JP4844618B2 - Fatigue testing machine and drive signal generator - Google Patents

Fatigue testing machine and drive signal generator Download PDF

Info

Publication number
JP4844618B2
JP4844618B2 JP2008285106A JP2008285106A JP4844618B2 JP 4844618 B2 JP4844618 B2 JP 4844618B2 JP 2008285106 A JP2008285106 A JP 2008285106A JP 2008285106 A JP2008285106 A JP 2008285106A JP 4844618 B2 JP4844618 B2 JP 4844618B2
Authority
JP
Japan
Prior art keywords
drive signal
divided
time
actual vibration
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008285106A
Other languages
Japanese (ja)
Other versions
JP2009058522A (en
Inventor
善一 安田
融 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008285106A priority Critical patent/JP4844618B2/en
Publication of JP2009058522A publication Critical patent/JP2009058522A/en
Application granted granted Critical
Publication of JP4844618B2 publication Critical patent/JP4844618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、目標波形を実振動波形とした振動を供試体に与えるため、アクチュエータなどに出力する駆動信号を生成する駆動信号生成装置と、その駆動信号生成装置を用いた疲労試験機に関する。   The present invention relates to a drive signal generation device that generates a drive signal to be output to an actuator and the like and a fatigue tester using the drive signal generation device in order to give a specimen a vibration having a target waveform as an actual vibration waveform.

実振動波形と等価な目標波形に逆伝達関数を乗じて生成した駆動信号で負荷アクチュエータを駆動し、供試体に負荷を与えるようにした疲労試験機が従来技術として知られている(たとえば、特許文献1)。この種の疲労試験機では、供試体にランダム波形を入力し、ランダム波形による供試体の変形量などを検出し、ランダム波形と検出波形との比から伝達関数を算出する。そして、算出された伝達関数の逆数を逆伝達関数とし、目標波形に逆伝達関数を乗じて駆動信号波形が生成される。
特開2004−53452号公報
A fatigue testing machine in which a load actuator is driven by a drive signal generated by multiplying a target waveform equivalent to an actual vibration waveform by a reverse transfer function to apply a load to a specimen is known as a prior art (for example, a patent Reference 1). In this type of fatigue testing machine, a random waveform is input to the specimen, the amount of deformation of the specimen due to the random waveform is detected, and a transfer function is calculated from the ratio between the random waveform and the detected waveform. Then, the inverse of the calculated transfer function is used as the inverse transfer function, and the drive signal waveform is generated by multiplying the target waveform by the inverse transfer function.
JP 2004-53452 A

逆伝達関数を使用して負荷アクチュエータに入力する振動波形を補正する場合、フーリエ変換などによって目標波形を時間領域から周波数領域に変換してから駆動信号を算出する。この変換処理を一括に行うとノイズが多くなり、供試体に与える振動波形を目標波形に近づけることが困難になる。そこで、目標波形を所定時間ごとに分割して、それぞれ分割した目標波形においてフーリエ変換し、分割された駆動信号を算出する。そして、分割された駆動信号を継ぎ合わせて負荷アクチュエータに出力する。ところで、このように継ぎ合わせた駆動信号を負荷アクチュエータに出力すると、駆動信号の継ぎ目、つまり分割された駆動信号から他の分割された駆動信号に切り替える時刻では駆動信号の波形は不連続に変化するため供試体に大きな衝撃が加わる。このため、精度よく供試体の振動試験を行えないという問題点がある。   When correcting the vibration waveform input to the load actuator using an inverse transfer function, the drive signal is calculated after the target waveform is converted from the time domain to the frequency domain by Fourier transform or the like. When this conversion process is performed all at once, noise increases and it becomes difficult to bring the vibration waveform applied to the specimen close to the target waveform. Therefore, the target waveform is divided at predetermined time intervals, and each of the divided target waveforms is Fourier transformed to calculate a divided drive signal. Then, the divided drive signals are joined together and output to the load actuator. By the way, when the drive signal spliced in this way is output to the load actuator, the waveform of the drive signal changes discontinuously at the joint of the drive signal, that is, at the time of switching from the divided drive signal to another divided drive signal. Therefore, a large impact is applied to the specimen. For this reason, there is a problem that the vibration test of the specimen cannot be accurately performed.

