JP4846142B2 - Lead damper for seismic isolation structure and manufacturing method thereof - Google Patents

Lead damper for seismic isolation structure and manufacturing method thereof

Info

Publication number
JP4846142B2
JP4846142B2 JP2001265443A JP2001265443A JP4846142B2 JP 4846142 B2 JP4846142 B2 JP 4846142B2 JP 2001265443 A JP2001265443 A JP 2001265443A JP 2001265443 A JP2001265443 A JP 2001265443A JP 4846142 B2 JP4846142 B2 JP 4846142B2
Authority
JP
Japan
Prior art keywords
damper
mounting plate
lead
main body
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001265443A
Other languages
Japanese (ja)
Other versions
JP2003074211A (en
Inventor
栄介 柏木
達也 二見
尚文 中田
正芳 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
Original Assignee
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd filed Critical Kimura Chemical Plants Co Ltd
Priority to JP2001265443A priority Critical patent/JP4846142B2/en
Publication of JP2003074211A publication Critical patent/JP2003074211A/en
Application granted granted Critical
Publication of JP4846142B2 publication Critical patent/JP4846142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば建築物の免震装置に免震構造用アイソレータと併用する免震構造用鉛ダンパーおよびその製造方法に関する。
【0002】
【従来の技術】
地震発生時に地盤から建築物に伝播される地震エネルギーを減少させて建築物の保護を図る構造として、免震構造用鉛ダンパーを用いることは、例えば特開昭61−261579号、特開昭62‐45836号公報において既に知られている。これらの公知の免震構造用鉛ダンパーは種々の実験を重ねて実用化の段階に至っている。
【0003】
上記免震構造用鉛ダンパーは、上記各公報に記載されているように、一般に所要の長さの鉛柱体よりなるダンパー本体の両端部に、構造体に取付けるための取付板を一体に結合する構成となっている。このダンパー本体と取付板との結合方法としては、例えば上記公報にも記載されているように、ダンパー本体と取付板とを合金化して一体化結合する、あるいは型枠に溶融した鉛を流し込んでダンパー本体を成型する際に、そのダンパー本体と取付板とを一体化することが提案されている。
【0004】
このような鉛ダンパーを製作するにあたって、ダンパー本体と取付板とを一体化結合するには、通常取付板表面の油等の汚れや錆等の酸化物の除去を行った後に、ダンパー本体と取付板との間に両者を結合する合金層を形成するもので、従来一般にフラックスによる不純物の除去を行いながら鉛を溶着させるホモゲン溶着と称する方法が採用されている。上記合金層の形成には、濃塩酸、塩化第一錫、塩化亜鉛を主成分とする溶着液を取付板の接合面に塗布し、鉛を加熱溶融しながら層を形成する方法と、濃塩酸と塩化第一錫および塩化亜鉛を主成分とした液を取付板の接合面に塗布し、鉛すず合金(半田)を加熱溶融しながら層を形成する方法が一般的である。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の方法では融着液の塗布が少ないと合金層が薄くなるため融着液の塗布にムラができ、溶着率は下がる。また、両者を面接触させようとすればダンパー本体と取付板の加工精度を数ミクロンのオーダーで機械加工しなければならず製作コストが嵩む。また鉛や錫合金を均一に加熱しないと局部的に温度ムラができて合金層が溶融しない場合も考えられ、局所的に溶着しない部分も現れる。また合金層に気泡やフラックスが混入すると、その部分が不溶着部となり、溶着率が低下する。更にダンパー本体と取付板を精度よく平行に押さえつける必要があり、これらの作業は熟練度を要することになる。
【0006】
本発明は上記の問題点に鑑みて提案されたもので、ダンパー本体と取付板との結合強度が強く、しかも容易・安価に製造することのできる免震構造用鉛ダンパーおよびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために本発明による免震構造用鉛ダンパーおよびその製造方法は、以下の構成としたものである。
【0008】
即ち、本発明による免震構造用鉛ダンパーは、所要形状に形成した鉛柱体等よりなるダンパー本体の少なくとも一端に、建築物等の構造体に対する取付板を備えた免震構造用鉛ダンパーにおいて、上記取付板のダンパー本体取付部に凹部を形成し、その凹部内において上記ダンパ本体と取付板とを半田等の合金層を介して一体的に結合し、さらに、上記ダンパー本体の取付板側の端面を凸曲面あるいは円錐形に形成してなることを特徴とする。
【0009】
また本発明による免震構造用鉛ダンパーの製造方法は、所要形状に形成した鉛柱体等よりなるダンパー本体の少なくとも一端に、建築物等の構造体に対する鋼板製の取付板を備えた免震構造用鉛ダンパーを製造するに当たり、上記取付板のダンパー本体取付部に凹部を形成し、その凹部と上記ダンパ本体端面のいずれか一方または両方に半田等の低融点合金メッキ層を形成すると共に、上記取付板の凹部内に半田等の合金塊を配置し、その合金塊にダンパ本体の端部を当接させた状態で上記合金塊を溶融固化させることによって上記取付板とダンパー本体とを一体的に結合する免震構造用鉛ダンパーの製造方法であって、上記ダンパー本体の取付板側の端面を、その中央部が取付板に最も接近する凸曲面あるいは円錐形に形成してなることを特徴とする。
【0010】
なお上記合金塊を加熱溶融する際には、上記合金塊上に鉛柱体を載せた状態で前記取付板を裏面側から加熱することができる。また、上記ダンパー本体の凸曲面あるいは円錐形状における中央部と周縁部との高低差および前記取付板の凹部の深さは0.5〜10mm程度とすればよい。
【0011】
【発明の実施の形態】
以下、本発明による免震構造用鉛ダンパーおよびその製造方法を図に示す実施形態に基づいて具体的に説明する。
【0012】
図1(a)は本発明による免震構造用鉛ダンパーの一実施形態を示す正面図、同図(b)は(a)におけるb−b線断面図である。
【0013】
本実施形態の免震構造用鉛ダンパー1は、上下方向中間部分を所定形状に屈曲形成した鉛柱体よりなるダンパー本体2の両端部に、建築物等の構造体への取付板3A・3Bを設けた構成であり、その一方の取付板3Aは本実施形態においてはダンパー本体2を鋳造する際に、それと一体に取付けられ、他方の取付板3Bは半田等の合金層4を介して一体的に固着されている。その取付板3Bのダンパー本体2との対向面には円形の凹部31が形成され、その凹部31内において上記ダンパー本体2と上記取付板3Bとが上記合金層4によって一体的に結合されている。なお上記凹部31の深さは、例えば0.5〜10mm程度に形成すればよい。
【0014】
上記のように取付板3Bのダンパー本体2との対向部に凹部31を形成し、その凹部31内において上記ダンパー本体2と取付板3Bとを合金層4を介して一体化すると、ダンパー本体2と取付板3Bとを強固に且つ安定性よく結合することができる。また上記取付板3Bに対するダンパー本体2の端面21は、図示例のように凸曲面あるいは円錐形に形成するとよく、本実施形態においては、上記端面21の略中央部が最も取付板3B側に突出する略球面状の凸曲面に形成されている。
【0015】
上記各部材の大きさ寸法等は適宜であるが、一例を挙げれば、ダンパー本体2の端部の外径寸法は直径360mm、高さ900mm程度とし、これに対して取付板3A・3Bは1辺が500mm程度の略正方形状の鉄製の鋼板等を用いる。また取付板3Bの凹部31は、ダンパー本体2の端部の外径寸法よりも1〜40mm程度大きく形成し、凹部31の深さは0.5〜10mm程度に形成すればよい。さらにダンパー本体2の取付板3B側の端面21を凸曲面あるいは円錐形とする場合には、その中央部が周縁部よりも0.5〜10mm程度高くなるようにすればよい。
【0016】
上記のように構成された免震構造用鉛ダンパー1は、図1のように建築物Aと基礎Bもしくは基礎側の構造物等との間に配置し、各取付板3A・3Bに形成した取付孔32にボルト5等を挿通して締め付け固定するもので、そのダンパー1と並列に配置した免震構造用アイソレータ(不図示)との協働で上記建築物を耐震保持させる構成である。
【0017】
次に、上記のような免震構造用鉛ダンパー1を製造するにあたっては、例えば以下の要領で製造すればよい。先ず、鉛柱体よりなるダンパー本体2を鋳造等で製造するもので、例えば所要の寸法形状に形成した砂型、あるいは金型に外部加熱を行いながら溶融した鉛を注入して鋳造する。その際、一方の取付板3Aは、例えば予め型内に配置してダンパー本体2を鋳造すれば容易に一体化することができる。
【0018】
また他方の取付板3Bの一方の面には、切削加工等によって図3のように凹部31を形成し、その凹部31を酸洗して油汚れや酸化物を除去した後、上記凹部31および上記取付板3Bを取付けるダンパー本体2の端部21のいずれか一方または両方に半田等の低融点合金メッキ層を形成するもので、本実施形態においては、図3に示すように取付板3Bの凹部31にのみ低融点合金メッキ層41を形成したが、ダンパー本体2の端面もしくは両方にメッキ層を形成してもよい。
【0019】
次いで、上記凹部31内に図4に示すように半田等の合金塊42を配置するもので、図の場合は、短冊状の薄板よりなる合金塊42を複数枚並べて配置した構成である。そして上記合金塊42の上に、前記の鋳造時に一体化した取付板3Aと反対側のダンパー本体2の端面21を下にして載置するもので、そのダンパー本体2の端面21は、前述のようにその中央部が取付板3B側に突出する凸曲面あるいは円錐形に形成するとよく、図の場合は略球面状の凸曲面に形成されている。その凸曲面あるいは円錐形の突出高さhは適宜であるが、前述のようにその中央部が周縁部よりも0.5〜10mm程度高くなるようにすればよい。
【0020】
上記のようにして合金塊42の上に載置したダンパー本体2は、適宜治具等で起立状態に保持するとよく、本実施形態においては図5に示すように治具6として上下の取付板3A・3Bの取付孔32に挿通した4本の雄ねじ付きロッド61と、その各ロッド61の両端雄ねじ部6aに螺合した複数個のナット62とで固定するようにしたものである。
【0021】
上記のようにして凹部31内の合金塊42の上にダンパー本体2を載置した状態で、図6(a)に示すように取付板3Bの下面側からバーナー7等により合金塊42の融点(180〜250℃)以上で且つ鉛柱体よりなるダンパー本体の融点すなわち鉛の融点(327℃)以下の温度で加熱して合金塊42を溶融するもので、そのとき合金塊42の溶融度合に応じてダンパー本体2および上記ロッド62等は徐々に下降するが、ダンパー本体2の下端面が図6(b)のように取付板3Bの凹部上面に当接したところで取付板3Bの下面側のナット62を増し締めすればよい。
【0022】
上記のようにして合金塊42が充分に溶融したところで、取付板3Bの加熱を停止して凹部31内の溶解した合金塊42を自然冷却あるいは水等で強制冷却して固化させることによって、ダンパー本体2と取付板3Bとの間に図6(c)に示すように合金層4が形成され、その合金層4を介してダンパー本体2と取付板3Bとが強固に一体結合されるものである。
【0023】
なお、上記のように取付板3Bとダンパー本体2とを接合する際に、その両者間に介在させた合金層4に気泡やフラックスあるいは金属酸化物等が混入した場合には、溶着率や結合強度の低下を招くが、ダンパー本体2の端面21を前記のように凸曲面あるいは円錐形に形成すると、上記のような気泡やフラックス等が混入した場合にも、それらと合金層4との比重差により、それらは溶融した合金層4の上部に浮き上がり、さらに凸曲面あるいは円錐状に形成されたダンパー端面に沿って合金層4の周縁部4aに移動する。その周縁部4aに移動した気泡中の気体は大気中に放出され、またフラックスや金属酸化物は上記周縁部4aの上部に残留するが、合金層4が溶融している状態で除去するか、合金層4が固化した後に削り取ればよい。
【0024】
また上記実施形態においては、ダンパー本体2の両側に取付板3A・3Bを取付ける構成とし、その一方、図の場合は取付板3Aを、ダンパー本体2を鋳造する際にそれと一体化するようにしたが、その取付板3Aも上記取付板3Bと同様の要領で合金層4を介して一体化するようにしてもよい。
【0025】
【発明の効果】
以上のように本発明による免震構造用鉛ダンパーは、取付板3A・3Bの少なくとも一方のダンパー本体2との対向部に凹部31を形成し、その凹部31内に設けた半田等よりなる合金層4によって上記ダンパー本体2と取付板とを結合するようにしたから、ダンパー本体と取付板とを強固に且つ安定性よく結合することができる。
【0026】
また本発明によれば、ダンパー本体2と取付板との接合面の面精度を考慮して合金層4の厚さを決定することができるため、ダンパー本体と取付板の接合面の面精度の管理基準が従来の方法より緩くても接触面積を充分に確保することができる。そのため、ダンパー本体や取付板の接合面は必ずしも機械加工しなくてもよく、手作業での切削加工が可能となり、製作コストを削減できる。
【0027】
さらに製造時は取付板上に合金塊42とダンパー本体とを載せた状態で加熱できるため、ダンパー本体2の概略の位置合わせを温度が低い状態で行っておき、合金塊42が充分に溶融した段階で、所定の位置に設定することができ、精度よい位置にダンパー本体2を設置することができる。
【0028】
またダンパー本体2の取付板3との接合部分を凸曲面あるいは円錐形に形成すると、溶解した合金層中の気泡や酸化物もしくはフラックス等の不純物を上記凸曲面や円錐面に沿って側方に円滑に除去することができる。又それによって接合部に異物が残留するのを防ぐことができると共に、気泡の排出を促進させることができる。
【0029】
その結果、ホモゲン溶着を簡便かつ容易に行うことが可能となり、ダンパー本体と取付板とを強固に一体化した免震構造用鉛ダンバーを容易・安価に製作できる等の効果がある。
【図面の簡単な説明】
【図1】(a)は本発明による免震構造用鉛ダンパーの一実施形態を示す正面図。
(b)は(a)におけるb−b線断面図。
【図2】上記免震構造用鉛ダンパーの一部の拡大縦断面図。
【図3】(a)は取付板に凹部や取付孔等を形成した状態の斜視図。
(b)はその縦断正面図。
【図4】(a)は取付板の凹部内に合金塊を配置した状態の平面図。
(b)はその縦断正面図。
【図5】ダンパー本体を治具で固定した状態の一部縦断正面図。
【図6】(a)は合金塊を加熱する状態の一部縦断正面図。
(b)は加熱した状態の同上図。
(c)はダンパー本体と取付板の結合状態の一部縦断正面図。
【符号の説明】
1 免震構造用鉛ダンパー
2 ダンパー本体
21 端面
3 取付板
31 凹部
32 取付孔
4 合金層
41 メッキ層
42 合金塊
5 ボルト
6 治具
61 ロッド
62 ナット
7 バーナー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead damper for a seismic isolation structure that is used in combination with, for example, an isolator for a seismic isolation structure in a seismic isolation device for a building, and a manufacturing method thereof.
[0002]
[Prior art]
Using a lead damper for a seismic isolation structure as a structure for protecting a building by reducing seismic energy transmitted from the ground to the building when an earthquake occurs is disclosed in, for example, Japanese Patent Laid-Open Nos. 61-261579 and 62. -45836 already known. These known seismic isolation lead dampers have been put to practical use through various experiments.
[0003]
As described in the above-mentioned publications, the above-mentioned lead damper for seismic isolation structure is generally connected to both ends of a damper main body made of a lead column body of a required length, with a mounting plate for mounting to the structure integrally It is the composition to do. As a method for connecting the damper main body and the mounting plate, for example, as described in the above publication, the damper main body and the mounting plate are alloyed and bonded together, or molten lead is poured into the mold. It has been proposed to integrate the damper main body and the mounting plate when the damper main body is molded.
[0004]
When manufacturing such a lead damper, the damper body and the mounting plate are integrally connected with each other, usually after removing dirt such as oil and rust on the surface of the mounting plate, and then mounting the damper body and the mounting plate. An alloy layer that bonds the two is formed between a plate and a method called homogen welding in which lead is welded while removing impurities by a flux. The alloy layer is formed by applying a welding solution mainly composed of concentrated hydrochloric acid, stannous chloride and zinc chloride to the joint surface of the mounting plate, and forming a layer while heating and melting lead, and concentrated hydrochloric acid. In general, a liquid mainly composed of stannous chloride and zinc chloride is applied to the joint surface of the mounting plate, and a layer is formed while heating and melting a lead tin alloy (solder).
[0005]
[Problems to be solved by the invention]
However, in the above conventional method, if the application of the fusion liquid is small, the alloy layer becomes thin, so that the application of the fusion liquid becomes uneven, and the welding rate is lowered. Further, if they are brought into surface contact with each other, the machining accuracy of the damper main body and the mounting plate must be machined on the order of several microns, and the manufacturing cost increases. Further, if lead or tin alloy is not heated uniformly, temperature unevenness may occur locally and the alloy layer may not melt, and a portion that does not weld locally also appears. Further, when bubbles or flux is mixed in the alloy layer, the portion becomes an inwelded portion, and the welding rate is lowered. Furthermore, it is necessary to press the damper main body and the mounting plate in parallel with high accuracy, and these operations require skill.
[0006]
The present invention has been proposed in view of the above problems, and provides a lead damper for a seismic isolation structure that has a strong coupling strength between a damper main body and a mounting plate, and that can be easily and inexpensively manufactured, and a method for manufacturing the same. The purpose is to do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the seismic isolation structure lead damper and the manufacturing method thereof according to the present invention have the following configurations.
[0008]
That is, the lead damper for a seismic isolation structure according to the present invention is a lead damper for a seismic isolation structure provided with a mounting plate for a structure such as a building at least one end of a damper main body made of a lead pillar or the like formed in a required shape. A recess is formed in the damper body mounting portion of the mounting plate, and the damper body and the mounting plate are integrally coupled in the recess through an alloy layer such as solder , and the damper body mounting plate side The end face is formed in a convex curved surface or a conical shape .
[0009]
The method of manufacturing a lead damper for a seismic isolation structure according to the present invention includes a seismic isolation system including a steel plate mounting plate for a structure such as a building at least one end of a damper main body formed of a lead pillar or the like formed in a required shape. In manufacturing the structural lead damper, a concave portion is formed in the damper main body mounting portion of the mounting plate, and a low melting point alloy plating layer such as solder is formed on one or both of the concave portion and the end surface of the damper main body, and An alloy lump such as solder is disposed in the recess of the mounting plate, and the mounting plate and the damper main body are integrated by melting and solidifying the alloy lump in a state where the end of the damper main body is in contact with the alloy lump. to a method for producing a seismic isolation structure for a lead damper you bond, the end face of the mounting plate side of the damper body, that the central portion is formed into a convex curved surface or conical closest to the mounting plate The And butterflies.
[0010]
In addition, when the said alloy lump is heat-melted, the said mounting plate can be heated from the back side in the state which mounted the lead pillar body on the said alloy lump . Further, the height difference between the central portion and the peripheral portion in the convex curved surface or conical shape of the damper main body and the depth of the concave portion of the mounting plate may be about 0.5 to 10 mm.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the lead damper for seismic isolation structure and its manufacturing method according to the present invention will be specifically described based on embodiments shown in the drawings.
[0012]
Fig.1 (a) is a front view which shows one Embodiment of the lead damper for seismic isolation structures by this invention, The same figure (b) is the bb sectional view taken on the line in (a).
[0013]
The lead damper 1 for seismic isolation structure of the present embodiment has mounting plates 3A and 3B attached to a structure such as a building at both ends of a damper main body 2 made of a lead column body formed by bending an intermediate portion in the vertical direction into a predetermined shape. In the present embodiment, one mounting plate 3A is integrally attached to the damper body 2 in the present embodiment, and the other mounting plate 3B is integrated via an alloy layer 4 such as solder. Fixed. A circular recess 31 is formed on the surface of the mounting plate 3B facing the damper main body 2, and the damper main body 2 and the mounting plate 3B are integrally coupled by the alloy layer 4 in the recess 31. . In addition, what is necessary is just to form the depth of the said recessed part 31 about 0.5-10 mm, for example.
[0014]
When the concave portion 31 is formed in the portion of the mounting plate 3B facing the damper main body 2 as described above, and the damper main body 2 and the mounting plate 3B are integrated through the alloy layer 4 in the concave portion 31, the damper main body 2 And the mounting plate 3B can be firmly and stably coupled. Further, the end surface 21 of the damper main body 2 with respect to the mounting plate 3B may be formed in a convex curved surface or a conical shape as shown in the illustrated example. In the present embodiment, the substantially central portion of the end surface 21 protrudes most toward the mounting plate 3B. It is formed in a substantially spherical convex curved surface.
[0015]
The size and the like of each of the above members are appropriate. For example, the outer diameter of the end of the damper main body 2 is 360 mm in diameter and about 900 mm in height, whereas the mounting plates 3A and 3B are 1 in size. A substantially square iron steel plate having a side of about 500 mm is used. Further, the recess 31 of the mounting plate 3B is formed to be about 1 to 40 mm larger than the outer diameter of the end portion of the damper body 2, and the depth of the recess 31 may be formed to about 0.5 to 10 mm. Furthermore, when the end surface 21 on the mounting plate 3B side of the damper main body 2 is a convex curved surface or a conical shape, the central portion may be made higher by about 0.5 to 10 mm than the peripheral portion.
[0016]
The seismic isolation structure lead damper 1 configured as described above is disposed between the building A and the foundation B or the foundation-side structure as shown in FIG. 1 and formed on each of the mounting plates 3A and 3B. A bolt 5 or the like is inserted into the mounting hole 32 and fastened and fixed, and the building is seismically held in cooperation with a seismic isolation isolator (not shown) arranged in parallel with the damper 1.
