JP4830260B2 - Film thickness detection method - Google Patents

Film thickness detection method Download PDF

Info

Publication number
JP4830260B2
JP4830260B2 JP2004047865A JP2004047865A JP4830260B2 JP 4830260 B2 JP4830260 B2 JP 4830260B2 JP 2004047865 A JP2004047865 A JP 2004047865A JP 2004047865 A JP2004047865 A JP 2004047865A JP 4830260 B2 JP4830260 B2 JP 4830260B2
Authority
JP
Japan
Prior art keywords
film thickness
film
substrate
plasma
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004047865A
Other languages
Japanese (ja)
Other versions
JP2005241282A (en
Inventor
博 早田
崇文 大熊
英毅 山下
正治 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004047865A priority Critical patent/JP4830260B2/en
Publication of JP2005241282A publication Critical patent/JP2005241282A/en
Application granted granted Critical
Publication of JP4830260B2 publication Critical patent/JP4830260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、プラズマを用いた薄膜形成において膜厚を測定/検出する膜厚検出方法に関するものである。 The present invention relates to a film thickness detection how to measure / detect the film thickness in the thin film formation using plasma.

従来、成膜プロセスにおいて膜厚の検出に水晶振動子式の膜厚モニタを使用するものがある(例えば特許文献1参照)。   2. Description of the Related Art Conventionally, there is a film forming process that uses a crystal oscillator type film thickness monitor to detect a film thickness (see, for example, Patent Document 1).

図3は特許文献1に記載された従来の膜厚検出方法および装置を説明するための構成図であり、真空排気可能なチャンバ1内に設置された蒸着源2と基板3の間に、振動子からなる振動子式膜厚モニタ4が配置されている。チャンバ1はポンプ(図示せず)によって真空排気される。スパッタ方式による蒸着あるいは酸化物など化合物を成膜する際はガス供給系(図示せず)によりガスを導入する。   FIG. 3 is a configuration diagram for explaining a conventional film thickness detection method and apparatus described in Patent Document 1, and vibration is generated between a deposition source 2 and a substrate 3 installed in a chamber 1 that can be evacuated. A vibrator-type film thickness monitor 4 made of a child is disposed. The chamber 1 is evacuated by a pump (not shown). Gas is introduced by a gas supply system (not shown) when vapor deposition by sputtering or a film of a compound such as an oxide is formed.

蒸着源2に電源5を投入して電力を加えると、蒸着源2またはチャンバ1内に発生したプラズマ6によるスパッタリングによって、蒸着源2の中にセットされた材料が蒸発して対向する基板3へ付着し薄膜7が成膜される。蒸発した材料は基板3以外の場所にも付着する。   When the power source 5 is turned on and power is applied to the vapor deposition source 2, the material set in the vapor deposition source 2 is evaporated by sputtering due to the plasma 6 generated in the vapor deposition source 2 or the chamber 1, to the opposite substrate 3. The thin film 7 is deposited. The evaporated material adheres to places other than the substrate 3.

振動子式膜厚モニタ4の振動子に蒸着源2から蒸発した膜材料が付着すると、該振動子の振動周波数が変化するため、この変化を測定することにより膜厚を検出することができる。   When the film material evaporated from the vapor deposition source 2 adheres to the vibrator of the vibrator type film thickness monitor 4, the vibration frequency of the vibrator changes, and the film thickness can be detected by measuring this change.

また他の従来例として、光源からの光の透過光量を用いて膜厚を検出する方法がある(例えば特許文献2参照)。   As another conventional example, there is a method of detecting the film thickness using the amount of transmitted light from a light source (see, for example, Patent Document 2).

図4は特許文献2に記載された従来の膜厚検出方法および装置を説明する構成図である。なお、図3にて説明した構成要素と同じものについては同じ符号を用いて詳しい説明は省略する。   FIG. 4 is a block diagram illustrating a conventional film thickness detection method and apparatus described in Patent Document 2. In FIG. In addition, about the same component as FIG. 3, the same code | symbol is used and detailed description is abbreviate | omitted.