(1)請求項1の発明は、実振動波形に逆伝達関数を乗じて生成された駆動信号により負荷アクチュエータを駆動して供試体に負荷を与えるようにした疲労試験機であって、実振動波形を分割する波形分割手段と、分割された実振動波形と逆伝達関数とにより分割駆動信号を生成する分割駆動信号生成手段と、分割駆動信号を継ぎ合わせて駆動信号を生成する駆動信号生成手段とを備え、波形分割手段は、重複時間を設けて実振動波形を分割し、駆動信号生成手段は、重複時間において、2つの分割駆動信号が一致する時刻、または最も近接する時刻で分割駆動信号を継ぎ合わせて駆動信号を生成することを特徴とする。
(2)請求項2の発明は、実振動波形に逆伝達関数を乗じて駆動信号を生成する駆動信号生成装置であって、実振動波形を分割する波形分割手段と、分割された実振動波形と逆伝達関数とにより分割駆動信号を生成する分割駆動信号生成手段と、分割駆動信号を継ぎ合わせて駆動信号を生成する駆動信号生成手段とを備え、実振動波形分割手段は、重複時間を設けて実振動波形を分割し、駆動信号生成手段は、重複時間において、2つの分割駆動信号が一致する時刻、または最も近接する時刻で分割駆動信号を継ぎ合わせて駆動信号を生成することを特徴とする。
(1) The invention of claim 1 is a fatigue testing machine in which a load actuator is driven by a drive signal generated by multiplying an actual vibration waveform by an inverse transfer function, and a load is applied to a specimen. Waveform dividing means for dividing a waveform, divided drive signal generating means for generating a divided drive signal based on the divided actual vibration waveform and inverse transfer function, and drive signal generating means for generating a drive signal by joining the divided drive signals The waveform dividing means divides the actual vibration waveform by providing an overlap time, and the drive signal generating means splits the drive signal at the time when the two divided drive signals coincide with each other or at the closest time in the overlap time. Are combined to generate a drive signal.
(2) The invention of claim 2 is a drive signal generation device for generating a drive signal by multiplying an actual vibration waveform by an inverse transfer function, a waveform dividing means for dividing the actual vibration waveform, and the divided actual vibration waveform And a reverse drive function, a divided drive signal generating means for generating a divided drive signal and a drive signal generating means for generating a drive signal by joining the divided drive signals, and the actual vibration waveform dividing means is provided with an overlap time. The actual vibration waveform is divided, and the drive signal generation means generates the drive signal by joining the divided drive signals at the time when the two divided drive signals match or at the closest time in the overlap time. To do.

本発明によれば、分割駆動信号を継ぎ合わせて生成した駆動信号において、分割信号の継ぎ目で駆動信号が不連続にならないようにし、または、不連続になっても変化が小さくなるようにしたため、継ぎ合わせた駆動信号で負荷アクチュエータを駆動しても供試体に衝撃が加わることがない。したがって、不必要な衝撃を与えることなく実振動波形の振動を供試体に与えることができる。   According to the present invention, in the drive signal generated by joining the divided drive signals, the drive signal is prevented from becoming discontinuous at the joint of the divided signals, or the change is reduced even when the signal becomes discontinuous. Even if the load actuator is driven by the joined drive signal, no impact is applied to the specimen. Therefore, vibration of the actual vibration waveform can be given to the specimen without giving unnecessary impact.

この種の疲労試験機は、たとえば、車両用疲労試験機などであり、次の手順で測定が行われる。実車走行により収集した振動波形を実振動波形とし、この実振動波形を供試体に与える振動波形の目標波形として供試体を負荷し、データを採取する。車両用疲労試験機のように測定対象の供試体に実測した波形を与えるような場合、負荷対象となるシステム、すなわち供試体および負荷アクチュエータの伝達関数を算出し、その逆数である逆伝達関数を実振動波形に乗じて駆動信号を生成する。これより、供試体は実振動波形で負荷されることになる。   This type of fatigue testing machine is, for example, a vehicle fatigue testing machine, and measurement is performed in the following procedure. The vibration waveform collected by running the vehicle is used as the actual vibration waveform, and the test specimen is loaded as a target waveform of the vibration waveform that gives the actual vibration waveform to the specimen, and data is collected. When the measured waveform is given to the specimen to be measured like a vehicle fatigue tester, the transfer function of the system to be loaded, i.e. the specimen and the load actuator, is calculated, and the inverse transfer function, which is the reciprocal number, is calculated. A drive signal is generated by multiplying the actual vibration waveform. Thus, the specimen is loaded with an actual vibration waveform.

そのため、この種の疲労試験機では、試験に先立って、システムの伝達関数を次のように算出する。供試体を負荷する油圧アクチュエータにランダム波形を入力し、ランダム波形による供試体の変形量などの検出波形を検出する。ランダム波形と検出波形との比から伝達関数を算出する。そして、算出された伝達関数の逆数を逆伝達関数とし、実測波形と等価である実振動波形に逆伝達関数を乗じて駆動信号を生成する。   Therefore, in this type of fatigue testing machine, the system transfer function is calculated as follows prior to the test. A random waveform is input to the hydraulic actuator that loads the specimen, and a detection waveform such as the deformation amount of the specimen is detected by the random waveform. A transfer function is calculated from the ratio between the random waveform and the detected waveform. Then, the inverse of the calculated transfer function is used as an inverse transfer function, and a drive signal is generated by multiplying the actual vibration waveform equivalent to the actually measured waveform by the inverse transfer function.

図1は、本発明の一実施の形態による疲労試験機の構成図である。油圧アクチュエータ1はサーボ弁2で開閉動作が制御される。制御装置20から出力されるデジタル駆動信号はD/A変換器3でアナログ信号に変換された後に増幅器4で増幅されてサーボ弁2に入力される。供試体SPの変位量は変位計5で検出される。変位検出信号は、増幅器6で増幅され、A/D変換器7でデジタル検出信号に変換されて制御回路20に入力される。制御装置20は、変位検出信号と駆動信号との差分を算出し、その差分をサーボ弁2にフィードバックして油圧アクチュエータ1を駆動する。   FIG. 1 is a configuration diagram of a fatigue testing machine according to an embodiment of the present invention. The opening and closing operation of the hydraulic actuator 1 is controlled by a servo valve 2. The digital drive signal output from the control device 20 is converted into an analog signal by the D / A converter 3, amplified by the amplifier 4, and input to the servo valve 2. The displacement amount of the specimen SP is detected by the displacement meter 5. The displacement detection signal is amplified by the amplifier 6, converted to a digital detection signal by the A / D converter 7, and input to the control circuit 20. The control device 20 calculates the difference between the displacement detection signal and the drive signal, and feeds back the difference to the servo valve 2 to drive the hydraulic actuator 1.

荷重フィードバック制御してもよく、この場合の動作は次の通りである。供試体SPに負荷される荷重は荷重計8で検出される。荷重検出信号は、増幅器9で増幅され、A/D変換器10でデジタル検出信号に変換されて制御回路20に入力される。制御装置20は、荷重検出信号と駆動信号との差分を算出し、その差分をサーボ弁2にフィードバックして油圧アクチュエータ1を駆動する。   Load feedback control may be performed, and the operation in this case is as follows. A load applied to the specimen SP is detected by a load meter 8. The load detection signal is amplified by the amplifier 9, converted to a digital detection signal by the A / D converter 10, and input to the control circuit 20. The control device 20 calculates the difference between the load detection signal and the drive signal, and feeds back the difference to the servo valve 2 to drive the hydraulic actuator 1.

図2は、制御装置20内部のフィードバック駆動系機能ブロック図である。制御装置20は、実車走行により採取した実振動波形の測定信号を入力する実振動波形入力回路21と、重複時間を設けて実振動波形を所定の時間ごとに分割する実振動波形分割部22と、詳細は後述する逆伝達関数演算部28と、その演算結果が記憶される逆伝達関数記憶部23と、分割された実振動波形に逆伝達関数を乗じて分割された駆動信号(以下、分割駆動信号と呼ぶ)を演算する乗算器24と、分割駆動信号を継ぎ合わせて駆動信号を生成する駆動信号生成部25と、所定時間ごとにフィードバックする変位信号もしくは荷重信号を選択するスイッチ26と、駆動信号と変位もしくは荷重のフィードバック信号の偏差を演算する偏差器27とを備えている。   FIG. 2 is a functional block diagram of the feedback drive system inside the control device 20. The control device 20 includes an actual vibration waveform input circuit 21 that inputs a measurement signal of an actual vibration waveform collected by actual vehicle travel, and an actual vibration waveform dividing unit 22 that provides an overlap time and divides the actual vibration waveform at predetermined time intervals. The inverse transfer function calculation unit 28, which will be described in detail later, the inverse transfer function storage unit 23 in which the calculation result is stored, and the drive signal divided by multiplying the divided actual vibration waveform by the inverse transfer function (hereinafter, divided) (Referred to as a drive signal), a multiplier 24 for calculating a drive signal, a drive signal generation unit 25 for generating a drive signal by joining the divided drive signals, a switch 26 for selecting a displacement signal or a load signal to be fed back every predetermined time, A deviation unit 27 for calculating a deviation between the drive signal and the displacement or load feedback signal is provided.

図3は、制御装置20内部の逆伝達関数演算部28の詳細を説明する機能ブロック図である。伝達関数は、油圧アクチュエータ1と供試体SPを含む制御系に入力するランダム入力波形と、そのランダム入力波形により得られる制御系の出力波形(変位検出波形や荷重検出波形)との比に基づいて算出される。すなわち、図3に示すように、逆伝達関数演算部28は、ランダム入力波形信号の生成回路281と、ランダム入力波形をフーリエ変換する入力波形信号用フーリエ変換回路282と、出力波形信号(検出波形)の生成回路283と、出力波形をフーリエ変換する出力波形信号用フーリエ変換回路284と、入力波形信号用フーリエ変換回路282からの出力信号を、出力波形信号用フーリエ変換回路284からの出力信号で除して伝達関数を算出する除算器285と、除算器285から出力される伝達関数の逆数を演算する逆数演算回路286とを備える。   FIG. 3 is a functional block diagram illustrating details of the inverse transfer function calculation unit 28 inside the control device 20. The transfer function is based on a ratio between a random input waveform input to the control system including the hydraulic actuator 1 and the specimen SP and an output waveform (displacement detection waveform or load detection waveform) of the control system obtained from the random input waveform. Calculated. That is, as shown in FIG. 3, the inverse transfer function calculation unit 28 includes a random input waveform signal generation circuit 281, an input waveform signal Fourier transform circuit 282 that performs a Fourier transform on the random input waveform, and an output waveform signal (detection waveform). ), The output waveform signal Fourier transform circuit 284 for Fourier transforming the output waveform, and the output waveform signal Fourier transform circuit 282 as the output signal from the output waveform signal Fourier transform circuit 284. And a divider 285 for calculating a transfer function by dividing, and an inverse number calculation circuit 286 for calculating the inverse of the transfer function output from the divider 285.

