JP4837202B2 - NMR superconducting magnet system - Google Patents

NMR superconducting magnet system Download PDF

Info

Publication number
JP4837202B2
JP4837202B2 JP2001254252A JP2001254252A JP4837202B2 JP 4837202 B2 JP4837202 B2 JP 4837202B2 JP 2001254252 A JP2001254252 A JP 2001254252A JP 2001254252 A JP2001254252 A JP 2001254252A JP 4837202 B2 JP4837202 B2 JP 4837202B2
Authority
JP
Japan
Prior art keywords
liquid helium
superconducting magnet
tank
liquid
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001254252A
Other languages
Japanese (ja)
Other versions
JP2003069092A (en
Inventor
量一 広瀬
護 濱田
正敏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Japan Superconductor Technology Inc
Original Assignee
Kobe Steel Ltd
Japan Superconductor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Japan Superconductor Technology Inc filed Critical Kobe Steel Ltd
Priority to JP2001254252A priority Critical patent/JP4837202B2/en
Publication of JP2003069092A publication Critical patent/JP2003069092A/en
Application granted granted Critical
Publication of JP4837202B2 publication Critical patent/JP4837202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Description

【0001】
【発明の属する技術分野】
本発明は、液体ヘリウム中に超伝導磁石を浸漬して永久電流モードで使用する核磁気共鳴分析装置(NMR)の超伝導磁石装置に関するものである。
【0002】
【従来の技術】
従来より、NMR等の超電導磁石装置においては、この超電導磁石の冷却のための冷媒として液体ヘリウムが使用されている。係る構造の超伝導磁石装置の構成の代表例を図4に示している。
【0003】
同図において、超伝導磁石2は、真空断熱容器1内に配置されて液体ヘリウム4が充填された液体ヘリウム槽3内に、該液体ヘリウム4に浸漬した状態で配置されており、前記液体ヘリウム槽3は、その周囲を囲繞する様に配置された液体窒素槽5により外部入熱が遮断される様になっている。即ち、真空断熱容器1からの放射熱は、前記液体窒素槽5内に充填されている液体窒素6の蒸発潜熱によって補償される様に構成されている。
【0004】
又、前記液体窒素槽5及び液体ヘリウム槽3には、夫々前記真空断熱容器1を貫通して外部に突出する窒素配管5a及びヘリウム配管3aが設けられており、前記液体窒素槽5及び液体ヘリウム槽3内において、気化潜熱によって侵入熱を補償して気化した窒素ガス及びヘリウムガスは、前記窒素配管5a及びヘリウム配管3aから大気中に放出される構成となっている。尚、前記窒素配管5a及びヘリウム配管3aには、外気の侵入を阻止するための逆止弁5b,3bが夫々配置されている。
【0005】
【発明が解決しようとする課題】
係る装置を運転する場合には、前記液体ヘリウム槽3及び液体窒素槽5内に夫々液体ヘリウム4及び液体窒素6を充填して超電導磁石2を冷却し、所定の温度に達して該磁石2のコイルが超伝導状態になると、通電装置(図示せず)から通電して永久磁石モードとなし、この状態で核磁気共鳴分析(NMR)等の超伝導磁石2の使用を開始する事になる。
【0006】
ここで、NMR等の永久電流モードで使用する装置では、時間的な磁場安定性(ドリフト)が要求される。例えば、NMRにおいては磁場減衰率を0.01ppm/h以下に抑える磁場安定性が要求されている。これを実現するためには、超伝導磁石2に使用する超伝導線の臨界電流値(IC)に対する使用電流値の割合(対臨界電流値比)を、70%以下(通常は50〜70%)に設定して運転する事が必要である。一方、超伝導線の臨界電流値は、発生する磁場が高くなるほど低下する傾向にあるので、高磁場を発生するには高い電流値が必要であるが、電流値を高くすると臨界電流値に近づく事になり、高磁場が要求されるNMR等の超伝導磁石装置では、対臨界電流値比を70%以下となす事は極めて困難であった。
【0007】
尚、超伝導線の臨界電流値以上の電流を該超伝導線に通電すると、発熱によって超伝導線が物理的に破壊され、超伝導性を喪失してしまう現象(クエンチ)が生じ、磁場を発生できなくなってしまう。
【0008】
そこで、通常の超電導磁石装置は、常圧のヘリウム液化温度(4.2K)で運転されるが、係る高磁場が要求される場合には、特殊な真空断熱容器(クライオスタット)を用いて、液体ヘリウム温度を過冷却して4.2Kよりも低い温度、例えば2〜3K程度に冷却し、これにより、超伝導線の臨界電流値を高くして、運転電流値の対臨界電流値比を70%以下となる様にする方式が一般的に採用されている。
【0009】
これを図2によって説明する。図2は、Nb3Snを超伝導線とした超伝導磁石の臨界電流値(IC)と該超伝導磁石により発生する磁場の強さ(T)との関係を、温度をパラメータとして示したグラフであり、同図から分かる様に、18T(テスラ)の磁場では、4.2Kの温度での臨界電流値IC(図中曲線a)は約200Aであるが、3.0K(図中曲線b)では約400Aとなり、2.0K(図中曲線c)では約500Aとなっている。従って、18Tの磁場が要求される場合に、200Aの電流を流すと、4.2Kではクエンチしてしまうので使用不可能であるが、3.0Kまで冷却しておけば、臨界電流値ICは約400Aに上昇するので、対臨界電流値比は約50%となり、前述の使用電流値の対臨界電流値比を70%以下となす事ができる。
【0010】
しかしながら、係る方式においては、液体ヘリウム温度を常圧の液化温度以下に過冷却してこれを維持する必要があるので、励磁時の大きな発熱量や運転時の熱侵入に対抗するために、真空断熱容器1には、より完全な断熱性が要求され、冷却装置には、大きな冷凍能力が要求される事になり、特殊な真空断熱容器や大型冷凍装置が必要となる。このため、既存の超伝導磁石装置を改造してNMRに適用するには、大幅な改造が要求される事になる。
【0011】
又、停電や冷却装置が故障した場合には、液体ヘリウム温度が上昇して前記臨界電流値ICが低下する結果、運転電流が該臨界電流値を越えて超伝導磁石がクエンチを引き起こす事になる。又、装置のメンテナンス時においても、慎重なクエンチ対策が必要となっていた事はいうまでもない。
【0012】
本発明は、係る現状に鑑み、容易に対臨界電流値比を70%以下となす事ができ、磁場減衰率を0.01ppm/h以下に抑えて、高い磁場安定性を確保する事のできる超伝導磁石装置の運転方法及びその装置並びに該装置に使用する減圧装置ユニットの提供を目的とするものである。
【0013】
【課題を解決するための手段】
本発明は、上記課題を解決するために成されたものであって、その特徴とするところは、液体ヘリウム槽内の液体ヘリウム中に超伝導磁石を浸漬して冷却した状態で超伝導状態を発生させる超電導磁石装置の運転方法において、前記超伝導磁石に通電・励磁して永久電流モードとなした後に、前記液体ヘリウム槽内を減圧する点にある。これにより、前記液体ヘリウム温度を低下させ、臨界電流値を前記永久電流モード初期状態における臨界電流値よりも高い値に移行させる事によって、運転電流値の対臨界電流値比を、容易に70%以下に設定できる様にしたものである。
【0014】
これは、前記超伝導磁石の永久電流モードにおける運転電流値が、該超伝導磁石の臨界電流値の70%以下に相当するヘリウム液化温度が得られる様に、前記液体ヘリウム槽内を減圧する事により容易に達成する事が可能である。
【0015】
上記運転方法を実施するための装置の構成としては、真空断熱容器と、該真空断熱容器内に配置され且つ液体ヘリウムが充填された液体ヘリウム槽と、該液体ヘリウム槽内に配置された超電導磁石と、前記真空容器内であって前記液体ヘリウム槽を外周から囲繞する様に配置され且つ液体窒素が充填された液体窒素槽とを有する超電導磁石装置であって、前記液体ヘリウム槽の上部に前記真空断熱容器を貫通して外部に連通するヘリウム配管を形成し、該ヘリウム配管を真空ポンプに接続し、これにより、前記超伝導磁石に通電・励磁して永久電流モードになした後に、前記真空ポンプを作動させて前記液体ヘリウム槽内を減圧して液体ヘリウム温度を低下させて、前記超伝導磁石の臨界電流値を高く設定できる様にしたものである。
【0016】
この装置においても、永久電流モードにおいて、前記超伝導磁石に流れる電流値が、液体ヘリウム温度低下後の該超伝導磁石の臨界電流値の70%以下となる様に、前記真空ポンプにて前記液体ヘリウム槽内の圧力を減圧する様に設定する事になる。
【0017】
又、具体的な構成としては、圧力センサと自動弁と真空ポンプと制御部とを一体に備えた減圧装置ユニットを、前記ヘリウム配管に接続し、前記制御部にて前記圧力センサからの信号に基づいて、前記自動弁又は前記真空ポンプの制御を行い、これにより前記液体ヘリウム槽内の圧力を常圧よりも低い所定の圧力に維持する様になすのが好ましい方式である。
【0018】
更に、この超伝導磁石装置に使用する減圧装置ユニットとして、圧力センサと自動弁と真空ポンプとが配管に直列に配置されると共に、前記圧力センサからの信号に基づいて前記自動弁又は前記真空ポンプの制御を行う制御部を有してなるものがある。
【0019】
【発明の実施の態様】
以下に本発明を実施例に基づいて図面を用いて説明する。図1は、本発明に係る超伝導磁石装置の実施例を示す要部断面図であり、内部を真空に保持されている真空断熱容器1内には、環状の超電導磁石2を内蔵した液体ヘリウム槽3と、この外周部を囲繞する様に配置され、内部に液体窒素6が充填された環状の液体窒素槽5とが配置され、液体窒素槽5には窒素配管5aが真空断熱容器1を貫通して設けられている点は、従来の装置と同一である。
【0020】
本発明の装置では、前記液体ヘリウム槽3から前記真空断熱容器1を貫通して設けられたヘリウム配管3aが、従来の単なる大気開放ではなく、圧力センサ7と自動弁V3と真空ポンプ9を有し、圧力センサ7からの信号に基づいて前記自動弁V3又は真空ポンプ9を制御する制御部8を備えた減圧装置ユニットAが接続されされている点で異なっている。尚、バルブV3は、該減圧装置ユニットAの配管10と前記ヘリウム配管3aとの接続を開閉するストップバルブである。
【0021】