図4において、真空排気可能なチャンバ1内に設置された基板3における蒸着源2側にレーザなどからなる光源10が配置され、基板3の裏面(蒸着源2とは反対側)に光度計11が設置されている。   In FIG. 4, a light source 10 made of a laser or the like is disposed on the deposition source 2 side of a substrate 3 installed in a chamber 1 that can be evacuated, and a photometer 11 is disposed on the back surface of the substrate 3 (the side opposite to the deposition source 2). Is installed.

基板3に成膜を行う動作は、図3に示す装置にて説明した動作と同様であるので省略するが、光源10から発せられたレーザ光Lは膜を通過して、その光量が光度計11で測定される。この光量と膜厚の関係は、予め実証テストなどにより測定されており、測定された光量の変化に係るデータに基づき膜厚を検出することができる。
特開平11−222670号公報 特開平07−56492号公報
The operation for forming a film on the substrate 3 is the same as the operation described in the apparatus shown in FIG. 3 and will not be described. However, the laser light L emitted from the light source 10 passes through the film, and the amount of light is measured by a photometer. 11 is measured. The relationship between the light quantity and the film thickness is measured in advance by a demonstration test or the like, and the film thickness can be detected based on data relating to the change in the measured light quantity.
JP-A-11-222670 Japanese Patent Laid-Open No. 07-56492

しかしながら、図3に示す従来の装置の構成では、振動子式膜厚モニタ4が基板3における膜7の成膜部と離れているため、成膜部分を直接測定することができず測定精度あるいは再現性に乏しい。また、モニタ部にも膜が付着するため、振動子式膜厚モニタ4のメンテナンスが頻繁に必要であるという問題があった。   However, in the configuration of the conventional apparatus shown in FIG. 3, since the vibrator-type film thickness monitor 4 is separated from the film forming portion of the film 7 on the substrate 3, the film forming portion cannot be directly measured and the measurement accuracy or Reproducibility is poor. Further, since the film adheres also to the monitor unit, there is a problem that maintenance of the vibrator type film thickness monitor 4 is frequently required.

特許文献1においては、メンテナンス頻度を少なくするため、モニタ部に切り欠きを有するシャッタを設け、モニタ部を間欠的に測定可能にする技術が開示されているが、膜厚を高精度でモニタするためには該シャッタを開けている時間を長くしなければならず、メンテナンス頻度を十分に低減することはできない。   Patent Document 1 discloses a technique for providing a shutter having a notch in the monitor unit in order to reduce the maintenance frequency so that the monitor unit can be measured intermittently. However, the film thickness is monitored with high accuracy. In order to achieve this, the time during which the shutter is opened must be lengthened, and the maintenance frequency cannot be reduced sufficiently.

また、図4に示す従来の装置の構成では、基板3における膜7が成膜される面側に配設された光源10から光投射せねばならず、蒸発した材料が回り込んで光源10の表面に付着するため、膜厚測定の精度を悪くするという問題があった。これを解決するためにはメンテナンスを増やすしかなく、生産設備においては装置の稼働率を落とすという問題があった。   In the configuration of the conventional apparatus shown in FIG. 4, light must be projected from the light source 10 disposed on the surface of the substrate 3 on which the film 7 is formed. Since it adheres to the surface, there is a problem that the accuracy of film thickness measurement is deteriorated. In order to solve this, there is no choice but to increase maintenance, and there has been a problem that the operating rate of the apparatus is lowered in the production facility.

この問題に対応するために、前記のような切り欠きのあるシャッタを光源10部分に設ける方法が考えられるが、膜厚測定精度を低下させるという問題がある。   In order to cope with this problem, a method of providing the shutter with the notch as described above in the light source 10 can be considered, but there is a problem that the film thickness measurement accuracy is lowered.

本発明は、前記従来の課題を解決するものであり、ほとんどメンテナンスが必要ない構成で、成膜部分を直接精度よく測定/検出することができる膜厚検出方法を提供することを目的とする。 The present invention, the is intended to solve the conventional problems, most maintenance is not required configuration, and an object thereof is to provide a film thickness detecting how that can be directly accurately measured / detected the deposition portion .

前記目的を達成するために、請求項1に記載の膜厚検出方法は、基板上の薄膜の膜厚を測定/検出する膜厚検出方法であって、前記基板の成膜面とは反対側であって膜分子が到達しない位置にフィルタと光度計を配置し、前記フィルタを介して前記光度計により、プラズマ光の発光における特定波長の膜による吸収または透過率を測定して、該膜の膜厚を検出する膜厚検出方法において、前記フィルタは選択する波長が異なる複数のフィルタで構成され、前記フィルタを切り替えることにより、前記基板に堆積する材料の励起波長の光量、及び、前記基板に堆積する材料以外のガスの励起波長の光量を測定し、当該双方の測定結果を用いて、プラズマ状態の経時変化による前記基板に堆積する材料の経時変化を補正しながら、前記膜厚を検出することを特徴とする。
In order to achieve the object, the film thickness detection method according to claim 1 is a film thickness detection method for measuring / detecting a film thickness of a thin film on a substrate, which is opposite to a film formation surface of the substrate. And a filter and a photometer are arranged at positions where the film molecules do not reach, and the absorption or transmittance of the plasma light emission by the film of a specific wavelength is measured by the photometer through the filter, In the film thickness detection method for detecting a film thickness, the filter is composed of a plurality of filters having different wavelengths to be selected, and by switching the filter, the light amount of the excitation wavelength of the material deposited on the substrate, and the substrate the amount of excitation wavelengths other than the deposited material gas was measured, using the measurement results of the both, while correcting the time course of the material to be deposited on the substrate due to aging of the plasma state, detecting the thickness And wherein the Rukoto.

本方法によると、成膜面とは反対側に光度計があるため、光度計への膜の付着は最小限のものとなり、メンテナンスの必要はほとんどなくなる。またフィルタを介して光度計により膜厚を測定し、かつフィルタを切り替えることにより、基板に堆積する材料の励起波長の光量、及び、基板に堆積する材料以外のガスの光強度を測定し、当該双方の測定結果を用いて、プラズマ状態の経時変化による基板に堆積する材料の経時変化を補正しているため、膜厚を直接精度よく測ることができる。このとき、材料の励起波長は薄膜が吸収しやすい波長であるため、精度よく膜厚を検出することができる。 According to this method, since the photometer is located on the side opposite to the film forming surface, the adhesion of the film to the photometer is minimized, and maintenance is hardly required. Further, the film thickness is measured with a photometer through a filter, and the light intensity of the excitation wavelength of the material deposited on the substrate and the light intensity of the gas other than the material deposited on the substrate are measured by switching the filter. Using both measurement results, the change over time of the material deposited on the substrate due to the change over time in the plasma state is corrected, so that the film thickness can be measured directly and accurately. At this time, since the excitation wavelength of the material is a wavelength that is easily absorbed by the thin film, the film thickness can be detected with high accuracy.

本発明の膜厚検出方法によれば、ほとんどメンテナンスが必要ない構成で、成膜部分を直接精度よく測定/検出することができ、しかもプラズマ光の経時変化あるいは基板依存性を補正できるため、膜厚の測定精度がよくなる。 According to the film thickness detecting how the present invention, most maintenance is not required configuration, since the film formation portion directly can be accurately measured / detected, yet can be corrected aging or substrate dependence of plasma light, The film thickness measurement accuracy is improved.

(実施の形態1)
図1は本発明の実施の形態1を説明するための膜厚検出装置の構成図である。なお、実施の形態1の説明において、図3,図4にて説明した構成要素と同じものについては同じ符号を用いて詳しい説明は省略する。本実施の形態では、Mg系の蒸着源2をスパッタして透明なガラスからなる基板3に対して成膜する装置を例にして説明する。
(Embodiment 1)
FIG. 1 is a configuration diagram of a film thickness detection apparatus for explaining the first embodiment of the present invention. In the description of the first embodiment, the same components as those described in FIGS. 3 and 4 are denoted by the same reference numerals, and detailed description thereof is omitted. In the present embodiment, an explanation will be given by taking as an example an apparatus for forming a film on a substrate 3 made of transparent glass by sputtering an Mg-based vapor deposition source 2.

図1において、11は光度計であり、フィルタ12によりプラズマ光における特定波長の強度を測定する。光度計11とフィルタ12は、基板3におけるプラズマ6の発生側とは反対側に配置される。フィルタ12は、プラズマ光の成分の内、薄膜となる元素の発光による波長を選択する。本例ではフィルタ12の選択波長は383nmである。   In FIG. 1, 11 is a photometer, and the filter 12 measures the intensity of a specific wavelength in the plasma light. The photometer 11 and the filter 12 are arranged on the opposite side of the substrate 3 from the plasma 6 generation side. The filter 12 selects the wavelength by the light emission of the element which becomes a thin film among the components of the plasma light. In this example, the selected wavelength of the filter 12 is 383 nm.

チャンバ1はポンプ(図示せず)によって、5E−4Pa程度に真空排気される。その後、ポンプにより排気しながらガス供給系(図示せず)により、Arガスを導入する。Arガスはマスフローコントローラを通じて、一定の流量(50sccm)に保たれる。   The chamber 1 is evacuated to about 5E-4 Pa by a pump (not shown). Thereafter, Ar gas is introduced by a gas supply system (not shown) while exhausting with a pump. Ar gas is maintained at a constant flow rate (50 sccm) through the mass flow controller.

この状態で電源5から蒸着源2に−1000V程度の電圧を加える。本例では、蒸着源2はMg化合物からなるスパッタターゲットである。前記電圧の印加によりチャンバ1内にプラズマ6が発生する。プラズマ6中のArイオンはターゲットの負電位により加速され、ターゲットに衝突する。その際、ターゲット材料が叩き出され(スパッタリング)、対向する基板3へ付着して、薄膜7が成膜される。   In this state, a voltage of about −1000 V is applied from the power source 5 to the vapor deposition source 2. In this example, the vapor deposition source 2 is a sputter target made of an Mg compound. Plasma 6 is generated in the chamber 1 by the application of the voltage. Ar ions in the plasma 6 are accelerated by the negative potential of the target and collide with the target. At that time, the target material is knocked out (sputtering) and adheres to the opposing substrate 3 to form the thin film 7.

スパッタされた薄膜材料は、プラズマ6中で電子,イオンと衝突して励起され、特定波長の光を発光する。その発光を膜および基板を透過させフィルタ12で選択し、光強度を光度計11で測定する。成膜が進み膜厚が厚くなるに従い、光度計11で測定される光強度は変化する。この膜厚と光強度の変化の関係は、予め実証テストなどにて検知されており、このデータに基づき、測定された光強度変化から膜厚を検出する。   The sputtered thin film material collides with electrons and ions in the plasma 6 and is excited to emit light having a specific wavelength. The emitted light is transmitted through the film and the substrate and selected by the filter 12, and the light intensity is measured by the photometer 11. As the film formation progresses and the film thickness increases, the light intensity measured by the photometer 11 changes. The relationship between the change in the film thickness and the light intensity is detected in advance by a demonstration test or the like, and the film thickness is detected from the measured change in the light intensity based on this data.

本実施の形態1によれば、基板3における成膜面とは反対側に光度計11を配設したため、光度計11に対する膜の付着は最小限のものとなり、メンテナンスの必要はほとんどなくなる、また膜を透過した光を測定しているため、膜厚を直接測ることができる。   According to the first embodiment, since the photometer 11 is disposed on the opposite side of the substrate 3 from the film formation surface, the adhesion of the film to the photometer 11 is minimized, and there is almost no need for maintenance. Since the light transmitted through the film is measured, the film thickness can be measured directly.

さらに、薄膜となる元素の発光波長を用いて前記のように測定を行うため吸収がよく、高精度に膜厚を測定することができる。このとき、ターゲット材料の励起波長を用いれば薄膜が吸収しやすい波長であるため、精度よく膜厚を検出することができる。   Furthermore, since the measurement is performed as described above using the emission wavelength of the element to be a thin film, the absorption is good and the film thickness can be measured with high accuracy. At this time, if the excitation wavelength of the target material is used, the film thickness can be detected with high precision because the thin film is easily absorbed.

また実施の形態1において、フィルタ12を切り替える切替機構を備えることにより、薄膜7として基板3に堆積する材料の励起波長383nmの他に、薄膜7として基板3に堆積する材料以外のArガスの励起波長419nmの光強度を測定可能にし、その測定結果を用いてプラズマにおける状態の経時変化を補正し、膜厚を算出することが望ましい。これによって、基板3あるいは薄膜7に吸収されにくい波長により、材料の減少あるいはチャンバ1の壁面における膜堆積によるプラズマ状態の経時変化を補正することができ、精度よく膜厚を検出することができる。   Further, in the first embodiment, by providing a switching mechanism for switching the filter 12, in addition to the excitation wavelength 383 nm of the material deposited on the substrate 3 as the thin film 7, excitation of Ar gas other than the material deposited on the substrate 3 as the thin film 7 It is desirable to make it possible to measure the light intensity at a wavelength of 419 nm, correct the change with time of the state of the plasma using the measurement result, and calculate the film thickness. As a result, the time-dependent change in the plasma state due to the decrease in material or film deposition on the wall surface of the chamber 1 can be corrected by the wavelength that is difficult to be absorbed by the substrate 3 or the thin film 7, and the film thickness can be detected with high accuracy.

(実施の形態2)
図2は本発明の実施の形態2を説明するための膜厚検出装置の構成図である。なお、実施の形態2の説明において、図1,図3,図4にて説明した構成要素と同じものについては同じ符号を用いて詳しい説明は省略する。
(Embodiment 2)
FIG. 2 is a configuration diagram of a film thickness detection apparatus for explaining the second embodiment of the present invention. In the description of the second embodiment, the same components as those described in FIG. 1, FIG. 3, and FIG.

実施の形態2において、実施の形態1の光度計11に加えて、第2の光度計13と、この第2の光度計13を適宜開放して測定可能にするシャッタ14とにより、プラズマ光を直接測定するシステムを構成している。予め実証テストなどにより検知されているデータを基に、直接測定したプラズマ光で補正を加えれば、蒸着源2あるいはチャンバ1内の雰囲気の変化に伴うプラズマ発光の変化によらず、精度よく膜厚を測定することができる。   In the second embodiment, in addition to the photometer 11 of the first embodiment, the second photometer 13 and the shutter 14 that allows the second photometer 13 to be opened and measured to appropriately measure the plasma light. Configures a direct measurement system. If correction is made with directly measured plasma light based on data detected in advance through demonstration tests, etc., the film thickness can be accurately measured regardless of changes in plasma emission due to changes in the atmosphere in the deposition source 2 or the chamber 1. Can be measured.

なお、本実施の形態において、プラズマ6の経時変化に対する補正データとしてプラズマ6を直接測定したデータを用いたが、プラズマ6を発生させする装置を構成する部品(例えば電極)の電位または部品を流れる電流を測定し、そのデータを基にプラズマ6の状態の経時変化を補正し、膜厚を検出するようにしてもよい。その際、部品に電気的に接続される電力導入部品15などの電位あるいは電流を測定するのが望ましい。   In this embodiment, data obtained by directly measuring the plasma 6 is used as correction data for the time-dependent change of the plasma 6. However, the potential of a component (for example, an electrode) constituting the apparatus that generates the plasma 6 or a component flows. The film thickness may be detected by measuring the current and correcting the time-dependent change of the state of the plasma 6 based on the data. At that time, it is desirable to measure the potential or current of the power introduction component 15 or the like electrically connected to the component.

また、当該装置に基板3を投入される前の膜のない状態の基板3における透過率を測定し、該基板3による透過率の差を補正することにより、より精度よく膜厚を検出することができる。   Further, the transmittance of the substrate 3 without a film before the substrate 3 is put into the apparatus is measured, and the difference in transmittance due to the substrate 3 is corrected to detect the film thickness more accurately. Can do.

また、前記実施の形態による薄膜検出方法および装置は、基板上に薄膜を形成する場合のみならず、基板上から薄膜を除去する場合にも実施することができる。   Moreover, the thin film detection method and apparatus according to the above embodiment can be implemented not only when a thin film is formed on a substrate but also when the thin film is removed from the substrate.

本発明は、ほとんどメンテナンスが必要ない構成で成膜部分直接を測定/検出することができるという特徴を有し、プラズマを発生させて基板上に薄膜を形成する装置、またはプラズマを発生させて基板上から薄膜を除去する装置、およびその方法として適用することができる。   The present invention has a feature that a film forming portion can be directly measured / detected with a configuration requiring almost no maintenance, and an apparatus for generating a thin film on a substrate by generating plasma, or a substrate by generating plasma. The present invention can be applied as an apparatus and method for removing a thin film from above.

本発明の実施の形態1を説明するための膜厚検出装置の構成図Configuration diagram of a film thickness detection device for explaining the first embodiment of the present invention 本発明の実施の形態2を説明するための膜厚検出装置の構成図Configuration diagram of film thickness detection apparatus for explaining the second embodiment of the present invention 従来の膜厚検出装置の構成図Configuration of conventional film thickness detector 従来の膜厚検出装置の他の例の構成図Configuration diagram of another example of conventional film thickness detector

1 チャンバ
2 蒸着源
3 基板
5 電源
6 プラズマ
7 膜(薄膜)
11 光度計
12 フィルタ
13 第2の光度計
14 シャッタ
15 電力導入部
1 Chamber 2 Deposition Source 3 Substrate 5 Power Supply 6 Plasma 7 Film (Thin Film)
11 Photometer 12 Filter 13 Second Photometer 14 Shutter 15 Power Introduction Unit

Claims (1)

基板上の薄膜の膜厚を測定/検出する膜厚検出方法であって、前記基板の成膜面とは反対側であって膜分子が到達しない位置にフィルタと光度計を配置し、前記フィルタを介して前記光度計により、プラズマ光の発光における特定波長の膜による吸収または透過率を測定して、該膜の膜厚を検出する膜厚検出方法において、
前記フィルタは選択する波長が異なる複数のフィルタで構成され、前記フィルタを切り替えることにより、前記基板に堆積する材料の励起波長の光量、及び、前記基板に堆積する材料以外のガスの励起波長の光量を測定し、当該双方の測定結果を用いて、プラズマ状態の経時変化による前記基板に堆積する材料の経時変化を補正しながら、前記膜厚を検出することを特徴とする膜厚検出方法。
A film thickness detection method for measuring / detecting a film thickness of a thin film on a substrate, wherein a filter and a photometer are arranged at a position opposite to a film formation surface of the substrate and where a film molecule does not reach, In the film thickness detection method for detecting the film thickness of the film by measuring the absorption or transmittance by the film of a specific wavelength in the emission of plasma light by the photometer via
The filter is composed of a plurality of filters with different wavelengths to be selected, and by switching the filter, the amount of excitation wavelength of the material deposited on the substrate and the amount of excitation wavelength of a gas other than the material deposited on the substrate was measured, using the measurement results of the both, while correcting the time course of the material to be deposited on the substrate due to aging in the plasma state, the film thickness detecting method and detecting the thickness.
JP2004047865A 2004-02-24 2004-02-24 Film thickness detection method Expired - Fee Related JP4830260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004047865A JP4830260B2 (en) 2004-02-24 2004-02-24 Film thickness detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004047865A JP4830260B2 (en) 2004-02-24 2004-02-24 Film thickness detection method

Publications (2)

Publication Number Publication Date
JP2005241282A JP2005241282A (en) 2005-09-08
JP4830260B2 true JP4830260B2 (en) 2011-12-07

Family

ID=35023182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004047865A Expired - Fee Related JP4830260B2 (en) 2004-02-24 2004-02-24 Film thickness detection method

Country Status (1)

Country Link
JP (1) JP4830260B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460418B (en) 2005-11-29 2014-11-11 Horiba Ltd Manufacturing method and manufacturing equipment of organic el element
JP4511488B2 (en) * 2006-03-31 2010-07-28 株式会社堀場製作所 Organic EL device manufacturing equipment
JP2010118359A (en) * 2010-02-18 2010-05-27 Horiba Ltd Manufacturing method and manufacturing apparatus of organic el element
CN104152855A (en) * 2014-07-11 2014-11-19 苏州诺耀光电科技有限公司 Film thickness detecting mechanism
KR101820809B1 (en) 2016-11-01 2018-01-23 한국원자력연구원 Apparatus for measuring layer uniformity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494068A (en) * 1978-01-07 1979-07-25 Victor Co Of Japan Ltd Film thickness metering and monitoring method
JPS59222707A (en) * 1983-06-01 1984-12-14 Clarion Co Ltd Infrared-ray film-thickness meter
JPS6250610A (en) * 1985-08-30 1987-03-05 Hitachi Ltd Plasma monitoring method
JPH07270130A (en) * 1994-03-31 1995-10-20 Nippon Steel Corp Method of measuring thickness of oxide film
JPH1047926A (en) * 1996-08-07 1998-02-20 Dainippon Screen Mfg Co Ltd Device for measuring film thickness and method therefor
JP3854810B2 (en) * 2000-06-20 2006-12-06 株式会社日立製作所 Method and apparatus for measuring film thickness of material to be processed by emission spectroscopy, and method and apparatus for processing material using the same
JP2002213924A (en) * 2001-01-15 2002-07-31 Toshiba Corp Method and instrument for measuring film thickness, method and device for treating thin film, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2005241282A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
US4894132A (en) Sputtering method and apparatus
JP5544060B2 (en) Method for obtaining plasma characteristics
TWI296828B (en)
KR101300656B1 (en) Film forming apparatus and film forming method
CN106574833B (en) Method for diagnosing film thickness sensor and film thickness monitor
JP4830260B2 (en) Film thickness detection method
JP5460012B2 (en) Vacuum exhaust method and vacuum apparatus
JP2008209181A (en) Partial pressure detection method of specific gas and quadrupole mass analyzer
JP2002170812A (en) Method and device for detecting endpoint of plasma etching, and plasma etching apparatus
JP2004006336A (en) Method for stabilizing radiation output in radioactive source of pulse-driven gas discharge linking type
JP2000123996A (en) Atomic radical measuring method and device
JP2003217897A (en) Plasma measuring device and method, and sensor probe
RU2496912C1 (en) Method of coating application by electron beam evaporation in vacuum
JP3892961B2 (en) Optical thin film manufacturing method
JP2000002660A (en) Calculating method for film thickness in high-frequency glow-discharge emission spectrometry
JP3790363B2 (en) Glow discharge optical emission spectrometer
JPS621868A (en) Apparatus for forming film
JP5828198B2 (en) Plasma etching apparatus and plasma etching method
JPH116064A (en) Method and equipment for production of thin optical film
JP2000124198A (en) Device and method for plasma etching
JP4042208B2 (en) Plasma processing method and apparatus
JPH11311605A (en) Method for correcting light interference at high frequency glow-discharge emission spectral analysis
JPH05175165A (en) Plasma device
JP2002122544A (en) Emission analyzing device
JP4457566B2 (en) Sputtering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees