JP4845932B2 - Gas turbine equipment and humidification equipment for gas turbine - Google Patents

Gas turbine equipment and humidification equipment for gas turbine Download PDF

Info

Publication number
JP4845932B2
JP4845932B2 JP2008162666A JP2008162666A JP4845932B2 JP 4845932 B2 JP4845932 B2 JP 4845932B2 JP 2008162666 A JP2008162666 A JP 2008162666A JP 2008162666 A JP2008162666 A JP 2008162666A JP 4845932 B2 JP4845932 B2 JP 4845932B2
Authority
JP
Japan
Prior art keywords
air
water
humidifier
gas turbine
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008162666A
Other languages
Japanese (ja)
Other versions
JP2008240738A (en
Inventor
成久 杉田
伸男 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2008162666A priority Critical patent/JP4845932B2/en
Publication of JP2008240738A publication Critical patent/JP2008240738A/en
Application granted granted Critical
Publication of JP4845932B2 publication Critical patent/JP4845932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Humidification (AREA)

Description

本発明は、高湿分空気を燃焼用空気として利用するガスタービン設備及びガスタービン用加湿設備に関する。   The present invention relates to a gas turbine equipment that uses high-humidity air as combustion air and a humidifying equipment for gas turbine.

圧縮機を出た高温空気に水を供給し、高温空気と水を直接接触させることにより水を蒸発させ、水の蒸発潜熱により圧縮機出口空気温度を低下させて、ガスタービンの高温排ガスを用いた再生器による熱回収量を増加させるとともに、蒸発した蒸気流量により空気流量を増加させるようにした高湿分空気利用のガスタービンが特許文献1〜3に開示されている。   Water is supplied to the high-temperature air that exits the compressor, the water is evaporated by direct contact between the high-temperature air and water, and the temperature at the outlet of the compressor is lowered by the latent heat of water evaporation. Patent Documents 1 to 3 disclose gas turbines using high-humidity air in which the amount of heat recovered by the regenerator is increased and the air flow rate is increased by the vapor flow rate of the evaporated steam.

国際公開番号WO00/25009International Publication Number WO00 / 2,5009 特開2001−254632号公報JP 2001-254632 A 特開2003−35164号公報JP 2003-35164 A

高湿分空気を燃焼用空気として利用するガスタービンでは、高温空気と水とを直接接触させることで蒸気を発生させ、高湿分空気を作る加湿設備を必要とする。圧縮機出口空気を加湿する加湿設備には、圧縮機出口空気に、高圧圧縮水を噴霧し、蒸発した水蒸気を混合させる方法,加湿塔により圧縮機出口空気と水を接触させる方法,圧縮機出口空気に直接圧縮水を噴霧する方法等がある。ガスタービン排ガスからの熱回収量を増加させるには、加湿量をできるだけ増加させ混合気(空気+蒸気)の流量を増加させることが望ましく、混合気(空気+蒸気)の流量の増加に伴いガスタービン出力が増加する。   Gas turbines that use high-humidity air as combustion air require humidification equipment that generates high-humidity air by generating steam by direct contact between high-temperature air and water. For humidification equipment that humidifies the compressor outlet air, high pressure compressed water is sprayed on the compressor outlet air, the evaporated water vapor is mixed, the compressor outlet air and water are brought into contact with a humidifying tower, the compressor outlet There is a method of spraying compressed water directly on air. In order to increase the amount of heat recovered from the gas turbine exhaust gas, it is desirable to increase the humidification amount as much as possible to increase the flow rate of the air-fuel mixture (air + steam), and as the flow rate of the air-fuel mixture (air + steam) increases Turbine power increases.

一方、加湿量を増加させると、混合気(空気+蒸気)が飽和条件に近づき、高湿分空気中の未蒸発の水滴が増加し、これが高湿分空気中に飛沫同伴して再生器に流入し、再生器内部で蒸発することになり、再生器内部の伝熱面に水滴中のスケールが析出し、熱伝達率の低下,圧力損失の増加を生じることなる。   On the other hand, when the amount of humidification is increased, the air-fuel mixture (air + steam) approaches the saturation condition, and non-evaporated water droplets in the high-humidity air increase, which entrains in the high-humidity air and enters the regenerator. It flows in and evaporates inside the regenerator, and the scale in the water droplets is deposited on the heat transfer surface inside the regenerator, resulting in a decrease in heat transfer coefficient and an increase in pressure loss.

特許文献1や特許文献2に記載の従来技術では、加湿設備で未蒸発の水滴が発生し、これが再生器に流入し、再生器伝熱面で蒸発し、スケール(水に溶融している不純析出物)が伝熱面に固着する不具合に対する配慮がなされていない。このため、運転時間の経過に伴い、再生器高湿分空気流路においてスケール堆積による熱伝達率の低下および圧力損失の増加を生じる可能性がある。   In the prior art described in Patent Document 1 and Patent Document 2, non-evaporated water droplets are generated in the humidifying facility, and this drops flow into the regenerator, evaporate on the heat transfer surface of the regenerator, and scale (impure that is melted in water) No consideration has been given to the problem of deposits) sticking to the heat transfer surface. For this reason, as the operating time elapses, there is a possibility that a decrease in heat transfer rate and an increase in pressure loss due to scale deposition may occur in the regenerator high humidity air flow path.

特許文献3では、前記再生熱交換器を、伝熱面構造が異なる複数の熱交換器を直列に接続して構成することにより、水滴によるエロージョンやスケール生成を抑制することが記載されている。しかしながら、特許文献3では、再生熱交換器自体を特殊なものとする必要があり、また、前段の再生熱交換器におけるスケール生成については防ぐことはできないと思われる。   Patent Document 3 describes that the regenerative heat exchanger is configured by connecting a plurality of heat exchangers having different heat transfer surface structures in series to suppress erosion and scale generation due to water droplets. However, in Patent Document 3, it is necessary to make the regenerative heat exchanger itself special, and it seems that scale generation in the regenerative heat exchanger in the previous stage cannot be prevented.