係る構成の超伝導磁石装置の運転に当たっては、先ず、常法に従って、液体窒素槽5に液体窒素タンク(図示せず)から窒素配管5aを通して液体窒素6を充填すると共に、図中点線で示した液体ヘリウム供給配管13のバルブV2を開けて、液体ヘリウムタンク12からタンク内圧によって液体ヘリウム槽3に液体ヘリウム4を常圧充填し、該液体ヘリウム槽3に配置された超伝導磁石2を冷却する。これにより、超伝導磁石2は、液体ヘリウム槽3内の液体ヘリウムの蒸発潜熱によって常圧におけるヘリウム液化温度である4.2Kにまで冷却される点は従来と同様である。
【0022】
この様にして超伝導磁石2がヘリウム液化温度である4.2Kにまで冷却された状態で安定すると、前記超伝導磁石のコイルは超伝導状態に達しているので、バルブV2を閉じて液体ヘリウムの供給を止め、続いて、常法によって該超伝導磁石2に通電装置(図示せず)から通電して永久電流モードとなす。尚、この時点での臨界電流値(IC)は、該臨界電流値(IC)の一例を示した図2によれば、Nb3Sn製の超伝導線の場合には、18Tで約200Aである。従って、永久電流モードとなすために供給する電流値は、該臨界電流値の200A以下、例えば180A程度となす事が肝要である。しかしながら、この状態における対臨界電流値比は約90%であり、磁場減衰率は大きく、磁場安定性に欠ける状態といえる。
【0023】
そこで、本発明では、直ちにヘリウム配管3aに接続されている前記配管10のストップバルブV3を開け、前記減圧装置ユニットAの真空ポンプ9を起動させて前記液体ヘリウム槽3の蒸発ヘリウムガスを吸引し、該液体ヘリウム槽3の圧力を常圧以下に減圧する。すると、ヘリウムの蒸気圧も低下して平衡液化温度も低下するので、液体ヘリウム温度は次第に低下し、超伝導磁石2の温度も低下する。例えば、常圧(1013ヘクトパスカル〔hPa〕)におけるヘリウムの液化温度は4.2Kであるが、約470hPaでは3.5Kとなり、約240hPaでは3.0Kとなる。従って、この減圧の程度は、要求する磁場の大きさと前記永久電流モードとなした時の電流値、即ち運転電流値とから臨界電流値ICをどの値まで高めるかによって異なる事になるが、通常は、運転電流値の対臨界電流値比が70%以下となる様な臨界電流値が得られる圧力となす。例えば、図2において、所要磁場強さを18T、運転電流値を180Aとした場合には、この運転電流値の対臨界電流値比は、常圧では約180/200で約90%であるが、3.0Kまで液体ヘリウム温度を低下させると、対臨界電流値比は約180/400で約45%となる。従って、3.0K程度に冷却する様な減圧度を選定すれば充分である事が分かる。
【0024】
尚、上記減圧装置ユニットAは、圧力センサ7と自動弁V1と真空ポンプ9とが直列に配置され、且つ、前記自動弁V1又は真空ポンプ9の作動を制御する制御部8を一体的に設けられてユニット化されたものである。このユニットAにおいて、前記制御部8は、液体ヘリウム槽3内のヘリウムの蒸気圧の設定と、前記自動弁V1の開度調整、又は、前記真空ポンプ9の起動,停止又は回転数調整による能力制御を行う機能を備えているものである。従って、圧力センサ7が液体ヘリウム槽3内のヘリウムの蒸気圧を検出し、該検出信号を制御部8に送信し、該制御部8で、その検出された圧力を設定されている圧力と比較し、所定の蒸気圧以上の場合には、前記真空ポンプ9の起動又は回転数アップによる能力増加を行うか、或いは、自動弁V1の開操作又は開度アップ操作行って真空ポンプ9による吸引ヘリウム量の増加制御を行わせる。一方、前記圧力センサ7からの圧力信号が設定値以下となると、前記自動弁V1の閉操作又は開度ダウン操作、或いは、前記真空ポンプ9の停止又は回転数ダウンによる能力減少操作を行って、ヘリウムガス排出の停止又は排出量の減少制御を行う様になっている。従って、液体ヘリウム槽3内の圧力(ヘリウム蒸気圧)は、常に一定の範囲に保持される結果、該液体ヘリウム槽3内の温度も、前記設定圧力、即ち、ヘリウム蒸気圧に対応した平衡温度に維持される事になる。
【0025】
次に、図3は、本発明の実施例を示すデータであり、図2の臨界電流値を測定したNb3Sn製の超伝導線を用いたNMR用超伝導磁石における液体ヘリウム温度(減圧度)と磁場減衰率(ドリフト:ppm/h)との関係の測定値と計算値を示すグラフであり、要求磁場は18Tの場合の例である。同図から分かる様に、常圧のヘリウム液化温度である4.2Kでは、磁場減衰率は0.033ppm/hであり要求値の0.01ppm/h以下を大きく上回っているが、3.7Kまで冷却されると0.01ppm/h以下となり、要求条件を満足する事になる。更に、3.5Kまで冷却すると、磁場減衰率は0.006ppm/h程度となり、要求条件を大幅にクリアーできる事が分かる。
【0026】
以上説明した通り、本発明によれば、液体ヘリウムで冷却した超伝導磁石を永久電流モードにした後、液体ヘリウム槽3を真空ポンプ10で吸引して減圧する事により、平衡蒸気圧を常圧以下に下げて液体ヘリウム温度を下げる様にしたものであって、本発明は上述した実施態様に限定されるものではなく、この思想の元に種々の変形例が存在する事はいうまでもない。例えば、前記真空ポンプ9で吸引したヘリウムガスは、そのまま大気に放出してもよいが、配管15を通してヘリウム液化機14に送給して液化した後、液体ヘリウムタンク12に帰還させれば、ヘリウムの使用量を節約する事が可能となる。
【0027】
更に、前記液体ヘリウム槽3内の液体ヘリウム4の液面計を設置しておき、ヘリウム液面が予め設定した所定の範囲内となる様に前記バルブV2の開閉制御を自動的に行う様にしておけば、超伝導磁石装置の無人連続運転も可能となる。
【0028】
【発明の効果】
以上詳述した如く、本発明によれば、液体ヘリウムで冷却した超伝導磁石を永久電流モードにした後、液体ヘリウム槽3を真空ポンプ9で吸引して減圧する事により、平衡蒸気圧を常圧以下に下げて液体ヘリウムの平衡温度を低下させ、これにより臨界電流値を高めて運転電流値の対臨界電流値比を下げる様にしているので、従来の如く、最初から液体ヘリウム温度を下げて運転する方式ではないので、装置構成も従来の特殊な低温対策を施した装置に比べて簡単な構造となるので、その製造コストの低減に寄与する事になる。
【0029】
又、従来の装置に、前記減圧装置ユニットAを取り付ければ良いだけの簡単な改良のみで容易に磁場減衰率の低い超伝導磁石装置を得る事が可能となるので、既存装置の高機能化が容易となる。
【0030】
更に、運転電流値の対臨界電流値比を、従来に比して一層低く設定する事が可能となるので、磁場減衰率も極めて低い状態に維持する事が可能となり、NMR等の超伝導磁石装置を長期間に亘って安定して運転する事が可能となる。この結果、NMR等の装置の運転コストの低減が図れるのみならず、短期間でNMR分析結果が得られる等の、その波及効果は大なるものが期待される。
【0031】
又、停電や冷却装置の故障或いはメンテナンスの場合にも、対臨界電流値比が従来に比して一層低い値に設定可能であるので、即ち、運転電流値と臨界電流値の差が大きいので、運転停止に至った時点から液体ヘリウム槽内温度の上昇による臨界電流値の低下と、これに伴う対臨界電流値比の増加に至るまでの時間的余裕が長くなるので、その間に、冷凍機の部品の交換等の必要な措置を講ずる事が可能となり、非常時対策が容易となるのみならず、メンテナンスも容易になる効果がある。
【0032】
更に、冷凍装置が長時間停止し、液体ヘリウム槽の温度が常圧の液体ヘリウム温度(4.2K)まで上昇した場合でも、対臨界電流値比は高くなるが、臨界電流値を越えてクエンチに至る事はないので、特別なクエンチ対策が不要となる利点も実用面からは、無視し得ない大きな効果である。
【図面の簡単な説明】
【図1】本発明の超電導磁石装置の実施例を示す概略断面図である。
【図2】冷却温度をパラメータとした超伝導線の臨界電流値と磁場の強さとの関係を示すグラフである。
【図3】本発明方法による磁場減衰率と冷却温度との関係を示すグラフである。
【図4】従来の超電導磁石装置の例を示す概略断面図である。
【符号の説明】
1 真空断熱容器
2 超電導磁石
3 液体ヘリウム槽
3a ヘリウム配管
4 液体ヘリウム
5 液体窒素槽
6 液体窒素
7 圧力センサ
8 制御部
9 真空ポンプ
10 配管
12 液体ヘリウムタンク
14 ヘリウム液化機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a superconducting magnet device for a nuclear magnetic resonance analyzer (NMR) in which a superconducting magnet is immersed in liquid helium and used in a permanent current mode.
[0002]
[Prior art]
Conventionally, in a superconducting magnet apparatus such as NMR, liquid helium is used as a refrigerant for cooling the superconducting magnet. A typical example of the structure of the superconducting magnet device having such a structure is shown in FIG.
[0003]
In the figure, a superconducting magnet 2 is disposed in a liquid helium tank 3 which is disposed in a vacuum heat insulating container 1 and filled with liquid helium 4, and is immersed in the liquid helium 4, and the liquid helium The tank 3 is configured such that external heat input is blocked by a liquid nitrogen tank 5 disposed so as to surround the periphery thereof. That is, the radiant heat from the vacuum heat insulating container 1 is compensated by the latent heat of vaporization of the liquid nitrogen 6 filled in the liquid nitrogen tank 5.
[0004]
The liquid nitrogen tank 5 and the liquid helium tank 3 are respectively provided with a nitrogen pipe 5a and a helium pipe 3a that pass through the vacuum heat insulating container 1 and protrude to the outside. In the tank 3, the nitrogen gas and the helium gas vaporized by compensating the invasion heat by the latent heat of vaporization are discharged from the nitrogen pipe 5a and the helium pipe 3a into the atmosphere. The nitrogen pipe 5a and the helium pipe 3a are provided with check valves 5b and 3b for preventing the entry of outside air, respectively.