[0017]
Next, when manufacturing the seismic isolation structure lead damper 1 as described above, for example, it may be manufactured in the following manner. First, a damper main body 2 made of a lead column body is manufactured by casting or the like. For example, molten lead is injected into a sand mold or a mold formed in a required dimension and shape while being externally heated and cast. In that case, one attachment plate 3A can be easily integrated, for example, if it is previously placed in a mold and the damper body 2 is cast.
[0018]
Further, a recess 31 is formed on one surface of the other mounting plate 3B by cutting or the like as shown in FIG. 3, and the recess 31 is pickled to remove oil stains and oxides. A low melting point alloy plating layer such as solder is formed on one or both of the end portions 21 of the damper main body 2 to which the mounting plate 3B is attached. In this embodiment, as shown in FIG. Although the low melting point alloy plating layer 41 is formed only in the recess 31, a plating layer may be formed on the end surface of the damper main body 2 or both.
[0019]
Next, as shown in FIG. 4, an alloy lump 42 such as solder is arranged in the recess 31. In the case of the figure, a plurality of alloy lumps 42 made of strip-shaped thin plates are arranged side by side. And it mounts on the said alloy lump 42 with the end surface 21 of the damper main body 2 on the opposite side to the mounting plate 3A integrated at the time of the casting facing down, The end surface 21 of the damper main body 2 is the above-mentioned. In this case, the central portion is preferably formed in a convex curved surface or a conical shape protruding toward the mounting plate 3B, and in the case of the figure, it is formed in a substantially spherical convex curved surface. The protruding height h of the convex curved surface or the conical shape is appropriate, but as described above, the central portion may be higher than the peripheral portion by about 0.5 to 10 mm.
[0020]
The damper main body 2 placed on the alloy lump 42 as described above may be held in an upright state with a jig or the like as appropriate. In this embodiment, upper and lower mounting plates are used as the jig 6 as shown in FIG. The rod 61 is fixed with four male threaded rods 61 inserted into the mounting holes 32 of 3A and 3B, and a plurality of nuts 62 screwed to the male threaded portions 6a at both ends of each rod 61.
[0021]
In the state where the damper main body 2 is placed on the alloy lump 42 in the recess 31 as described above, the melting point of the alloy lump 42 by the burner 7 or the like from the lower surface side of the mounting plate 3B as shown in FIG. The alloy lump 42 is melted by heating at a temperature not lower than (180 to 250 ° C.) and not higher than the melting point of the damper main body made of the lead column, that is, not higher than the melting point of lead (327 ° C.). Accordingly, the damper main body 2 and the rod 62 and the like are gradually lowered. However, when the lower end surface of the damper main body 2 comes into contact with the upper surface of the concave portion of the mounting plate 3B as shown in FIG. The nut 62 may be tightened.
[0022]
When the alloy lump 42 is sufficiently melted as described above, the heating of the mounting plate 3B is stopped, and the molten alloy lump 42 in the recess 31 is solidified by natural cooling or forced cooling with water or the like to solidify the damper. An alloy layer 4 is formed between the main body 2 and the mounting plate 3B as shown in FIG. 6C, and the damper main body 2 and the mounting plate 3B are firmly and integrally coupled via the alloy layer 4. is there.
[0023]
When the mounting plate 3B and the damper main body 2 are joined as described above, if a bubble, flux, metal oxide, or the like is mixed in the alloy layer 4 interposed between the two, the welding rate or bonding If the end surface 21 of the damper main body 2 is formed in a convex curved surface or a conical shape as described above, the specific gravity between them and the alloy layer 4 even when the above-described bubbles, flux, etc. are mixed. Due to the difference, they float on the upper part of the molten alloy layer 4 and further move to the peripheral edge 4a of the alloy layer 4 along the end face of the damper formed in a convex curved surface or conical shape. The gas in the bubble that has moved to the peripheral portion 4a is released into the atmosphere, and the flux and metal oxide remain on the upper portion of the peripheral portion 4a, but are removed while the alloy layer 4 is melted, What is necessary is just to scrape after the alloy layer 4 solidifies.
[0024]
Moreover, in the said embodiment, it was set as the structure which attaches attachment board 3A * 3B to the both sides of the damper main body 2, On the other hand, in the case of a figure, when attaching the damper main body 2, it was made to integrate with the attachment board 3A. However, the mounting plate 3A may also be integrated via the alloy layer 4 in the same manner as the mounting plate 3B.
[0025]
【The invention's effect】
As described above, the lead damper for a seismic isolation structure according to the present invention is formed by forming an indentation 31 at a portion facing the at least one damper body 2 of the mounting plates 3A and 3B, and an alloy made of solder or the like provided in the indentation 31. Since the damper body 2 and the mounting plate are coupled by the layer 4, the damper body and the mounting plate can be coupled firmly and with good stability.
[0026]
Further, according to the present invention, since the thickness of the alloy layer 4 can be determined in consideration of the surface accuracy of the joint surface between the damper main body 2 and the mounting plate, the surface accuracy of the joint surface between the damper main body and the mounting plate can be improved. Even if the management standard is looser than that of the conventional method, a sufficient contact area can be secured. Therefore, the joining surface of the damper main body and the mounting plate does not necessarily need to be machined, and manual cutting is possible, thereby reducing the manufacturing cost.
[0027]
Further, since the alloy lump 42 and the damper main body can be heated on the mounting plate at the time of manufacturing, the damper main body 2 is roughly aligned at a low temperature, and the alloy lump 42 is sufficiently melted. At a stage, the damper body 2 can be set at a predetermined position, and the damper main body 2 can be installed at an accurate position.
[0028]
Further, when the joint portion of the damper body 2 with the mounting plate 3 is formed in a convex curved surface or a conical shape, impurities such as bubbles, oxides or flux in the molten alloy layer are laterally moved along the convex curved surface or the conical surface. It can be removed smoothly. In addition, it is possible to prevent foreign matters from remaining in the joint portion and to promote the discharge of bubbles.
[0029]
As a result, homogen welding can be performed easily and easily, and there is an effect that it is possible to easily and inexpensively manufacture a lead damper for a base isolation structure in which a damper main body and a mounting plate are firmly integrated.
[Brief description of the drawings]
FIG. 1A is a front view showing an embodiment of a lead damper for a seismic isolation structure according to the present invention.
(B) is the bb sectional view taken on the line in (a).
FIG. 2 is an enlarged longitudinal sectional view of a part of the lead damper for seismic isolation structure.
FIG. 3A is a perspective view of a state in which a concave portion, a mounting hole, or the like is formed on the mounting plate.
(B) is the longitudinal front view.
FIG. 4A is a plan view of a state in which an alloy lump is disposed in a recess of the mounting plate.
(B) is the longitudinal front view.
FIG. 5 is a partially longitudinal front view of the damper main body fixed with a jig.
FIG. 6A is a partially longitudinal front view of a state in which an alloy lump is heated.
(B) is the same figure of the heated state.
(C) is a partially longitudinal front view of the state of coupling of the damper main body and the mounting plate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lead damper for seismic isolation structure 2 Damper body 21 End face 3 Mounting plate 31 Recess 32 Mounting hole 4 Alloy layer 41 Plating layer 42 Alloy lump 5 Bolt 6 Jig 61 Rod 62 Nut 7 Burner

Claims (4)

所要形状に形成した鉛柱体等よりなるダンパー本体の少なくとも一端に、建築物等の構造体に対する取付板を備えた免震構造用鉛ダンパーにおいて、上記取付板のダンパー本体取付部に凹部を形成し、その凹部内において上記ダンパ本体と取付板とを半田等の合金層を介して一体的に結合し、さらに、上記ダンパー本体の取付板側の端面を凸曲面あるいは円錐形に形成してなることを特徴とする免震構造用鉛ダンパー。In a seismic isolation structure lead damper equipped with a mounting plate for a structure such as a building at least one end of a damper body made of a lead pillar or the like formed in the required shape, a recess is formed in the damper body mounting part of the mounting plate In the recess, the damper main body and the mounting plate are integrally coupled via an alloy layer such as solder , and the end surface of the damper main body on the mounting plate side is formed in a convex curved surface or a conical shape. This is a lead damper for seismic isolation structures. 所要形状に形成した鉛柱体等よりなるダンパー本体の少なくとも一端に、建築物等の構造体に対する鋼板製の取付板を備えた免震構造用鉛ダンパーを製造するに当たり、上記取付板のダンパー本体取付部に凹部を形成し、その凹部と上記ダンパ本体端面のいずれか一方または両方に半田等の低融点合金メッキ層を形成すると共に、上記凹部内に半田等の合金塊を配置し、その合金塊にダンパ本体の端部を当接させた状態で上記合金塊を溶融固化させて上記ダンパー本体と取付板とを一体的に結合する免震構造用鉛ダンパーの製造方法であって、
上記ダンパー本体の取付板側の端面を、その中央部が取付板に最も接近する凸曲面あるいは円錐形に形成してなることを特徴とする免震構造用鉛ダンパーの製造方法。
When manufacturing a lead damper for a seismic isolation structure having a steel plate mounting plate for a structure such as a building at least one end of a damper main body formed of a lead pillar or the like formed in a required shape, the damper main body of the mounting plate A concave portion is formed in the mounting portion, and a low melting point alloy plating layer such as solder is formed on one or both of the concave portion and the end face of the damper main body, and an alloy lump such as solder is disposed in the concave portion, and the alloy masses and the alloy ingot was melted and solidified by being in contact with an end portion of the damper body are the above damper and the mounting plate and integrally connected to that base isolation structure for a lead damper manufacturing method of a
A method of manufacturing a lead damper for a seismic isolation structure , wherein the end surface of the damper body on the mounting plate side is formed in a convex curved surface or a conical shape whose central portion is closest to the mounting plate .
記合金塊を加熱溶融する際には、記合金塊上に鉛柱体を載せた状態で前記取付板を裏面側から加熱するようにした請求項記載の免震構造用鉛ダンパーの製造方法。 Before SL when heating and melting the alloy mass, prior Symbol seismic isolation structure for a lead damper according to claim 2, wherein which is adapted to heat the mounting plate from the back side while carrying the Namaribashira body on alloy ingot Production method. 前記ダンパー本体の凸曲面あるいは円錐形状における中央部と周縁部との高低差および前記取付板の凹部の深さを0.5〜10mm程度とした請求項2又は3記載の免震構造用鉛ダンパーの製造方法。The lead damper for seismic isolation structure according to claim 2 or 3, wherein a height difference between a central portion and a peripheral portion of the convex curved surface or conical shape of the damper main body and a depth of the concave portion of the mounting plate are about 0.5 to 10 mm. Manufacturing method.
JP2001265443A 2001-09-03 2001-09-03 Lead damper for seismic isolation structure and manufacturing method thereof Expired - Lifetime JP4846142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265443A JP4846142B2 (en) 2001-09-03 2001-09-03 Lead damper for seismic isolation structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265443A JP4846142B2 (en) 2001-09-03 2001-09-03 Lead damper for seismic isolation structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003074211A JP2003074211A (en) 2003-03-12
JP4846142B2 true JP4846142B2 (en) 2011-12-28

Family

ID=19091905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265443A Expired - Lifetime JP4846142B2 (en) 2001-09-03 2001-09-03 Lead damper for seismic isolation structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4846142B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161846A (en) * 2004-12-02 2006-06-22 Nippon Steel Corp Damping panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703071B2 (en) * 1989-09-28 1998-01-26 大阪化工株式会社 Manufacturing method of lead damper for seismic isolation device
JP3967809B2 (en) * 1997-12-12 2007-08-29 木村化工機株式会社 Manufacturing method of seismic isolation lead damper

Also Published As

Publication number Publication date
JP2003074211A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
KR100349811B1 (en) Dual skin composite panel and manufacturing method thereof
JP2009062717A (en) Fixing structure of column base section, steel-pipe column material, and panel body equipped with the steel-pipe column material
JP4846142B2 (en) Lead damper for seismic isolation structure and manufacturing method thereof
US20020189780A1 (en) Fluxing agent for metal cast joining
JP2003027766A (en) Vibration isolation structure lead damper and its manufacturing method
JPS60102428A (en) Manufacture of pad for installation of machines
JP4844447B2 (en) Joints for continuous casting of different steel types and continuous casting method of steel
JP2703071B2 (en) Manufacturing method of lead damper for seismic isolation device
JP3338827B2 (en) Rail bond terminal
JP2003211263A (en) Structure and method for combining lead formed body and steel material
JP4290017B2 (en) Manufacturing method of lead damper
CN2838833Y (en) Hot melt clamp
CN214921656U (en) Windproof ignition device for high-altitude welding
CN220184283U (en) Beam head node connection structure
JPS5910462A (en) Production of copper or copper alloy clad steel
CN115070197B (en) Exothermic welding process for cables and steel rails
KR102631039B1 (en) Manufacturing method of nozzle assembly for gas turbine
JP4746204B2 (en) Welding method for automobile body
JP3967809B2 (en) Manufacturing method of seismic isolation lead damper
JP4400905B2 (en) Steel pipe pile structure
JP3086318B2 (en) Precast concrete board with metal plate
JPH0221913B2 (en)
JPH0522388Y2 (en)
JP2007239425A (en) Welded joining method and welded joining structure of lead damper for base isolation structure and fixed flange
JPH09253890A (en) Backing for one side butt welding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term