本発明の目的は、再生器自体を特別な構造としないでも、また、加湿設備への給水量を変化させなくても、加湿設備出口における未蒸発水滴の発生を抑制し、再生器内でスケールが発生することを抑制することが可能なガスタービン設備及びガスタービン用加湿設備を提供することにある。   The object of the present invention is to suppress the generation of non-evaporated water droplets at the outlet of the humidifying facility without changing the regenerator itself to have a special structure and without changing the amount of water supplied to the humidifying facility. It is in providing the gas turbine equipment and the humidification equipment for gas turbines which can suppress generating.

本発明は、上記目的を達成するため、加湿設備で加湿される前の圧縮空気の一部を分流させ、加湿設備で加湿された圧縮空気に、分流された圧縮空気を合流させてから再生器に導入するようにしたものである。特に、本発明は、加湿設備内に空気と蒸気の混合気流路と、空気の流路を設け、空気の流路から空気と蒸気の混合気流路に空気を流す流路を設け、空気と蒸気の混合気と空気を混合させることを特徴とする。   In order to achieve the above object, the present invention splits a part of the compressed air before being humidified by the humidifying equipment, and joins the compressed air that has been shunted by the humidifying equipment to the regenerator. It is intended to be introduced to. In particular, the present invention provides an air / steam mixture channel and an air channel in the humidification facility, and a channel for flowing air from the air channel to the air / steam mixture channel. The air-fuel mixture is mixed with air.

本発明によれば、再生器自体を特別な構造としないでも、加湿設備出口の混合気(空気+蒸気)に含まれる未蒸発水滴を抑制若しくはなくすことができるため再生器における水蒸発に伴うスケール発生を抑制することが可能となる。   According to the present invention, even if the regenerator itself does not have a special structure, unevaporated water droplets contained in the air-fuel mixture (air + steam) at the outlet of the humidifying equipment can be suppressed or eliminated, and therefore the scale accompanying water evaporation in the regenerator Occurrence can be suppressed.

特に、好適な例で説明すれば、次のような作用でスケール発生を抑制することができる。即ち、加湿設備内で、高温空気に供給水を噴射すると高温空気の顕熱により供給水が蒸発すると同時に、その蒸発潜熱により空気と蒸気の混合気温度は低下する。空気に対して噴射水量を増加させると蒸発量が増加し、蒸発量に比例し混合気温度は低下するが、蒸発した蒸気の分圧が混合気温度の飽和蒸気圧に達すると蒸発は停止し、余剰となった供給水は水滴のままとなる。   In particular, if described with a suitable example, scale generation can be suppressed by the following operation. That is, when the supply water is injected into the high-temperature air in the humidification facility, the supply water evaporates due to the sensible heat of the high-temperature air, and at the same time, the air-vapor mixture temperature decreases due to the latent heat of evaporation. Increasing the amount of jet water with respect to air increases the amount of evaporation, and the mixture temperature decreases in proportion to the amount of evaporation.However, evaporation stops when the partial pressure of the evaporated vapor reaches the saturated vapor pressure of the mixture temperature. The surplus supply water remains as water droplets.

また、噴霧された水滴が均等に分布されない場合には混合気が不均一となり未蒸発の水滴が残留することになるが、加湿設備内で空気の一部をバイパスして、残りの空気に水を供給し、空気と蒸気の混合気をつくり、この混合気にバイパスした高温の空気を混合させると、混合気の顕熱が増加し、混合気に含まれる未蒸発の水滴を略完全に蒸発させることができ加湿設備出口の未蒸発水滴をなくし、再生器内でスケールが発生することを抑制できる効果がある。   In addition, when the sprayed water droplets are not evenly distributed, the air-fuel mixture becomes non-uniform and unevaporated water droplets remain, but some of the air is bypassed in the humidification facility, and water remains in the remaining air. , Creating a mixture of air and steam, and mixing the high-temperature air bypassed with this mixture increases the sensible heat of the mixture and evaporates almost all the unevaporated water droplets contained in the mixture There is an effect that it is possible to eliminate the non-evaporated water droplets at the outlet of the humidifying equipment and to suppress the generation of scale in the regenerator.

以下本発明による第1の実施例を説明する前に、本発明の参考例を図1に示すガスタービンシステム系統図に基づいて説明する。   Before describing a first embodiment of the present invention, a reference example of the present invention will be described based on a gas turbine system diagram shown in FIG.

ガスタービン装置は、圧縮機1,燃焼器2,ガスタービン3,再生器4から構成される。圧縮機1入口には圧縮機入口配管20が接続され、圧縮機1出口には圧縮機出口配管21が設置され加湿装置5に接続される。ガスタービン3出口には再生器入口燃焼ガス配管26が再生器4まで接続される。再生器4には、加湿装置5より再生器入口空気配管22が接続され、再生器伝熱管13を通り燃焼器入口空気配管23に接続される。燃焼器入口空気配管23は燃焼器2に接続される。燃焼器2には燃料配管24が接続され燃焼器2とガスタービン3は燃焼器ガスタービン接続部25にて接続される。再生器4と給水加熱器6は再生器出口燃焼ガス配管27で接続され、給水加熱器6には排気ガス排出配管28が接続される。   The gas turbine apparatus includes a compressor 1, a combustor 2, a gas turbine 3, and a regenerator 4. A compressor inlet pipe 20 is connected to the compressor 1 inlet, and a compressor outlet pipe 21 is installed at the compressor 1 outlet and connected to the humidifier 5. A regenerator inlet combustion gas pipe 26 is connected to the regenerator 4 at the outlet of the gas turbine 3. A regenerator inlet air pipe 22 is connected to the regenerator 4 from the humidifier 5, passes through the regenerator heat transfer pipe 13, and is connected to a combustor inlet air pipe 23. The combustor inlet air pipe 23 is connected to the combustor 2. A fuel pipe 24 is connected to the combustor 2, and the combustor 2 and the gas turbine 3 are connected by a combustor gas turbine connection portion 25. The regenerator 4 and the feed water heater 6 are connected by a regenerator outlet combustion gas pipe 27, and an exhaust gas discharge pipe 28 is connected to the feed water heater 6.