このように構成された疲労試験機では、疲労試験に先立って作成された駆動信号により、次のようにして疲労試験が行われる。   In the fatigue testing machine configured as described above, the fatigue test is performed as follows by the drive signal created prior to the fatigue test.

実振動波形生成回路21から出力される実振動波形信号は実振動波形分割部22で重複時間を設けて分割される。分割された実振動波形信号と逆伝達関数記憶部23から出力される逆伝達関数とを乗算器24で乗じて分割駆動信号を生成する。分割駆動信号は駆動信号生成部25で継ぎ合わされ、駆動信号が生成される。この継ぎ合わせ処理の詳細については後述する。上述のように生成された駆動信号とフィードバック信号との偏差を偏差器27で演算し、この差分駆動信号でサーボ弁2を駆動する。すなわち、差分駆動信号は、D/A変換器3でアナログ信号に変換され、増幅器4で増幅されてサーボ弁2に印加される。このような差分駆動信号でサーボ弁2が駆動されることにより油圧アクチュエータ1が駆動されて供試体SPが負荷される。   The actual vibration waveform signal output from the actual vibration waveform generation circuit 21 is divided by the actual vibration waveform dividing unit 22 with an overlap time. The divided actual vibration waveform signal and the inverse transfer function output from the inverse transfer function storage unit 23 are multiplied by a multiplier 24 to generate a divided drive signal. The divided drive signals are spliced together by the drive signal generation unit 25 to generate a drive signal. Details of the joining process will be described later. The deviation between the drive signal generated as described above and the feedback signal is calculated by the deviator 27, and the servo valve 2 is driven by this difference drive signal. That is, the differential drive signal is converted into an analog signal by the D / A converter 3, amplified by the amplifier 4, and applied to the servo valve 2. By driving the servo valve 2 with such a differential drive signal, the hydraulic actuator 1 is driven and the specimen SP is loaded.

供試体SPの変位は変位計5で検出され、増幅器6で増幅される。この変位検出信号はA/D変換器7でデジタル信号に変換されて制御装置20にフィードバックされ、変位検出信号と駆動信号と偏差が上述したように演算される。   The displacement of the specimen SP is detected by the displacement meter 5 and amplified by the amplifier 6. The displacement detection signal is converted into a digital signal by the A / D converter 7 and fed back to the control device 20, and the displacement detection signal, the drive signal, and the deviation are calculated as described above.

駆動信号生成部25における分割駆動信号の継ぎ合わせ処理について図4および図5を参照して説明する。図4(a)は、重複時間を設けた実振動波形の分割を説明するための図であり、図4(b)は、分割した実振動波形より算出した分割駆動信号を説明するための図である。図4(c)は、分割駆動信号を継ぎ合わせた駆動信号を説明するための図であり、図4(d)は重複時間を設けずに分割された実振動波形から算出された分割駆動信号を説明するための図である。   The split drive signal joining process in the drive signal generation unit 25 will be described with reference to FIGS. 4 and 5. FIG. FIG. 4A is a diagram for explaining the division of the actual vibration waveform with the overlap time, and FIG. 4B is a diagram for explaining the divided drive signal calculated from the divided actual vibration waveform. It is. FIG. 4C is a diagram for explaining a drive signal obtained by joining the divided drive signals, and FIG. 4D is a divided drive signal calculated from the actual vibration waveform divided without providing an overlap time. It is a figure for demonstrating.

実振動波形Mと精度よく一致した振動を供試体SPに与えるために、実振動波形Mは、時刻t1から時刻t3、時刻t2から時刻t5および時刻t4から時刻t6に分割される。このような振動波形の分割処理により、各区間を精度よく近似式で表すことが可能となる。時刻t1から時刻t3の時間における実振動波形を実振動波形M1とし、時刻t2から時刻t5の時間における実振動波形を実振動波形M2とし、時刻t4から時刻t6の時間における実振動波形を実振動波形M3とする。実振動波形M1と実振動波形M2とは、時刻t2から時刻t3の時間で重複している。実振動波形M2と実振動波形M3とは、時刻t4から時刻t5の時間で重複している。重複時間(たとえば、t2〜t3)は分割されている時間(たとえば、t2〜t5)の約20%の時間である。   In order to provide the specimen SP with a vibration that matches the actual vibration waveform M with high accuracy, the actual vibration waveform M is divided from time t1 to time t3, from time t2 to time t5, and from time t4 to time t6. By virtue of such vibration waveform division processing, each section can be accurately represented by an approximate expression. The actual vibration waveform from time t1 to time t3 is the actual vibration waveform M1, the actual vibration waveform from time t2 to time t5 is the actual vibration waveform M2, and the actual vibration waveform from time t4 to time t6 is the actual vibration. The waveform is M3. The actual vibration waveform M1 and the actual vibration waveform M2 overlap at the time from time t2 to time t3. The actual vibration waveform M2 and the actual vibration waveform M3 overlap from time t4 to time t5. The overlap time (eg, t2 to t3) is about 20% of the divided time (eg, t2 to t5).

図3(b)に示すように、分割した実振動波形M1〜M3のそれぞれに逆伝達関数を乗じて分割駆動信号D11,D21,D31が算出される。分割駆動信号D11は実振動波形M1から算出された駆動信号であり、分割駆動信号D21は実振動波形M2から算出された駆動信号であり、分割駆動信号D31は実振動波形M3から算出された駆動信号である。   As shown in FIG. 3B, the divided drive signals D11, D21, and D31 are calculated by multiplying each of the divided actual vibration waveforms M1 to M3 by the inverse transfer function. The divided drive signal D11 is a drive signal calculated from the actual vibration waveform M1, the divided drive signal D21 is a drive signal calculated from the actual vibration waveform M2, and the divided drive signal D31 is a drive calculated from the actual vibration waveform M3. Signal.

次に、実振動波形M1と実振動波形M2の重複時間である時刻t2から時刻t3までの間の分割駆動信号D11と分割駆動信号D21とを比較して、2つの分割駆動信号D11,D21が最初に一致する時刻、または最も近接する時刻t7を検出する。また、実振動波形M2と実振動波形M3の重複時間である時刻t4から時刻t5までの間の分割駆動信号D21と分割駆動信号D31とを比較して、2つの分割駆動信号D21,D31が最初に一致する時刻または最も近接する時刻t8を検出する。   Next, the divided drive signal D11 and the divided drive signal D21 between time t2 and time t3, which are overlapping times of the actual vibration waveform M1 and the actual vibration waveform M2, are compared, and two divided drive signals D11 and D21 are obtained. The first matching time or the closest time t7 is detected. Further, the divided drive signal D21 and the divided drive signal D31 between the time t4 and the time t5, which are overlapping times of the actual vibration waveform M2 and the actual vibration waveform M3, are compared, and the two divided drive signals D21 and D31 are the first. Or the closest time t8 is detected.

図4(c)に示すように、時刻t7になると分割駆動信号D11から分割駆動信号D21に切り替わるように、時刻t8になると分割駆動信号D21から分割駆動信号D31に切り替わるように分割駆動信号を継ぎ合わせる。すべての分割駆動信号の継ぎ合わせ処理が完了すると、分割駆動信号を継ぎ合わせた駆動信号を不図示の記憶部に格納しておく。試験開始の指示により、記憶部の駆動信号を油圧アクチュエータ1に出力して、疲労試験を行う。   As shown in FIG. 4C, the divided drive signal is switched so that the divided drive signal D11 is switched to the divided drive signal D21 at time t7, and the divided drive signal D21 is switched to the divided drive signal D31 at time t8. Match. When the process of joining all the divided drive signals is completed, the drive signal obtained by joining the divided drive signals is stored in a storage unit (not shown). In response to a test start instruction, a drive signal of the storage unit is output to the hydraulic actuator 1 to perform a fatigue test.

ここで、分割駆動信号D11の出力が終了する終了点Aと分割駆動信号D21の出力が開始する開始点Bとは一致または近接しており、分割駆動信号D21の出力が終了する終了点Cと分割駆動信号D31の出力が開始する開始点Dとは一致または近接している。したがって、駆動信号を油圧アクチュエータ1に出力しても、分割駆動信号の継ぎ目で供試体SPに対する衝撃は発生しない。   Here, the end point A at which the output of the divided drive signal D11 ends and the start point B at which the output of the divided drive signal D21 starts match or are close to each other, and the end point C at which the output of the divided drive signal D21 ends. It coincides with or is close to the start point D where the output of the divided drive signal D31 starts. Therefore, even if the drive signal is output to the hydraulic actuator 1, no impact is generated on the specimen SP at the joint of the divided drive signals.

比較のために、重複部分を設けないで実振動波形Mを分割し、分割した実振動波形より算出した分割駆動信号を継ぎ合わせて生成した駆動信号について、図4(d)を参照して説明する。ここで、実振動波形Mは時刻t1から時刻t2までの時間、時刻t2から時刻t4までの時間および時刻t4から時刻t6までの時間で分割されたものとする。分割された実振動波形より分割駆動信号D12,D22,D32が算出されたものとする。   For comparison, a drive signal generated by dividing the actual vibration waveform M without providing an overlapping portion and joining the divided drive signals calculated from the divided actual vibration waveforms will be described with reference to FIG. To do. Here, it is assumed that the actual vibration waveform M is divided by the time from time t1 to time t2, the time from time t2 to time t4, and the time from time t4 to time t6. It is assumed that divided drive signals D12, D22, and D32 are calculated from the divided actual vibration waveforms.

分割駆動信号D12,D22,D32を継ぎ合わせると、時刻t2になると駆動信号が分割駆動信号D12から分割駆動信号D22に切り替わる。また、時刻t4になると駆動信号が分割駆動信号D22から分割駆動信号D32に切り替わる。   When the divided drive signals D12, D22, and D32 are joined together, the drive signal is switched from the divided drive signal D12 to the divided drive signal D22 at time t2. At time t4, the drive signal is switched from the divided drive signal D22 to the divided drive signal D32.

ここで、分割駆動信号D12の出力が終了する終了点Eと分割駆動信号D22の出力が開始する開始点Fとは不連続であり、分割駆動信号D22の出力が終了する終了点Gと駆動信号D32の出力が開始する開始点Hとも不連続である。したがって、駆動信号を油圧アクチュエータ1に出力すると、分割駆動信号の継ぎ目で大きな衝撃が供試体SPに発生する。   Here, the end point E where the output of the divided drive signal D12 ends and the start point F where the output of the divided drive signal D22 starts are discontinuous, and the end point G where the output of the divided drive signal D22 ends and the drive signal The starting point H where the output of D32 starts is also discontinuous. Therefore, when the drive signal is output to the hydraulic actuator 1, a large impact is generated in the specimen SP at the joint of the divided drive signals.

図4(d)の分割駆動信号の継ぎ目における衝撃を緩和する方法として、図5に示すように、分割駆動信号の間に補間信号を設けて継ぎ合わせる方法がある。ここで、図5(a)は実振動波形Mの分割を説明するための図であり、実振動波形Mは時刻t2,t4,t6で分割されている。図5(b)は分割駆動信号を説明するための図であり、図4(d)と同じ図である。図5(c)に示すように、分割駆動信号D12と分割駆動信号D22との間に補間信号HK1を設け、分割駆動信号D22と分割駆動信号D32との間に補間信号HK2を設け、分割駆動信号を継ぎ合わせる。終了点Eと開始点Fとを補間信号HK1で継ぎ合わせることによって変動は緩やかになり、終了点Gと開始点Hとを補間信号HK2で継ぎ合わせることによって変動は緩やかになる。したがって、駆動信号を油圧アクチュエータ1に出力しても分割駆動信号の継ぎ目で衝撃は発生しない。しかし、図5(a)と図5(c)を比較してわかるように、このような補間信号HK1,HK2を設けて継ぎ合わせると、補間区間の時間だけ試験時間が長くなる。   As a method of alleviating the impact at the joint of the divided drive signals in FIG. 4D, there is a method of joining together by providing an interpolation signal between the divided drive signals as shown in FIG. Here, FIG. 5A is a diagram for explaining division of the actual vibration waveform M, and the actual vibration waveform M is divided at times t2, t4, and t6. FIG. 5B is a diagram for explaining the divided drive signal, which is the same diagram as FIG. As shown in FIG. 5C, an interpolation signal HK1 is provided between the divided drive signal D12 and the divided drive signal D22, and an interpolation signal HK2 is provided between the divided drive signal D22 and the divided drive signal D32. Seaming signals. The variation is moderated by joining the end point E and the start point F with the interpolation signal HK1, and the variation is moderated by stitching the end point G and the start point H with the interpolation signal HK2. Therefore, even if the drive signal is output to the hydraulic actuator 1, no impact is generated at the joint of the divided drive signals. However, as can be seen by comparing FIG. 5A and FIG. 5C, when such interpolation signals HK1 and HK2 are provided and joined together, the test time becomes longer by the time of the interpolation interval.

以上の実施形態による疲労試験機では次のような手順により駆動信号を生成する。
(1)重複時間を設けて実振動波形Mを所定時間ごとに分割する。(2)それぞれ分割した実振動波形M1,M2,M3から分割駆動信号D11,D21,D31を算出する。(3)重複時間t2〜t3(t4〜t5)において重複する2つの分割駆動信号D11,D21(D21,D31)が一致する時刻または最も近接する時刻t7(t8)を検出し、その検出した時刻t7(t8)においてそれぞれ分割駆動信号D11(D21)から分割駆動信号D21(31)に切り替えるように分割駆動信号D11,D21,D31を継ぎ合わせる。
In the fatigue testing machine according to the above embodiment, a drive signal is generated by the following procedure.
(1) The actual vibration waveform M is divided every predetermined time by providing an overlap time. (2) The divided drive signals D11, D21, and D31 are calculated from the divided actual vibration waveforms M1, M2, and M3. (3) The time at which the two divided drive signals D11, D21 (D21, D31) coincide in the overlapping time t2 to t3 (t4 to t5) or the closest time t7 (t8) is detected, and the detected time At t7 (t8), the divided drive signals D11, D21, and D31 are joined together so as to switch from the divided drive signal D11 (D21) to the divided drive signal D21 (31).

したがって、各区間の駆動信号は連続して継ぎ合わすことができ、または、不連続になっても変化が小さいため、供試体に強い衝撃が加わらない。   Therefore, the drive signals in each section can be continuously spliced, or even if they become discontinuous, the change is small, so that a strong impact is not applied to the specimen.

以上の実施の形態の疲労試験機を次のように変形することができる。
(1)以上では、1台の油圧アクチュエータを使用した1軸車両用疲労試験機について説明したが、2軸、3軸の車両用疲労試験機においても、各軸に上述したものと同様に本発明を適用できる。
The fatigue testing machine of the above embodiment can be modified as follows.
(1) In the above, a single-axis vehicle fatigue tester using a single hydraulic actuator has been described. However, in a 2-axis and 3-axis vehicle fatigue tester, each axis is the same as described above. The invention can be applied.

(2)重複時間において、2つの駆動信号が一致する場合、最初に一致した時間に駆動信号が切り替わるように駆動信号を継ぎ合わせたが、最初に一致した時間に限定されない。たとえば、2つの駆動信号が一致する時間のうち、重複時間の真ん中の時間に最も近い時間に切り替わるように駆動信号を継ぎ合わせてもよい。 (2) When two drive signals coincide in the overlap time, the drive signals are spliced together so that the drive signals are switched at the first coincidence time, but is not limited to the first coincidence time. For example, the drive signals may be spliced together so that the time when the two drive signals coincide with each other is switched to the time closest to the middle time of the overlap time.

(3)車両用疲労試験機に限定されず、各種の形式の疲労試験機にも本発明を適用できる。 (3) The present invention is not limited to a vehicle fatigue tester, and can be applied to various types of fatigue testers.

図1は、疲労試験機の一実施の形態を説明するブロック図。FIG. 1 is a block diagram illustrating an embodiment of a fatigue testing machine. 図2は、図1の疲労試験機における制御装置の詳細を示すブロック図。FIG. 2 is a block diagram showing details of a control device in the fatigue testing machine of FIG. 1. 図3は、図2の逆伝達関数演算部の詳細を示すブロック図。FIG. 3 is a block diagram showing details of an inverse transfer function calculation unit in FIG. 2. 図4(a)は重複時間を設けて分割した実振動波形を示す図であり、図4(b)は分割された実振動波形より算出された分割駆動信号を示す図であり、図4(c)は分割駆動信号を継ぎ合わせた駆動信号を示す図であり、図4(d)は重複時間を設けずに分割された実振動波形から算出された駆動信号を示す図である。FIG. 4A is a diagram showing an actual vibration waveform divided by providing an overlap time, and FIG. 4B is a diagram showing a divided drive signal calculated from the divided actual vibration waveform. FIG. 4C is a diagram illustrating a drive signal obtained by joining divided drive signals, and FIG. 4D is a diagram illustrating a drive signal calculated from an actual vibration waveform divided without providing an overlap time. 図5(a)は重複時間を設けずに分割した実振動波形を示す図であり、図5(b)は重複時間を設けずに分割された実振動波形から算出された分割駆動信号を示す図であり、図5(c)は補間信号を設けて分割駆動信号を継ぎ合わせた駆動信号を示す図である。FIG. 5A is a diagram showing an actual vibration waveform divided without providing an overlapping time, and FIG. 5B shows a divided drive signal calculated from the actual vibration waveform divided without providing an overlapping time. FIG. 5C is a diagram showing a drive signal obtained by providing an interpolation signal and joining the divided drive signals.

符号の説明Explanation of symbols

1 油圧アクチュエータ 20 制御装置
21 実振動波形生成回路 22 実振動波形分割部
23 逆伝達関数記憶部 24 乗算器
25 駆動信号生成部 26 スイッチ
27 偏差器 28 逆伝達関数演算部
SP 供試体
DESCRIPTION OF SYMBOLS 1 Hydraulic actuator 20 Control apparatus 21 Actual vibration waveform generation circuit 22 Actual vibration waveform division | segmentation part 23 Reverse transfer function memory | storage part 24 Multiplier 25 Drive signal generation part 26 Switch 27 Deviation device 28 Reverse transfer function calculating part SP Test piece

Claims (2)

実振動波形に逆伝達関数を乗じて生成された駆動信号により負荷アクチュエータを駆動して供試体に負荷を与えるようにした疲労試験機であって、
前記実振動波形を分割する波形分割手段と、
前記分割された実振動波形と逆伝達関数とにより分割駆動信号を生成する分割駆動信号生成手段と、
前記分割駆動信号を継ぎ合わせて前記駆動信号を生成する駆動信号生成手段とを備え、
前記波形分割手段は、重複時間を設けて前記実振動波形を分割し、
前記駆動信号生成手段は、前記重複時間において、2つの分割駆動信号が一致する時刻、または最も近接する時刻で前記分割駆動信号を継ぎ合わせて前記駆動信号を生成することを特徴とする疲労試験機。
A fatigue testing machine in which a load actuator is driven by a drive signal generated by multiplying an actual vibration waveform by an inverse transfer function to apply a load to a specimen,
Waveform dividing means for dividing the actual vibration waveform;
Divided drive signal generating means for generating a divided drive signal based on the divided actual vibration waveform and the inverse transfer function;
Drive signal generation means for generating the drive signal by joining the divided drive signals;
The waveform dividing means divides the actual vibration waveform by providing an overlap time,
The fatigue testing machine characterized in that the drive signal generating means generates the drive signal by joining the divided drive signals at the time when two divided drive signals coincide with each other or at the closest time in the overlap time. .
実振動波形に逆伝達関数を乗じて駆動信号を生成する駆動信号生成装置であって、
前記実振動波形を分割する波形分割手段と、
前記分割された実振動波形と逆伝達関数とにより分割駆動信号を生成する分割駆動信号生成手段と、
前記分割駆動信号を継ぎ合わせて前記駆動信号を生成する駆動信号生成手段とを備え、
前記実振動波形分割手段は、重複時間を設けて前記実振動波形を分割し、
前記駆動信号生成手段は、前記重複時間において、2つの分割駆動信号が一致する時刻、または最も近接する時刻で前記分割駆動信号を継ぎ合わせて前記駆動信号を生成することを特徴とする駆動信号生成装置。
A drive signal generation device that generates a drive signal by multiplying an actual vibration waveform by an inverse transfer function,
Waveform dividing means for dividing the actual vibration waveform;
Divided drive signal generating means for generating a divided drive signal based on the divided actual vibration waveform and the inverse transfer function;
Drive signal generation means for generating the drive signal by joining the divided drive signals;
The actual vibration waveform dividing means divides the actual vibration waveform by providing an overlap time,
The drive signal generation means generates the drive signal by splicing the divided drive signals at a time when two divided drive signals coincide with each other or at the closest time in the overlap time. apparatus.
JP2008285106A 2008-11-06 2008-11-06 Fatigue testing machine and drive signal generator Active JP4844618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285106A JP4844618B2 (en) 2008-11-06 2008-11-06 Fatigue testing machine and drive signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008285106A JP4844618B2 (en) 2008-11-06 2008-11-06 Fatigue testing machine and drive signal generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005010696U Continuation JP3119611U (en) 2005-12-16 2005-12-16 Fatigue testing machine and drive signal generator

Publications (2)

Publication Number Publication Date
JP2009058522A JP2009058522A (en) 2009-03-19
JP4844618B2 true JP4844618B2 (en) 2011-12-28

Family

ID=40554359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285106A Active JP4844618B2 (en) 2008-11-06 2008-11-06 Fatigue testing machine and drive signal generator

Country Status (1)

Country Link
JP (1) JP4844618B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146401B2 (en) * 2009-05-18 2013-02-20 株式会社島津製作所 Material testing machine
JP5397262B2 (en) * 2010-02-22 2014-01-22 株式会社島津製作所 Vibration test equipment
JP5353808B2 (en) * 2010-04-23 2013-11-27 株式会社島津製作所 Fatigue testing machine
JP5956909B2 (en) * 2012-10-31 2016-07-27 株式会社鷺宮製作所 Test apparatus and test apparatus control method
JP6939510B2 (en) 2017-12-20 2021-09-22 株式会社島津製作所 Signal processing method and material tester
JP7306926B2 (en) * 2019-09-09 2023-07-11 Kyb株式会社 Vibration test equipment
JP2024035564A (en) * 2022-09-02 2024-03-14 株式会社鷺宮製作所 Testing system and control method for testing system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259638A (en) * 1988-08-25 1990-02-28 Mitsubishi Heavy Ind Ltd Compensating method for input of vibration tester
JP3123784B2 (en) * 1991-10-02 2001-01-15 本田技研工業株式会社 3D shaking table
JP3901910B2 (en) * 2000-04-21 2007-04-04 三菱重工業株式会社 Driving method of vibration test apparatus and vibration test apparatus
JP4105492B2 (en) * 2002-07-22 2008-06-25 株式会社鷺宮製作所 Load test system and load test method

Also Published As

Publication number Publication date
JP2009058522A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4844618B2 (en) Fatigue testing machine and drive signal generator
CN103650331B (en) For estimating the inductance of motor and/or the method and system of magnetic flux chain
JP4885245B2 (en) RD converter and angle detection device
JP2018004504A (en) Multi-axis vibration control device
US10025296B2 (en) Servo control apparatus having function of obtaining frequency characteristics of machine on line
JP5420621B2 (en) Non-Gaussian vibration control device
JP6518631B2 (en) Non-Gaussian Vibration Controller
JP3119611U (en) Fatigue testing machine and drive signal generator
CN105340173A (en) Motor control device
Gozen et al. A method for open-loop control of dynamic motions of piezo-stack actuators
JP5421971B2 (en) Non-Gaussian vibration controller
JP4765759B2 (en) Fatigue testing machine
CN106786675B (en) Power system stabilizer and implementation method thereof
US11724391B2 (en) Method and apparatus for determining status of a robot
JP3119610U (en) Fatigue testing machine and inverse transfer function computing device
JP2008286580A (en) Power testing system
JP4700485B2 (en) Arithmetic apparatus and test apparatus
EP3923091B1 (en) Control device and control program
JP2011017729A (en) Resonance frequency detector
JP3138717U (en) Resonant frequency detector
JP5353808B2 (en) Fatigue testing machine
JP3138716U (en) Test equipment
JP6011076B2 (en) Fatigue testing machine and driving waveform correction method
JP6039918B2 (en) Test apparatus and test apparatus control method
JP2015072242A (en) Control device of test device and control method of test device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4844618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3