JP3782273B2 - Electrical steel sheet - Google Patents

Electrical steel sheet Download PDF

Info

Publication number
JP3782273B2
JP3782273B2 JP36910699A JP36910699A JP3782273B2 JP 3782273 B2 JP3782273 B2 JP 3782273B2 JP 36910699 A JP36910699 A JP 36910699A JP 36910699 A JP36910699 A JP 36910699A JP 3782273 B2 JP3782273 B2 JP 3782273B2
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
steel
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36910699A
Other languages
Japanese (ja)
Other versions
JP2001185413A (en
Inventor
道郎 小松原
ゆか 小森
修 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP36910699A priority Critical patent/JP3782273B2/en
Publication of JP2001185413A publication Critical patent/JP2001185413A/en
Application granted granted Critical
Publication of JP3782273B2 publication Critical patent/JP3782273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、小型変圧器、電動機、EIコアおよび高周波リアクトル等の鉄芯に利用して好適な電磁鋼板に関し、特にその高周波域における絶縁特性および磁気特性を効果的に改善することにより、高効率用機器への有利な適用を可能ならしめたものである。
【0002】
【従来の技術】
小型変圧器、電動機、EIコアおよび高周波リアクトル等については、近年、インバータ制御による機器の高効率化が著しい。
しかしながら、これらの鉄芯に利用される電磁鋼板については、その高周波特性が十分に研究されているとは言い難い。
【0003】
従来から、高周波特性の良好な電磁鋼板としては、 6.5mass%Si鋼の存在が有名であり、例えば特開昭61−166923号公報には、低温強圧下での熱間圧延を特徴とする 6.5mass%Si鋼板の製造方法が、また特開昭62−227078号公報には、Siの拡散浸透処理を施すことを特徴とする 6.5mass%Si鋼板の製造方法が、それぞれ開示されている。
しかしながら、この鋼板は加工性が悪いという本質的な弱点あり、製品形状に加工した場合、加工面の形状として凹凸やカエリが大きく、これが高周波特性とくに透磁率の著しい低下をもたらしていた。
【0004】
これに対し、発明者らは先に、高周波特性と加工性を共に改善するものとして、鋼板成分中、S,O,Nなどの不純物を抑制し、かつCrを多量に含有させた鋼板を開発し、特開平11−343544号公報において開示した。
しかしながら、この鋼板を、実際に上記したような製品に適用してみると、これらの機器を高出力で使用した際に、絶縁破壊に起因した作動不可や極端な効率の低下現象が生じるトラブルが発生した。
【0005】
そこで、この現象について調査した結果、高周波特性のうちでも特に高周波絶縁特性に劣り、実機で使用している間に鋼板層間の絶縁性が次第に低下していき、鋼板間の渦電流が増大し、絶縁破壊とこれに伴う鉄損の増加が起きることが原因であることが判明した。
【0006】
【発明が解決しようとする課題】
上記した高Cr電磁鋼板は、電気抵抗は十分に高く、また鋼板表面を従来の絶縁被膜で覆う技術でも十分に高い層間抵抗が得られるものではあるが、上記したように、鋼板を積層して高周波かつ高出力で作動させた場合には、絶縁特性の劣化が避けられない。
この発明は、上記の問題を有利に解決するもので、高周波磁気特性の劣化を招くことなしに、高周波絶縁特性を有利に向上させた電磁鋼板を提案することを目的とする。
【0007】
【課題を解決するための手段】
さて、発明者らは、上記の問題を解決すべく鋭意研究を重ねた結果、高周波域における絶縁特性の劣化を防止するためには、鋼板の成分組成や絶縁被膜を規制するだけでは不十分で、さらに鋼板の板厚および地鉄の表面粗さを適切に制御する必要があることの知見を得た。
この発明は、上記の知見に立脚するものである。
【0008】
すなわち、この発明の要旨構成は次のとおりである。
1.Si:2.5 〜10.0mass%(但し、 3.0mass %以下は除く)
Al 0.05 2.2 mass %、
Mn:0.01〜4.5 mass%および
Cr:0.5 〜30.0mass%
を含有し、かつ不純物としての混入をそれぞれ、
C:0.010 mass%以下、
S:0.010 mass%以下、
N:0.0070mass%以下、
O:0.0040mass%以下、
Ti:0.030 mass%以下、
Zr:0.030 mass%以下、
V:0.050 mass%以下、
Nb:0.050 mass%以下
に抑制し、残部は実質的にFeの組成になり、板厚が0.05〜0.85mmで、地鉄の表面粗さを中心線平均粗さRaで0.45μm 以下とした鋼板の表面に、クロム酸塩系、リン酸塩系、アルミナ系、シリカ系の無機被膜または有機樹脂被膜あるいはこれら無機物と有機樹脂との混合物からなる半有機被膜のうちから選んだ少なくとも一種の絶縁被膜を被成したことを特徴とする電磁鋼板。
【0009】
2.上記1において、鋼中成分として、さら
:0.01〜0.30mass%、
Cu:0.01〜1.0 mass%、
Ni:0.01〜1.2 mass%、
Sn:0.005 〜0.30mass%、
Sb:0.005 〜0.30mass%および
B:0.0005〜0.0100mass%
のうちから選んだ1種または2種以上を含有させることを特徴とする電磁鋼板。
【0011】
【発明の実施の形態】
以下、この発明の基礎となった実験結果について述べる。
表1に鋼記号Aで示す成分組成になる鋼板9本を、ゼンジマー圧延機で粗度の異なる加工ロールを用いて、板厚:0.10mmに圧延したのち、 950℃で焼鈍した。この時、各鋼板の表面粗さは中心線平均粗さRaでそれぞれ、0.04, 0.08, 0.11,0.15, 0.28, 0.34, 0.42, 0.50, 0.67μm であった。
ついで、各鋼板をそれぞれ二分割し、一方にリン酸マグネシウムを主剤とする絶縁被膜を塗布、焼き付け、残る一方には絶縁被膜を塗布しないままの2種類の鋼板を作製した。
【0012】
【表1】

Figure 0003782273
【0013】
各鋼板により、40mm×50mmのサイズのEIコアの試料を打ち抜き、最大磁束密度:0.1 T、周波数:10kHz の電力変換を行い、鉄損特性を測定した。なお、この時、従来例として、市販の0.10mm厚の 6.5mass%Si鋼板についても同様の比較試験を行った。
この時、多くの場合に、時間と共に鉄損値が増加する傾向が認められたので、試験は2週間連続して行い、鉄損値が安定した後の値を代表値とした。
得られた結果を、図1に示す。
図1に示したように、鋼板表面にリン酸マグネシウムを主剤とする絶縁被膜を塗布し、かつ表面粗さを中心線平均粗さRaで0.45μm 以下とした場合に低い鉄損値が得られている。
【0014】
そこで、次に、このような結果が得られた理由について調査を進めたところ、鉄損値が高い値で安定したEIコアのうち、鋼板粗さが高い場合と 6.5mass%Si鋼板(図1中、Raが0.86μm のデータ)の場合は、いずれも積層した鋼板の端部が融解し、積層鋼板間の絶縁破壊が発生していたことが判明した。
これが、製品を高周波で作動させた場合の絶縁特性の劣化原因を示唆する現象であると考えられる
すなわち、 6.5mass%Si鋼板の場合、その劣悪な加工性に起因する端部の形状不良が高周波絶縁特性の劣化をもたらし、一方高Cr鋼では、鋼板表面の微少な凹凸が高周波絶縁特性の劣化をもたらし、いずれも端部での発熱を促す結果、長期の使用によって絶縁破壊がもたらされたものと考えられる。
【0015】
また、絶縁被膜塗布は、鋼板地鉄表面の間隔を保つ役割を果たすので、適当な厚みがある方が好ましく、特にクロム酸塩系、リン酸塩系、アルミナ系およびシリカ系の無機被膜または無機・有機混合被膜は高温耐熱性を有しているので、より有利に適合することが確認された。
【0016】
以下、この発明を具体的に説明する。
まず、この発明において、鋼板の成分組成を前記の範囲に限定した理由について説明する。
Si:2.5 〜10.0mass%(但し、 3.0mass %以下は除く)
Siは、電気抵抗を高め鉄損を低減するのに有効な元素であり、特にこの発明で目標とする高周波鉄損の低減に有利に作用する。この目的のためには 2.5mass%以上の含有が必要であるが、10.0mass%を超えると、この発明によっても、製造時の加工および製品の加工が困難になるので、 2.5〜10.0mass%(但し、 3.0mass %以下は除く)の範囲に限定した。
Al:0.05 2.0 mass
Alは、電気抵抗を高めて、鉄損特性を向上させるだけでなく、鋼板の集合組織を改善する作用がある。この目的のためには、0.05mass%以上含有させる必要があるが、2.2 mass%を超えて含有させると鋼板の加工性が阻害されるので、Al量は 0.05 2.2 mass%の範囲に限定した。
【0017】
Mn:0.01〜4.5 mass%
Mnは、熱間加工性を改善するのに必要な元素であり、この目的のために少なくとも0.01mass%を含有させる。また、Mnは、Siと同様、高周波鉄損を改善する作用があるが、 4.5mass%を超えると飽和磁束密度の著しい低下を招くので、0.01〜4.5 mass%の範囲で含有させるものとした。
【0018】
Cr:0.5 〜30.0mass%
Crは、この発明の根幹をなす重要な元素であり、次に述べる不純物の低減効果と相まって、鋼板の加工性改善に有効に寄与する。また、Siと同様、高周波鉄損を改善する作用がある。これらの目的のためには、 0.5mass%以上の含有が必要であるが、30.0mass%を超えると大幅な飽和磁束密度の低下を招くので、Cr量は0.5 〜30.0mass%の範囲に限定した。
【0019】
以上、必須成分について説明したが、この発明では、鋼中の不純物元素を低減することも重要な要件である。
すなわち、不純物元素の低減は、上記したCrの添加効果と相まって、鋼板の加工性を大幅に改善する作用がある。
そして、この目的のためには、不純物元素について、それぞれ
C:0.010 mass%以下、
S:0.010 mass%以下、
N:0.0070mass%以下、
O:0.0040mass%以下、
Ti:0.030 mass%以下、
Zr:0.030 mass%以下、
V:0.050 mass%以下、
Nb:0.050 mass%以下
に抑制する必要がある。
というのは、これらの元素量が、上記の値を超えた場合には、Cr含有による高Si鋼の加工性向上効果が得られなくなるからである。
【0020】
以上、必須成分および抑制成分について説明したが、この発明では、その他、以下に述べる元素を必要に応じて適宜含有させることができる。
【0021】
P:0.01〜0.30mass%
Pも、電気抵抗を高めて、鉄損特性を向上させる作用があり、この目的のためには0.01mass%以上の含有が必要であるが、0.30mass%を超えて含有させると、鋼板の硬度が増加し加工性を阻害するので、P量は0.01〜0.30mass%の範囲で含有させることが好ましい。
【0022】
Cu:0.01〜1.0 mass%、Ni:0.01〜1.2 mass%
CuおよびNiも、電気抵抗を高めて、鉄損特性を向上させる作用がある。この目的のためには、それぞれ0.01mass%以上含有させる必要があるが、Cu の場合は1.0 mass%を超えて、また Ni の場合は 1.2 mass %を超えて含有させると飽和磁束密度の低下を招く傾向があるので、Cu0.01〜1.0 mass% Ni 0.01 1.2 mass の範囲で含有させることが好ましい。
【0023】
Sn:0.005 〜0.30mass%、Sb:0.005 〜0.30mass%
鋼板の集合組織を改善し、磁束密度を向上させるためには、SnやSbの含有が有利に適合する。この目的のためには、SnおよびSbとも 0.005mass%以上含有させる必要があるが、いずれも0.30mass%を超えると鋼板の加工性が劣化するので、SnおよびSbとも 0.005〜0.30mass%の範囲で含有させることが好ましい。
【0024】
B:0.0005〜0.0100mass%
Bは、鋼板の加工性を向上させる有用元素であるが、含有量が0.0005mass%に満たないとその添加効果に乏しく、一方0.0100mass%を超えると鋼板の鉄損を劣化させるので、B量は0.0005〜0.0100mass%の範囲で含有させることが好ましい。
【0025】
以上、好適成分組成範囲について説明したが、この発明では、鋼板の板厚も重要で、この鋼板板厚については0.05〜0.85mmの範囲に制限する必要がある。
すなわち、高周波特性のためには鋼板板厚は小さい方が有利であり、このため板厚を0.85mm以下とするが、0.05mmより小さく圧延することは、現在の技術では著しいコスト増加となるので、0.05〜0.85mmとした。
【0026】
また、この発明においては、鋼板地鉄表面の表面粗さも極めて重要で,この要件を厳密に規制することが不可欠である。
すなわち、地鉄の表面粗さが大きいと、この発明の加工性改善技術によっても、実機の高周波域での使用時に鋼板間の絶縁性が劣化して所望の特性が得られなくなる。従って、このような高周波実機使用時における磁性の劣化を防止するためには、鋼板表面を各種絶縁被膜で被成すると共に、地鉄の表面粗さを一定値以下に抑制することが肝要である。
この目的のためには、前掲図1に示したとおり、地鉄の表面粗さを中心線平均粗さRaで0.45μm 以下にすることが必要である。
【0027】
なお、高周波使用時における鋼板の絶縁性に関しては、地鉄の表面粗さの制御が必要なだけで、絶縁被膜の粗さについては大きな影響が認められないので、平滑にした鋼板地鉄表面上に鋼板粗さを高めるいわゆるダル被膜を被成する技術はこの発明に十分に適合する。
【0028】
次に、鋼板の表面に被成する絶縁被膜について説明する。
絶縁被膜は、鋼板の防錆効果と共に、鋼板粗さと相まって、高周波絶縁特性を向上させるために必要で、この目的のためには、被膜厚として0.05μm 以上の厚みで被成することが好ましい。
また、絶縁被膜としては、クロム酸塩系、リン酸塩系、アルミナ系、シリカ系の無機被膜、または有機樹脂被膜、およびこれら無機物と有機樹脂との混合物からなる半有機被膜のうちから選ばれる絶縁被膜が適合する。これらの被膜は単独で用いても、複合して用いても、上記作用に差異はなく、いずれも有利に適合する。
さらに、これらの被膜のうち、クロム酸塩系、リン酸塩系、アルミナ系およびシリカ系から選ばれる無機被膜または無機・有機混合被膜は、高温の耐熱性を有しているので、この発明の目的にとりわけ有利に適合する。
【0029】
次に、この発明鋼板の好適製造条件について説明する。
熱延条件は特に規定しないが、省エネルギーのため、スラブ加熱温度は1200℃以下とすることが望ましい。
また、熱延板焼鈍は、800 ℃以上でなければ磁束密度を向上させることが難しいので、800 ℃以上の温度域で行うことが好ましい。
【0030】
ついで、1回または中間焼鈍を含む2回の冷間圧延を施すが、この冷間圧延では、圧下率を50〜95%程度とすることが好ましい。
また、仕上げ焼鈍については、その温度が 850℃に満たないと粒成長が不十分で良好な鉄損が得られないので、仕上げ焼鈍は 850℃以上の温度で行うことが好ましい。
【0031】
【実施例】
実施例1
表1に鋼記号A〜Qで示した成分組成になる連続鋳造スラブを、常法に従って熱間圧延し 2.0mm厚の熱延鋼板としたのち、 580〜700 ℃の温度で巻き取った。ついで、これらの鋼板を酸洗後、1000℃,1分間の熱延板焼鈍を施したのち、ゼンジマーミルによって 250℃の温間で0.35mmの中間厚とし、さらに直径:80mmの平滑加工ロールを選定し、これをゼンジマーミルに用いて 200℃の温度で第2回目の温間圧延を施し、0.10mmの最終板厚に仕上げた。ついで、各鋼板に対し 950℃, 2分間の仕上げ焼鈍を施した後、各鋼板の中心線平均粗さRaを測定した。
その後、これら鋼板に、20mass%のシリカと40mass%の有機樹脂を含有するクロム酸マグネシウムを主剤とする半有機コートを、 1.3μm の厚みに塗布し、焼き付けた。これらの鋼板について、磁束密度:0.10T, 周波数:10 kHzにおける鉄損W1/10k を測定した。
また、各鋼板から20mm×40mmのサイズのEIコアを打ち抜き、積層して小型変圧器を製作した。この時、打ち抜き後の鋼板のかえり高さを測定した。さらに、小型変圧器には、10kHz での電力変換を1ヶ月間連続して行い、初期と1ヶ月後の変圧器の鉄損測定を行った。また、1ヶ月後、変圧器を解体し、各鋼板の外観について調査した。
得られた結果を整理して表2に示す。
【0032】
【表2】
Figure 0003782273
【0033】
表2に示したとおり、成分組成範囲および鋼板地鉄の表面粗さがこの発明の適正範囲を満足する電磁鋼板はいずれも、打ち抜き後のかえりが小さくて加工性がよく、また 10kHzでの鉄損値およびその経時変化も小さく、優れた高周波絶縁特性が得られていることが分かる。
【0034】
実施例2
表1に鋼記号Bで示した成分組成になる鋼板7本を、粗さの異なる種々の加工ロールをそなえるゼンジマー圧延機で、板厚:0.15mmに圧延し、さらに1000℃で焼鈍した。この時、各鋼板の中心線平均粗さRaはそれぞれ、0.09, 0.25, 0.37,0.44, 0.52, 0.69, 0.77μm であった。
ついで、各鋼板をそれぞれ2分割し、一方にリン酸アルミニウムを主剤とする絶縁コートを膜厚:1.2 μm の厚みで塗布、焼き付け、絶縁被膜ありと絶縁被膜なしの2種類の鋼板とした。
各鋼板から40mm×50mmのサイズのEIコアの試料を打ち抜き、積層して小型変圧器を製作した。これらの小型変圧器を使用し、磁束密度:0.12T、周波数:10kHz での電力変換を2週間連続して行い、初期と2週間後の変圧器の鉄損測定を行った。また、2週間後、変圧器を解体し、各鋼板の外観について調査した。
なお、従来例として、市販の0.15mm厚の 6.5mass%Si鋼板(粗さ0.86μm のデータ)を用いた場合についても同様の調査を行った。
得られた結果を材料の鉄損特性と併せて表3に示す。
また、材料の表面粗さと鉄損特性との関係を図2に示す。
【0035】
【表3】
Figure 0003782273
【0036】
表3に示したように、鋼板地鉄の表面粗さをRaで0.45μm 以下とし、かつ鋼板表面にリン酸アルムニウムを主剤とする絶縁コートを塗布した電磁鋼板で製作した小型変圧器は、長期試験の後も鉄損特性が良好で、しかも鉄損劣化もなく、高周波絶縁特性が良好であることが分かる。
【0037】
実施例3
表1に鋼記号Cで示した成分組成になる鋼板7本を、平滑な加工ロールをそなえるゼンジマー圧延機で、板厚:0.10mmに圧延し、さらに 950℃で焼鈍した。この時、各鋼板の表面粗さは中心線平均粗さRaで0.25〜0.34μm であった。
ついで、各鋼板に対し、それぞれ
a)リン酸アルミニウムを主剤とする絶縁コートを、膜厚:1.2 μm の厚みで
b)クロム酸カルシウムを主剤とする絶縁コートを、膜厚:1.5 μm の厚みで
c)コロイダルシリカを主剤とする絶縁被膜を、膜厚:1.0 μm の厚みで
d)有機樹脂:40mass%、クロム酸マグネシウム:40mass%を主剤とする絶縁被膜を、膜厚:1.5 μm の厚みで
e)ポリメタクリル酸メチルを主剤とする絶縁被膜を、膜厚:1.5 μm の厚みでf)ポリエチレンを主剤とする絶縁被膜を、膜厚:1.4 μm の厚みで、
塗布、焼き付けた。また、g)として、焼鈍のままで絶縁被膜なしの鋼板を用いた。
各鋼板から、40mm×50mmのサイズのEIコアの試料を打ち抜き、積層して小型変圧器を製作した。
これらの小型変圧器を使用し、磁束密度:0.10T、周波数:10 kHzでの電力変換を1ヶ月間連続して行い、初期と1ヶ月後の変圧器の鉄損測定を行った。また、1ヶ月後、変圧器を解体し、各鋼板の外観調査を行った。
得られた結果を表4に示す。
【0038】
【表4】
Figure 0003782273
【0039】
表4に示したように、この発明に従い絶縁被膜を被成した電磁鋼板で製作した小型変圧器は、長期試験の後も鉄損特性が良好で、かつ鉄損劣化もなく、優れた高周波絶縁特性が得られている。
【0040】
実施例4
表1に鋼記号Dで示した成分組成になる鋼板4本を、平滑な加工ロールをそなえるゼンジマー圧延機で、それぞれ板厚:0.10,0.20,0.35,0.50mmに圧延し、さらに1000℃に焼鈍した。この時、各鋼板の表面粗さは中心線平均粗さRaで0.22〜0.38μm であった。
ついで、各鋼板に対し、リン酸アルミニウムを主剤とする絶縁被膜を、膜厚:1.8 μm の厚みで塗布、焼き付けた。
その後、各鋼板から、80mm×100mm のサイズのEIコアの試料を打ち抜き、積層して小型変圧器を製作した。
これらの小型変圧器を使用し、磁束密度:0.10T、周波数:10 kHzでの電力変換を1ケ月間連続して行い、初期と1ケ月後の変圧器の鉄損測定を行い、鉄損値の劣化率〔(1ヶ月後鉄損値−初期の鉄損値)÷初期の鉄損値×100 (%)〕を求めた。
得られた結果を表5に示す。
【0041】
【表5】
Figure 0003782273
【0042】
表5に示したように、この発明に従う電磁鋼板で製作した小型変圧器は、長期試験の後も鉄損特性が良好で、鉄損劣化がなく、優れた高周波絶縁特性が得られている。
【0043】
【発明の効果】
かくして、この発明によれば、高周波域における絶縁特性および磁気特性に優れた電磁鋼板を得ることができ、ひいては経時劣化がほとんどない優れた高周波特性を有する高効率用機器を得ることができる。
【図面の簡単な説明】
【図1】 長期連続使用後のEIコアの高周波鉄損W1/10k に及ぼす鋼板地鉄の表面粗さと絶縁被膜の影響を示したグラフである。
【図2】 長期連続使用後のEIコアの高周波鉄損W1.2/10k に及ぼす鋼板地鉄の表面粗さと絶縁被膜の影響を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrical steel sheet suitable for use in iron cores such as small transformers, electric motors, EI cores, and high-frequency reactors, and in particular, by effectively improving the insulating and magnetic properties in the high-frequency region, thereby achieving high efficiency. This has made it possible to advantageously apply to industrial equipment.
[0002]
[Prior art]
As for small transformers, electric motors, EI cores, high-frequency reactors, and the like, in recent years, the efficiency of equipment by inverter control has been greatly improved.
However, it is hard to say that the high-frequency characteristics of electromagnetic steel sheets used for these iron cores have been sufficiently studied.
[0003]
Conventionally, the presence of 6.5 mass% Si steel has been well known as an electromagnetic steel sheet with good high-frequency characteristics. For example, Japanese Patent Application Laid-Open No. 61-166923 discloses a feature of hot rolling under low temperature and strong pressure. A method for producing a mass% Si steel sheet and JP-A-62-227078 each disclose a method for producing a 6.5 mass% Si steel sheet, which is characterized by performing Si diffusion diffusion treatment.
However, this steel sheet has an essential weak point that the workability is poor, and when processed into a product shape, the processed surface has large irregularities and burrs, which has led to a significant decrease in high-frequency characteristics, particularly magnetic permeability.
[0004]
In contrast, the inventors have previously developed a steel sheet that suppresses impurities such as S, O, and N and contains a large amount of Cr in the steel sheet component as a means to improve both high-frequency characteristics and workability. This is disclosed in JP-A-11-343544.
However, when this steel sheet is actually applied to products such as those mentioned above, there is a problem that when these devices are used at a high output, they cannot be operated due to dielectric breakdown, or extreme efficiency degradation occurs. Occurred.
[0005]
Therefore, as a result of investigating this phenomenon, it is inferior to the high-frequency insulation characteristics among the high-frequency characteristics, the insulation between the steel sheet layers gradually decreases while using the actual machine, the eddy current between the steel sheets increases, It was found that this was caused by dielectric breakdown and the accompanying increase in iron loss.
[0006]
[Problems to be solved by the invention]
The above-mentioned high Cr electrical steel sheet has a sufficiently high electrical resistance, and a sufficiently high interlayer resistance can be obtained even by the technique of covering the steel sheet surface with a conventional insulating film. When operated at high frequency and high output, the insulation characteristics are inevitably deteriorated.
An object of the present invention is to solve the above-mentioned problem advantageously, and an object of the invention is to propose an electrical steel sheet that has advantageously improved high-frequency insulation characteristics without causing deterioration of the high-frequency magnetic characteristics.
[0007]
[Means for Solving the Problems]
Now, as a result of intensive studies to solve the above problems, the inventors have not been sufficient to regulate the composition of the steel sheet and the insulating film in order to prevent the deterioration of the insulating properties in the high frequency range. Furthermore, the knowledge that it is necessary to appropriately control the thickness of the steel sheet and the surface roughness of the ground iron was obtained.
The present invention is based on the above findings.
[0008]
That is, the gist configuration of the present invention is as follows.
1. Si: 2.5-10.0mass% (except 3.0mass % or less) ,
Al: 0.05 ~ 2.2 mass%,
Mn: 0.01-4.5 mass% and
Cr: 0.5 to 30.0 mass%
And containing as impurities,
C: 0.010 mass% or less,
S: 0.010 mass% or less,
N: 0.0070 mass% or less,
O: 0.0040 mass% or less,
Ti: 0.030 mass% or less,
Zr: 0.030 mass% or less,
V: 0.050 mass% or less,
Nb: Steel sheet with a balance of 0.050 mass% or less, the balance being substantially Fe, with a plate thickness of 0.05 to 0.85 mm, and a surface roughness of the base iron with a centerline average roughness Ra of 0.45 μm or less And at least one insulating film selected from a chromate-based, phosphate-based, alumina-based, silica-based inorganic coating or organic resin coating, or a semi-organic coating comprising a mixture of these inorganic and organic resins. it characterized in that the form of the electrical steel plate.
[0009]
2. In the above 1, as components in steel, to further
P : 0.01 to 0.30 mass%,
Cu: 0.01 to 1.0 mass%,
Ni: 0.01~ 1.2 mass%,
Sn: 0.005 to 0.30 mass%,
Sb: 0.005 to 0.30 mass% and B: 0.0005 to 0.0100 mass%
One or electrostatic it characterized by the inclusion of two or more steel sheets chosen from among.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the following, experimental results on which the present invention is based will be described.
Nine steel plates having the composition indicated by steel symbol A in Table 1 were rolled to a thickness of 0.10 mm using a processing roll having different roughness using a Zenzimer rolling mill, and then annealed at 950 ° C. At this time, the surface roughness of each steel sheet was 0.04, 0.08, 0.11,0.15, 0.28, 0.34, 0.42, 0.50, and 0.67 μm, respectively, as the center line average roughness Ra.
Subsequently, each steel plate was divided into two parts, and an insulating coating containing magnesium phosphate as a main component was applied and baked on one side, and two types of steel plates were prepared without applying the insulating coating on the other side.
[0012]
[Table 1]
Figure 0003782273
[0013]
An EI core sample having a size of 40 mm × 50 mm was punched out with each steel plate, power conversion was performed at a maximum magnetic flux density of 0.1 T and a frequency of 10 kHz, and the iron loss characteristics were measured. At this time, as a conventional example, a similar comparative test was performed on a commercially available 6.5 mass% Si steel sheet having a thickness of 0.10 mm.
At this time, since a tendency that the iron loss value increased with time was recognized in many cases, the test was conducted continuously for two weeks, and the value after the iron loss value was stabilized was used as a representative value.
The obtained results are shown in FIG.
As shown in FIG. 1, a low iron loss value can be obtained when an insulating coating mainly composed of magnesium phosphate is applied to the steel sheet surface and the surface roughness is 0.45 μm or less in terms of the center line average roughness Ra. ing.
[0014]
Therefore, next, investigation was made on the reason why such a result was obtained. Among the EI cores having a high iron loss value and a stable value, 6.5 mass% Si steel sheet (FIG. 1) In the case of Ra (data of 0.86 μm), it was found that the end portions of the laminated steel sheets were melted and dielectric breakdown occurred between the laminated steel sheets.
This is considered to be a phenomenon suggesting the cause of deterioration of the insulation characteristics when the product is operated at a high frequency.
In other words, in the case of 6.5 mass% Si steel sheet, the poor shape of the edge due to its poor workability leads to deterioration of high-frequency insulation properties, whereas in high Cr steel, minute irregularities on the steel sheet surface cause deterioration of high-frequency insulation properties. As a result of promoting the heat generation at the ends, it is considered that dielectric breakdown was caused by long-term use.
[0015]
In addition, since the insulating coating is applied to maintain the spacing of the steel sheet steel surface, it is preferable to have an appropriate thickness, and in particular, chromate-based, phosphate-based, alumina-based and silica-based inorganic coatings or inorganic -It has been confirmed that the organic mixed film has a high temperature heat resistance, so that it is more advantageously adapted.
[0016]
The present invention will be specifically described below.
First, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described.
Si: 2.5 to 10.0 mass% ( excluding 3.0 mass % or less)
Si is an element effective for increasing the electric resistance and reducing the iron loss, and particularly has an advantageous effect on the reduction of the high-frequency iron loss targeted in the present invention. For this purpose, it is necessary to contain 2.5 mass% or more. However, if it exceeds 10.0 mass%, processing according to this invention and processing of the product will be difficult even with this invention, so 2.5 to 10.0 mass% ( However, it was limited to the range of 3.0 mass % or less .
Al: 0.05 to 2.0 mass %
Al not only increases electric resistance and iron loss characteristics, but also improves the texture of the steel sheet. For this purpose, it is necessary to contain 0.05 mass% or more, but if the content exceeds 2.2 mass%, the workability of the steel sheet is hindered, so the Al content is limited to the range of 0.05 to 2.2 mass% . .
[0017]
Mn: 0.01-4.5 mass%
Mn is an element necessary for improving hot workability, and at least 0.01 mass% is contained for this purpose. Mn, like Si, has the effect of improving the high-frequency iron loss. However, if it exceeds 4.5 mass%, the saturation magnetic flux density is significantly reduced. Therefore, Mn is included in the range of 0.01 to 4.5 mass%.
[0018]
Cr: 0.5 to 30.0 mass%
Cr is an important element that forms the basis of the present invention, and effectively contributes to improving the workability of the steel sheet in combination with the effect of reducing impurities described below. Moreover, it has the effect | action which improves a high frequency iron loss like Si. For these purposes, it is necessary to contain 0.5 mass% or more, but if it exceeds 30.0 mass%, the saturation magnetic flux density is significantly reduced, so the Cr content is limited to the range of 0.5 to 30.0 mass%. .
[0019]
Although the essential components have been described above, in the present invention, it is also an important requirement to reduce the impurity elements in the steel.
That is, the reduction of the impurity element has the effect of greatly improving the workability of the steel sheet, coupled with the effect of adding Cr.
And for this purpose, for impurity elements, C: 0.010 mass% or less,
S: 0.010 mass% or less,
N: 0.0070 mass% or less,
O: 0.0040 mass% or less,
Ti: 0.030 mass% or less,
Zr: 0.030 mass% or less,
V: 0.050 mass% or less,
Nb: It is necessary to suppress to 0.050 mass% or less.
This is because, when the amount of these elements exceeds the above value, the effect of improving the workability of high-Si steel due to the Cr content cannot be obtained.
[0020]
As described above, the essential component and the suppressing component have been described. However, in the present invention, other elements described below can be appropriately contained as necessary.
[0021]
P: 0.01 ~ 0.30mass%
P also has the effect of increasing the electrical resistance and improving the iron loss characteristics. For this purpose, it is necessary to contain 0.01 mass% or more, but if it exceeds 0.30 mass%, the hardness of the steel sheet Increases the amount of P and inhibits workability, so the P content is preferably in the range of 0.01 to 0.30 mass%.
[0022]
Cu: 0.01~1.0 mass%, Ni: 0.01~ 1.2 mass%
Cu and Ni also have the effect of increasing the electrical resistance and improving the iron loss characteristics. For this purpose, it is necessary to contain the respective least 0.01 mass%, in the case of Cu exceed 1.0 mass%, also in the case of Ni and is contained in excess of 1.2 mass% a decrease in saturation magnetic flux density Therefore, it is preferable to contain Cu in the range of 0.01 to 1.0 mass% and Ni in the range of 0.01 to 1.2 mass % .
[0023]
Sn: 0.005 to 0.30 mass%, Sb: 0.005 to 0.30 mass%
In order to improve the texture of the steel sheet and increase the magnetic flux density, the inclusion of Sn or Sb is advantageously adapted. For this purpose, both Sn and Sb must be contained at 0.005 mass% or more, but if both exceed 0.30 mass%, the workability of the steel sheet deteriorates, so both Sn and Sb are in the range of 0.005 to 0.30 mass%. It is preferable to contain.
[0024]
B: 0.0005-0.0100 mass%
B is a useful element that improves the workability of the steel sheet. However, if the content is less than 0.0005 mass%, the additive effect is poor. On the other hand, if it exceeds 0.0100 mass%, the iron loss of the steel sheet is deteriorated. Is preferably contained in the range of 0.0005 to 0.0100 mass%.
[0025]
The preferred component composition range has been described above. In the present invention, the thickness of the steel plate is also important, and the thickness of the steel plate needs to be limited to a range of 0.05 to 0.85 mm.
In other words, it is advantageous that the steel plate thickness is small for high-frequency characteristics. For this reason, the plate thickness is set to 0.85 mm or less. However, rolling with a thickness of less than 0.05 mm increases the cost significantly with the current technology. 0.05 to 0.85 mm.
[0026]
In the present invention, the surface roughness of the steel sheet steel is also extremely important, and it is essential to strictly regulate this requirement.
That is, if the surface roughness of the ground iron is large, even with the workability improving technique of the present invention, the insulation between the steel plates deteriorates when used in the high frequency range of the actual machine, and desired characteristics cannot be obtained. Therefore, in order to prevent the deterioration of magnetism when using such a high-frequency actual machine, it is important to cover the surface of the steel sheet with various insulating coatings and to suppress the surface roughness of the base iron below a certain value. .
For this purpose, as shown in FIG. 1, it is necessary that the surface roughness of the ground iron be 0.45 μm or less in terms of the center line average roughness Ra.
[0027]
As for the insulation properties of the steel sheet during high frequency use, it is only necessary to control the surface roughness of the steel, and no significant effect is observed on the roughness of the insulation film. A technique for forming a so-called dull film that increases the roughness of the steel sheet is well suited to the present invention.
[0028]
Next, the insulating coating formed on the surface of the steel plate will be described.
The insulating coating is necessary for improving the high-frequency insulating properties in combination with the steel plate roughness as well as the rust preventive effect of the steel plate. For this purpose, the insulating coating is preferably formed with a thickness of 0.05 μm or more.
The insulating coating is selected from a chromate-based, phosphate-based, alumina-based, silica-based inorganic coating, or organic resin coating, and a semi-organic coating composed of a mixture of these inorganic and organic resins. Insulation coating is suitable. Even if these coatings are used alone or in combination, there is no difference in the above-mentioned action, and any of these coatings is advantageously adapted.
Furthermore, among these coatings, the inorganic coating or inorganic / organic mixed coating selected from chromate, phosphate, alumina and silica has high temperature heat resistance. Fits particularly advantageously for the purpose.
[0029]
Next, preferred production conditions for the steel sheet according to the present invention will be described.
Although the hot rolling conditions are not particularly specified, the slab heating temperature is preferably 1200 ° C. or less for energy saving.
In addition, since it is difficult to improve the magnetic flux density unless hot-rolled sheet annealing is performed at 800 ° C. or higher, it is preferable to perform the hot-rolled sheet annealing at a temperature range of 800 ° C. or higher.
[0030]
Then, cold rolling is performed once or twice including intermediate annealing. In this cold rolling, the rolling reduction is preferably about 50 to 95%.
As for the finish annealing, if the temperature is less than 850 ° C., the grain growth is insufficient and good iron loss cannot be obtained. Therefore, the finish annealing is preferably performed at a temperature of 850 ° C. or higher.
[0031]
【Example】
Example 1
A continuous cast slab having the composition indicated by steel symbols A to Q in Table 1 was hot-rolled according to a conventional method to obtain a hot-rolled steel plate having a thickness of 2.0 mm, and then wound at a temperature of 580 to 700 ° C. Next, after pickling these steel plates, hot-rolled sheet annealing was performed at 1000 ° C for 1 minute, then a smooth roll with a diameter of 80 mm was selected with a Sendzimer mill to a medium thickness of 0.35 mm at a temperature of 250 ° C. This was then used in a Zenzimer mill for the second warm rolling at a temperature of 200 ° C. to give a final thickness of 0.10 mm. Next, after subjecting each steel plate to finish annealing at 950 ° C. for 2 minutes, the center line average roughness Ra of each steel plate was measured.
Thereafter, a semi-organic coat mainly composed of magnesium chromate containing 20 mass% silica and 40 mass% organic resin was applied to these steel plates to a thickness of 1.3 μm and baked. For these steel plates, the iron loss W 1 / 10k at a magnetic flux density of 0.10 T and a frequency of 10 kHz was measured.
In addition, EI cores with a size of 20mm x 40mm were punched from each steel plate and laminated to produce a small transformer. At this time, the burr height of the steel plate after punching was measured. In addition, for small transformers, power conversion at 10 kHz was continuously performed for one month, and the iron loss of the transformer was measured at the initial stage and after one month. Also, one month later, the transformer was dismantled and the appearance of each steel plate was investigated.
The results obtained are summarized and shown in Table 2.
[0032]
[Table 2]
Figure 0003782273
[0033]
As shown in Table 2, all of the electrical steel sheets whose composition composition range and surface roughness of the steel sheet steel satisfy the appropriate range of the present invention have small burr after punching, good workability, and iron at 10 kHz. It can be seen that the loss value and its change with time are also small, and excellent high-frequency insulation characteristics are obtained.
[0034]
Example 2
Seven steel plates having the composition indicated by steel symbol B in Table 1 were rolled to a thickness of 0.15 mm and annealed at 1000 ° C. with a Zenzimer rolling mill having various processing rolls having different roughnesses. At this time, the center line average roughness Ra of each steel plate was 0.09, 0.25, 0.37, 0.44, 0.52, 0.69, and 0.77 μm, respectively.
Next, each steel plate was divided into two, and on one side, an insulating coat mainly composed of aluminum phosphate was applied and baked to a thickness of 1.2 μm, and two types of steel plates with and without an insulating coating were formed.
Samples of EI core with a size of 40 mm x 50 mm were punched from each steel plate and laminated to produce a small transformer. Using these small transformers, power conversion at a magnetic flux density of 0.12 T and a frequency of 10 kHz was performed continuously for 2 weeks, and the iron loss of the transformer was measured at the initial stage and after 2 weeks. Two weeks later, the transformer was dismantled and the appearance of each steel sheet was examined.
As a conventional example, the same investigation was performed when a commercially available 6.5 mass% Si steel sheet having a thickness of 0.15 mm (data with a roughness of 0.86 μm) was used.
The obtained results are shown in Table 3 together with the iron loss characteristics of the materials.
Moreover, the relationship between the surface roughness of a material and an iron loss characteristic is shown in FIG.
[0035]
[Table 3]
Figure 0003782273
[0036]
As shown in Table 3, small transformers made of electrical steel sheets with a surface roughness of steel sheet steel of Ra of 0.45 μm or less and coated with an insulation coating mainly composed of aluminum phosphate on the steel sheet surface are long-term It can be seen that the iron loss characteristics are good after the test, and there is no deterioration of the iron loss, and the high frequency insulation characteristics are good.
[0037]
Example 3
Seven steel plates having the composition indicated by steel symbol C in Table 1 were rolled to a sheet thickness of 0.10 mm and annealed at 950 ° C. with a Zenzimer rolling mill having a smooth processing roll. At this time, the surface roughness of each steel plate was 0.25 to 0.34 μm in terms of centerline average roughness Ra.
Next, for each steel sheet, a) an insulating coat mainly composed of aluminum phosphate, with a film thickness of 1.2 μm, and b) an insulating coat mainly composed of calcium chromate with a thickness of 1.5 μm. c) Insulating film with colloidal silica as the main component, film thickness: 1.0 μm thickness d) Insulating film with organic resin: 40 mass%, magnesium chromate: 40 mass% as main components, film thickness: 1.5 μm e) Insulating film mainly composed of polymethyl methacrylate, film thickness: 1.5 μm thick f) Insulating film mainly composed of polyethylene, film thickness: 1.4 μm
Application and baking. Further, as g), a steel plate without an insulating coating while being annealed was used.
A EI core sample with a size of 40 mm × 50 mm was punched from each steel plate and laminated to produce a small transformer.
Using these small transformers, power conversion at a magnetic flux density of 0.10 T and a frequency of 10 kHz was continuously performed for one month, and the iron loss of the transformer at the initial stage and after one month was measured. Also, one month later, the transformer was dismantled and the appearance of each steel sheet was examined.
Table 4 shows the obtained results.
[0038]
[Table 4]
Figure 0003782273
[0039]
As shown in Table 4, the small transformer manufactured with the electrical steel sheet coated with the insulating coating according to the present invention has good iron loss characteristics after long-term testing and no iron loss deterioration, and excellent high frequency insulation. Characteristics are obtained.
[0040]
Example 4
Four steel plates having the composition indicated by steel symbol D in Table 1 were rolled to a thickness of 0.10, 0.20, 0.35, 0.50 mm on a Zenzimer rolling mill equipped with smooth processing rolls, and annealed to 1000 ° C. did. At this time, the surface roughness of each steel plate was 0.22 to 0.38 μm in terms of centerline average roughness Ra.
Then, an insulating coating mainly composed of aluminum phosphate was applied to each steel plate with a thickness of 1.8 μm and baked.
Thereafter, a sample of an EI core having a size of 80 mm × 100 mm was punched from each steel plate and laminated to manufacture a small transformer.
Using these small transformers, power conversion at a magnetic flux density of 0.10 T and frequency of 10 kHz was continuously performed for one month, and the iron loss of the transformer was measured at the initial stage and after one month, and the iron loss value was measured. The deterioration rate [(iron loss value after one month−initial iron loss value) ÷ initial iron loss value × 100 (%)] was determined.
The results obtained are shown in Table 5.
[0041]
[Table 5]
Figure 0003782273
[0042]
As shown in Table 5, the small transformer made of the electromagnetic steel sheet according to the present invention has good iron loss characteristics after long-term testing, no iron loss deterioration, and excellent high frequency insulation characteristics.
[0043]
【The invention's effect】
Thus, according to the present invention, it is possible to obtain an electrical steel sheet having excellent insulation characteristics and magnetic characteristics in a high frequency range, and thus to obtain a highly efficient apparatus having excellent high frequency characteristics with little deterioration with time.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of the surface roughness of steel sheet steel and the insulation coating on the high-frequency iron loss W 1 / 10k of the EI core after long-term continuous use.
FIG. 2 is a graph showing the influence of the surface roughness of steel sheet steel and the insulation coating on the high-frequency iron loss W 1.2 / 10k of the EI core after long-term continuous use.

Claims (2)

Si:2.5 〜10.0mass%(但し、 3.0mass %以下は除く)
Al 0.05 2.2 mass %、
Mn:0.01〜4.5 mass%および
Cr:0.5 〜30.0mass%
を含有し、かつ不純物としての混入をそれぞれ、
C:0.010 mass%以下、
S:0.010 mass%以下、
N:0.0070mass%以下、
O:0.0040mass%以下、
Ti:0.030 mass%以下、
Zr:0.030 mass%以下、
V:0.050 mass%以下、
Nb:0.050 mass%以下
に抑制し、残部は実質的にFeの組成になり、板厚が0.05〜0.85mmで、地鉄の表面粗さを中心線平均粗さRaで0.45μm 以下とした鋼板の表面に、クロム酸塩系、リン酸塩系、アルミナ系、シリカ系の無機被膜または有機樹脂被膜あるいはこれら無機物と有機樹脂との混合物からなる半有機被膜のうちから選んだ少なくとも一種の絶縁被膜を被成したことを特徴とする電磁鋼板。
Si: 2.5-10.0mass% (except 3.0mass % or less) ,
Al: 0.05 ~ 2.2 mass%,
Mn: 0.01-4.5 mass% and
Cr: 0.5 to 30.0 mass%
And containing as impurities,
C: 0.010 mass% or less,
S: 0.010 mass% or less,
N: 0.0070 mass% or less,
O: 0.0040 mass% or less,
Ti: 0.030 mass% or less,
Zr: 0.030 mass% or less,
V: 0.050 mass% or less,
Nb: Steel sheet with a balance of 0.050 mass% or less, the balance being substantially Fe, with a plate thickness of 0.05 to 0.85 mm, and a surface roughness of the base iron with a centerline average roughness Ra of 0.45 μm or less And at least one insulating film selected from a chromate-based, phosphate-based, alumina-based, silica-based inorganic coating or organic resin coating, or a semi-organic coating composed of a mixture of these inorganic and organic resins. it characterized in that the form of the electrical steel plate.
請求項1において、鋼中成分として、さら
:0.01〜0.30mass%、
Cu:0.01〜1.0 mass%、
Ni:0.01〜1.2 mass%、
Sn:0.005 〜0.30mass%、
Sb:0.005 〜0.30mass%および
B:0.0005〜0.0100mass%
のうちから選んだ1種または2種以上を含有させることを特徴とする電磁鋼板。
According to claim 1, as a component in the steel, to further
P : 0.01 to 0.30 mass%,
Cu: 0.01 to 1.0 mass%,
Ni: 0.01~ 1.2 mass%,
Sn: 0.005 to 0.30 mass%,
Sb: 0.005 to 0.30 mass% and B: 0.0005 to 0.0100 mass%
One or electrostatic it characterized by the inclusion of two or more steel sheets chosen from among.
JP36910699A 1999-12-27 1999-12-27 Electrical steel sheet Expired - Fee Related JP3782273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36910699A JP3782273B2 (en) 1999-12-27 1999-12-27 Electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36910699A JP3782273B2 (en) 1999-12-27 1999-12-27 Electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2001185413A JP2001185413A (en) 2001-07-06
JP3782273B2 true JP3782273B2 (en) 2006-06-07

Family

ID=18493581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36910699A Expired - Fee Related JP3782273B2 (en) 1999-12-27 1999-12-27 Electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3782273B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119710B2 (en) * 2007-03-28 2013-01-16 Jfeスチール株式会社 High strength non-oriented electrical steel sheet and manufacturing method thereof
CN103627983A (en) * 2013-11-11 2014-03-12 马鞍山市恒毅机械制造有限公司 Wear-resistant alloy steel material for mine crushing hammers and preparation method thereof
CN106460112A (en) * 2014-05-14 2017-02-22 杰富意钢铁株式会社 Ferritic stainless steel
CN106460113A (en) * 2014-05-14 2017-02-22 杰富意钢铁株式会社 Ferritic stainless steel
CN107513670A (en) * 2017-08-21 2017-12-26 安徽工业大学 A kind of anti-oxidant Hot wear high-speed steel of multigroup metamember
JP7401729B2 (en) * 2019-04-05 2023-12-20 日本製鉄株式会社 Non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2001185413A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2013058239A1 (en) Oriented electromagnetic steel sheet and method for manufacturing same
WO2016031178A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JP5871137B2 (en) Oriented electrical steel sheet
WO2015025758A1 (en) Non-oriented magnetic steel sheet and hot-rolled steel sheet thereof
JP5794409B2 (en) Electrical steel sheet and manufacturing method thereof
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP3782273B2 (en) Electrical steel sheet
EP2243865B1 (en) Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP2009203520A (en) Method for manufacturing non-oriented electromagnetic steel sheet
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP4811390B2 (en) Bi-directional electrical steel sheet
JP4692518B2 (en) Oriented electrical steel sheet for EI core
JP4224957B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet
JP4103393B2 (en) Method for producing grain-oriented electrical steel sheet
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7338812B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2005068525A (en) Method for producing grain-oriented magnetic steel sheet having low core loss and high magnetic flux density
WO2020149333A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2022255259A1 (en) Method for manufacturing oriented electrical steel sheet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3782273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees