 b that measures the downstream temperature of the modified unit 6.

7は、水素含有ガスの流れに対して変成部6の上流に設けられた変成加熱部で、シースヒータにより水素含有ガスを加熱する構成としたが、詳細な説明は省略する。8は、変成部6を通過後の水素含有ガスに酸化剤となる空気を供給する空気供給部で、ダイアフラム式ポンプを用いた。   Reference numeral 7 denotes a transformation heating unit provided upstream of the transformation unit 6 with respect to the flow of the hydrogen-containing gas, and a configuration in which the hydrogen-containing gas is heated by a sheath heater is omitted. 8 is an air supply unit that supplies air as an oxidant to the hydrogen-containing gas after passing through the transformation unit 6, and used a diaphragm pump.

9は、変成部6通過後の水素含有ガス中に残留する一酸化炭素を、主に酸化により低減する選択酸化部である。選択酸化部9は、酸化反応を主に進行させる触媒としてRu系触媒を設ける構成とした。選択酸化部9は、水素含有ガスの流れに対して選択酸化部9の上流側に上流温度を測定する選択酸化温度検出部9aを備えている。   Reference numeral 9 denotes a selective oxidation unit that reduces carbon monoxide remaining in the hydrogen-containing gas after passing through the shift unit 6 mainly by oxidation. The selective oxidation unit 9 has a configuration in which a Ru-based catalyst is provided as a catalyst that mainly proceeds the oxidation reaction. The selective oxidation unit 9 includes a selective oxidation temperature detection unit 9a that measures the upstream temperature upstream of the selective oxidation unit 9 with respect to the flow of the hydrogen-containing gas.

10は選択酸化温度調整部で、シース型のヒータを水素含有ガスの流れに対して選択酸化部9の上流に設置するとともに、水素含有ガスの保有熱を除去するための空冷ファンを併用する構成とした。   Reference numeral 10 denotes a selective oxidation temperature adjusting unit, in which a sheath type heater is installed upstream of the selective oxidation unit 9 with respect to the flow of the hydrogen-containing gas, and an air cooling fan for removing the heat retained in the hydrogen-containing gas is used in combination. It was.

11は、選択酸化部9通過後の水素含有ガスの流通を切り替える水素含有ガス切り替え部で、本実施の形態では水素製造装置から燃料電池(図示せず)等の水素を必要とする外部機器に水素含有ガスを供給する経路と、改質加熱部5に改質部加熱用のガスとして水素含有ガスを供給する経路とを切り替えるように3方バルブとした。   Reference numeral 11 denotes a hydrogen-containing gas switching unit that switches the flow of the hydrogen-containing gas after passing through the selective oxidation unit 9. In this embodiment, the hydrogen production apparatus switches from a hydrogen production apparatus to an external device that requires hydrogen such as a fuel cell (not shown). A three-way valve was used so as to switch between a path for supplying the hydrogen-containing gas and a path for supplying the hydrogen-containing gas to the reforming / heating section 5 as a gas for heating the reforming section.

12は制御部であり、制御部12は、水供給部2、原料供給部3および改質加熱部5の動作を制御する。特に、水供給部2および原料供給部3の動作については、改質温度検出部1bで検出された温度も考慮して制御する場合がある。   12 is a control unit, and the control unit 12 controls operations of the water supply unit 2, the raw material supply unit 3, and the reforming heating unit 5. In particular, the operations of the water supply unit 2 and the raw material supply unit 3 may be controlled in consideration of the temperature detected by the reforming temperature detection unit 1b.

次に、本実施の形態における水素製造装置の起動動作および通常動作について説明する。
まず、制御部12は、水供給部2と原料供給部3を作動させ、水と原料を改質部1の予熱部4に供給した後、双方の供給を停止する。原料は脱硫後のメタンを主成分とする都市ガスとし、その供給量は、水素製造装置内のガス流通空間体積を置換する量を目安とした。
Next, the start-up operation and normal operation of the hydrogen production apparatus in the present embodiment will be described.
First, the control unit 12 operates the water supply unit 2 and the raw material supply unit 3 to supply water and the raw material to the preheating unit 4 of the reforming unit 1 and then stops the supply of both. The raw material was city gas mainly composed of methane after desulfurization, and the supply amount was determined by replacing the gas circulation space volume in the hydrogen production apparatus.

水の供給量は、水素製造装置内のガス流通空間体積が原料により置換されていることを前提とし、改質部1内に存在する原料中の炭素原子に対してモル比で2倍量以上となる水分子を含む水を供給した。実際には、原料供給部3により供給される原料量中の炭素原子に対してモル比で2倍量以上となる水分子を含む水が供給されるように、原料供給部3および水供給部2により改質部1に原料および水を供給する。本実施の形態ではメタンを主成分とする都市ガスを原料として改質反応により水素を生成するため、改質部1内に供給されるメタン量に対してモル比で2倍量の水蒸気が供給されるために必要な水の量を供給した。他の原料を用いる場合、例えばメタノールを原料とした場合は分子内に酸素原子を有するため、供給メタノール量に対してモル比で等倍量の水蒸気が存在するために必要な水の量を目安とする。   The amount of water supplied is based on the premise that the gas circulation space volume in the hydrogen production apparatus is replaced with the raw material, and is at least twice the molar ratio with respect to the carbon atoms in the raw material present in the reforming unit 1 Water containing water molecules was supplied. Actually, the raw material supply unit 3 and the water supply unit are supplied so that water containing water molecules in a molar ratio of at least twice the carbon atoms in the raw material amount supplied by the raw material supply unit 3 is supplied. The raw material and water are supplied to the reforming unit 1 by 2. In this embodiment, hydrogen is generated by reforming reaction using city gas mainly composed of methane as a raw material, so that water vapor is supplied in a molar ratio of twice the amount of methane supplied into the reforming unit 1. The amount of water needed to be supplied. When other raw materials are used, for example, when methanol is used as a raw material, since there are oxygen atoms in the molecule, the amount of water necessary for the presence of an equal amount of water vapor in a molar ratio with respect to the amount of supplied methanol is a guide. And

次に、制御部12は改質加熱部5を作動させ、改質部1および予熱部4の加熱を行う。改質加熱部5による加熱量の調整は、改質温度検出部1bでの検出温度に基づいて行った。起動動作時における改質加熱部5の動作は、水と原料を改質部1の予熱部4に供給し、双方の供給を停止した後に開始することが望ましいが、開始のタイミングは、水および原料の供給開始と同時あるいは開始前等、改質部1の温度が極端に上昇する危険性がない範囲で任意に設定すればよい。   Next, the control unit 12 operates the reforming heating unit 5 to heat the reforming unit 1 and the preheating unit 4. The adjustment of the heating amount by the reforming heating unit 5 was performed based on the temperature detected by the reforming temperature detection unit 1b. The operation of the reforming heating unit 5 during the start-up operation is preferably started after supplying water and raw materials to the preheating unit 4 of the reforming unit 1 and stopping both supplies. What is necessary is just to set arbitrarily in the range which does not have the danger that the temperature of the modification | reformation part 1 will rise extremely, such as the start of supply of a raw material, or before the start.

また、水素含有ガス中に含まれる一酸化炭素(CO)を、水素含有ガスの供給先の一つである燃料電池(図示せず)の電極触媒を被毒させないレベルにまで安定的に低減可能にするには、変成部6と選択酸化部9に用いる触媒を反応に適切な温度まで加熱する必要がある。本実施の形態では、変成触媒は200〜250℃程度、選択酸化触媒は100〜150℃程度をその温度の目安とした。制御部12は、起動時にそれらの温度となるように変成加熱部7および選択酸化加熱部10を作動させ、各触媒の加熱を開始する。なお、変成加熱部7および選択酸化加熱部10の加熱動作は、それぞれ変成第2温度検出部6aおよび選択酸化温度検出部9aでの検出温度に従い制御した。   In addition, carbon monoxide (CO) contained in the hydrogen-containing gas can be stably reduced to a level that does not poison the electrode catalyst of a fuel cell (not shown) that is one of the supply destinations of the hydrogen-containing gas. In order to achieve this, it is necessary to heat the catalyst used for the shift unit 6 and the selective oxidation unit 9 to a temperature suitable for the reaction. In the present embodiment, the shift catalyst has a temperature of about 200 to 250 ° C., and the selective oxidation catalyst has a temperature of about 100 to 150 ° C. The control unit 12 operates the shift heating unit 7 and the selective oxidation heating unit 10 so as to reach those temperatures at the time of activation, and starts heating each catalyst. The heating operations of the shift heating unit 7 and the selective oxidation heating unit 10 were controlled according to the detected temperatures of the shift second temperature detection unit 6a and the selective oxidation temperature detection unit 9a, respectively.

次に、制御部12は、改質温度検出部1bで検出された温度が500℃以上となったことを確認した後、原料および水の供給を再開した。その後、改質部1では、改質温度検出部1bの温度が650℃となるように改質加熱部5を動作させた。
なお、装置起動動作の終了は、改質部1、変成部6および選択酸化部9が目標温度まで加熱されることで判断した。その起動動作終了後、水素含有ガス生成の通常動作となる。
Next, the control part 12 restarted supply of a raw material and water, after confirming that the temperature detected by the reforming temperature detection part 1b became 500 degreeC or more. Thereafter, in the reforming unit 1, the reforming heating unit 5 was operated so that the temperature of the reforming temperature detection unit 1b was 650 ° C.
The end of the apparatus start-up operation was determined by heating the reforming unit 1, the shift unit 6 and the selective oxidation unit 9 to the target temperature. After the start-up operation is completed, the normal operation for generating the hydrogen-containing gas is performed.

