JP4839830B2 - Oriented electrical steel sheet with excellent magnetostrictive properties - Google Patents

Oriented electrical steel sheet with excellent magnetostrictive properties Download PDF

Info

Publication number
JP4839830B2
JP4839830B2 JP2005373896A JP2005373896A JP4839830B2 JP 4839830 B2 JP4839830 B2 JP 4839830B2 JP 2005373896 A JP2005373896 A JP 2005373896A JP 2005373896 A JP2005373896 A JP 2005373896A JP 4839830 B2 JP4839830 B2 JP 4839830B2
Authority
JP
Japan
Prior art keywords
coating
steel sheet
electrical steel
film
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005373896A
Other languages
Japanese (ja)
Other versions
JP2007177260A (en
Inventor
山口  広
高島  稔
多津彦 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005373896A priority Critical patent/JP4839830B2/en
Publication of JP2007177260A publication Critical patent/JP2007177260A/en
Application granted granted Critical
Publication of JP4839830B2 publication Critical patent/JP4839830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、変圧器や発電器の鉄心等に利用される方向性電磁鋼板に関するものであり、中でも、例えば、低騒音トランス用の、磁歪特性に優れる方向性電磁鋼板に関するものである。   The present invention relates to a grain-oriented electrical steel sheet used for iron cores of transformers and generators, and more particularly to a grain-oriented electrical steel sheet having excellent magnetostriction characteristics, for example, for a low-noise transformer.

方向性電磁鋼板は変圧器やその他の電気機器用鉄心素材として利用され、磁気特性に優れること、中でも鉄損の低いことが要求される。また、近年は、電力需要の増大に伴い多数の変圧器が都市内に設置されるようになってきており、環境重視の風潮から鉄心材料から発せられる騒音の低減が求められている。この騒音の原因としては、電磁力によるコイルの振動、磁気吸引力による鉄心の継ぎ目や層間の振動、電磁鋼板自身の磁歪振動などが挙げられる。なお、磁歪振動とは、方向性電磁鋼板を交流で励磁した時に、鋼板の圧延方向に見られる伸縮運動のことである。   The grain-oriented electrical steel sheet is used as a core material for transformers and other electrical equipment, and is required to have excellent magnetic properties, particularly low iron loss. In recent years, with the increase in power demand, a large number of transformers have been installed in cities, and there has been a demand for reduction of noise emitted from iron core materials due to environmentally conscious trends. The causes of this noise include coil vibration due to electromagnetic force, iron core joints and interlayer vibration due to magnetic attractive force, and magnetostrictive vibration of the electromagnetic steel sheet itself. Magnetostrictive vibration is a stretching motion seen in the rolling direction of a steel sheet when a grain-oriented electrical steel sheet is excited with an alternating current.

上記に対して、鉄心材料からの騒音を低減する方法として、トランス設計の観点からは、鉄心の設計磁束密度を下げて磁歪振動を抑制する方法(例えば、特許文献1)が、あるいは、遮音ケースに挿入して直接的に騒音を低減したりする方法(例えば、特許文献2)が挙げられる。   In contrast to the above, as a method of reducing noise from the iron core material, from the viewpoint of transformer design, a method of suppressing magnetostriction vibration by lowering the design magnetic flux density of the iron core (for example, Patent Document 1) or a sound insulation case (For example, Patent Document 2) in which the noise is directly reduced by inserting it into the cable.

材料の観点からは、方向性電磁鋼板に施されている被膜の張力を上げることで、鉄損低減だけでなく、磁歪振動の低減を達成する方法が特許文献3に記載されている。張力付与型被膜による鉄損低減効果はよく知られており、磁区幅が減少する磁区細分化効果に依存する。磁歪特性に対しては、圧延方向と直角の90度磁区をも減少させるため、励磁していない状態での磁歪特性に有効である。
しかしながら、張力付与下での励磁挙動の観察から、磁歪振動の主原因となる90度磁区は励磁過程で一旦増加した後、消失することが明らかとなり、実使用条件下では張力付与型被膜が一概に磁歪特性、すなわちトランスの騒音改善には有益とはいえないことがわかってきた。
この張力付与型被膜は、被膜と鋼板との熱膨張係数の差を利用して鋼板に張力を付与しており、その張力発生原理から熱膨張係数が小さく、大きなヤング率を有する物質が張力付与型被膜の特性としては有利である。また、磁歪振動抑制の観点からは、被膜は厚いほどその効果は大きくなると考えられる。しかし、厚すぎる場合には、焼付け時にコーティング内部で発生した水蒸気の外部への排出が阻害され、被膜にふくれと呼ばれるふくらみ状の欠陥や穴欠陥を生じやすくなるという問題を有している。
From the viewpoint of materials, Patent Document 3 describes a method of achieving not only reduction of iron loss but also reduction of magnetostriction vibration by increasing the tension of the coating applied to the grain-oriented electrical steel sheet. The effect of reducing the iron loss by the tension-applying coating is well known and depends on the magnetic domain refinement effect in which the magnetic domain width decreases. For the magnetostrictive characteristics, the 90-degree magnetic domain perpendicular to the rolling direction is also reduced, which is effective for the magnetostrictive characteristics in an unexcited state.
However, from the observation of the excitation behavior under tension, it became clear that the 90-degree magnetic domain, which is the main cause of magnetostrictive vibration, once increased during the excitation process and then disappeared. In particular, it has been found that it is not beneficial for improving magnetostriction characteristics, that is, transformer noise.
This tension-imparting film applies tension to the steel sheet by utilizing the difference in thermal expansion coefficient between the film and the steel sheet, and because of the tension generation principle, a material with a small Young's modulus is imparted with tension. The properties of the mold coating are advantageous. From the viewpoint of suppressing magnetostrictive vibration, it is considered that the thicker the coating, the greater the effect. However, if it is too thick, there is a problem that the discharge of water vapor generated inside the coating during baking is hindered, and a bulge-like defect called a blister or a hole defect tends to occur in the coating.

これに対して、特許文献4には、焼付け時の昇温速度を制御してふくれを防止する技術が、特許文献5には、コーティングを2回繰り返し行うことにより磁歪振動や歪感受性を低減する技術が開示されている。しかしながら、いずれの技術においても、被膜が厚くなると磁歪振動の減少には有利であるものの、依然としてふくれが発生し、占積率が低下するという問題を生じている。
特開昭47-28419号公報 特開昭48-83329号公報 特公昭59-17521号公報 特開平5-1387号公報 特開平11-158645号公報
In contrast, Patent Document 4 discloses a technique for preventing blistering by controlling the temperature rising rate during baking, and Patent Document 5 reduces magnetostriction vibration and strain sensitivity by performing coating twice. Technology is disclosed. However, in any of these techniques, a thick coating is advantageous for reducing magnetostriction vibration, but still causes blistering and a decrease in the space factor.
JP 47-28419 A JP 48-83329 A Japanese Patent Publication No.59-17521 Japanese Patent Laid-Open No. 5-1387 Japanese Patent Laid-Open No. 11-158645

本発明は、かかる事情に鑑み、好適な被膜を被成することにより、磁歪特性に優れる方向性電磁鋼板を提案することを目的とする。   In view of such circumstances, an object of the present invention is to propose a grain-oriented electrical steel sheet that is excellent in magnetostriction characteristics by forming a suitable film.

発明者らは、被膜の物性と磁歪および騒音との関係について詳細に調査、検討を行った。その結果、平均密度と硬度を高めた被膜を電磁鋼板上に形成することにより磁歪特性に優れる方向性電磁鋼板が得られることを見出した。   The inventors investigated and examined in detail the relationship between the physical properties of the coating, magnetostriction, and noise. As a result, it has been found that a grain-oriented electrical steel sheet having excellent magnetostriction characteristics can be obtained by forming a film having an increased average density and hardness on the electrical steel sheet.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
方向性電磁鋼板の表面にフォルステライトを主体とする無機鉱物質被膜を有し、さらに、該無機鉱物質被膜の上層に、平均密度が3.1g/cm3以上で平均硬度が15GPa以上の被膜を有することを特徴とする磁歪特性に優れる方向性電磁鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
The surface of the grain-oriented electrical steel sheet has an inorganic mineral coating mainly composed of forsterite, and further, a coating having an average density of 3.1 g / cm 3 or more and an average hardness of 15 GPa or more is formed on the upper layer of the inorganic mineral coating. A grain-oriented electrical steel sheet having excellent magnetostrictive characteristics, characterized by comprising:

本発明によれば、磁歪特性に優れる方向性電磁鋼板が得られる。そして、本発明の方向性電磁鋼板を用いることにより、例えば、トランスの低騒音化がもたらされる等、環境および産業に与えるメリットは非常に大きい。   According to the present invention, a grain-oriented electrical steel sheet having excellent magnetostrictive properties can be obtained. The use of the grain-oriented electrical steel sheet according to the present invention has a great merit for the environment and industry, for example, a reduction in transformer noise.

以下、本発明について詳細に説明する。
本発明は、方向性電磁鋼板の表面にフォルステライトを主体とする無機鉱物質被膜を有し、さらに、該無機鉱物質被膜の上層に、平均密度が3.1g/cm3以上で平均硬度が15GPa以上の被膜を有することを特徴とする。このように、平均密度と硬度を高めた被膜を電磁鋼板上に形成することにより磁歪特性に優れる方向性電磁鋼板が得られることになる。
Hereinafter, the present invention will be described in detail.
The present invention has an inorganic mineral coating mainly composed of forsterite on the surface of a grain-oriented electrical steel sheet, and further has an average density of 3.1 g / cm 3 or more and an average hardness of 15 GPa on the upper layer of the inorganic mineral coating. It has the above film. Thus, a directional electrical steel sheet having excellent magnetostriction characteristics can be obtained by forming a film having an increased average density and hardness on the electrical steel sheet.

まず、上記で用いる鋼板について説明する。本発明で用いることができる被膜を形成する前の鋼板は、方向性電磁鋼板であり、比抵抗を変化させて所望の磁気特性を得るために調整された鋼板(鉄板)であればどのような組成の鋼板でもよく、特に制限されない。以下に望ましい成分組成の一例を挙げる。この発明で使用される鋼板の成分としては、Siを1.5〜7.0%、Mnを0.03〜2.5%含有させることが望ましい。すなわち、SiやMnは製品の電気抵抗を高め、鉄損を低減するのに有効な成分であるが、Siは7.0%を超えると硬度が高くなり製造や加工が困難になりがちであり、Mnは2.5%を超えると熱処理時γ変態を誘起して磁気特性を劣化させる可能性がある。また、鋼中には、上記の元素の他に公知の方向性電磁鋼板の製造に適するインヒビター成分としてAl、B、Bi、Sb、Mo、Te、Sn、P、Ge、As、Nb、Cr、Ti、Cu、Pb、ZnおよびInなどが知られていて、これらの元素を単独、または複合で含有させることができる。さらに、C、S、Nなどの不純物はいずれも、磁気特性上有害な作用があり、特に鉄損を劣化させるので、それぞれC:0.003wt%以下、S:0.002wt%以下、N:0.002wt%以下とすることが好ましい。   First, the steel plate used above will be described. The steel plate before forming the coating that can be used in the present invention is a grain-oriented electrical steel plate, and any steel plate (iron plate) adjusted to obtain a desired magnetic property by changing the specific resistance. A steel plate having a composition may be used and is not particularly limited. An example of a desirable component composition is given below. As the components of the steel plate used in the present invention, it is desirable to contain 1.5 to 7.0% Si and 0.03 to 2.5% Mn. In other words, Si and Mn are effective components to increase the electrical resistance of the product and reduce iron loss.However, if Si exceeds 7.0%, the hardness tends to be high and manufacturing and processing tend to be difficult. If it exceeds 2.5%, it may induce γ transformation during heat treatment and degrade the magnetic properties. In addition to the above elements, the steel contains Al, B, Bi, Sb, Mo, Te, Sn, P, Ge, As, Nb, Cr, as inhibitor components suitable for the production of known grain-oriented electrical steel sheets. Ti, Cu, Pb, Zn, and In are known, and these elements can be contained alone or in combination. Furthermore, impurities such as C, S, and N all have harmful effects on the magnetic properties, and particularly deteriorate iron loss, so C: 0.003 wt% or less, S: 0.002 wt% or less, N: 0.002 wt%, respectively. % Or less is preferable.

次いで、上記方向性電磁鋼板の表面にフォルステライトを主体とする無機鉱物質被膜を形成する。
最終仕上焼鈍後の方向性電磁鋼板表面には、フォルステライト被膜を有することが重要であり、本発明では、通常用いられるフォルステライトを有する最終仕上げ焼鈍板をそのまま用いることができる。電気メッキ法により被膜を被成する場合、フォルステライトが存在するとしても通電可能な程度に抵抗値が低ければ良い。溶融メッキ法や無電解メッキ法で金属被膜を被成する場合には特に問題なく被膜を形成できる。
Next, an inorganic mineral film mainly composed of forsterite is formed on the surface of the grain-oriented electrical steel sheet.
It is important to have a forsterite film on the surface of the grain-oriented electrical steel sheet after the final finish annealing. In the present invention, a final finish annealing plate having forsterite that is usually used can be used as it is. When the coating is formed by electroplating, it is sufficient that the resistance value is low enough to allow energization even if forsterite is present. When a metal coating is formed by hot dipping or electroless plating, the coating can be formed without any particular problem.

さらに、本発明では該無機鉱物質被膜の上層に、平均密度が3.1g/cm3以上で平均硬度が15GPa以上の被膜を形成する。これは本発明において最も重要な要件であり、以下に、平均密度が3.1g/cm3以上で平均硬度が15GPa以上の被膜を形成するに至った経緯について詳細に説明する。 Furthermore, in the present invention, a coating having an average density of 3.1 g / cm 3 or more and an average hardness of 15 GPa or more is formed on the upper layer of the inorganic mineral coating. This is the most important requirement in the present invention, and the details of the formation of a film having an average density of 3.1 g / cm 3 or more and an average hardness of 15 GPa or more will be described in detail below.

3%Siを含有する最終板厚0.23mmの方向性電磁鋼板に対して、通常のMgOを主体とする焼鈍分離剤を用いて最終仕上焼鈍を行い、フォルステライト被膜を有する鋼板を得た。次いで、得られたフォルステライト被膜を有する鋼板のさらに上層に、種々の酸化物、窒化物、炭化物、金属等からなる被膜を各々1μm被成し、上層の被膜物が異なる方向性電磁鋼板を数種類作成した。なお、上記被膜を形成するにあたって、上層の被膜物が酸化物の場合は主に酸化物コロイドを用いた塗布法を、上層の被膜物が窒化物、炭化物の場合はCVDまたはPVD法を、上層の被膜物が金属の場合はめっき法をそれぞれ用いた。   A final steel sheet having a forsterite coating was obtained by subjecting the grain oriented electrical steel sheet containing 3% Si to a final sheet thickness of 0.23 mm using an ordinary annealing separator mainly composed of MgO. Next, on the upper layer of the obtained steel plate with forsterite coating, 1 μm each of coatings made of various oxides, nitrides, carbides, metals, etc. were deposited, and several types of grain-oriented electrical steel sheets with different upper layer coatings Created. When forming the above film, if the upper film is an oxide, the coating method using mainly an oxide colloid is used. If the upper film is a nitride or carbide, the upper layer is formed by the CVD or PVD method. In the case where the coating material was a metal, a plating method was used.

被膜の評価については薄膜ゆえに、そのヤング率と平均硬度を原子間力顕徴鏡(AFM)のカンチレバーと圧子を利用したナノインデンテーション法にて評価し、密度については重量変化から算出した。なお、ここで、ナノインデンテーション法とは、圧子(インデンタ)を測定材料(薄膜)表面に押し付けて荷重を準静的に変化させたときの荷重と圧子の位置(変位)を正確に測定することにより硬度及び弾性率を求めるものである。そして、この硬度(H)およびヤング率(E)は下記式で定義される。
H=Pmax/A …(1)
E=(√π/2√A)・dP/dh …(2)
(但し、Pm a x は最大荷重(最大変位時の荷重)、Aは最大荷重時の圧子の接触面積、hは圧子の変位(押し込み深さ)を示す。)具体的には、圧子を最大荷重まで測定材料表面に押し付け(loading)てから離す(unloading)までの荷重(Load)−変位(displacement)曲線において、unloadingでの最大荷重時の傾きをdP/dhとする。従って、最大荷重時の圧子の接触面積(A)を求めることができれば、荷重(Load)−変位(displacement)曲線から求めたPmax値及びdP/dh値と上記(1)、(2)式から硬度およびヤング率を求めることができる。なお、上記において、接触面積(A)を求める方法は限定されず公知のいかなる方法でもよい。
Since the coating was thin, its Young's modulus and average hardness were evaluated by the nanoindentation method using an atomic force microscope (AFM) cantilever and indenter, and the density was calculated from the change in weight. Here, the nanoindentation method accurately measures the load and the position (displacement) of the indenter when the load is changed quasi-statically by pressing the indenter against the surface of the measurement material (thin film). Thus, the hardness and elastic modulus are obtained. The hardness (H) and Young's modulus (E) are defined by the following formula.
H = Pmax / A (1)
E = (√π / 2√A) · dP / dh (2)
(However, Pmax is the maximum load (load at the maximum displacement), A is the contact area of the indenter at the maximum load, and h is the displacement (pushing depth) of the indenter.) Specifically, the maximum load is applied to the indenter. In the load-displacement curve from pressing to the surface of the measurement material until unloading, the slope at the maximum load in unloading is defined as dP / dh. Therefore, if the contact area (A) of the indenter at the maximum load can be obtained, the Pmax value and the dP / dh value obtained from the load (displacement) curve and the above formulas (1) and (2) are used. Hardness and Young's modulus can be determined. In the above, the method for obtaining the contact area (A) is not limited, and any known method may be used.

次いで、上記被膜を有する方向性電磁鋼板に対して、リン酸塩とコロイド状シリカを主成分とする絶縁被膜液をロールコーターにて種々の厚みに塗布し、800℃で1分の焼鈍を行い、供試材を作成した。   Next, to the grain-oriented electrical steel sheet having the above-mentioned coating, an insulating coating liquid mainly composed of phosphate and colloidal silica is applied in various thicknesses with a roll coater and annealed at 800 ° C. for 1 minute. A sample material was prepared.

得られた供試材について、磁束密度B=1.7T、周波数50Hzにおける磁歪特性を評価した。表1に得られた被膜の物性値と、磁歪特性評価結果を示す。なお、磁歪特性評価結果については、圧縮応力耐性として、磁歪−圧縮応力特性曲線のうち、圧縮付加応力σ=5.0MPa時の磁歪値入p-p値が2×10−6未満となる条件を○印、それ以上の値となる条件を×印で示している。 The obtained specimens were evaluated for magnetostriction characteristics at a magnetic flux density B = 1.7 T and a frequency of 50 Hz. Table 1 shows the physical property values of the film obtained and the magnetostriction property evaluation results. As for the magnetostrictive property evaluation results, as the compressive stress resistance, the condition that the magnetostrictive value input pp value when the compressive additional stress σ = 5.0 MPa is less than 2 × 10 −6 is included in the magnetostrictive-compressive stress characteristic curve. The conditions for values higher than that are indicated by x.

Figure 0004839830
Figure 0004839830

表1より、磁歪振動に対する圧縮応力耐性は密度および硬度と密接な関係があり、密度が3.1g/cm3以上でかつ硬度が15GPa以上となる被膜を用いることで磁歪振動に対する圧縮応力耐性すなわち磁歪特性が良好となることがわかる。また、一般的に(例えば特許第2664323号公報など)、鉄損の低減にはヤング率が高く、低熱膨張係数の物性が有利とされているが、磁歪特性を良好とし磁歪振動を抑制するにはヤング率よりもむしろ、密度および硬度が有効であることがわかる。例えば、TiO2やZnO2を被膜として用いた場合はSiNxよリヤング率、密度ともに大きい。にもかかわらず、TiO2やZnO2の硬度は15GPa未満であるため、磁歪特性は改善されない。またムライトのように、硬度が大きくても密度が3.1g/cm3未満の場合にも磁歪特性は改善されない。
以上の結果より、磁歪特性を良好とし磁歪振動を抑制するには、被膜の密度と硬度の両者を適切な範囲にすることが重要であり、本発明においては、平均密度が3.1g/cm3以上でかつ平均硬度が15GPa以上の被膜を有することとする。
From Table 1, compressive stress resistance to magnetostrictive vibration has a close relationship with density and hardness, and by using a coating having a density of 3.1 g / cm 3 or higher and a hardness of 15 GPa or higher, compressive stress resistance to magnetostrictive vibration, that is, magnetostriction. It turns out that a characteristic becomes favorable. In general (for example, Japanese Patent No. 2664323), the Young's modulus is high for reducing iron loss, and physical properties with a low coefficient of thermal expansion are advantageous. However, in order to improve magnetostriction characteristics and suppress magnetostriction vibration, It can be seen that density and hardness are effective rather than Young's modulus. For example, when TiO 2 or ZnO 2 is used as the coating, both the ReYoung's modulus and density are larger than those of SiNx. Nevertheless, since the hardness of TiO 2 and ZnO 2 is less than 15 GPa, the magnetostriction characteristics are not improved. Also, as in mullite, even if the hardness is large, the magnetostriction characteristics are not improved even when the density is less than 3.1 g / cm 3 .
From the above results, in order to improve the magnetostriction characteristics and suppress the magnetostrictive vibration, it is important to set both the density and hardness of the coating within an appropriate range. In the present invention, the average density is 3.1 g / cm 3. A film having an average hardness of 15 GPa or more is obtained.

かかる被膜の存在により磁歪特性が改善する明確な理由は定かではないが、励磁状態で生じる鋼板のミクロな磁性振動の増加に対して、高密度の被膜の慣性が大きいこと、そして、高硬度な被膜はかかる振動の増加を抑制する方向に作用すること、これらが磁歪特性が改善する理由と考えられる。   Although there is no clear reason why the magnetostriction characteristics are improved by the presence of such a coating, the inertia of the high-density coating is large with respect to the increase in micro magnetic vibration of the steel plate that occurs in the excited state, and the high hardness It is considered that the coating acts in a direction to suppress the increase in vibration, and that these are the reasons for improving the magnetostriction characteristics.

このように、無機鉱物質被膜の上層に、平均密度を3.1g/cm3でかつ平均硬度が15GPa以上の被膜を有することにより、すなわち、被膜密度と硬度を高めることにより、被膜の慣性を増し、励磁条件での磁歪振動を抑制させることが可能となる。 Thus, by having a film with an average density of 3.1 g / cm 3 and an average hardness of 15 GPa or more on the upper layer of the inorganic mineral film, that is, by increasing the film density and hardness, the inertia of the film is increased. It is possible to suppress magnetostrictive vibration under excitation conditions.

上記において、複数種の被膜を組み合わせた場合には、最終的に被膜を形成した時点での平均密度および平均硬度が本発明範囲内であればよい。例えば、金属メッキ法ならば分散粒子添加後の物性値であり、コロイド酸化物同士の混合であれば、混合、焼付け後の物性値を評価する必要がある。   In the above, when a plurality of types of coatings are combined, the average density and average hardness at the time when the coating is finally formed may be within the range of the present invention. For example, in the case of a metal plating method, it is a physical property value after adding dispersed particles, and in the case of mixing colloidal oxides, it is necessary to evaluate the physical property value after mixing and baking.

上記被膜の膜厚については、特に限定はしないが、片面当たり1g/m2以上の膜厚とすることが好ましい。上限については占積率、被膜の健全性、密着性の観点から20g/m2以下が好ましい。 The film thickness of the coating film is not particularly limited, but is preferably 1 g / m 2 or more per side. The upper limit is preferably 20 g / m 2 or less from the viewpoints of space factor, film soundness, and adhesion.

さらに、本発明においては、上記平均密度が3.1g/cm3以上で平均硬度が15GPa以上の被膜の上層として積層鋼板間の絶縁性を高めることを目的とした絶縁被膜を形成することができる。上記被膜の上に形成することが可能な絶縁被膜としては、張力付与効果を有している方が鉄損値低減にはより有効である。しかし、これに限定はされず、絶縁性を有するものであれば特に限定はしない。例えば、張力付与型被膜としては、従来からフォルステライト被膜を有する方向性電磁鋼板に用いられているリン酸塩-コロイダルシリカ−クロム酸系のコーティング等が挙げられ、その効果およびコスト、均一処理性などの点から好適に使用される。これ以外にもホウ酸−アルミナ等の酸化物系被膜を適用することも可能である。被膜の平均密度を増加させる手段のひとつとして、塗布型の被膜を用いる場合は、その中に微細粒子を分散させて、被膜の平均密度を大きくすることも有効であり、例えば、比重の大きなHfC、WC、TaC等の炭化物やHfN、TaN、CrNなどの窒化物、ほう化物、酸化物などのセラミックスや金属粉末を分散添加させると良い。不溶性微粒子の場合には粒子が均一にコーティング中に分散するために強撹拌するなどの工夫が必要である。
絶縁被膜の厚みとしては、張力付与効果や占積率、被膜密着性等の点から0.3〜10μm程度の範囲が好ましい。
さらに、このようにして得られた鋼板に、更なる鉄損低減を目的としてレーザーあるいはプラズマ炎等を照射して、磁区の細分化を行っても絶縁コーティングの密着性にはなんら問題ない。また、本発明の方向性電磁鋼板の製造工程の任意の段階で磁区細分化のため、表面にエッチングや歯形ロールで一定間隔の溝を形成することも、いっそうの鉄損低減をはかる手段として有効である。
Furthermore, in the present invention, an insulating film can be formed as an upper layer of a film having an average density of 3.1 g / cm 3 or more and an average hardness of 15 GPa or more for the purpose of enhancing the insulation between the laminated steel sheets. As an insulating coating that can be formed on the coating, it is more effective to reduce the iron loss value if it has a tension-imparting effect. However, it is not limited to this, and there is no particular limitation as long as it has insulating properties. For example, examples of the tension-imparting coating include phosphate-colloidal silica-chromic acid-based coatings that have been conventionally used for grain-oriented electrical steel sheets having a forsterite coating. From the point of view, it is preferably used. Besides this, it is also possible to apply an oxide-based film such as boric acid-alumina. As a means of increasing the average density of the coating, when using a coating type coating, it is also effective to increase the average density of the coating by dispersing fine particles therein, for example, HfC having a large specific gravity. It is preferable to disperse and add ceramics such as carbides such as WC and TaC, nitrides such as HfN, TaN and CrN, borides and oxides, and metal powders. In the case of insoluble fine particles, it is necessary to devise such as vigorous stirring so that the particles are uniformly dispersed in the coating.
The thickness of the insulating coating is preferably in the range of about 0.3 to 10 μm from the viewpoint of tension application effect, space factor, coating adhesion, and the like.
Furthermore, there is no problem in the adhesion of the insulating coating even if the magnetic domain is subdivided by irradiating the steel plate thus obtained with a laser or plasma flame for the purpose of further reducing iron loss. In addition, it is effective as a means to further reduce iron loss by forming grooves at regular intervals by etching or tooth profile rolls on the surface for magnetic domain subdivision at any stage of the production process of the grain-oriented electrical steel sheet of the present invention. It is.

3%Siを含有する最終板厚0.23mmに圧延された冷延板に対して、脱炭、一次再結晶焼鈍を行った後、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終焼鈍を施し、フォルステライト被膜のある鋼板を得た。   After decarburization and primary recrystallization annealing on a cold-rolled sheet rolled to a final sheet thickness of 0.23 mm containing 3% Si, an annealing separator mainly composed of MgO is applied, and then secondary re-rolling is performed. A final annealing process including a crystallization process and a purification process was performed to obtain a steel plate with a forsterite coating.

次いで、コロイダルシリカとアルミナゾルを種々の割合で混合し、この混合物を上記にて得られた鋼板に900℃から1050℃の温度範囲で焼き付けた。被膜の厚みは片面当たリ8g/m2で一定とした。被膜形成による重量増加と別途SEM観察にて測定した被膜厚みから平均密度を算出した。また、ナノインデンテーション法にて被膜の硬度を測定した。また、SEM観察にてシリカとアルミナは十分均一に混合していることを確認した。 Next, colloidal silica and alumina sol were mixed at various ratios, and this mixture was baked on the steel plate obtained above in the temperature range of 900 ° C to 1050 ° C. The thickness of the coating was constant at 8 g / m 2 per side. The average density was calculated from the weight increase due to film formation and the film thickness measured separately by SEM observation. Moreover, the hardness of the film was measured by the nanoindentation method. Further, it was confirmed by SEM observation that silica and alumina were sufficiently mixed.

次いで、絶縁被膜としてリン酸マグネシウムおよびクロム酸マグネシウムを主成分とする水性処理液を塗布し、800℃で焼き付け供試材を得た。得られた供試材について、磁束密度B=1.7T、周波数50Hzにおける磁歪特性を評価した。表2に、得られた被膜の物性値と、磁歪−圧縮応力特性曲線のうち、圧縮付加応力σ=5.0MPa時の磁歪入p-p値を合わせて示す。   Next, an aqueous treatment liquid mainly composed of magnesium phosphate and magnesium chromate was applied as an insulating coating and baked at 800 ° C. to obtain a test material. The obtained specimens were evaluated for magnetostriction characteristics at a magnetic flux density B = 1.7 T and a frequency of 50 Hz. Table 2 shows the physical property values of the obtained coating film together with the magnetostriction-inserted pp value when the compression applied stress σ = 5.0 MPa among the magnetostrictive-compressive stress characteristic curves.

Figure 0004839830
Figure 0004839830

表2から明らかなように、No.1〜4の比較例では、シリカ/アルミナ複合酸化膜の硬度が15GPa未満か、もしくは平均密度が3.1g/cm3未満であるため磁歪入p-p値が高く磁歪特性が劣っている。これらに対し、No.5〜7の本発明例は磁歪入p-p値が2×10−6未満となっており優れた磁歪特性を示している。 As is apparent from Table 2, in the comparative examples No. 1 to 4, the silica / alumina composite oxide film has a high magnetostriction pp value because the hardness of the silica / alumina composite oxide film is less than 15 GPa or the average density is less than 3.1 g / cm 3. The magnetostrictive properties are inferior. On the other hand, the present invention examples No. 5 to No. 7 have excellent magnetostriction characteristics because the pp value with magnetostriction is less than 2 × 10 −6 .

3%Siを含有する最終板厚0.23mmに圧延された冷延板に対して、脱炭、一次再結晶焼鈍を行った後、MgOを主成分とし添加する金属塩化物の量を調整した焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終焼鈍を施し、フォルステライト被膜のある鋼板を得た。また、上記により得られた鋼板の表面にメッキが可能であることを確認した。
次いで、得られた鋼板に対して、浴温度と電流密度を変化させて種々のCrメッキを施した。なお、メッキ浴はCrO3:250g/l、H2SO4:2.5g/lとからなるサージェント浴を使用した。Crメッキ層の厚みは片面当たり5g/m2で一定とした。また、得られたメッキ鋼板に対して、実施例1と同様の方法にて密度を測定したところ、条件による密度の変化はほとんどなく、7.2g/cm3で一定であった。また、ナノインデンテーション法にて測定した被膜の硬度については、浴温度と電流密度の双方を適当な範囲に制御することにより、高硬度の被膜が得られた。その後、絶縁被膜としてリン酸アルミニウム、コロイダルシリカおよび無水クロム酸を主成分とする水性処理液を塗布し、800℃で焼き付けた。
Cold-rolled sheet rolled to a final sheet thickness of 0.23mm containing 3% Si, decarburized and primary recrystallization annealing, then annealed with MgO as the main component and the amount of metal chloride added A separating agent was applied, and final annealing including a secondary recrystallization process and a purification process was performed to obtain a steel plate with a forsterite coating. Further, it was confirmed that the surface of the steel plate obtained as described above can be plated.
Next, various Cr platings were applied to the obtained steel sheet while changing the bath temperature and current density. The plating bath used was a surge bath composed of CrO 3 : 250 g / l and H 2 SO 4 : 2.5 g / l. The thickness of the Cr plating layer was fixed at 5 g / m 2 per side. Further, when the density of the obtained plated steel sheet was measured by the same method as in Example 1, there was almost no change in density depending on the conditions, and it was constant at 7.2 g / cm 3 . Further, regarding the hardness of the film measured by the nanoindentation method, a high-hardness film was obtained by controlling both the bath temperature and the current density within an appropriate range. Thereafter, an aqueous treatment liquid mainly composed of aluminum phosphate, colloidal silica, and chromic anhydride was applied as an insulating film, and baked at 800 ° C.

得られた絶縁被膜コーティング後の供試材について、周波数50Hz、磁束密度B8=1.7Tにおける磁歪特性を評価した。なお、評価を行うにあたっては、Crメッキを行わなかった試料を基準としてその磁歪の差分値△λppを求め、磁歪の差分値△λppとCrメッキの硬度との関係で整理した。得られた結果を表3に示す。   About the obtained test material after insulation film coating, the magnetostriction characteristic in frequency 50Hz and magnetic flux density B8 = 1.7T was evaluated. In the evaluation, the magnetostriction difference value Δλpp was obtained with reference to a sample that was not subjected to Cr plating, and was arranged according to the relationship between the magnetostriction difference value Δλpp and the hardness of the Cr plating. The results obtained are shown in Table 3.

Figure 0004839830
Figure 0004839830

表3より、No.1、2、6、7の比較例は、Crメッキ被膜の硬度が15GPa未満のため、Crメッキを施していない試料No.0と比較しての△λppにほとんど差がなく磁歪特性の改善が見られない。これらに対し、No.3〜5の本発明例は優れた磁歪特性を示している。   From Table 3, the comparative examples of No. 1, 2, 6, and 7 have almost no difference in Δλpp compared to the sample No. 0 not subjected to Cr plating because the Cr plating film hardness is less than 15 GPa. There is no improvement in magnetostriction characteristics. On the other hand, the inventive examples of Nos. 3 to 5 show excellent magnetostrictive properties.

本発明の電磁鋼板は磁気特性に優れ、かつ、磁歪振動が抑制され騒音低減効果もあるため、低騒音トランス用素材をはじめ、変圧器や電気機器用鉄心素材等、多様な用途に使用することが可能となる。   The electrical steel sheet of the present invention is excellent in magnetic properties, has a magnetostrictive vibration suppression, and has a noise reduction effect. Therefore, it can be used for various applications such as low noise transformer materials, transformers and iron core materials for electrical equipment. Is possible.

Claims (1)

方向性電磁鋼板の表面にフォルステライトを主体とする無機鉱物質被膜を有し、
さらに、該無機鉱物質被膜の上層に、平均密度が3.1g/cm3以上で平均硬度が15GPa以上の被膜を有することを特徴とする磁歪特性に優れる方向性電磁鋼板。
Having a mineral mineral film mainly composed of forsterite on the surface of grain-oriented electrical steel sheet,
Furthermore, the grain oriented electrical steel sheet having excellent magnetostrictive properties, characterized by having a coating having an average density of 3.1 g / cm 3 or more and an average hardness of 15 GPa or more on the upper layer of the inorganic mineral coating.
JP2005373896A 2005-12-27 2005-12-27 Oriented electrical steel sheet with excellent magnetostrictive properties Active JP4839830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005373896A JP4839830B2 (en) 2005-12-27 2005-12-27 Oriented electrical steel sheet with excellent magnetostrictive properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005373896A JP4839830B2 (en) 2005-12-27 2005-12-27 Oriented electrical steel sheet with excellent magnetostrictive properties

Publications (2)

Publication Number Publication Date
JP2007177260A JP2007177260A (en) 2007-07-12
JP4839830B2 true JP4839830B2 (en) 2011-12-21

Family

ID=38302732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005373896A Active JP4839830B2 (en) 2005-12-27 2005-12-27 Oriented electrical steel sheet with excellent magnetostrictive properties

Country Status (1)

Country Link
JP (1) JP4839830B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762339B1 (en) * 2015-12-22 2017-07-27 주식회사 포스코 Grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
WO2023195464A1 (en) * 2022-04-06 2023-10-12 日本製鉄株式会社 Laminated core
WO2023195465A1 (en) * 2022-04-06 2023-10-12 日本製鉄株式会社 Laminated core

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496742B1 (en) * 1970-12-02 1974-02-15
JP3408885B2 (en) * 1995-04-10 2003-05-19 新日本製鐵株式会社 Low-noise grain-oriented electrical steel sheets and laminated cores
JPH11222654A (en) * 1998-01-30 1999-08-17 Kawasaki Steel Corp Grain-oriented silicon steel sheet having extremely low iron loss
JP3380775B2 (en) * 1999-07-22 2003-02-24 川崎製鉄株式会社 Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties

Also Published As

Publication number Publication date
JP2007177260A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
KR100727333B1 (en) electrical steel sheet suitable for compact iron core and manufacturing method therefor
KR101309346B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
WO2009025389A1 (en) Insulating film treating liquid for grain oriented electromagnetic steel plate, and process for producing grain oriented electromagnetic steel plate with insulating film
KR101907768B1 (en) Low magnetorestriction oriented electromagnetic steel sheet with low iron loss
JP2012052230A (en) Oriented magnetic steel plate and production method for the same
JP6191789B2 (en) Directional electrical steel sheet, method for manufacturing the same, and method for predicting transformer noise characteristics
WO2021117325A1 (en) Non-oriented electromagnetic steel sheet, motor core, and methods respectively for manufacturing same
JP6354076B1 (en) Directional electrical steel sheet with insulating coating, transformer core and transformer, and method for reducing transformer noise
TWI692534B (en) Multilayer electromagnetic steel plate
JP5211434B2 (en) Electrical steel sheet with good film adhesion and excellent magnetic properties, its production method and method of use
CN108473800A (en) Oriented electrical steel sheets insulation film constituent, oriented electrical steel sheets insulation film forming method and be formed with the oriented electrical steel sheets of insulation film
JP2020063510A (en) Directional electromagnetic steel sheet, and manufacturing method thereof
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JP4839830B2 (en) Oriented electrical steel sheet with excellent magnetostrictive properties
JPWO2020203928A1 (en) Directional electrical steel sheet and its manufacturing method
WO2017051535A1 (en) Oriented electromagnetic steel sheet and manufacturing method therefor
JP2008031499A (en) Electromagnetic steel sheet provided with multilayer film having superior adhesiveness and excellent magnetic property, and manufacturing method therefor
JP2017110292A (en) Grain oriented silicon steel sheet and method for manufacturing the same
JP3979004B2 (en) Method for forming insulating coating on grain-oriented electrical steel sheet
JP3782273B2 (en) Electrical steel sheet
JP5987790B2 (en) Electrical steel sheet with insulating coating and method for producing the same
CN114106593A (en) Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof
JP2007162095A (en) Grain oriented electromagnetic steel sheet with ferrite film
JP3380775B2 (en) Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties
JP5063862B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4839830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250