[0005]
[Problems to be solved by the invention]
When operating such an apparatus, the liquid helium tank 3 and the liquid nitrogen tank 5 are filled with liquid helium 4 and liquid nitrogen 6, respectively, to cool the superconducting magnet 2 and reach a predetermined temperature. When the coil is in a superconducting state, a current is supplied from an energizing device (not shown) to enter the permanent magnet mode, and in this state, use of the superconducting magnet 2 such as nuclear magnetic resonance analysis (NMR) is started.
[0006]
Here, in an apparatus used in a permanent current mode such as NMR, temporal magnetic field stability (drift) is required. For example, in NMR, magnetic field stability is required to suppress the magnetic field attenuation rate to 0.01 ppm / h or less. In order to realize this, the ratio of the working current value to the critical current value (IC) of the superconducting wire used for the superconducting magnet 2 is 70% or less (usually 50 to 70%). ) Is required to drive. On the other hand, the critical current value of a superconducting wire tends to decrease as the generated magnetic field increases, so a high current value is required to generate a high magnetic field, but the critical current value approaches the higher current value. Thus, in a superconducting magnet device such as NMR that requires a high magnetic field, it was extremely difficult to make the ratio of the critical current value 70% or less.
[0007]
If a current exceeding the critical current value of the superconducting wire is passed through the superconducting wire, the superconducting wire will be physically destroyed by heat generation, resulting in a phenomenon (quenching) that causes the superconductivity to be lost. It can no longer occur.
[0008]
Therefore, a normal superconducting magnet apparatus is operated at a normal pressure helium liquefaction temperature (4.2 K). When such a high magnetic field is required, a special vacuum heat insulating container (cryostat) is used to The helium temperature is supercooled and cooled to a temperature lower than 4.2K, for example, about 2 to 3K, thereby increasing the critical current value of the superconducting wire and setting the operating current value to critical current value ratio to 70. Generally, a method of setting the ratio to be equal to or less than% is adopted.
[0009]
This will be described with reference to FIG. FIG. 2 is a graph showing the relationship between the critical current value (IC) of a superconducting magnet using Nb3Sn as a superconducting wire and the strength (T) of the magnetic field generated by the superconducting magnet, using temperature as a parameter. As can be seen from the figure, in the magnetic field of 18 T (Tesla), the critical current value IC (curve a in the figure) at a temperature of 4.2 K is about 200 A, but at 3.0 K (curve b in the figure). It is about 400A, and is about 500A at 2.0K (curve c in the figure). Therefore, if a magnetic field of 18 T is required, if a current of 200 A is passed, it will be unusable because it will quench at 4.2 K, but if it is cooled to 3.0 K, the critical current value IC will be Since it increases to about 400 A, the ratio of the critical current value is about 50%, and the ratio of the critical current value of the above-mentioned operating current value can be 70% or less.
[0010]
However, in such a system, it is necessary to supercool the liquid helium temperature below the normal liquefaction temperature and maintain this, so in order to counteract the large amount of heat generated during excitation and heat penetration during operation, The heat insulating container 1 is required to have a more complete heat insulating property, and the cooling device is required to have a large refrigerating capacity, and a special vacuum heat insulating container and a large refrigeration apparatus are required. For this reason, in order to modify an existing superconducting magnet device and apply it to NMR, a large amount of modification is required.
[0011]
Also, in the event of a power failure or failure of the cooling device, the liquid helium temperature rises and the critical current value IC decreases, so that the operating current exceeds the critical current value and the superconducting magnet causes a quench. . It goes without saying that careful quenching measures are necessary even during maintenance of the apparatus.
[0012]
In view of the present situation, the present invention can easily reduce the critical current value ratio to 70% or less, suppress the magnetic field attenuation rate to 0.01 ppm / h or less, and ensure high magnetic field stability. It is an object of the present invention to provide a method of operating a conductive magnet device, its device, and a decompression device unit used in the device.
[0013]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problems. The feature of the present invention is that a superconducting magnet is immersed in liquid helium in a liquid helium bath and cooled to maintain the superconducting state. In the operation method of the superconducting magnet device to be generated, the inside of the liquid helium tank is decompressed after energizing and exciting the superconducting magnet to enter the permanent current mode. As a result, the liquid helium temperature is lowered, and the critical current value is shifted to a value higher than the critical current value in the initial state of the permanent current mode, so that the ratio of the operating current value to the critical current value is easily 70%. The following can be set.
[0014]
This is because the liquid helium tank is depressurized so that the helium liquefaction temperature corresponding to 70% or less of the critical current value of the superconducting magnet is obtained when the operating current value of the superconducting magnet in the permanent current mode is obtained. Can be achieved more easily.
[0015]
The apparatus for carrying out the above operating method includes a vacuum heat insulating container, a liquid helium tank disposed in the vacuum heat insulating container and filled with liquid helium, and a superconducting magnet disposed in the liquid helium tank. And a superconducting magnet device that is disposed in the vacuum vessel so as to surround the liquid helium tank from the outer periphery and is filled with liquid nitrogen, and is disposed above the liquid helium tank. A helium pipe that penetrates the vacuum heat insulating container and communicates with the outside is formed, and the helium pipe is connected to a vacuum pump, whereby the superconducting magnet is energized and excited to enter the permanent current mode, and then the vacuum The pump is operated to depressurize the liquid helium tank to lower the liquid helium temperature, so that the critical current value of the superconducting magnet can be set high.
[0016]
Also in this apparatus, in the permanent current mode, the liquid value that flows through the superconducting magnet is 70% or less of the critical current value of the superconducting magnet after the liquid helium temperature is lowered. The pressure in the helium tank is set to be reduced.
[0017]
Further, as a specific configuration, a pressure reducing device unit integrally including a pressure sensor, an automatic valve, a vacuum pump, and a control unit is connected to the helium pipe, and a signal from the pressure sensor is transmitted to the control unit. Based on this, it is preferable to control the automatic valve or the vacuum pump so as to maintain the pressure in the liquid helium tank at a predetermined pressure lower than the normal pressure.
[0018]
Further, as a pressure reducing device unit used in the superconducting magnet device, a pressure sensor, an automatic valve, and a vacuum pump are arranged in series with a pipe, and the automatic valve or the vacuum pump is based on a signal from the pressure sensor. Some have a control unit for controlling the above.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on examples with reference to the drawings. FIG. 1 is a cross-sectional view of an essential part showing an embodiment of a superconducting magnet device according to the present invention. Liquid helium containing an annular superconducting magnet 2 is housed in a vacuum heat insulating container 1 whose inside is held in a vacuum. A tank 3 and an annular liquid nitrogen tank 5 which is disposed so as to surround the outer peripheral portion and filled with liquid nitrogen 6 are disposed. In the liquid nitrogen tank 5, a nitrogen pipe 5 a is connected to the vacuum heat insulating container 1. The point of being provided through is the same as the conventional device.
[0020]
In the apparatus of the present invention, the helium pipe 3a provided from the liquid helium tank 3 penetrating the vacuum heat insulating container 1 is not a conventional simple open air, but has a pressure sensor 7, an automatic valve V3, and a vacuum pump 9. However, the difference is that a pressure reducing device unit A including a control unit 8 for controlling the automatic valve V3 or the vacuum pump 9 based on a signal from the pressure sensor 7 is connected. The valve V3 is a stop valve that opens and closes the connection between the pipe 10 of the decompression device unit A and the helium pipe 3a.
[0021]
In operation of the superconducting magnet apparatus having such a configuration, first, according to a conventional method, the liquid nitrogen tank 5 is filled with the liquid nitrogen 6 from the liquid nitrogen tank (not shown) through the nitrogen pipe 5a, and is indicated by a dotted line in the figure. The valve V2 of the liquid helium supply pipe 13 is opened, the liquid helium tank 3 is filled with the liquid helium 4 at normal pressure from the liquid helium tank 12 by the tank internal pressure, and the superconducting magnet 2 disposed in the liquid helium tank 3 is cooled. . Thereby, the superconducting magnet 2 is cooled to 4.2 K which is the helium liquefaction temperature at normal pressure by the latent heat of vaporization of the liquid helium in the liquid helium tank 3 as in the conventional case.
[0022]
In this way, when the superconducting magnet 2 is stabilized in the state cooled to the helium liquefaction temperature of 4.2 K, the coil of the superconducting magnet has reached the superconducting state, so that the valve V2 is closed and the liquid helium is closed. Then, the superconducting magnet 2 is energized from an energizing device (not shown) by a conventional method to enter a permanent current mode. Note that the critical current value (IC) at this point is about 200 A at 18 T in the case of a superconducting wire made of Nb3Sn according to FIG. 2 showing an example of the critical current value (IC). Therefore, it is important that the current value supplied for the permanent current mode is 200 A or less of the critical current value, for example, about 180 A. However, the ratio of the critical current value in this state is about 90%, the magnetic field decay rate is large, and it can be said that the magnetic field stability is lacking.
[0023]
Therefore, in the present invention, the stop valve V3 of the pipe 10 connected to the helium pipe 3a is immediately opened, and the vacuum pump 9 of the pressure reducing device unit A is activated to suck the evaporated helium gas in the liquid helium tank 3. The pressure of the liquid helium tank 3 is reduced to a normal pressure or lower. Then, since the vapor pressure of helium also decreases and the equilibrium liquefaction temperature also decreases, the liquid helium temperature gradually decreases and the temperature of the superconducting magnet 2 also decreases. For example, the liquefaction temperature of helium at normal pressure (1013 hectopascals [hPa]) is 4.2 K, but is 3.5 K at about 470 hPa and 3.0 K at about 240 hPa. Accordingly, the degree of this pressure reduction varies depending on the value of the critical current value IC from the magnitude of the required magnetic field and the current value when the permanent current mode is entered, that is, the operating current value. Is a pressure at which a critical current value is obtained such that the ratio of the operating current value to the critical current value is 70% or less. For example, in FIG. 2, when the required magnetic field strength is 18 T and the operating current value is 180 A, the ratio of the operating current value to the critical current value is approximately 180/200 at atmospheric pressure, which is approximately 90%. When the liquid helium temperature is lowered to 3.0 K, the ratio of the critical current value is about 180/400, which is about 45%. Therefore, it can be seen that it is sufficient to select a degree of decompression that cools to about 3.0K.
[0024]
In the pressure reducing unit A, the pressure sensor 7, the automatic valve V1, and the vacuum pump 9 are arranged in series, and a controller 8 for controlling the operation of the automatic valve V1 or the vacuum pump 9 is provided integrally. And unitized. In this unit A, the control unit 8 is capable of setting the vapor pressure of helium in the liquid helium tank 3, adjusting the opening of the automatic valve V1, or starting, stopping, or adjusting the rotation speed of the vacuum pump 9. It has a function to perform control. Accordingly, the pressure sensor 7 detects the vapor pressure of helium in the liquid helium tank 3 and transmits the detection signal to the control unit 8, and the control unit 8 compares the detected pressure with the set pressure. When the pressure is higher than a predetermined vapor pressure, the capacity is increased by starting the vacuum pump 9 or increasing the rotation speed, or by opening the opening of the automatic valve V1 or increasing the opening, thereby sucking helium by the vacuum pump 9. Let the amount increase control. On the other hand, when the pressure signal from the pressure sensor 7 is equal to or lower than a set value, the automatic valve V1 is closed or the opening is reduced, or the vacuum pump 9 is stopped or the engine speed is reduced by rotating the engine. Helium gas discharge stop or discharge reduction control is performed. Accordingly, the pressure in the liquid helium tank 3 (helium vapor pressure) is always maintained within a certain range, and as a result, the temperature in the liquid helium tank 3 is also the equilibrium temperature corresponding to the set pressure, that is, the helium vapor pressure. Will be maintained.
[0025]
Next, FIG. 3 is data showing an example of the present invention. The liquid helium temperature (decompression degree) in the NMR superconducting magnet using the Nb3Sn superconducting wire whose critical current value was measured in FIG. It is a graph which shows the measured value and calculated value of a relationship with a magnetic field decay rate (drift: ppm / h), and a required magnetic field is an example in case of 18T. As can be seen from the figure, at the atmospheric pressure helium liquefaction temperature of 4.2 K, the magnetic field attenuation rate is 0.033 ppm / h, which is significantly higher than the required value of 0.01 ppm / h or less, but 3.7 K. When cooled to 0.01 ppm / h or less, the required conditions are satisfied. Furthermore, when it cools to 3.5K, a magnetic field attenuation factor will be about 0.006 ppm / h, and it turns out that a required condition can be cleared significantly.
[0026]
As described above, according to the present invention, the superconducting magnet cooled with liquid helium is set to the permanent current mode, and then the liquid helium tank 3 is sucked with the vacuum pump 10 to reduce the pressure, thereby reducing the equilibrium vapor pressure to normal pressure. The liquid helium temperature is lowered below, and the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications exist based on this idea. . For example, the helium gas sucked by the vacuum pump 9 may be released to the atmosphere as it is, but if it is sent to the helium liquefier 14 through the pipe 15 to be liquefied and then returned to the liquid helium tank 12, helium. It becomes possible to save the amount of use.
[0027]
Furthermore, a liquid level gauge for the liquid helium 4 in the liquid helium tank 3 is installed so that the valve V2 is automatically controlled to open and close so that the helium liquid level is within a predetermined range. Then, unattended continuous operation of the superconducting magnet device becomes possible.
[0028]
【The invention's effect】
As described above in detail, according to the present invention, the superconducting magnet cooled with liquid helium is set to the permanent current mode, and then the liquid helium tank 3 is sucked with the vacuum pump 9 to reduce the pressure so that the equilibrium vapor pressure is kept constant. Since the equilibrium temperature of liquid helium is lowered by lowering the pressure, thereby increasing the critical current value and lowering the ratio of the operating current to the critical current value, the liquid helium temperature is lowered from the beginning as before. Therefore, the device configuration is simpler than that of a conventional device with special low-temperature countermeasures, which contributes to a reduction in manufacturing cost.
[0029]
In addition, since it is possible to easily obtain a superconducting magnet device having a low magnetic field attenuation rate by simply improving the pressure reducing device unit A to the conventional device, it is possible to improve the functionality of existing devices. It becomes easy.
[0030]
Furthermore, since the ratio of the operating current value to the critical current value can be set lower than before, it is possible to maintain the magnetic field attenuation rate in a very low state, such as a superconducting magnet such as NMR. The apparatus can be stably operated over a long period of time. As a result, it is expected that not only the operating cost of the apparatus such as NMR can be reduced, but also the ripple effect can be increased such that the NMR analysis result can be obtained in a short period of time.
[0031]
Also, in the event of a power failure, cooling device failure, or maintenance, the ratio of the critical current value can be set to a lower value than before, that is, the difference between the operating current value and the critical current value is large. Since the critical current value decreases due to the increase in the temperature in the liquid helium tank from the time when the operation is stopped, and the time to increase in the ratio to the critical current value increases accordingly, Therefore, it is possible to take necessary measures such as replacement of the parts, and it is possible not only to take emergency measures but also to facilitate maintenance.
[0032]
Furthermore, even if the refrigeration system is stopped for a long time and the temperature of the liquid helium tank rises to the normal pressure liquid helium temperature (4.2K), the ratio to the critical current value is high, but the critical current value is exceeded and quenching is performed. Therefore, the advantage of eliminating the need for special quenching measures is a great effect that cannot be ignored from a practical standpoint.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a superconducting magnet device of the present invention.
FIG. 2 is a graph showing the relationship between the critical current value of a superconducting wire and the strength of a magnetic field with the cooling temperature as a parameter.
FIG. 3 is a graph showing the relationship between the magnetic field attenuation rate and the cooling temperature according to the method of the present invention.
FIG. 4 is a schematic cross-sectional view showing an example of a conventional superconducting magnet device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum insulation container 2 Superconducting magnet 3 Liquid helium tank 3a Helium piping 4 Liquid helium 5 Liquid nitrogen tank 6 Liquid nitrogen 7 Pressure sensor 8 Control part 9 Vacuum pump 10 Pipe 12 Liquid helium tank 14 Helium liquefier

Claims (4)

真空断熱容器(1)と、該真空断熱容器(1)内に配置され且つ液体ヘリウム(4)が充填された液体ヘリウム槽(3)と、該液体ヘリウム槽(3)内に配置された超電導磁石(2)と、前記真空容器(1)内であって前記液体ヘリウム槽(3)を外周から囲繞する様に配置され且つ液体窒素(6)が充填された液体窒素槽(5)とを有するNMR用超電導磁石装置において、
前記液体ヘリウム槽(3)の上部に形成され、前記真空断熱容器(1)を貫通して外部に連通するヘリウム配管(3a)と、
前記ヘリウム配管(3a)に接続された減圧装置ユニット(A)と、を備え、
前記減圧装置ユニット(A)は、
圧力センサ(7)と、
自動弁(V1)と、
真空ポンプ(9)と、
液体ヘリウム(4)が常圧時の臨界電流値以下で前記超伝導磁石(2)が通電・励磁されて永久電流モードになされた後に、前記真空ポンプ(9)を作動させて前記液体ヘリウム槽(3)内を減圧して常圧よりも低い所定の圧力に維持し、液体ヘリウム(4)温度を低下させて前記超伝導磁石(2)の臨界電流値を高くする制御部(8)と、を一体に備え、
さらに前記制御部(8)は、前記圧力センサ(7)からの信号に基づいて、前記液体ヘリウム槽(3)内の液体ヘリウム(4)の蒸気圧の設定と、前記真空ポンプ(9)の起動,停止又は回転数調整による能力制御とを行う機能を有することを特徴とするNMR用超伝導磁石装置。
Vacuum heat insulating container (1), liquid helium tank (3) disposed in the vacuum heat insulating container (1) and filled with liquid helium (4), and superconductivity disposed in the liquid helium tank (3) A magnet (2), and a liquid nitrogen tank (5) disposed in the vacuum vessel (1) so as to surround the liquid helium tank (3) from the outer periphery and filled with liquid nitrogen (6). In the NMR superconducting magnet device,
A helium pipe (3a) formed on the liquid helium tank (3) and penetrating the vacuum heat insulating container (1) to communicate with the outside;
A decompressor unit (A) connected to the helium pipe (3a),
The decompression device unit (A)
A pressure sensor (7);
An automatic valve (V1);
A vacuum pump (9);
After the liquid helium (4) is below the critical current value at normal pressure and the superconducting magnet (2) is energized / excited to enter the permanent current mode, the vacuum pump (9) is operated to activate the liquid helium tank. (3) a controller (8) for reducing the pressure inside and maintaining a predetermined pressure lower than the normal pressure, and decreasing the liquid helium (4) temperature to increase the critical current value of the superconducting magnet (2); , And
Further, the control unit (8) sets the vapor pressure of the liquid helium (4) in the liquid helium tank (3) based on the signal from the pressure sensor (7) and the vacuum pump (9). A superconducting magnet apparatus for NMR, which has a function of performing capability control by starting, stopping, or adjusting the number of revolutions.
前記永久電流モードにおいて前記超伝導磁石(2)に流れる電流値が、液体ヘリウム温度低下後の該超伝導磁石(2)の臨界電流値(IC)の70%以下となる様に、前記真空ポンプ(9)にて前記液体ヘリウム槽(5)内の圧力を減圧する様にしてなる請求項に記載のNMR用超伝導磁石装置。The vacuum pump so that the value of the current flowing through the superconducting magnet (2) in the permanent current mode is 70% or less of the critical current value (IC) of the superconducting magnet (2) after the liquid helium temperature is lowered. The superconducting magnet device for NMR according to claim 1 , wherein the pressure in the liquid helium tank (5) is reduced in (9). 前記液体ヘリウム槽(3)に液面計を設け、該液体ヘリウム槽(3)内の液体ヘリウム(4)の液面が所定下限値以下になると、液体ヘリウムタンク(12)から前記液体ヘリウム槽(3)内に液体ヘリウムを補充する様にしてなる請求項又はに記載のNMR用超伝導磁石装置。When a liquid level gauge is provided in the liquid helium tank (3) and the liquid level of the liquid helium (4) in the liquid helium tank (3) falls below a predetermined lower limit value, the liquid helium tank (12) to the liquid helium tank (3) NMR superconducting magnet apparatus according to claim 1 or 2 comprising in the manner to replenish the liquid helium in the. 前記真空ポンプ(9)から排出されるヘリウムガスを、液化して液体ヘリウムタンク(12)に戻す様にしてなる請求項乃至のいずれかに記載のNMR用超伝導磁石装置。The NMR superconducting magnet device according to any one of claims 1 to 3 , wherein helium gas discharged from the vacuum pump (9) is liquefied and returned to the liquid helium tank (12).
JP2001254252A 2001-08-24 2001-08-24 NMR superconducting magnet system Expired - Lifetime JP4837202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001254252A JP4837202B2 (en) 2001-08-24 2001-08-24 NMR superconducting magnet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001254252A JP4837202B2 (en) 2001-08-24 2001-08-24 NMR superconducting magnet system

Publications (2)

Publication Number Publication Date
JP2003069092A JP2003069092A (en) 2003-03-07
JP4837202B2 true JP4837202B2 (en) 2011-12-14

Family

ID=19082439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001254252A Expired - Lifetime JP4837202B2 (en) 2001-08-24 2001-08-24 NMR superconducting magnet system

Country Status (1)

Country Link
JP (1) JP4837202B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798625A4 (en) * 2018-05-23 2022-03-23 Nippon Steel Corporation Magnetic-field-generating apparatus and method for magnetizing magnetic-field-generating apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4917291B2 (en) * 2005-09-21 2012-04-18 株式会社日立製作所 Cryostat
JP4896620B2 (en) * 2006-08-07 2012-03-14 株式会社東芝 Superconducting magnet
GB2460022B (en) 2008-05-12 2010-04-07 Siemens Magnet Technology Ltd Passive overpressure and underpressure protection for a cryogen vessel
JP2010045267A (en) * 2008-08-17 2010-02-25 Central Res Inst Of Electric Power Ind Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter
US8729894B2 (en) 2010-07-30 2014-05-20 General Electric Company System and method for operating a magnetic resonance imaging system during ramping

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946390A (en) * 1972-09-06 1974-05-02
JPS6354567A (en) * 1986-08-22 1988-03-08 株式会社日立製作所 Superfluid helium refrigerator
JP2760858B2 (en) * 1989-08-25 1998-06-04 科学技術庁金属材料技術研究所長 Cryostat for superconducting device
JPH0936444A (en) * 1995-07-25 1997-02-07 Nippon Steel Corp Cooling method for superconducting coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798625A4 (en) * 2018-05-23 2022-03-23 Nippon Steel Corporation Magnetic-field-generating apparatus and method for magnetizing magnetic-field-generating apparatus

Also Published As

Publication number Publication date
JP2003069092A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
US20190212049A1 (en) Apparatus and method for super-cooled operation of a cryostat with low quantities of coolant
US8327650B2 (en) Method and apparatus for controlling the cooling power of a cryogenic refrigerator delivered to a cryogen vessel
US5150578A (en) Cryostat
JP4854396B2 (en) Cryostat structure with low-temperature refrigerator
CN101581941A (en) Control of egress of gas from a cryogen vessel
CN102869933A (en) Improved method and apparatus for shipping and storage of cryogenic devices
JP4837202B2 (en) NMR superconducting magnet system
JP4855990B2 (en) Recondensing device, mounting method thereof and superconducting magnet using the same
JP2009150645A (en) Variable power cryogenic refrigerator
JP5322489B2 (en) Superconducting magnet
JP6616717B2 (en) Cryogenic cooling device and cryogenic cooling method
JP4814630B2 (en) Superconducting magnet system
US20050088266A1 (en) Zero backflow vent for liquid helium cooled magnets
US5979176A (en) Refrigerator
JP7120303B2 (en) Magnetic field generator and method for magnetizing magnetic field generator
JP2008109035A (en) Pressurized superfluid helium cryostat
CN115508759A (en) Autonomous cooling of dry cooled superconducting MR magnetic coil systems
JP4686149B2 (en) Cooling system using slush nitrogen
JP5014206B2 (en) Superconducting member cooling method
JP2006165009A (en) Superconducting magnet device, nmr analyzer using the same, mri equipment or icr mass spectrometer
GB2528919A (en) Superconducting magnet assembly
JP2597182B2 (en) Superconducting magnet device
GB2463033A (en) Method of operating a cryogenic refrigerator with multiple refrigeration stages
JP3043089B2 (en) Cryogenic liquid injection device
JP2009032758A (en) Conduction cooling type superconducting magnet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090518

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4837202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term