改質部1には、原料供給部3と水供給部2により原料である都市ガスと水の供給が継続される。改質加熱部5を作動させ改質反応に必要な熱を供給し、水蒸気改質反応を進行させた。供給する原料および水の量、改質加熱部5での燃焼量は、発生水素量に応じて制御する。本実施の形態では、1モルの都市ガス組成中の炭素数の約2.5から3倍となるモル数の水を供給するとともに、改質温度検出部手段1bで検出する改質触媒の水素リッチガス下流温度が約650℃となるように、改質加熱部5に供給する熱量を制御した。その結果、改質部1の出口では、都市ガスの約85%が改質反応された水素含有ガスとなった。   Supply of city gas and water as raw materials to the reforming unit 1 is continued by the raw material supply unit 3 and the water supply unit 2. The reforming heating unit 5 was operated to supply heat necessary for the reforming reaction, and the steam reforming reaction was advanced. The amount of raw material and water to be supplied and the amount of combustion in the reforming heating unit 5 are controlled according to the amount of generated hydrogen. In the present embodiment, the hydrogen of the reforming catalyst detected by the reforming temperature detecting means 1b is supplied while supplying water having the number of moles that is about 2.5 to 3 times the number of carbons in the composition of 1 mole of city gas. The amount of heat supplied to the reforming heating unit 5 was controlled so that the downstream temperature of the rich gas was about 650 ° C. As a result, at the outlet of the reforming unit 1, about 85% of the city gas became a hydrogen-containing gas subjected to the reforming reaction.

変成部6では、水素含有ガス中の一酸化炭素を水蒸気との変成反応により低減させる。変成部6では、変成第1温度検出部6aでの検知温度が、250℃程度となるように運転した。これにより、変成部6出口での水素含有ガス中の一酸化炭素濃度は、約0.5%(ドライガスベース)となった。なお、通常動作時は改質部1からの水素含有ガスの保有熱で反応温度は維持できるため、変成加熱部7は作動させない。   In the shift part 6, carbon monoxide in the hydrogen-containing gas is reduced by a shift reaction with water vapor. The shift unit 6 was operated so that the temperature detected by the shift first temperature detector 6a was about 250 ° C. As a result, the concentration of carbon monoxide in the hydrogen-containing gas at the outlet of the shift unit 6 was about 0.5% (dry gas base). Note that, during normal operation, the reaction temperature can be maintained by the retained heat of the hydrogen-containing gas from the reforming unit 1, so the shift heating unit 7 is not operated.

選択酸化部9では、変成部6通過後の水素含有ガス中に残留する一酸化炭素を、主に酸化により低減する。選択酸化部9において酸化反応を行う前に、変成部6通過後の水素含有ガスに、空気供給部8から空気を供給する。空気の供給量は、供給される空気中の酸素量が変成部6から送出される水素含有ガス中に含まれる一酸化炭素の約2倍のモル数となるように供給した。なお、供給する空気量は、上述のように水素含有ガス中に含まれる一酸化炭素量に基づいて調整してもよいが、生成する水素含有ガス量または改質部に供給される原料量から選択酸化部での一酸化炭素量を推定し、この推定値に対して上述の関係を満たす空気供給量を算出することで、生成する水素含有ガス量または改質部に供給される原料量に対して、予め供給する空気量を設定し、空気供給部8からの供給空気量を制御しても構わない。   In the selective oxidation unit 9, carbon monoxide remaining in the hydrogen-containing gas after passing through the shift unit 6 is reduced mainly by oxidation. Before performing the oxidation reaction in the selective oxidation unit 9, air is supplied from the air supply unit 8 to the hydrogen-containing gas that has passed through the shift unit 6. The supply amount of air was supplied so that the amount of oxygen in the supplied air was about twice the number of moles of carbon monoxide contained in the hydrogen-containing gas sent from the shift unit 6. The amount of air to be supplied may be adjusted based on the amount of carbon monoxide contained in the hydrogen-containing gas as described above, but from the amount of hydrogen-containing gas produced or the amount of raw material supplied to the reforming unit By estimating the amount of carbon monoxide in the selective oxidation unit and calculating the amount of air supply that satisfies the above relationship with respect to this estimated value, the amount of hydrogen-containing gas produced or the amount of raw material supplied to the reforming unit is calculated. On the other hand, the amount of air supplied in advance may be set and the amount of air supplied from the air supply unit 8 may be controlled.

選択酸化温度調整部10では、選択酸化部9の触媒温度を最適な温度で運転させることを目的とし、冷却ファンを作動させ水素含有ガスを冷却する。本実施の形態では、選択酸化温度検出部9aで検出する温度が125℃となるように予め設定し、空冷ファンの動作を制御させた。なお、通常動作時は変成部1からの水素含有ガスの保有熱で反応温度は維持できるため、シースヒータは作動させない。   The selective oxidation temperature adjusting unit 10 operates the cooling fan to cool the hydrogen-containing gas for the purpose of operating the catalyst temperature of the selective oxidation unit 9 at an optimum temperature. In the present embodiment, the temperature detected by the selective oxidation temperature detector 9a is set in advance to be 125 ° C., and the operation of the air cooling fan is controlled. During normal operation, the sheath heater is not operated because the reaction temperature can be maintained by the retained heat of the hydrogen-containing gas from the shift section 1.

上記の一連の運転動作により、一酸化炭素濃度が約20ppm以下となる水素含有ガスの生成を行い、特に通常運転時は、一般的に運転されている水素製造装置とほぼ同様の動作を行った。一般的な水素製造装置との大きな相違点は、装置の起動時に、予め設定した量の原料および水を改質部に供給した後供給を停止し、改質加熱部を動作させた後、原料および水の供給を再開する点である。   Through the above series of operation operations, a hydrogen-containing gas having a carbon monoxide concentration of about 20 ppm or less was generated. In particular, during normal operation, substantially the same operation as that of a generally operated hydrogen production apparatus was performed. . A major difference from a general hydrogen production apparatus is that after starting the apparatus, after supplying a predetermined amount of raw material and water to the reforming section, the supply is stopped and the reforming heating section is operated, and then the raw material And the point of resuming the supply of water.

原料のみを通気、あるいは原料雰囲気で改質部を加熱した場合、原料の熱分解による炭素析出が進行する。例えば、都市ガスの場合では約500℃以上で熱分解が進行する。また、水のみを供給した場合、高温水蒸気雰囲気では、触媒の酸化劣化が進行し触媒活性が低下する。   When only the raw material is ventilated or the reforming part is heated in the raw material atmosphere, carbon deposition proceeds by thermal decomposition of the raw material. For example, in the case of city gas, thermal decomposition proceeds at about 500 ° C. or higher. Further, when only water is supplied, in a high-temperature steam atmosphere, the oxidative degradation of the catalyst proceeds and the catalytic activity decreases.

本実施の形態に用いたRu系改質触媒は、500℃の水蒸気雰囲気で酸化劣化による触媒活性低下がみられた。触媒温度500℃での水蒸気流通(水蒸気露点約80℃に加湿した窒素を流通)下の常圧固定槽流通試験において、650℃における水蒸気改質反応活性は、200時間経過後に初期活性と比較し約20%低下することが確認できた。   The Ru-based reforming catalyst used in the present embodiment showed a decrease in catalytic activity due to oxidative degradation in a steam atmosphere at 500 ° C. In a normal pressure fixed tank flow test under a flow of steam at a catalyst temperature of 500 ° C. (flow of nitrogen humidified to a steam dew point of about 80 ° C.), the steam reforming reaction activity at 650 ° C. is compared with the initial activity after 200 hours. It was confirmed that the temperature decreased by about 20%.

上記結果より、装置起動時に原料あるいは水のみを供給し、改質部の加熱を進行させることは、触媒活性低下防止の観点から望ましくないといえる。本実施の形態では、原料および水を改質部に供給し、その後改質加熱部5を作動させ加熱を開始する。ここで、水および原料の供給を継続すると、改質触媒が十分に加熱されていない状態で水が供給され、水蒸気の発生が少なくなる可能性があり、その状態で原料の供給が継続されると改質触媒上での水蒸気量に対する原料量が過剰になり(言い換えると、改質触媒上の原料中の炭素原子に対する水蒸気のモル比が小さくなり)、改質部の温度が上昇するに伴い炭素析出が起こる可能性が高まる。また、改質部に供給された水が直接改質触媒に流入し、改質触媒表面に付着することで改質触媒が酸化劣化する可能性がある。そこで、本実施の形態では、原料および水を一定量供給した後、それらの供給を停止した。この動作により上記問題の発生を防止できる。   From the above results, it can be said that it is not desirable from the viewpoint of preventing the catalyst activity from being lowered, by supplying only the raw material or water at the start of the apparatus and allowing the reforming section to proceed with heating. In the present embodiment, the raw material and water are supplied to the reforming unit, and then the reforming heating unit 5 is operated to start heating. Here, if the supply of water and the raw material is continued, water is supplied in a state where the reforming catalyst is not sufficiently heated, and there is a possibility that the generation of water vapor may be reduced, and the supply of the raw material is continued in that state. As the amount of raw material with respect to the amount of water vapor on the reforming catalyst becomes excessive (in other words, the molar ratio of water vapor to carbon atoms in the raw material on the reforming catalyst becomes smaller), the temperature of the reforming section increases. The possibility of carbon deposition increases. In addition, there is a possibility that the water supplied to the reforming section flows directly into the reforming catalyst and adheres to the surface of the reforming catalyst, so that the reforming catalyst is oxidized and deteriorated. Therefore, in this embodiment, after supplying a certain amount of raw materials and water, the supply thereof is stopped. This operation can prevent the above problem from occurring.

なお、装置起動時に供給する原料は、改質部ガス通気経路内に酸素が混入している場合の加熱による触媒酸化を防止するため、少なくとも改質部ガス通気経路内を置換する量を目安に供給する事が望ましく、供給される水量は、供給される原料量中の炭素原子に対してモル比で2倍量以上であることが望ましい。   In order to prevent catalytic oxidation due to heating when oxygen is mixed in the reforming part gas ventilation path, at least the amount of the raw material supplied when starting the apparatus is replaced in the reforming part gas ventilation path as a guide. It is desirable to supply, and the amount of water to be supplied is preferably at least twice as much as the molar ratio with respect to the carbon atoms in the amount of raw material to be supplied.

一方、装置起動時または停止動作時に装置内が既に原料でパージされている場合、すなわち装置内のガス流通空間体積が原料により置換されている場合は、再度、装置起動時にガス流通空間体積を置換する量を必ずしも流通させる必要はないが、水の供給は必要であり、その際の水の供給量は、改質部内(ガス通気経路内)に存在する原料中の炭素原子に対してモル比で2倍量以上であることが好ましい。   On the other hand, if the inside of the device has already been purged with the raw material when the device is started or stopped, that is, if the gas circulation space volume in the device is replaced with the raw material, the gas circulation space volume is replaced again when the device is activated. It is not always necessary to circulate the amount to be supplied, but water must be supplied, and the amount of water supplied at that time is a molar ratio with respect to the carbon atoms in the raw material existing in the reforming section (in the gas ventilation path). The amount is preferably twice or more.

次に、上述のように改質触媒にRu系触媒を用い、原料供給部より供給される原料量中に含まれる炭素原子に対する水供給部により供給される水量のモル比(S/C、スチームカーボン比)および改質触媒温度の炭素析出状況の一検討結果を表1に示す。原料である都市ガスと水蒸気流通(水蒸気露点約80℃に加湿した窒素を流通)下の常圧固定槽流通試験において、5時間経過後の触媒状況の観察結果である。表中の×は炭素析出による反応管閉塞状況、△は炭素析出の確認、○は問題なきことを目視で観察した状況を示す。   Next, using a Ru-based catalyst as the reforming catalyst as described above, the molar ratio of the amount of water supplied by the water supply unit to the carbon atoms contained in the amount of raw material supplied from the raw material supply unit (S / C, steam Table 1 shows the results of a study on the carbon deposition state of the carbon ratio) and the reforming catalyst temperature. It is the observation result of the catalyst condition after 5 hours in the normal pressure fixed tank circulation test under the circulation of the city gas which is the raw material and the steam (the steam dehumidified at about 80 ° C.). In the table, “x” indicates the state of clogging of the reaction tube due to carbon deposition, “Δ” indicates the confirmation of carbon deposition, and “◯” indicates the state observed visually.

Figure 0004847759
Figure 0004847759

同様に、表2に、Ni系触媒を用い、原料である都市ガスと水蒸気流通(水蒸気露点約80℃に加湿した窒素を流通)下の常圧固定槽流通試験において、5時間経過後の触媒状況の観察結果を示す。表1のRu系触媒の結果と比較すると、低いS/Cでの炭素析出が起こり易くなる。   Similarly, Table 2 shows a catalyst after 5 hours in a normal pressure fixed tank circulation test using Ni-based catalyst and city gas as a raw material and steam circulation (circulating nitrogen humidified to a water vapor dew point of about 80 ° C.). The observation result of the situation is shown. Compared with the results of the Ru-based catalyst in Table 1, carbon deposition at a low S / C tends to occur.

Figure 0004847759
Figure 0004847759

これらの検討結果より、S/Cが2以上となる水を供給することで炭素析出を確実に防止できることがわかる。なお、上記検討結果は常圧固定槽流通試験下でのものであるが、原料および水の供給を停止した状態では炭素量が限られているため、炭素析出について同等もしくは、より顕著な結果が得られる。   From these examination results, it can be seen that carbon deposition can be reliably prevented by supplying water having an S / C of 2 or more. Note that the above examination results are those under the atmospheric pressure fixed tank flow test, but the carbon amount is limited when the supply of raw materials and water is stopped. can get.

原料および水の供給停止後、加熱の進行に伴って供給した水は蒸発し、改質触媒部1aの雰囲気は原料および水蒸気の混合気状態となる。この状態で更に温度上昇が進行しても、水蒸気改質反応が進行し触媒雰囲気が還元状態となるため、改質触媒温度上昇に伴う触媒劣化は防止できる。   After the supply of the raw material and water is stopped, the supplied water evaporates with the progress of heating, and the atmosphere of the reforming catalyst unit 1a becomes a mixed gas state of the raw material and water vapor. Even if the temperature rises further in this state, the steam reforming reaction proceeds and the catalyst atmosphere becomes a reduced state, so that the catalyst deterioration accompanying the rise of the reforming catalyst temperature can be prevented.

なお、本実施の形態では、改質部1の加熱の進行に伴い変成部6および選択酸化部10の加熱も進行させた。改質温度検出部1bでの検出温度が500℃以上となった場合、変成温度検出部6aまたは6bで検出された変成部6の触媒温度および選択酸化温度検出部9aで検出された選択酸化部10の触媒温度が、それぞれ100℃以上となったため、制御部12は、原料および水の供給を再開し水蒸気改質反応を進行させると共に、生成させた水素含有ガス中の一酸化炭素を低減させる反応を進行させた。原料および水の供給を再開する際、変成部6および選択酸化部10の触媒温度は、水が凝縮しない温度であるため、装置起動時の変成部6および選択酸化部10の触媒の凝縮水による劣化も防止できる。   In the present embodiment, as the reforming unit 1 is heated, the transformation unit 6 and the selective oxidation unit 10 are also heated. When the temperature detected by the reforming temperature detection unit 1b is 500 ° C. or higher, the catalyst temperature of the shift unit 6 detected by the shift temperature detection unit 6a or 6b and the selective oxidation unit detected by the selective oxidation temperature detection unit 9a Since the catalyst temperatures of 10 became 100 ° C. or more, the control unit 12 resumes the supply of the raw material and water to advance the steam reforming reaction, and reduces the carbon monoxide in the generated hydrogen-containing gas. The reaction was allowed to proceed. When the supply of the raw material and water is resumed, the catalyst temperature of the shift unit 6 and the selective oxidation unit 10 is a temperature at which water is not condensed. Deterioration can also be prevented.

なお、制御部12により原料および水の供給の再開が許可される、改質温度検出部1bでの検出温度に対して予め設定された起動動作温度は、改質触媒上で水蒸気凝縮が起きる可能性が低いと判断させる温度であれば構わないが、予熱部4、変成部6内の変成触媒または選択酸化部10内の選択酸化触媒上に水蒸気凝縮の問題を考慮し、予熱温度検出部4a、変成第1温度検出部6aまたは変成第2温度検出部6b、または選択酸化温度検出部9aで検出される温度についても、同様に水凝縮が起きる可能性が低い温度と判断される温度として予め起動動作温度を設定し、制御部12は、これらの温度も考慮して、水および原料の供給の再開を許可するようにしても構わない。   Note that the start-up operation temperature set in advance with respect to the temperature detected by the reforming temperature detection unit 1b, in which resumption of the supply of raw materials and water is permitted by the control unit 12, may cause steam condensation on the reforming catalyst. The temperature may be determined to be low, but the preheating temperature detection unit 4a is considered in consideration of the problem of steam condensation on the preheating unit 4, the conversion catalyst in the conversion unit 6 or the selective oxidation catalyst in the selective oxidation unit 10. Similarly, the temperature detected by the modified first temperature detection unit 6a, the modified second temperature detection unit 6b, or the selective oxidation temperature detection unit 9a is also determined in advance as a temperature that is similarly determined to be a low possibility of water condensation. The starting operation temperature may be set, and the control unit 12 may allow resumption of the supply of water and raw materials in consideration of these temperatures.

以上のように本実施の形態では、装置起動時に予め設定した量の原料および水を改質部1に供給した後、原料および水の供給を停止した状態で改質加熱部5を動作させ、改質部1を予め設定した温度以上に加熱する。原料のみを供給した場合、改質加熱部5の加熱により原料の熱分解が起きる。しかし、改質部1の温度上昇前に原料および水を同時に供給することで、加熱の進行に伴い水蒸気も発生するため、原料と水蒸気との間で水蒸気改質反応が始まり、原料の熱分解は最小限に抑えることができる。またその後、改質加熱部5の動作は進行させるが、原料および水の供給は一時停止する。   As described above, in the present embodiment, after supplying raw material and water in a predetermined amount at the time of starting the apparatus to the reforming unit 1, the reforming heating unit 5 is operated in a state where supply of the raw material and water is stopped, The reforming unit 1 is heated to a preset temperature or higher. When only the raw material is supplied, the raw material is thermally decomposed by the heating of the reforming heating unit 5. However, by simultaneously supplying the raw material and water before the temperature of the reforming unit 1 rises, steam is also generated with the progress of heating. Therefore, the steam reforming reaction starts between the raw material and steam, and the thermal decomposition of the raw material Can be minimized. Thereafter, the operation of the reforming heating unit 5 is advanced, but the supply of raw materials and water is temporarily stopped.

この動作により、原料の供給を継続した場合の熱分解による炭素析出量の増加確率、および水の供給を継続した場合の水蒸気凝縮量の増加確率を大幅に低減することができる。さらに、原料および水の加熱により熱量を損失することがなくなるため改質触媒を含む改質部が早期に昇温し、起動時間の短縮に繋がる。また、改質加熱部5を動作させ水蒸気改質反応を進行させる状態まで改質部1を加熱した後、原料および水の供給を再開することで、水素を安定的に生成させることができる。   By this operation, it is possible to significantly reduce the probability of increase in the amount of carbon deposition due to thermal decomposition when the supply of raw materials is continued and the probability of increase in the amount of water vapor condensation when supply of water is continued. Furthermore, since the amount of heat is not lost by heating the raw material and water, the reforming section including the reforming catalyst is heated up early, leading to a reduction in the start-up time. Moreover, hydrogen can be stably produced | generated by restarting supply of a raw material and water after operating the reforming heating part 5 and heating the reforming part 1 to the state which advances a steam reforming reaction.

また、起動時の原料供給量を、少なくとも改質部ガス通気経路内を置換する量とすることで、装置停止時に混入した空気を原料で置換する。この動作により、改質加熱部5の動作時に起きる改質触媒の空気酸化を防止することができる。また、起動時の水供給量を、供給される原料量中の炭素原子に対してモル比で2倍量以上となる量とする、すなわち水蒸気改質反応に必要な量の水蒸気を供給することで、改質部1の昇温過程で水蒸気改質反応が進行し、原料熱分解の起きる確率を小さくできる。   Moreover, the raw material supply amount at the time of starting is set to an amount that replaces at least the inside of the reforming part gas ventilation path, whereby the air mixed when the apparatus is stopped is replaced with the raw material. With this operation, air oxidation of the reforming catalyst that occurs during the operation of the reforming heating unit 5 can be prevented. In addition, the water supply amount at the time of startup is set to an amount that is at least twice as much as the molar ratio with respect to the carbon atoms in the supplied raw material amount, that is, supplying an amount of steam necessary for the steam reforming reaction. Thus, the steam reforming reaction proceeds in the temperature raising process of the reforming unit 1, and the probability that the raw material thermal decomposition occurs can be reduced.

更に、改質部1に改質温度検出部1bを設け、装置起動時に改質加熱部5を作動させるとともに、改質温度検出部1bで検出する温度が予め設定した起動動作値以上になった場合、原料および水の供給を再開することで、原料および水の供給と共に水蒸気改質反応を進行させることができるため、原料熱分解による炭素析出、水蒸気凝縮量を大幅に低減できる。
(実施の形態2)
Furthermore, the reforming unit 1 is provided with a reforming temperature detection unit 1b to operate the reforming heating unit 5 when the apparatus is started up, and the temperature detected by the reforming temperature detection unit 1b is equal to or higher than a preset startup operation value. In this case, by restarting the supply of the raw material and water, the steam reforming reaction can be advanced together with the supply of the raw material and water, so that the amount of carbon deposition and steam condensation due to the thermal decomposition of the raw material can be greatly reduced.
(Embodiment 2)

次に、本発明の実施の形態2における水素製造装置について説明するが、装置の構成は実施の形態1の装置と同一であるため、説明は省略する。
本実施の形態における水素製造装置の動作は、実施の形態1とほぼ同様であり、相違点は、変成第2温度検出部6bでの検出温度が100℃以上となることを確認した後、原料および水の供給を再開する点である。
Next, the hydrogen production apparatus according to the second embodiment of the present invention will be described. However, the configuration of the apparatus is the same as that of the first embodiment, and thus the description thereof is omitted.
The operation of the hydrogen production apparatus in the present embodiment is substantially the same as that in the first embodiment, and the difference is that after confirming that the detected temperature at the modified second temperature detecting unit 6b is 100 ° C. or higher, the raw material And the point of resuming the supply of water.

本実施の形態で用いたCu−Zn系の変成触媒は、水が触媒上で凝縮する時にその凝縮水で触媒が酸化され活性が低下する傾向が大きい。原料および水の供給再開時は、都市ガス組成中の炭素数の約2.5から3倍となるモル数の水を供給する。すなわち、原料とともに過剰の水を供給し水蒸気改質反応を進行させるため、改質部1通過後の水素含有ガスは水蒸気を含むこととなる。このため、変成部6が十分に加熱できていない場合、水蒸気が凝縮する可能性がある。   The Cu—Zn-based shift catalyst used in the present embodiment has a large tendency that the catalyst is oxidized by the condensed water when the water condenses on the catalyst and the activity decreases. When the supply of raw materials and water is resumed, water is supplied in the number of moles that is about 2.5 to 3 times the number of carbons in the city gas composition. That is, since excessive water is supplied together with the raw material to cause the steam reforming reaction to proceed, the hydrogen-containing gas after passing through the reforming unit 1 contains steam. For this reason, when the metamorphosis part 6 cannot fully heat, water vapor | steam may condense.

そこで、触媒での水凝縮を防止する観点から、変成第2温度検出部6bでの検出温度に対して変成触媒上に水が凝縮する可能性が低いと判断される温度としての起動動作値を予め設け、原料および水の供給を再開する目安とした。本実施の形態では、変成第2温度検出部6bでの起動動作値を100℃とした。上記の温度制御により、装置起動時の変成触媒の活性低下を防止できることが、本実施の形態の特徴的な効果となる。   Therefore, from the viewpoint of preventing water condensation on the catalyst, the starting operation value as a temperature at which it is determined that the possibility that water is condensed on the shift catalyst is low with respect to the temperature detected by the shift second temperature detection unit 6b. It was provided in advance and used as a standard for restarting the supply of raw materials and water. In the present embodiment, the starting operation value in the modified second temperature detection unit 6b is 100 ° C. It is a characteristic effect of the present embodiment that the temperature control can prevent a reduction in the activity of the shift catalyst at the time of starting the apparatus.

なお、改質部1では、供給再開時に水が十分に蒸発できるかどうかも考慮するのが好ましい。すなわち、変成部温度検出部(本実施の形態の場合、変成第2温度検出部6b)での検出温度が上記起動動作値以上であるかだけでなく、改質温度検出部1bでの検出温度も起動動作値以上であるかを判断し、原料および水の供給を再開することが好ましい。なお、この場合に、改質部1および変成部6の温度に基づいて供給再開のタイミングを判断せずに、改質部1の水蒸発が律速か変成部6での水凝縮が律速かを考慮し、水および原料の供給再開タイミングを決定しても構わない。つまり、改質触媒上で水凝縮しない程度まで温度上昇することが律速であれば、改質部1に対して設けられた起動動作値を参照し、変成触媒上に水凝縮しない程度まで温度上昇することが律速であれば、変成部6に対して設けられた上記起動動作値を参照し、水および原料供給の開始を判断すればよい。   In the reforming unit 1, it is preferable to consider whether or not water can be sufficiently evaporated when the supply is resumed. That is, not only whether the temperature detected by the shift temperature detector (the shift 2nd temperature detector 6b in the case of the present embodiment) is equal to or higher than the starting operation value, but also the temperature detected by the reforming temperature detector 1b. It is preferable to determine whether the starting operation value is equal to or higher than the starting operation value and restart the supply of the raw material and water. In this case, without determining the timing of restarting the supply based on the temperatures of the reforming unit 1 and the transformation unit 6, whether the water evaporation of the reforming unit 1 is rate-limiting or whether the water condensation in the transformation unit 6 is rate-limiting. In consideration of this, the supply restart timing of water and raw materials may be determined. In other words, if the rate rise is such that water is not condensed on the reforming catalyst, the start-up operation value provided for the reforming unit 1 is referred to, and the temperature rises to the extent that water is not condensed on the shift catalyst. If it is rate-limiting, it is only necessary to determine the start of water and raw material supply with reference to the start-up operation value provided for the transformation unit 6.

また、選択酸化部9に用いた選択酸化触媒についても、変成触媒と同様に水凝縮による触媒劣化の可能性がある。そこで本実施の形態では、選択酸化部9を加熱する観点からも、選択酸化部9に選択酸化温度調整部10を設け、変成部6と同様に起動時に予め触媒温度を昇温させる検討を行った。選択酸化温度検出部9aで検出する温度に上限値を設け、選択酸化温度調整部10での加熱状態を制御した。その上限温度は、通常使用温度の125℃とした。   Further, the selective oxidation catalyst used in the selective oxidation unit 9 may also be deteriorated by water condensation like the shift catalyst. Therefore, in the present embodiment, also from the viewpoint of heating the selective oxidation unit 9, a selective oxidation temperature adjusting unit 10 is provided in the selective oxidation unit 9, and the catalyst temperature is preliminarily raised at the time of start-up in the same manner as the shift unit 6. It was. An upper limit value was set for the temperature detected by the selective oxidation temperature detection unit 9a, and the heating state in the selective oxidation temperature adjustment unit 10 was controlled. The upper limit temperature was set to 125 ° C., which is a normal use temperature.

なお、本実施の形態の選択酸化部9での触媒量は変成部6よりもかなり少なく、重量比で約1/10であるため、触媒全体の温度分布がつきにくい傾向となった。そこで、ガス流れ上流に設けた選択酸化温度検出部9aで検出する温度で触媒全体の温度を代表させた。また、使用温度が125℃と変成部6と比較して比較的低温であるため、変成部6と比較してより早く水の凝縮温度以上まで加熱できるため、原料供給の切り替え動作は、変成部6を中心に設定した。ただし、装置構成や使用する触媒種によりその状態が相違する場合は、選択酸化温度検出部9aでの検出温度をもとに、原料および水の再供給動作を設定しても良い。   In addition, since the amount of catalyst in the selective oxidation unit 9 of the present embodiment is considerably smaller than that of the shift unit 6 and is about 1/10 in weight ratio, the temperature distribution of the entire catalyst tends to be difficult. Therefore, the temperature of the entire catalyst is represented by the temperature detected by the selective oxidation temperature detector 9a provided upstream of the gas flow. In addition, since the use temperature is 125 ° C. and relatively low temperature compared to the transformation unit 6, it can be heated to a temperature higher than the condensation temperature of water faster than the transformation unit 6. 6 was set as the center. However, when the state differs depending on the device configuration and the type of catalyst used, the resupply operation of the raw material and water may be set based on the temperature detected by the selective oxidation temperature detection unit 9a.

以上のように本実施の形態では、変成触媒を加熱する変成加熱部7を設け、装置起動時に変成加熱部7を動作させることで、改質部1から供給される水蒸気が変成触媒上で凝縮し、その凝縮水による変成触媒の活性低下を防止できる。また、変成部6に変成第2温度検出部6bを設け、変成第2温度検出部6bで検出する温度が予め設定した起動動作値以上になった場合、改質部1からの原料および水の供給を再開することで、原料熱分解による炭素析出確率を低減するとともに、特に変成部6での水蒸気凝縮を大幅に低減できる。   As described above, in this embodiment, the shift heating unit 7 for heating the shift catalyst is provided, and the steam supplied from the reforming unit 1 is condensed on the shift catalyst by operating the shift heating unit 7 when the apparatus is activated. And the fall of the activity of the shift catalyst by the condensed water can be prevented. Moreover, when the temperature detected by the modified second temperature detecting unit 6b is equal to or higher than a preset starting operation value, the raw material and water from the reforming unit 1 are provided. By restarting the supply, the probability of carbon deposition due to the thermal decomposition of the raw material can be reduced, and in particular, the water vapor condensation in the metamorphic section 6 can be greatly reduced.

なお、本実施の形態では、変成加熱部7は、変成部6本体の上流に設けられているが、変成加熱部7により変成触媒を加熱可能であれば、例えば、変成部6本体に適宜設けられていても構わない。また本実施の形態では、変成第2温度検出部6bに対して設けられた起動動作値により原料および水の供給再開の判断を行ったが、変成第1温度検出部6aを含む変成部6の温度を検出可能な他の温度検出部に対して、変成触媒が水凝縮温度以上になったと判断される起動動作値を設け、この起動動作値に基づいて原料および水の供給再開の判断をしても構わない。
(実施の形態3)
In this embodiment, the shift heating section 7 is provided upstream of the shift section 6 main body. However, if the shift catalyst can be heated by the shift heating section 7, for example, the shift heating section 7 is appropriately provided in the shift section 6 main body. It does not matter. In the present embodiment, the restart of the supply of the raw material and the water is determined based on the start operation value provided for the modified second temperature detection unit 6b. However, in the modification unit 6 including the modified first temperature detection unit 6a, For other temperature detectors that can detect the temperature, a starting operation value is determined to determine that the shift catalyst has reached the water condensation temperature or higher, and based on this starting operation value, it is determined whether to resume the supply of raw materials and water. It doesn't matter.
(Embodiment 3)

図2に、本発明の実施の形態3に用いた水素製造装置の構成図を示す。同装置の構成および動作は、実施の形態1に示す水素製造装置の構成・動作とほぼ同一であるため、以下は相違点を中心に説明する。   FIG. 2 shows a configuration diagram of the hydrogen production apparatus used in Embodiment 3 of the present invention. Since the configuration and operation of the apparatus are substantially the same as the configuration and operation of the hydrogen production apparatus shown in Embodiment 1, the following description will focus on differences.

実施の形態1で用いた図1の水素製造装置との構成上の相違点は、改質触媒部1aの改質触媒としてNi系触媒を充填した点、変成部6の変成触媒としてPtとCe酸化物系とで調整した貴金属系触媒を用いた点、および予熱部4に予熱部温度を測定する予熱温度検出部4aを設けた点である。   The difference from the hydrogen production apparatus of FIG. 1 used in Embodiment 1 is that a Ni-based catalyst is filled as the reforming catalyst of the reforming catalyst unit 1a, and Pt and Ce are used as the shift catalyst of the shift unit 6. The precious metal catalyst adjusted with the oxide system is used, and the preheating temperature detecting unit 4a for measuring the preheating temperature is provided in the preheating unit 4.

一方、本実施の形態における水素製造装置の動作上の相違点は、予熱温度検出部4aの検出温度に対して予熱部4において水蒸気発生可能と判断される温度としての起動動作値を予め設け、予熱温度検出部4aでの検出温度が起動動作値以上になった場合、改質部への原料および水の供給を再開する点である。   On the other hand, the difference in operation of the hydrogen production apparatus in the present embodiment is that a startup operation value as a temperature at which it is determined that steam can be generated in the preheating unit 4 with respect to the temperature detected by the preheating temperature detection unit 4a is provided in advance. When the temperature detected by the preheating temperature detection unit 4a is equal to or higher than the starting operation value, the supply of the raw material and water to the reforming unit is resumed.

供給した水は、予熱部4で加熱され水蒸気となる。その水蒸気と原料の混合気が改質部1に供給され、水蒸気改質反応を進行させる。すなわち、水蒸気の発生状態は、予熱部4での温度状態が直接影響する。そこで、本実施の形態では、予熱部4に設けた予熱温度検出部4aでの検出温度をもとに、原料および水の供給を再開させる運転を行った。この動作では、直接水の蒸発状態を把握できるため、水蒸気の共存下での水蒸気改質反応の進行による原料の炭素析出抑制、水凝縮による触媒劣化防止のより正確な起動情報となることはいうまでもない。なお、予熱部4が100℃よりも高い温度であれば水の蒸発が確保できるため、100℃を起動動作値の目安とした。   The supplied water is heated by the preheating unit 4 and becomes water vapor. The mixture of the steam and the raw material is supplied to the reforming unit 1 to advance the steam reforming reaction. That is, the temperature state in the preheating part 4 has a direct influence on the generation state of water vapor. Therefore, in the present embodiment, the operation of restarting the supply of the raw material and water is performed based on the temperature detected by the preheating temperature detection unit 4a provided in the preheating unit 4. In this operation, the evaporation state of direct water can be grasped, so that it becomes more accurate start-up information for suppressing carbon deposition of the raw material due to the progress of the steam reforming reaction in the presence of steam and preventing catalyst deterioration due to water condensation. Not too long. In addition, if the preheating part 4 is a temperature higher than 100 degreeC, since evaporation of water can be ensured, 100 degreeC was made into the standard of starting operation value.

上述した実施の形態1に記載のように改質温度検知部1bでの検出温度だけで判断し、原料および水の供給を再開した場合、予熱部4が十分加熱されていないと、予熱部4から改質触媒に直接水が供給され続け、改質触媒上に水凝縮したり、また改質触媒上での水蒸気の不足による原料の熱分解の可能性が高まるが、本実施の形態のように予熱部4が十分加熱されてから改質部への原料および水の供給を再開することにより、これらの可能性が低減し、より触媒劣化の少ない起動運転が確保できる。   As described in the first embodiment, when the determination is made only by the temperature detected by the reforming temperature detection unit 1b and the supply of the raw material and water is restarted, if the preheating unit 4 is not sufficiently heated, the preheating unit 4 Although water is continuously supplied directly to the reforming catalyst, water condenses on the reforming catalyst, and the possibility of thermal decomposition of the raw material due to lack of water vapor on the reforming catalyst increases. When the preheating unit 4 is sufficiently heated to resume the supply of the raw material and water to the reforming unit, these possibilities are reduced, and start-up operation with less catalyst deterioration can be secured.

なお、変成触媒である貴金属系触媒は、実施の形態1および2で用いたCu−Zn触媒と比較し水濡れに対しての耐久性が優れており、Cu−Zn触媒と同等の起動方法を行う点で何ら問題はない。   In addition, the noble metal catalyst which is a shift catalyst has superior durability against water wetting compared to the Cu—Zn catalyst used in the first and second embodiments, and has a startup method equivalent to that of the Cu—Zn catalyst. There is no problem in doing.

以上のように本実施の形態では、予熱部4に予熱温度検出部4aを設け、予熱温度検出部4aでの検出温度が予め設定した起動動作値以上になった場合、改質部1への原料および水の供給を再開することで、原料および水が予熱部4で加熱され、原料および水蒸気の混合気として改質部1に供給することができ、原料熱分解による炭素析出量、および水蒸気凝縮量を大幅に低減できる。   As described above, in the present embodiment, the preheating unit 4 is provided with the preheating temperature detection unit 4a, and when the temperature detected by the preheating temperature detection unit 4a is equal to or higher than a preset startup operation value, By restarting the supply of the raw material and water, the raw material and water are heated in the preheating unit 4 and can be supplied to the reforming unit 1 as a mixture of the raw material and water vapor. The amount of condensation can be greatly reduced.

なお、上述のように予熱温度検出部4aで検出される温度に基づいて原料および水の供給再開を判断しても構わないが、実施の形態1および2に記載のように改質温度検出部および/または変成温度検出部で検出される温度が、それぞれ起動動作値以上になっているかどうかも考慮して原料および水の供給再開を判断した方が、より好ましいことはいうまでもない。
(実施の形態4)
It should be noted that the resumption of supply of the raw material and water may be determined based on the temperature detected by the preheating temperature detection unit 4a as described above, but the reforming temperature detection unit as described in the first and second embodiments. Needless to say, it is more preferable to determine whether to resume the supply of raw materials and water in consideration of whether the temperatures detected by the transformation temperature detection unit are each equal to or higher than the starting operation value.
(Embodiment 4)

図3に、本発明の実施の形態4に用いた水素製造装置の構成図を示す。同装置の構成および動作は、実施の形態1に示す水素製造装置の構成・動作とほぼ同一であるため、以下は相違点を中心に説明する。   FIG. 3 shows a configuration diagram of the hydrogen production apparatus used in Embodiment 4 of the present invention. Since the configuration and operation of the apparatus are substantially the same as the configuration and operation of the hydrogen production apparatus shown in Embodiment 1, the following description will focus on differences.

実施の形態1で用いた図1の装置との構成上の相違点は、原料供給部3に、原料供給部3から改質部1後の水素含有ガス配管に原料を供給するための原料バイパス3aを設け、原料供給部3で改質部1あるいは原料バイパス3aに原料の供給を振り分けるように制御する点である。なお、原料供給部3としては3方弁等が用いられる。   The difference in configuration from the apparatus of FIG. 1 used in Embodiment 1 is that a raw material bypass for supplying the raw material to the hydrogen-containing gas pipe after the reforming unit 1 from the raw material supply unit 3 to the raw material supply unit 3 3a is provided, and the raw material supply unit 3 controls the supply of the raw material to the reforming unit 1 or the raw material bypass 3a. A three-way valve or the like is used as the raw material supply unit 3.

一方、実施の形態1の装置との動作上の相違点は、改質加熱部5の動作後に、改質部1への水および原料の供給を停止するが、原料供給部3により原料バイパス3a側に原料を供給し、改質部1を通さずに変成部6側から原料を供給する点である。その動作により、供給された原料は、変成加熱部7で予め加熱され変成部6を通過することになる。この予め加熱された原料が変成部6内を通過することで、変成触媒の原料流れの上流から下流まで均一に加熱する。   On the other hand, the operational difference from the apparatus of the first embodiment is that the supply of water and raw material to the reforming unit 1 is stopped after the reforming heating unit 5 is operated. The raw material is supplied to the side, and the raw material is supplied from the transformation unit 6 side without passing through the reforming unit 1. By the operation, the supplied raw material is heated in advance by the transformation heating unit 7 and passes through the transformation unit 6. The preheated raw material passes through the shift unit 6 to be heated uniformly from upstream to downstream of the raw material flow of the shift catalyst.

次に、原料は、選択酸化加熱部10で予め加熱され選択酸化部9を通過することになる。本実施の形態と実施の形態1の装置との動作上の他の相違点は、この予め加熱された原料が選択酸化部9内を通過することで、選択酸化触媒の原料流れの上流から下流まで均一に加熱する点である。なお、変成部6に通気し選択酸化部9を通過した原料は、水素含有ガス切り替え部11から改質加熱部5に供給し、改質部1の加熱に用いる構成とした。   Next, the raw material is heated in advance by the selective oxidation heating unit 10 and passes through the selective oxidation unit 9. Another difference in operation between the present embodiment and the apparatus according to the first embodiment is that the preheated raw material passes through the selective oxidation unit 9 so that the raw material flow of the selective oxidation catalyst flows from the upstream to the downstream. It is a point which heats evenly. The raw material that passed through the shift unit 6 and passed through the selective oxidation unit 9 was supplied from the hydrogen-containing gas switching unit 11 to the reforming heating unit 5 and used for heating the reforming unit 1.

次に、本実施の形態における装置構成で、装置の起動性を比較した結果について簡単に説明する。原料を全く通気させず、変成加熱部7および選択酸化温度調整部10を作動させ変成触媒および選択酸化触媒を昇温させてから、改質部1からの原料および水の供給を再開した場合(条件1とする)、および本実施の形態に示す場合(条件2とする)で、起動時間と消費エネルギーの比較を行った。   Next, a brief description will be given of the result of comparing the startability of the devices in the device configuration of the present embodiment. When the feed of raw material and water from the reforming unit 1 is restarted after the raw material is not vented at all and the shift heating unit 7 and the selective oxidation temperature adjusting unit 10 are operated to raise the temperature of the shift catalyst and the selective oxidation catalyst ( Condition 1) and the case shown in the present embodiment (condition 2) were compared between start-up time and energy consumption.

条件2での水素の安定生成が可能となる起動時間および消費エネルギーを1とした場合、条件1では起動時間が約1.5倍および消費エネルギーが約1.1倍となった。上記比較から、本実施の形態の起動方法により、起動時間と消費エネルギーの削減が可能となることがわかる。   Assuming that the start-up time and energy consumption at which hydrogen can be stably generated under condition 2 is 1, under condition 1, the start-up time is about 1.5 times and the energy consumption is about 1.1 times. From the above comparison, it can be seen that the activation time and energy consumption can be reduced by the activation method of the present embodiment.

なお、改質部1への水および原料の供給を再開する際の判断は、本実施の形態では実施の形態1と同様に、改質部1の改質温度検出部1bでの検出温度で行ったが、他の実施の形態に示す方法でも何ら問題ないことはいうまでもない。   In this embodiment, the determination when resuming the supply of water and raw materials to the reforming unit 1 is performed based on the temperature detected by the reforming temperature detection unit 1b of the reforming unit 1, as in the first embodiment. It goes without saying that there is no problem with the methods described in the other embodiments.

以上のように本実施の形態では、原料供給部3から変成部6に原料を供給するガス配管を設け、装置起動時に予め設定した量の原料および水を改質部1に供給した後、改質部1への原料および水の供給が再開されるまでの間、原料および水の供給を停止するとともに原料供給部3をガス配管側に切り替えて変成部6への原料の供給を開始することで、変成加熱時に変成触媒内に原料を通気させて原料による熱搬送を可能とするため、変成触媒を効果的に加熱することができる。   As described above, in the present embodiment, the gas pipe for supplying the raw material from the raw material supply unit 3 to the transformation unit 6 is provided, and after the amount of raw material and water set in advance at the start of the apparatus is supplied to the reforming unit 1, Until the supply of the raw material and water to the mass part 1 is resumed, the supply of the raw material and water is stopped and the raw material supply part 3 is switched to the gas pipe side to start the supply of the raw material to the transformation part 6 Thus, since the raw material is passed through the shift catalyst during shift heating to enable heat transfer by the raw material, the shift catalyst can be effectively heated.

なお、本実施の形態では、変成加熱部7は、変成部6の上流に設けられているのが、変成加熱部7により加熱された原料が変成触媒を加熱可能であれば、例えば、変成部6本体の上流側または上流側を含む全体に設けられていても構わない。
(実施の形態5)
In the present embodiment, the shift heating unit 7 is provided upstream of the shift unit 6. If the raw material heated by the shift heating unit 7 can heat the shift catalyst, for example, the shift unit You may provide in the whole including the upstream of 6 main bodies, or an upstream.
(Embodiment 5)

図4は本発明の実施の形態5における水素製造装置の構成図を示す。実施の形態1で用いた図1に示す装置構成と比較すると、改質部1と変成部6とが一体の構成となっている点が相違する。より具体的には、同装置では、改質加熱部5を中心に、改質部1および変成部6を略円筒状に配置しており、改質加熱部5の燃焼排ガスは改質触媒部1aおよび予熱部4の内面を通過し、変成部6には予熱部4を介して燃焼排ガスの熱が伝熱される。   FIG. 4 shows a configuration diagram of a hydrogen production apparatus according to Embodiment 5 of the present invention. Compared with the apparatus configuration shown in FIG. 1 used in the first embodiment, a difference is that the reforming unit 1 and the transformation unit 6 are integrated. More specifically, in this apparatus, the reforming section 1 and the shift section 6 are arranged in a substantially cylindrical shape with the reforming heating section 5 as the center, and the combustion exhaust gas from the reforming heating section 5 is the reforming catalyst section. 1 a and the inner surface of the preheating part 4 are passed, and the heat of combustion exhaust gas is transmitted to the transformation part 6 via the preheating part 4.

水蒸気および原料は図面上で予熱部4から改質触媒部1aに下方向に向かって流れる。その後、底面部分で折り返し、変成加熱部7を上方に向い変成部6に流れる。
なお、選択酸化温度調整部10として、選択酸化ヒータ10aおよび冷却ファン10bを図に明記した。他の構成については、実施の形態1の構成とほぼ同様であるため、詳細な説明は省略する。
The steam and the raw material flow downward from the preheating unit 4 to the reforming catalyst unit 1a in the drawing. Then, it turns back at the bottom surface portion and flows toward the transformation section 6 with the transformation heating section 7 facing upward.
As the selective oxidation temperature adjusting unit 10, a selective oxidation heater 10a and a cooling fan 10b are clearly shown in the drawing. Since other configurations are substantially the same as the configurations of the first embodiment, detailed description thereof is omitted.

本実施の形態における水素製造装置の動作は実施の形態1の装置とほぼ同様であり、変成加熱部7での原料加熱方法が若干相違するのみである。変成加熱部7では、変成部6本体の上流に存在する変成加熱部空間7bに存在する原料を変成ヒータ7aにより加熱するとともに、改質加熱部5からの熱を予熱部4から変成加熱部空間7bに伝導し加熱する構成となっている。   The operation of the hydrogen production apparatus in the present embodiment is substantially the same as that of the apparatus of the first embodiment, and only the raw material heating method in the shift heating unit 7 is slightly different. In the transformation heating unit 7, the raw material existing in the transformation heating unit space 7b existing upstream of the transformation unit 6 main body is heated by the transformation heater 7a, and the heat from the reforming heating unit 5 is transferred from the preheating unit 4 to the transformation heating unit space. It becomes the structure which conducts to 7b and heats.

本実施の形態の装置では、改質部と変成部とが一体に構成され、上述のように改質加熱部5からの熱を原料の予熱に利用できるため、消費エネルギーの削減が向上する。   In the apparatus of the present embodiment, the reforming unit and the transformation unit are integrally configured, and the heat from the reforming heating unit 5 can be used for preheating the raw material as described above, so that the reduction of energy consumption is improved.

従って、改質温度検出部1b、変成温度第1検出部6aおよび変成温度第2検出部6bで検出する起動時の温度状態は、ほぼ同様な上昇傾向を示す。そのため、改質温度検出部1b、変成温度第1検出部6aあるいは変成温度第2検出部6bのいずれかで検出する温度に対してのみ代表温度として、これに適切な起動動作値を設け、その起動動作値以上になったことが検出されると、改質部および変成部に対して水凝縮防止の点から問題ないと判断し、改質部1からの原料および水の供給を再開することが可能となる。   Therefore, the temperature state at the time of start-up detected by the reforming temperature detection unit 1b, the modification temperature first detection unit 6a, and the modification temperature second detection unit 6b shows almost the same rising tendency. Therefore, an appropriate startup operation value is provided as a representative temperature only for the temperature detected by either the reforming temperature detection unit 1b, the transformation temperature first detection unit 6a, or the transformation temperature second detection unit 6b. When it is detected that the starting operation value is exceeded, it is determined that there is no problem with respect to prevention of water condensation with respect to the reforming unit and the transformation unit, and the supply of the raw material and water from the reforming unit 1 is resumed. Is possible.

なお、上述した本実施の形態において、予熱部4に予熱温度検出部を設け、この温度検出部で検出される温度に起動動作値を設けて、原料および水の供給を再開するタイミングを判断しても構わない。   In the present embodiment described above, a preheating temperature detection unit is provided in the preheating unit 4 and a startup operation value is provided for the temperature detected by the temperature detection unit to determine the timing for resuming the supply of raw materials and water. It doesn't matter.

また、本実施の形態においては、変成部6は、予熱部4を介して改質加熱部5の熱が伝熱される構成となっているが、このような構成に限らず、改質加熱部5の熱が直接的または間接的に伝熱されるよう構成されていれば、改質部1、変成部6、および予熱部4の温度はほぼ同様の温度上昇傾向が示され、これらの少なくともいずれかの温度に触媒上での水凝縮の観点から適切な起動動作値を設定し、この起動動作値以上になることで、原料および水の供給再開すれば同様の効果が得られる。   Moreover, in this Embodiment, although the transformation | transformation part 6 becomes a structure by which the heat | fever of the reforming heating part 5 is transmitted via the preheating part 4, it is not restricted to such a structure, A reforming heating part 5 is configured to transfer heat directly or indirectly, the temperatures of the reforming unit 1, the transformation unit 6, and the preheating unit 4 show substantially the same temperature increasing tendency, and at least one of these By setting an appropriate start-up operation value from the viewpoint of water condensation on the catalyst at such a temperature and exceeding the start-up operation value, the same effect can be obtained by restarting the supply of raw materials and water.

装置構成により相違するが、本実施の形態では、その温度として、改質温度検出部1bは400℃、変成温度第1検出部6aでは250℃、変成温度第2検出部6bでは100℃とした。上記の各々の起動動作値のみ用いて、それぞれ原料および水の供給を再開することで、ほぼ同等の装置起動特性が得られることを確認した。
なお、改質部1への水および原料の供給再開の判断は、他の実施の形態に示す方法でも何ら問題ないことはいうまでもない。
In this embodiment, the reforming temperature detection unit 1b is 400 ° C., the modification temperature first detection unit 6a is 250 ° C., and the modification temperature second detection unit 6b is 100 ° C. . It was confirmed that substantially the same apparatus start-up characteristics can be obtained by restarting the supply of raw materials and water using only the respective start-up operation values.
Needless to say, the method of restarting the supply of water and raw materials to the reforming unit 1 is not a problem even in the methods described in other embodiments.

本発明は、起動時に装置内を置換した原料の熱分解による炭素析出を大幅に低減し、炭素析出による触媒活性低下およびガス流路閉塞やガス供給経路の圧損上昇を防止し、更に各触媒を迅速に加熱し、装置起動時間を短縮するとともに起動時の消費エネルギーを削減する水素製造装置を提供するものであり、起動停止を頻繁に行う分散型の燃料電池発電装置に用いて特に有用である。   The present invention significantly reduces carbon deposition due to thermal decomposition of the raw material replaced in the apparatus at start-up, prevents catalyst activity decrease due to carbon deposition and prevents gas channel blockage and gas supply path pressure loss increase. The present invention provides a hydrogen production apparatus that quickly heats up, shortens the apparatus start-up time and reduces the energy consumption at the time of start-up, and is particularly useful for a distributed fuel cell power generation apparatus that frequently starts and stops. .

本発明の実施の形態1における水素製造装置の構成図Configuration diagram of a hydrogen production apparatus according to Embodiment 1 of the present invention 本発明の実施の形態3における水素製造装置の構成図Configuration diagram of a hydrogen production apparatus according to Embodiment 3 of the present invention 本発明の実施の形態4における水素製造装置の構成図Configuration diagram of hydrogen production apparatus according to Embodiment 4 of the present invention 本発明の実施の形態5における水素製造装置の構成図Configuration diagram of hydrogen production apparatus according to Embodiment 5 of the present invention

符号の説明Explanation of symbols

1 改質部
1a 改質触媒部
1b 改質温度検出部
2 水供給部
3 原料供給部
3a 原料バイパス
4 予熱部
4a 予熱温度検出部
5 改質加熱部
6 変成部
6a 変成第1温度検出部
6b 変成第2温度検出部
7 変成加熱部
7a 変成ヒータ
7b 変成加熱部空間
8 空気供給部
9 選択酸化部
9a 選択酸化温度検出部
10 選択酸化温度調整部
10a 選択酸化ヒータ
10b 冷却ファン
11 水素含有ガス切り替え部
12 制御部

DESCRIPTION OF SYMBOLS 1 Reforming part 1a Reforming catalyst part 1b Reforming temperature detection part 2 Water supply part 3 Raw material supply part 3a Raw material bypass 4 Preheating part 4a Preheating temperature detection part 5 Reforming heating part 6 Transformation part 6a Transformation 1st temperature detection part 6b Transformation second temperature detection unit 7 Transformation heating unit 7a Transformation heater 7b Transformation heating unit space 8 Air supply unit 9 Selective oxidation unit 9a Selective oxidation temperature detection unit 10 Selective oxidation temperature adjustment unit 10a Selective oxidation heater 10b Cooling fan 11 Hydrogen-containing gas switching Part 12 Control part

Claims (15)

原料と水蒸気を改質触媒下で改質反応させて水素含有ガスを生成する改質部と、
少なくとも炭素および水素から構成される有機化合物を含む原料を前記改質部に供給する原料供給部と、
前記改質部に前記水蒸気を生成するための水を供給する水供給部と、
前記改質部に改質反応に必要な熱を供給する改質加熱部とを備えた水素製造装置の運転方法であって、
起動時に、前記改質部内に原料が、少なくとも前記改質部のガス通気経路内を置換する量存在するとともに、水が、改質部内に存在する原料中の炭素原子に対するモル比が2以上となるように存在し、かつ前記原料供給部および水供給部による原料および水の供給が停止された状態で、前記改質加熱部により前記改質部を加熱昇温させた後、前記原料供給部および前記水供給部により前記改質部へ原料および水の供給を行うことを特徴とする水素製造装置の運転方法。
A reforming unit that generates a hydrogen-containing gas by reforming a raw material and steam under a reforming catalyst;
A raw material supply unit for supplying a raw material containing an organic compound composed of at least carbon and hydrogen to the reforming unit;
A water supply unit for supplying water for generating the water vapor to the reforming unit;
A method for operating a hydrogen production apparatus comprising a reforming heating section for supplying heat necessary for a reforming reaction to the reforming section,
At start-up , the raw material is present in the reforming part in an amount that replaces at least the gas ventilation path of the reforming part, and the molar ratio of water to carbon atoms in the raw material present in the reforming part is 2 or more. And the raw material supply unit and the water supply unit are heated to raise the temperature of the reforming unit with the raw material supply unit and the water supply unit being stopped. The raw material and water are supplied to the reforming unit by the unit and the water supply unit.
起動時に、前記原料供給部および水供給部により前記改質部へ原料および水を供給した後、前記原料供給部および水供給部からの原料および水の供給を停止することで、前記改質部内に原料および水が存在し、かつ前記原料供給部および水供給部による原料および水の供給が停止された状態にすることを特徴とする請求項1に記載の水素製造装置の運転方法。   At the time of start-up, after the raw material and water are supplied to the reforming unit by the raw material supply unit and the water supply unit, the supply of the raw material and water from the raw material supply unit and the water supply unit is stopped. 2. The method for operating a hydrogen production apparatus according to claim 1, wherein the raw material and water are present in the raw material and the supply of the raw material and water by the raw material supply unit and the water supply unit is stopped. 起動時または停止動作時に前記原料でパージする場合、前記パージによって前記原料が存在する前記改質部に、前記水供給部より水を供給した後、前記水供給部からの水の供給を停止することで、前記改質部内に原料および水が存在し、かつ前記原料供給部および水供給部による原料および水の供給が停止された状態にすることを特徴とする請求項1に記載の水素製造装置の運転方法。   When purging with the raw material during start-up or stop operation, water is supplied from the water supply unit to the reforming unit where the raw material is present by the purge, and then the supply of water from the water supply unit is stopped. 2. The hydrogen production according to claim 1, wherein the raw material and water are present in the reforming unit, and the supply of the raw material and water by the raw material supply unit and the water supply unit is stopped. How to operate the device. 前記改質部に改質触媒の温度を検出する改質温度検出部を設け、前記改質加熱部による加熱により、前記改質温度検出部の検出温度が予め設定した起動動作値以上になった場合に、前記改質部へ原料および水の供給を行うことを特徴とする請求項1に記載の水素製造装置の運転方法。   A reforming temperature detection unit for detecting the temperature of the reforming catalyst is provided in the reforming unit, and the temperature detected by the reforming temperature detection unit is equal to or higher than a preset starting operation value due to heating by the reforming heating unit. In this case, the operation method of the hydrogen production apparatus according to claim 1, wherein raw material and water are supplied to the reforming unit. 前記改質部への原料および水の供給は、前記改質部で生成された水素含有ガス中の一酸化炭素を変成触媒下で水蒸気変成反応させる変成部の温度が予め設定した起動動作値以上の場合に行うことを特徴とする請求項1に記載の水素製造装置の運転方法。   The supply of the raw material and water to the reforming section is such that the temperature of the shift section for performing a steam shift reaction of carbon monoxide in the hydrogen-containing gas generated in the reform section under a shift catalyst is equal to or higher than a preset startup operation value. The operation method of the hydrogen production apparatus according to claim 1, wherein the operation is performed in the case of. 前記改質部への原料および水の供給は、前記原料と水を予熱して原料と水蒸気の混合気を生成する予熱部の温度が予め設定した起動動作値以上の場合に行うことを特徴とする請求項1またはに記載の水素製造装置の運転方法。 The raw material and water are supplied to the reforming unit when the temperature of the preheating unit that preheats the raw material and water to generate a mixture of the raw material and water vapor is equal to or higher than a preset startup operation value. The operation method of the hydrogen production apparatus according to claim 1 or 4 . 前記改質部で生成された水素含有ガス中の一酸化炭素を変成触媒下で水蒸気変成反応させる変成部を備え、
前記改質加熱部による前記改質部を加熱昇温中に、前記変成触媒の加熱および前記原料供給部から前記変成部への原料の供給を開始し、前記改質部への原料および水の供給を行
う際に前記原料供給部から前記変成部へ原料の供給を停止することを特徴とする請求項に記載の水素製造装置の運転方法。
A reforming section for performing a steam shift reaction of carbon monoxide in the hydrogen-containing gas generated in the reforming section under a shift catalyst;
While heating the temperature of the reforming unit by the reforming heating unit, heating of the shift catalyst and supply of the raw material from the raw material supply unit to the shift unit are started, and the raw material and water to the reforming unit are started. The method for operating a hydrogen production apparatus according to claim 5 , wherein the supply of the raw material from the raw material supply unit to the shift unit is stopped when the supply is performed.
原料と水蒸気を改質触媒下で改質反応させて水素含有ガスを生成する改質部と、
少なくとも炭素および水素から構成される有機化合物を含む原料を前記改質部に供給する原料供給部と、
前記改質部に前記水蒸気を生成するための水を供給する水供給部と、
前記改質部に改質反応に必要な熱を供給する改質加熱部と、
前記各部の動作を制御する制御部とを備え、
前記制御部は、起動時に前記改質部内に原料が、少なくとも前記改質部のガス通気経路内を置換する量存在するとともに、水が、改質部内に存在する原料中の炭素原子に対するモル比が2以上となるように存在し、かつ前記原料供給部および前記水供給部により原料および水の供給が停止された状態で、前記改質加熱部により前記改質部を加熱昇温させた後、前記原料供給手段および前記水供給手段により原料および水の供給を行うように制御することを特徴とする水素製造装置。
A reforming unit that generates a hydrogen-containing gas by reforming a raw material and steam under a reforming catalyst;
A raw material supply unit for supplying a raw material containing an organic compound composed of at least carbon and hydrogen to the reforming unit;
A water supply unit for supplying water for generating the water vapor to the reforming unit;
A reforming heating section for supplying heat necessary for the reforming reaction to the reforming section;
A control unit for controlling the operation of each unit,
Wherein, in the reforming portion at startup, raw material, together present in an amount to replace at least the reforming section of the gas vent passage, the molar water, to carbon atoms in the raw material present in the reformer unit The reforming unit was heated to raise the temperature of the reforming unit in a state where the ratio was 2 or more and supply of the source and water was stopped by the source supply unit and the water supply unit After that, the hydrogen production apparatus is controlled to supply the raw material and water by the raw material supply means and the water supply means.
前記制御部は、起動時に、前記原料供給部および水供給部により前記改質部へ原料および水を供給した後、前記原料供給部および水供給部からの原料および水の供給を停止することで、前記改質部内に原料および水が存在し、かつ前記原料供給部および水供給部による原料および水の供給が停止された状態にするように制御することを特徴とする請求項に記載の水素製造装置。 The control unit is configured to stop the supply of the raw material and water from the raw material supply unit and the water supply unit after supplying the raw material and water to the reforming unit by the raw material supply unit and the water supply unit at the time of startup. , the reforming portion feedstock and water are present in, and according to claim 8 in which the supply of raw material and water by the raw material supply unit and the water supply unit and controls so as to the stopped state Hydrogen production equipment. 前記制御部は、起動時または停止動作時に前記原料でパージする場合、前記パージによって前記原料が存在する前記改質部に、前記水供給部より水を供給した後、前記水供給部からの水の供給を停止することで、前記改質部内に原料および水が存在し、かつ前記原料供給部および水供給部による原料および水の供給が停止された状態にするように制御することを特徴とする請求項に記載の水素製造装置。 When purging with the raw material at the time of start-up or stop operation, the control unit supplies water from the water supply unit to the reforming unit where the raw material exists by the purge, and then supplies water from the water supply unit. And the supply of the raw material and water by the raw material supply unit and the water supply unit is controlled to be in a stopped state by stopping the supply of The hydrogen production apparatus according to claim 8 . 前記改質部に改質触媒の温度を検出する改質温度検出部を設け、
前記制御部は、起動時に前記改質加熱部を作動させるとともに、前記改質温度検出部で検出する温度が予め設定した起動動作値以上になった場合、前記改質部への原料および水の供給を行うように制御することを特徴とする請求項9または10に記載の水素製造装置。
A reforming temperature detection unit for detecting the temperature of the reforming catalyst is provided in the reforming unit,
The control unit operates the reforming heating unit at the time of start-up, and when the temperature detected by the reforming temperature detection unit is equal to or higher than a preset start-up operation value, the raw material and water to the reforming unit The hydrogen production apparatus according to claim 9 or 10 , wherein the supply is controlled to be performed.
前記改質部で生成された水素含有ガス中の一酸化炭素を変成触媒下で水蒸気変成反応させる変成部と、前記変成触媒を加熱する変成加熱部と、前記変成触媒の温度を検出する変成温度検出部とを更に備え、
前記制御部は、起動時に前記変成加熱部を動作させて前記変成触媒の温度を上げ、前記変成温度検出部で検出する温度が予め設定した起動動作値以上になった場合、前記改質部への原料および水の供給を行うように制御することを特徴とする請求項に記載の水素製造装置。
A shift section for performing a steam shift reaction of carbon monoxide in the hydrogen-containing gas generated in the reforming section under a shift catalyst, a shift heating section for heating the shift catalyst, and a shift temperature for detecting the temperature of the shift catalyst A detection unit;
The control unit operates the shift heating unit at the time of startup to increase the temperature of the shift catalyst, and when the temperature detected by the shift temperature detection unit is equal to or higher than a preset startup operation value, to the reforming unit The hydrogen production apparatus according to claim 8 , wherein the raw material and water are controlled to be supplied.
原料および水を予熱し、水蒸気と原料の混合気を生成させる予熱部と、前記予熱部の温度を検出する予熱温度検出部とを更に備え、
前記制御部は、前記予熱温度検出部での検出温度が予め設定した起動動作値以上になった場合、前記改質部への原料および水の供給を行うように制御することを特徴とする請求項8または12に記載の水素製造装置。
A preheating unit that preheats the raw material and water and generates a mixture of water vapor and the raw material, and a preheating temperature detection unit that detects the temperature of the preheating unit,
The control unit controls the supply of the raw material and water to the reforming unit when the temperature detected by the preheating temperature detection unit is equal to or higher than a preset startup operation value. Item 13. The hydrogen production apparatus according to Item 8 or 12 .
前記改質部で生成された水素含有ガス中の一酸化炭素を変成触媒下で水蒸気変成反応させる変成部と、前記変成触媒を加熱する変成加熱部と、前記原料供給部から前記変成部に原料を供給するガス配管とを更に備え、
前記制御部は、前記改質加熱部による前記改質部を加熱昇温中に、前記変成加熱部によ
る前記変成触媒の加熱と共に、前記原料供給部による前記ガス配管を介した前記変成部への原料の供給を開始し、前記改質部への原料および水の供給が行われる際に前記原料供給部から前記変成部へ原料の供給を停止するように制御することを特徴とする請求項8、12または13に記載の水素製造装置。
A reforming section for performing a steam shift reaction of carbon monoxide in the hydrogen-containing gas generated in the reforming section under a shift catalyst, a shift heating section for heating the shift catalyst, and a raw material from the feed supply section to the shift section And a gas pipe for supplying
The control unit heats the reforming unit by the reforming heating unit while heating the reforming catalyst by the shift heating unit, and supplies the reforming unit to the shift unit via the gas pipe by the raw material supply unit. the supply of the raw material starts, claim 8, characterized in that the supply of the raw material and water to the reforming unit is controlled to stop the supply of the raw material into the shift converter from the raw material supply unit when performed , 12 or 13 .
請求項8〜14のいずれかに記載の水素製造装置と、前記水素製造装置で製造された水素含有ガスを用いて発電する燃料電池とを備えたことを特徴とする燃料電池発電装置。 15. A fuel cell power generation apparatus comprising: the hydrogen production apparatus according to claim 8 ; and a fuel cell that generates power using the hydrogen-containing gas produced by the hydrogen production apparatus.
JP2006010104A 2006-01-18 2006-01-18 Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus Active JP4847759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010104A JP4847759B2 (en) 2006-01-18 2006-01-18 Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010104A JP4847759B2 (en) 2006-01-18 2006-01-18 Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus

Publications (2)

Publication Number Publication Date
JP2007191338A JP2007191338A (en) 2007-08-02
JP4847759B2 true JP4847759B2 (en) 2011-12-28

Family

ID=38447329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010104A Active JP4847759B2 (en) 2006-01-18 2006-01-18 Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus

Country Status (1)

Country Link
JP (1) JP4847759B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156296B2 (en) * 2007-08-13 2013-03-06 Jx日鉱日石エネルギー株式会社 Startup method for hydrogen production equipment
WO2009090718A1 (en) * 2008-01-17 2009-07-23 Panasonic Corporation Hydrogen generator, fuel cell power generation system including the same, and method for stopping the operation of hydrogen generator
JP5955040B2 (en) * 2012-03-09 2016-07-20 アイシン精機株式会社 Fuel cell system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479055B2 (en) * 2000-05-24 2010-06-09 トヨタ自動車株式会社 Fuel reformer
JP2002020102A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device
JP3970064B2 (en) * 2001-03-26 2007-09-05 大阪瓦斯株式会社 Operation method of hydrogen-containing gas generator
JP2002326805A (en) * 2001-04-27 2002-11-12 Daikin Ind Ltd Reformer and fuel cell system which is equipped with this
JP2003176103A (en) * 2001-12-07 2003-06-24 Toyota Motor Corp Hydrogen production apparatus and operation control for the same
JP4130603B2 (en) * 2003-04-03 2008-08-06 東京瓦斯株式会社 Operation method of hydrogen production system
JP2005206395A (en) * 2004-01-20 2005-08-04 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus and starting method of the same

Also Published As

Publication number Publication date
JP2007191338A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP5164441B2 (en) Starting method of fuel cell system
JP4486353B2 (en) HYDROGEN GENERATOR, METHOD FOR STOPPING HYDROGEN GENERATOR AND FUEL CELL POWER GENERATOR
KR101357431B1 (en) Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system
JP4105758B2 (en) Fuel cell system
JP5340657B2 (en) Hydrogen generator, fuel cell system, and operation method of hydrogen generator
WO2001048851A1 (en) Power generation device and operation method therefor
US20190190050A1 (en) Solid oxide fuel cell system
JP2011181440A (en) Fuel cell system
JP5886483B1 (en) Solid oxide fuel cell system and method for stopping the same
JP2003002605A (en) Method for operating and stopping steam reformer
JP2006008458A (en) Hydrogen production apparatus and fuel cell system
JP4847759B2 (en) Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus
EP2392544B1 (en) Method for operating a fuel processing device
JP5340933B2 (en) HYDROGEN GENERATOR, FUEL CELL POWER GENERATION SYSTEM HAVING THE SAME, AND METHOD FOR STOPPING HYDROGEN GENERATOR
JP2007022826A (en) Hydrogen generation unit and fuel cell system
JP4902165B2 (en) Fuel cell reformer and fuel cell system comprising the fuel cell reformer
JP2007210835A (en) Apparatus for producing hydrogen and fuel battery system
JP2002356305A (en) Reformer and start-up method for reformer
JP5249622B2 (en) Method for starting hydrogen-containing gas generator
JP2008081331A (en) Reformer
JP4835273B2 (en) Hydrogen generator and fuel cell system
JP4917791B2 (en) Fuel cell system
JP6722893B2 (en) Fuel cell system
JP2006169013A (en) Hydrogen producing apparatus, fuel cell system and method of operating the same
JP2008081369A (en) Apparatus for producing hydrogen, its operating method and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4847759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150