給水ポンプ8入口には給水ポンプ入口配管29が接続され、給水ポンプ8出口と加湿装置噴射水供給管32間は給水配管31で接続される。給水配管31から給水加熱器分岐配管30を分岐し給水加熱器6を経由して加湿装置5入口の加湿装置噴射水供給管32に接続され、給水加熱器分岐配管30には温水制御弁7が設置されている。   A feed water pump inlet pipe 29 is connected to the feed water pump 8 inlet, and a feed water pipe 31 connects the outlet of the feed water pump 8 and the humidifier spray water supply pipe 32. The feed water heater branch pipe 30 branches from the feed water pipe 31 and is connected to the humidifier spray water supply pipe 32 at the inlet of the humidifier 5 via the feed water heater 6. The hot water control valve 7 is connected to the feed water heater branch pipe 30. is set up.

圧縮機出口配管21には、加湿装置入口圧力計9および加湿装置入口温度計10が、給水配管31と給水加熱器分岐配管30とが合流した加湿装置噴射水供給管32には噴射水温度計12が、加湿装置5出口部には加湿装置出口温度計11が設置されている。   The compressor outlet pipe 21 includes a humidifier inlet pressure gauge 9 and a humidifier inlet thermometer 10, and the humidifier spray water supply pipe 32 where the feed water pipe 31 and the feed water heater branch pipe 30 join together is a jet water thermometer. 12, a humidifier outlet thermometer 11 is installed at the outlet of the humidifier 5.

圧縮機入口配管20を通り圧縮機1に入った空気は、圧縮機1にて圧縮され、高圧,高温となり圧縮機出口配管21を通り加湿装置5に供給される。加湿装置5では、給水ポンプ入口配管29を通り給水ポンプ8に供給された給水が給水ポンプ8にて高圧化され給水配管31,加湿装置噴射水供給管32を通って供給され、加湿装置5内部に噴霧される。噴霧はノズルにより行われるが、一般的に、流量の調節はノズル数により行われるため、連続的な調節は困難な場合が多い。このため、供給水温度を調節することが重要となる。   The air that has entered the compressor 1 through the compressor inlet pipe 20 is compressed by the compressor 1, becomes high pressure and high temperature, and is supplied to the humidifier 5 through the compressor outlet pipe 21. In the humidifier 5, the feed water supplied to the feed water pump 8 through the feed water pump inlet pipe 29 is increased in pressure by the feed water pump 8 and supplied through the feed water pipe 31 and the humidifier spray water supply pipe 32. Sprayed on. Spraying is performed by nozzles. Generally, since the flow rate is adjusted by the number of nozzles, continuous adjustment is often difficult. For this reason, it is important to adjust the feed water temperature.

加湿装置5内部では、高温空気と水とを直接接触させることにより水を蒸発させ、水の蒸発潜熱により空気温度を低下させると同時に蒸発した蒸気流量分空気流量が増加することになる。加湿装置5で、低温となり、流量が増加した高湿分空気は再生器入口空気配管22を通り再生器4の再生器伝熱管13に供給される。ガスタービン3を出て再生器入口燃焼ガス配管26を通り再生器4に供給された高温燃焼排ガスにより再生器伝熱管13内を流れる高湿分空気が加熱される。再生器4にてガスタービン3出口の燃焼排ガスより熱を回収した高湿分空気は燃焼器2に供給され燃料配管24から供給された燃料を燃焼させる。燃焼器2で発生した高温燃焼排ガスは燃焼器ガスタービン接続部25を通りガスタービン3に供給され、ガスタービン3は動力を発生し、圧縮機1および発電機14を駆動し、発電機14にて発電を行う。   Inside the humidifier 5, the water is evaporated by bringing the high-temperature air and water into direct contact with each other, the air temperature is lowered by the latent heat of evaporation of the water, and at the same time, the air flow rate is increased by the vapor flow rate. In the humidifier 5, the high-humidity air whose temperature is low and the flow rate is increased is supplied to the regenerator heat transfer tube 13 of the regenerator 4 through the regenerator inlet air pipe 22. The high-humidity air flowing through the regenerator heat transfer tube 13 is heated by the high-temperature combustion exhaust gas that has left the gas turbine 3 and passes through the regenerator inlet combustion gas pipe 26 and is supplied to the regenerator 4. The high-humidity air whose heat has been recovered from the combustion exhaust gas at the outlet of the gas turbine 3 by the regenerator 4 is supplied to the combustor 2 to burn the fuel supplied from the fuel pipe 24. The high-temperature combustion exhaust gas generated in the combustor 2 is supplied to the gas turbine 3 through the combustor gas turbine connection portion 25, and the gas turbine 3 generates power to drive the compressor 1 and the generator 14. Power generation.

再生器4を出た燃焼排ガスは再生器出口燃焼ガス配管27を通り給水加熱器6に供給され、給水加熱器6出口の排気ガス排出配管28を通って外部に排出される。給水加熱器6では、給水ポンプ8出口の給水配管31から分岐され給水加熱器分岐配管30を通る給水を燃焼排ガスにより加熱する。加熱された給水は温水制御弁7にて流量を調整され加湿装置5入口部にて加湿装置噴射水供給管32と合流し加湿装置5に供給される。   The flue gas exiting the regenerator 4 is supplied to the feed water heater 6 through the regenerator outlet combustion gas pipe 27 and is discharged to the outside through the exhaust gas discharge pipe 28 at the outlet of the feed water heater 6. In the feed water heater 6, the feed water branched from the feed water pipe 31 at the outlet of the feed water pump 8 and passing through the feed water heater branch pipe 30 is heated by combustion exhaust gas. The heated water supply is adjusted in flow rate by the hot water control valve 7, joined to the humidifier spray water supply pipe 32 at the inlet of the humidifier 5, and supplied to the humidifier 5.

加湿装置5に供給された空気と蒸気の関係例を図2に示す。図2の例は加湿装置5に圧力0.8106MPa(abs) ,温度292.9℃の空気を供給し、供給水を増加させ、供給水が全量蒸発した場合の混合気(空気+蒸気)の温度変化を示している。混合気(空気+蒸気)に許容される蒸気/空気重量比は、混合気(空気+蒸気)温度に対応する飽和蒸気圧力と混合気(空気+蒸気)圧力により決まるため、混合気温度を飽和温度とする飽和温度線を計算することができる。供給する水の温度が20℃の場合、水を供給しない場合(蒸気/空気重量比=0%)では、混合気の温度は292.9℃(X点)で、X点より供給水量を増加させると蒸発量が増加し、蒸発潜熱の増加により混合気の温度は減少することになる。蒸発量が飽和温度線との交わるA点に達すると空気中の蒸気が飽和圧力に達するため供給水量を増加しても蒸発は行われず、供給された余剰の水分は未蒸発水滴となり温度はほとんど変化しない(A点→C点)。   An example of the relationship between air and steam supplied to the humidifier 5 is shown in FIG. In the example of FIG. 2, air at a pressure of 0.8106 MPa (abs) and a temperature of 292.9 ° C. is supplied to the humidifier 5 to increase the supply water, and the mixture (air + steam) when the supply water evaporates in its entirety. It shows the temperature change. The vapor / air weight ratio allowed for the mixture (air + steam) is determined by the saturated vapor pressure and the mixture (air + steam) pressure corresponding to the mixture (air + steam) temperature, so the mixture temperature is saturated. A saturation temperature line as a temperature can be calculated. When the temperature of the supplied water is 20 ° C, when the water is not supplied (steam / air weight ratio = 0%), the temperature of the air-fuel mixture is 292.9 ° C (X point), and the amount of supplied water is increased from the X point. As a result, the amount of evaporation increases, and the temperature of the air-fuel mixture decreases due to an increase in latent heat of evaporation. When the amount of evaporation reaches point A where the saturation temperature line intersects, the vapor in the air reaches the saturation pressure, so evaporation does not occur even if the amount of supplied water is increased. No change (point A → point C).

供給する水の温度を20℃から100℃に増加させると、水の顕熱増加により供給水量を増加させた場合の混合気温度の低下は緩やかになるため、飽和温度線とは、20℃の場合より蒸気/空気重量比が大きな点で交差する。したがって、供給水温度20℃で計画して運転されている場合、運転点が飽和温度線との交点A点に近づいた場合には給水温度を増加させることにより飽和温度線より運転点B点へ運転状態を移行させることができ、これにより未蒸発水滴が発生することを防止できる。   When the temperature of the supplied water is increased from 20 ° C. to 100 ° C., the decrease in the mixture temperature when the amount of supplied water is increased due to an increase in the sensible heat of the water becomes gentle. It intersects at a point where the steam / air weight ratio is larger than the case. Therefore, when the operation is planned at a feed water temperature of 20 ° C., when the operation point approaches the intersection A with the saturation temperature line, the supply water temperature is increased to move to the operation point B from the saturation temperature line. The operating state can be shifted, and thus it is possible to prevent the generation of non-evaporated water droplets.

図1の参考例では、図2の例で示す飽和温度線を加湿装置入口圧力計9で計測される圧力と飽和蒸気圧から計算する。X点は加湿装置入口温度計10で計測される温度となり、噴射水温度計12で計測される給水温度が明らかになると飽和温度線との交点A点は予測できるため、運転条件がA点に近づいた場合には温水制御弁7を制御して給水加熱器分岐配管30を通る給水量を増加させ、給水を給水加熱器6で加熱し給水配管31を通ってきた給水と合流させ加湿装置噴射水供給管32から加湿装置5に供給する。加湿装置5に供給される温度は噴射水温度計12で計測され、飽和温度線より離れたB点を新たな運転点とすることができる。   In the reference example of FIG. 1, the saturation temperature line shown in the example of FIG. 2 is calculated from the pressure measured by the humidifier inlet pressure gauge 9 and the saturated vapor pressure. The point X is the temperature measured by the humidifier inlet thermometer 10, and when the feed water temperature measured by the jet water thermometer 12 becomes clear, the intersection point A with the saturation temperature line can be predicted. When approaching, the hot water control valve 7 is controlled to increase the amount of water supplied through the feed water heater branch pipe 30, the feed water is heated by the feed water heater 6 and merged with the feed water that has passed through the feed water pipe 31 to inject the humidifier The water supply pipe 32 supplies the humidifier 5. The temperature supplied to the humidifier 5 is measured by the jet water thermometer 12, and a point B far from the saturation temperature line can be set as a new operating point.

一般には、圧縮機1出口の空気量は大気温度,圧縮機入口案内翼開度等から予測でき、加湿装置噴射水供給管32から供給される給水流量は、噴射ノズル面積,給水流量制御弁特性等から予測できるため図2の例で示す(蒸気/空気)重量比を予め計算でき、飽和温度線との交点A点の予測することが可能である。したがって、加湿装置5に設置した加湿装置出口温度計11の温度がA点に近づいた場合に温水制御弁7を操作して給水の温度を増加させることにより、B点のように飽和温度線より離れた点で運転することができる。   In general, the amount of air at the outlet of the compressor 1 can be predicted from the atmospheric temperature, the compressor inlet guide blade opening, etc., and the feed water flow rate supplied from the humidifier jet water supply pipe 32 is the jet nozzle area, feed water flow rate control valve characteristics. Therefore, the weight ratio (steam / air) shown in the example of FIG. 2 can be calculated in advance, and the intersection point A with the saturation temperature line can be predicted. Therefore, when the temperature of the humidifier outlet thermometer 11 installed in the humidifier 5 approaches the point A, the temperature of the feed water is increased by operating the hot water control valve 7 so that the saturation temperature line as indicated by the point B is reached. You can drive at a distant point.

本参考例では、給水量を変化させずに混合気に含まれる未蒸発の水滴を完全に蒸発させることができ、加湿装置出口の混合気(空気+蒸気)流量および(蒸気/空気)重量比も変化しないので、燃焼器における燃焼性能への影響を最小にでき、ガスタービン出力の変動も最小にできる効果がある。   In this reference example, unevaporated water droplets contained in the air-fuel mixture can be completely evaporated without changing the water supply amount, and the air-fuel mixture (air + steam) flow rate and (steam / air) weight ratio at the outlet of the humidifier Therefore, the influence on the combustion performance in the combustor can be minimized and the fluctuation of the gas turbine output can be minimized.

次に、本発明による一実施例を図3に基づいて説明する。本実施例が図1に示す参考例と異なるのは、加湿装置5の内部構造として加湿装置外筒40内に加湿装置内筒41を設置し、加湿装置内筒41には内筒主空気入口42および内筒空気混合孔45を設け、給水配管31から接続される内筒噴射水ノズル43を加湿装置内筒41内部に設置している点である。加湿装置外筒40と加湿装置内筒41間には外筒内筒間空気流路44が形成されている。給水ポンプ8からの給水配管31は分岐せずに内筒噴射水ノズル43に接続され、再生器4排気ガス後流には図1に示す給水加熱器6は設置していない。   Next, an embodiment according to the present invention will be described with reference to FIG. This embodiment differs from the reference example shown in FIG. 1 in that a humidifier inner cylinder 41 is installed in the humidifier outer cylinder 40 as an internal structure of the humidifier 5, and the humidifier inner cylinder 41 has an inner cylinder main air inlet. 42 and the inner cylinder air mixing hole 45 are provided, and the inner cylinder spray water nozzle 43 connected from the water supply pipe 31 is installed inside the humidifier inner cylinder 41. Between the humidifier outer cylinder 40 and the humidifier inner cylinder 41, an air channel 44 between the outer cylinders and the inner cylinder is formed. The feed water pipe 31 from the feed water pump 8 is not branched and connected to the inner cylinder spray water nozzle 43, and the feed water heater 6 shown in FIG.

圧縮機1から出た高温,高圧の空気は、圧縮機出口配管21を通り加湿装置外筒40に流入する。加湿装置外筒40に入った空気は、内筒主空気入口42を通り加湿装置内筒41内部に流入する。内筒主空気入口42から加湿装置内筒41内に入った高温,高圧の空気には、給水ポンプ8で圧縮された給水が給水配管31を通り内筒噴射水ノズル43から噴霧され、内筒内で給水は蒸発し、顕熱により(空気+蒸気)混合気の温度は低下する。   The high-temperature and high-pressure air that has come out of the compressor 1 flows into the humidifier outer cylinder 40 through the compressor outlet pipe 21. The air that has entered the humidifier outer cylinder 40 passes through the inner cylinder main air inlet 42 and flows into the humidifier inner cylinder 41. The high-temperature and high-pressure air that has entered the humidifier inner cylinder 41 from the inner cylinder main air inlet 42 is sprayed from the inner cylinder spray water nozzle 43 through the water supply pipe 31 through the water supply pipe 31 to supply water. The feed water evaporates in the interior, and the temperature of the air-fuel mixture (air + steam) decreases due to sensible heat.

加湿装置外筒40および加湿装置内筒41に流入する空気の温度,流速分布により、内筒噴射水ノズル43から噴射される水には濃度分布があるため、一般には蒸発を均一に行うことはできないため、未蒸発の水滴が発生する。加湿装置外筒40に入った空気の一部は、加湿装置外筒40と加湿装置内筒41で形成される外筒内筒間空気流路44を高温のまま流れ、加湿装置内筒41の内筒噴射水ノズル43の後流に設けられた内筒空気混合孔45から加湿装置内筒41に入り混合気と混合する。この混合により、内筒空気混合孔45から流入する高温空気の顕熱を用いて未蒸発の水滴を蒸発させることができる。最終的には、加湿装置内筒41後流加湿装置加湿空気出口部46で、加湿装置外筒40に供給された高温,高圧の空気と給水は完全に混合するため、未蒸発の水滴を含まない(空気+蒸気)混合気を再生器入口空気配管22を通して再生器4に供給することができる。   Since the water sprayed from the inner cylinder spray water nozzle 43 has a concentration distribution due to the temperature and flow velocity distribution of the air flowing into the humidifier outer cylinder 40 and the humidifier inner cylinder 41, it is generally possible to perform evaporation uniformly. Since this is not possible, unvaporized water droplets are generated. Part of the air that has entered the humidifier outer cylinder 40 flows at a high temperature through the air flow path 44 between the outer cylinders and the inner cylinder formed by the humidifier outer cylinder 40 and the humidifier inner cylinder 41. It enters the humidifier inner cylinder 41 through the inner cylinder air mixing hole 45 provided in the downstream of the inner cylinder spray water nozzle 43 and mixes with the air-fuel mixture. By this mixing, it is possible to evaporate non-evaporated water droplets using sensible heat of high-temperature air flowing from the inner cylinder air mixing hole 45. Eventually, the humidifier inner cylinder 41 and the humidifier air outlet 46 in the downstream humidifier humidified air outlet 46 completely mix the high-temperature and high-pressure air supplied to the humidifier outer cylinder 40 and the water supply, so that unvaporized water droplets are included. No (air + steam) mixture can be supplied to the regenerator 4 through the regenerator inlet air line 22.

本実施例では、内筒主空気入口42および内筒空気混合孔45の面積,形状により混合する高温空気の量,速度を調整でき、(空気+蒸気)混合気の(高温空気の混合による加
熱,未蒸発水滴の蒸発による温度低下)を段階的に行えるため混合気に分布がある場合でも未蒸発の水滴を完全に蒸発させることができる効果がある。
In the present embodiment, the amount and speed of high-temperature air to be mixed can be adjusted according to the area and shape of the inner cylinder main air inlet 42 and the inner cylinder air mixing hole 45, and the (air + steam) air-fuel mixture can be heated by mixing the high-temperature air. Therefore, even if there is a distribution in the air-fuel mixture, it is possible to completely evaporate non-evaporated water droplets.

次に、本発明による他の実施例を図4に基づいて説明する。図4では図3とは異なる加湿装置が用いられ、他の構成は図3の実施例と同一であるため図示が省略されている。図3では高温空気内に水を噴射する方式の加湿装置であったのに対して図4では下流から供給される高温空気に対し、上流から水を流す反応塔形式での加湿装置を採用している。加湿装置外筒B50内には加湿装置内筒B52が設置され、加湿装置内筒B52内には充填層51が設置される。加湿装置外筒B50内壁と加湿装置内筒B52外壁間には加湿装置空気バイパス部55が形成される。圧縮機出口配管21は加湿装置外筒B50の下部にある加湿装置空気入口部54に接続され、加湿装置外筒B50上部と再生器4間には再生器入口空気配管22が接続される。加湿装置内筒B52上部には噴射水ヘッダ53が設置され、給水ポンプ8からの給水配管31が接続されている。また、加湿装置外筒B50低部には、水排出口57が設置されている。   Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 4, a humidifier different from that in FIG. 3 is used, and the other configuration is the same as that of the embodiment of FIG. In FIG. 3, the humidifier is of a type in which water is injected into the high-temperature air, whereas in FIG. 4, a humidifier in the form of a reaction tower that allows water to flow from the upstream to the high-temperature air supplied from the downstream is adopted. ing. A humidifier inner cylinder B52 is installed in the humidifier outer cylinder B50, and a packed bed 51 is installed in the humidifier inner cylinder B52. A humidifier air bypass 55 is formed between the inner wall of the humidifier outer cylinder B50 and the outer wall of the humidifier inner cylinder B52. The compressor outlet pipe 21 is connected to a humidifier air inlet 54 at the lower part of the humidifier outer cylinder B50, and the regenerator inlet air pipe 22 is connected between the upper part of the humidifier outer cylinder B50 and the regenerator 4. A jet water header 53 is installed above the humidifier inner cylinder B52, and a water supply pipe 31 from the water supply pump 8 is connected thereto. Moreover, the water discharge port 57 is installed in the lower part of the humidifier outer cylinder B50.

給水ポンプ8で加圧された給水は給水配管31を通って加湿装置外筒B50内に入り、加湿装置内筒B52上部の噴射水ヘッダ53から、噴射水ヘッダ53下部に設置された充填層51に噴射される。充填層51には、下方から上方に流れる空気と、上方から下方に流れる水との十分な接触が行われるように充填物を設置してある。   The feed water pressurized by the feed water pump 8 enters the humidifier outer cylinder B50 through the feed water pipe 31, and from the jet water header 53 at the upper part of the humidifier inner cylinder B52 to the packed bed 51 installed at the lower part of the jet water header 53. Is injected into. In the packed bed 51, a packing is installed so that sufficient contact between the air flowing upward from below and the water flowing downward from above is performed.

圧縮機1で圧縮され高圧,高温となった空気は圧縮機出口配管21を通り加湿装置外筒B50の加湿装置空気入口部54に入り、加湿装置内筒B52の充填層51に入る。一部の高温空気は高温のまま加湿装置空気バイパス部55を通り上方に流れる。充填層51では、下方から上方に流れる高温空気と、上方から下方に流れる噴射水との接触により水が蒸発し、蒸発潜熱により混合気の温度は低下する。充填層51内で蒸発しきれなかった余剰の噴射水は、加湿装置外筒B50底部に貯まり水排出口57より外部に排出される。   The air compressed to high pressure and high temperature by the compressor 1 passes through the compressor outlet pipe 21, enters the humidifier air inlet 54 of the humidifier outer cylinder B50, and enters the packed bed 51 of the humidifier inner cylinder B52. Some of the high-temperature air flows upward through the humidifier air bypass unit 55 at a high temperature. In the packed bed 51, the water evaporates due to the contact between the hot air flowing upward from below and the jet water flowing downward from above, and the temperature of the air-fuel mixture decreases due to latent heat of evaporation. Excess jet water that could not be evaporated in the packed bed 51 is stored at the bottom of the humidifier outer cylinder B50 and discharged from the water discharge port 57 to the outside.

噴射水ヘッダ53からの噴射水量が十分に多い場合、充填層51最上部の空気に含まれる水蒸気は、その温度の飽和に達していると考えられる。噴射水ヘッダ53より噴射された噴射水には粒径の分布が生じるため、噴射水ヘッダ53を通り上方に流れる飽和(空気+蒸気)混合気の流速に対応した微小な水粒子は飛沫同伴する。しかしながら、加湿装置空気混合部56で加湿装置空気バイパス部55を通った高温の空気と混合されることにより、飛沫同伴された水粒子を高温空気の顕熱により完全に蒸発させることができる。   When the amount of water jetted from the jet water header 53 is sufficiently large, it is considered that the water vapor contained in the air at the top of the packed bed 51 has reached saturation of its temperature. Since the distribution of the particle size occurs in the jet water jetted from the jet water header 53, minute water particles corresponding to the flow rate of the saturated (air + steam) mixture flowing upward through the jet water header 53 are entrained. . However, by mixing with the high temperature air that has passed through the humidifier air bypass unit 55 in the humidifier air mixing unit 56, the entrained water particles can be completely evaporated by the sensible heat of the high temperature air.

図4では反応塔形式の加湿装置外筒B50として加湿装置内筒B52内部に充填層を設けた実施例を示したが、充填層に替えて棚段形式を採用した場合でも本実施例と同じ効果が得られる。   FIG. 4 shows an example in which a packed bed is provided inside the humidifier inner cylinder B52 as the humidifier outer cylinder B50 of the reaction tower type. However, even when a shelf type is adopted instead of the packed bed, it is the same as this example. An effect is obtained.

本実施例によれば、反応筒形式の加湿装置において混合気(空気+蒸気)に飛沫同伴する水滴を蒸発させる効果がある。   According to this embodiment, there is an effect of evaporating water droplets entrained in the air-fuel mixture (air + steam) in the reaction tube type humidifier.

上述の実施例によれば、加湿設備出口の未蒸発水滴をなくし、再生器内でスケールが発生することを抑制するガスタービン加湿設備を最小の変更で、性能を低下させず実現できる。   According to the above-described embodiment, it is possible to realize a gas turbine humidification facility that eliminates non-evaporated water droplets at the outlet of the humidification facility and suppresses the generation of scale in the regenerator with minimal changes, without reducing the performance.

本発明の参考例であるガスタービン用加湿設備を示す図(参考例)。The figure (reference example) which shows the humidification equipment for gas turbines which is a reference example of this invention. ガスタービン用加湿設備の状態の説明図。Explanatory drawing of the state of the humidification equipment for gas turbines. 本発明の一実施例であるガスタービン用加湿設備を示す図(実施例1)。The figure which shows the humidification equipment for gas turbines which is one Example of this invention (Example 1). 加湿装置の他の構成を示す図(実施例2)。The figure which shows the other structure of a humidifier (Example 2).

符号の説明Explanation of symbols

4…再生器、5…加湿装置、7…温水制御弁、9…加湿装置入口圧力計、10…加湿装置入口温度計、11…加湿装置出口温度計、12…噴射水温度計、13…再生器伝熱管、21…圧縮機出口配管、22…再生器入口空気配管、30…給水加熱器分岐配管、31…給水配管、32…加湿装置噴射水供給管、40…加湿装置外筒、41…加湿装置内筒、42…内筒主空気入口、44…外筒内筒間空気流路、45…内筒空気混合孔、50…加湿装置外筒B、51…充填層、52…加湿装置内筒B、53…噴射水ヘッダ、55…加湿装置空気バイパス部、56…加湿装置空気混合部。   DESCRIPTION OF SYMBOLS 4 ... Regenerator, 5 ... Humidifier, 7 ... Hot water control valve, 9 ... Humidifier inlet pressure gauge, 10 ... Humidifier inlet thermometer, 11 ... Humidifier outlet thermometer, 12 ... Jet water thermometer, 13 ... Regeneration Heat transfer pipe, 21 ... Compressor outlet pipe, 22 ... Regenerator inlet air pipe, 30 ... Feed water heater branch pipe, 31 ... Water feed pipe, 32 ... Humidifier spray water supply pipe, 40 ... Humidifier outer cylinder, 41 ... Humidifier inner cylinder, 42 ... inner cylinder main air inlet, 44 ... outer cylinder inner cylinder air flow path, 45 ... inner cylinder air mixing hole, 50 ... humidifier outer cylinder B, 51 ... packed bed, 52 ... in the humidifier Tube B, 53 ... jetting water header, 55 ... humidifier air bypass, 56 ... humidifier air mixer.

Claims (2)

空気を圧縮する圧縮機と、該圧縮機を出た圧縮空気を加湿する加湿設備と、燃料と前記加湿された圧縮空気とが供給される燃焼器と、該燃焼器の燃焼ガスにより駆動されるガスタービンと、前記加湿設備で加湿された圧縮空気を前記ガスタービンからの排ガスにより加熱する再生器を有し、
前記加湿設備加湿される前の圧縮空気の一部を分流させ、前記加湿設備で加湿された圧縮空気に、分流された圧縮空気を合流させた後、前記加湿設備から前記再生器に導入するようにしたことを特徴とするガスタービン設備。
Driven by a compressor that compresses air, a humidification facility that humidifies compressed air that exits the compressor, a combustor that is supplied with fuel and the humidified compressed air, and a combustion gas of the combustor A gas turbine, and a regenerator that heats the compressed air humidified by the humidification equipment with exhaust gas from the gas turbine,
In said humidifying equipment, some of the compressed air prior to being humidified diverted, the compressed air humidified by the humidifying equipment, after merging the diverted compressed air, to the regenerator from the humidifying facility A gas turbine facility characterized by being introduced.
空気を圧縮する圧縮機と、該圧縮機を出た空気と燃料とが供給される燃焼器と、該燃焼器の燃焼ガスにより駆動されるガスタービンとを有するガスタービン設備に用いられ、前記圧縮機から出た圧縮空気に水を直接接触させ、圧縮空気の顕熱により水を蒸発させることにより高湿分空気を発生させるガスタービン用加湿設備であって、
該加湿設備は、外筒を有し、該外筒内に、供給された圧縮空気の流れを内部の流路と前記外筒との間の流路とに分割する内筒が設けられ、該内筒で分割された流路の内、内筒内の流路に加湿用の水を供給するようにし、
前記内筒は、該内筒内の流路を流れる加湿された空気流に前記外筒と前記内筒との間の流路を流れる空気流を流す流路が設けられたことを特徴とするガスタービン用加湿設備。
The compressor is used in a gas turbine facility having a compressor for compressing air, a combustor to which air and fuel exiting the compressor are supplied, and a gas turbine driven by combustion gas of the combustor. A humidifier for a gas turbine that generates high-humidity air by bringing water into direct contact with the compressed air from the machine and evaporating the water by sensible heat of the compressed air,
Humidification equipment has an outer cylinder, into the outer cylinder, the cylinder is provided inside of dividing the flow of the supplied compressed air to the interior of the flow path and a flow path between the outer cylinder, the In the flow path divided by the inner cylinder, the water for humidification is supplied to the flow path in the inner cylinder,
The inner cylinder, said the flow path for flowing the air stream flowing in the flow path between the inner tube and the outer tube to the air stream humidified flowing through the flow passage within the inner cylinder is provided et the Humidification equipment for gas turbines.
JP2008162666A 2008-06-23 2008-06-23 Gas turbine equipment and humidification equipment for gas turbine Expired - Fee Related JP4845932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162666A JP4845932B2 (en) 2008-06-23 2008-06-23 Gas turbine equipment and humidification equipment for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162666A JP4845932B2 (en) 2008-06-23 2008-06-23 Gas turbine equipment and humidification equipment for gas turbine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004022395A Division JP4167989B2 (en) 2004-01-30 2004-01-30 Gas turbine equipment and humidification equipment for gas turbine

Publications (2)

Publication Number Publication Date
JP2008240738A JP2008240738A (en) 2008-10-09
JP4845932B2 true JP4845932B2 (en) 2011-12-28

Family

ID=39912356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162666A Expired - Fee Related JP4845932B2 (en) 2008-06-23 2008-06-23 Gas turbine equipment and humidification equipment for gas turbine

Country Status (1)

Country Link
JP (1) JP4845932B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE218673T1 (en) * 1996-07-10 2002-06-15 Vattenfall Ab Publ METHOD AND APPARATUS FOR PROVIDING MECHANICAL WORK AND, IF DESIRED, HEAT IN A GAS EVAPORATION TURBINE PROCESS
JP4315625B2 (en) * 1997-04-22 2009-08-19 株式会社日立製作所 Gas turbine equipment
JP4099944B2 (en) * 1998-10-23 2008-06-11 株式会社日立製作所 Gas turbine power generation equipment and air humidifier
JP2000230432A (en) * 1999-02-10 2000-08-22 Hitachi Ltd Gas turbine power plant
JP2001012213A (en) * 1999-06-28 2001-01-16 Mitsubishi Heavy Ind Ltd Turbine equipment

Also Published As

Publication number Publication date
JP2008240738A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5216081B2 (en) Gas turbine with water injection
EP2415993B1 (en) Advanced humid air turbines and fuel control method for advanced humid air turbines
US6634165B2 (en) Control system for gas turbine inlet-air water-saturation and supersaturation system
JPH09236024A (en) Gas turbine, combined cycle plant and compressor
CA2707267C (en) Spray system, power augmentation system for engine containing spray system and method of humidifying air
WO1998048159A1 (en) Gas turbine equipment
US20030070415A1 (en) Gas turbins electric power generation equipment and air humidifier
JP2008175149A (en) Suction air spray device for compressor
JPH1172027A (en) Exhaust gas recirculation type combined plant
JP2017110646A (en) Power plant with steam generation via combustor gas extraction
JP2006226293A (en) Gas turbine installation
JP4167989B2 (en) Gas turbine equipment and humidification equipment for gas turbine
US9169777B2 (en) Gas turbine engine with water and steam injection
JP4845932B2 (en) Gas turbine equipment and humidification equipment for gas turbine
KR102086437B1 (en) Apparatus for reducing yellow gas for thermal power plant
JP4254508B2 (en) Gas turbine system
CN204017668U (en) The fuel gas generation equipment equipment for denitrifying flue gas that a kind of reducing agent directly sprays
JPH01208523A (en) Gas turbine engine and method of increasing power output from said engine
JPH10246127A (en) Gas turbine, combined cycle plant, and compressor
JP5480792B2 (en) Gas turbine system and humidification control method for gas turbine
JP5818510B2 (en) Gas turbine intake air cooling apparatus and method
JP4923010B2 (en) Equipment with a compressor that sprays water into the intake air
JPH11190228A (en) Gas turbine, combined cycle plant, and compressor
JP4315625B2 (en) Gas turbine equipment
CN103867344A (en) Diesel engine inlet air humidifying system with high humidifying efficiency

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4845932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees