JP4826932B1 - Windmill power unit - Google Patents

Windmill power unit Download PDF

Info

Publication number
JP4826932B1
JP4826932B1 JP2010241230A JP2010241230A JP4826932B1 JP 4826932 B1 JP4826932 B1 JP 4826932B1 JP 2010241230 A JP2010241230 A JP 2010241230A JP 2010241230 A JP2010241230 A JP 2010241230A JP 4826932 B1 JP4826932 B1 JP 4826932B1
Authority
JP
Japan
Prior art keywords
blade
shaft
cam
vertical
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010241230A
Other languages
Japanese (ja)
Other versions
JP2012092754A (en
Inventor
勝 鈴木
Original Assignee
勝 鈴木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝 鈴木 filed Critical 勝 鈴木
Priority to JP2010241230A priority Critical patent/JP4826932B1/en
Application granted granted Critical
Publication of JP4826932B1 publication Critical patent/JP4826932B1/en
Publication of JP2012092754A publication Critical patent/JP2012092754A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical windmill which minimizes maintenance costs by simplifying the structure. <P>SOLUTION: The advantages of the vertical windmill are utilized to simplify the structure and thereby minimize the maintenance costs. The windmill power unit includes: a blade rotation shaft is divided into right and left sides; their inner ends are linked with a detour link; and a cam guide is provided in the center of the detour link to directly connect the divided blade rotation shafts to the cam groove of a spherical cam rotated by a wind direction plate to simplify a mechanism formed of a cam groove rotated by a wind direction plate and the angle converter of the blade rotation shaft. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

この発明は、風力を利用して風車を廻し、その回転力で発電機やポンプを駆動する動力を獲得するための風車動力装置に関するものである。       The present invention relates to a wind turbine power device for rotating a wind turbine using wind power and acquiring power for driving a generator and a pump with the rotational force.

従来の風車動力装置は、垂直型風車装置として下記の特許文献に示す様な発明された事例が見られるが、構造設計に無理が有り、構造が複雑で製造コストが高く、維持管理が困難な欠点が有った。       The conventional wind turbine power device has been invented as a vertical wind turbine device as shown in the following patent document, but the structure design is unreasonable, the structure is complicated, the manufacturing cost is high, and maintenance is difficult. There were drawbacks.

特開平3−202679号公報JP-A-3-202679 特開2005−9473号公報JP 2005-9473 A

本発明は上記事情に鑑みてなされたもので、垂直型風車装置の利点を生かし、構造を簡単にして、製造コスト、維持管理コストを最少にする発明で、風向板によって回転するカム溝と翼回転軸を回転させる角度変換部の機構を簡素化するため、翼回転軸を左右に分割し、その内端を迂回リンクで連結し、前記迂回リンクの中央にカムガイドを設けて、風向板によって回転する球体カムのカム溝に直結させたことを特徴とする風車動力装置を提供しようとするものである。     The present invention has been made in view of the above circumstances, and makes use of the advantages of a vertical wind turbine device, simplifies the structure, and minimizes manufacturing costs and maintenance costs. In order to simplify the mechanism of the angle conversion unit that rotates the rotating shaft, the blade rotating shaft is divided into left and right, the inner ends thereof are connected by a detour link, a cam guide is provided in the center of the detour link, and the wind direction plate It is an object of the present invention to provide a wind turbine power device characterized in that it is directly connected to a cam groove of a rotating spherical cam.

(1)左右の翼回転軸を、垂直回転軸の中央を貫通させる構造の廃止。
(2)風向板によって回転するカム溝と翼回転軸を回転させるリンク機構の改善。
(3)翼回転軸の回転と風向板によって回転する円筒カム溝の機構矛盾を解消。
(4)翼回転軸に対する翼の取付位置変位による回転バランスの悪さを改良。
(1) Elimination of the structure in which the left and right blade rotation shafts penetrate the center of the vertical rotation shaft.
(2) Improvement of the link mechanism that rotates the cam groove rotated by the wind direction plate and the blade rotation shaft.
(3) The mechanism contradiction of the rotation of the blade rotation shaft and the cylindrical cam groove rotated by the wind direction plate is eliminated.
(4) Improved the poor rotation balance due to the displacement of the blade mounting position relative to the blade rotation axis.

(1)翼回転軸を左右に分割し、垂直回転軸の外周に迂回リンクで連結させ、垂直回転軸への貫通を廃止し強度を確保する。
(2)左右翼回転軸の内端を迂回リンクで連結し、前記迂回リンクの中央にカムガイドを設け、風向板によって回転するカム溝に直結させ、構造の簡素化。
(3)前記カム溝を球体カム面に設け、前記迂回リンクの中央にカムガイドと係合させることにより翼方向の制御機構矛盾を解消。
(4)翼回転軸に対する翼の取付位置は、翼高さの中央とし、回転バランスを計る。
(1) The blade rotating shaft is divided into left and right, and connected to the outer periphery of the vertical rotating shaft by a detour link, and the penetration to the vertical rotating shaft is abolished to ensure strength.
(2) The inner ends of the left and right blade rotation shafts are connected by a detour link, a cam guide is provided in the center of the detour link, and directly connected to a cam groove rotated by a wind direction plate, thereby simplifying the structure.
(3) The cam groove is provided on the spherical cam surface, and the control mechanism contradiction in the blade direction is resolved by engaging the cam guide at the center of the detour link.
(4) The blade attachment position with respect to the blade rotation axis is the center of the blade height, and the rotation balance is measured.

前記解決手段により、従来品に比べ、下記の点が大幅に改善される。
(1)風向板によって風向きを正確に把握し、翼の向きを正しく制御する。
(2)構造を簡素化し、強度を確保して、製造費の低コスト化、維持管理の容易化。
(3)球体カム面にカム溝を設け、迂回リンク中央のカムガイドと係合させることにより翼方向の制御を無理なく行う機構の採用。
(4)翼回転軸に対する翼の取付位置は翼高さの中央とし、翼の両側面を内側に折り曲げて、回転バランスと風力変換効率を高める。
By the above solution, the following points are greatly improved as compared with the conventional product.
(1) The wind direction is accurately grasped by the wind direction plate, and the direction of the wing is controlled correctly.
(2) Simplify the structure, ensure strength, reduce manufacturing costs, and facilitate maintenance.
(3) Adopting a mechanism that makes it easy to control the blade direction by providing a cam groove on the spherical cam surface and engaging the cam guide at the center of the detour link.
(4) The blade attachment position with respect to the blade rotation axis is the center of the blade height, and both side surfaces of the blade are bent inward to improve the rotation balance and wind power conversion efficiency.

本案第一実施例のA−A’断面図A-A 'sectional view of the first embodiment of the present invention 本案第一実施例の上面図Top view of the first embodiment of the present plan 本案第一実施例の角度変換部の説明図Explanatory drawing of the angle conversion part of the present first embodiment 本案第二実施例の二段構成側面図Side view of the two-stage structure of the second embodiment of the present plan 本案第二実施例のカム溝説明図Cam groove explanatory drawing of the present second embodiment

以下に図1から図5を参照して本案の構造と作動を説明する。
図1から図3は本案第一実施例を示すもので、1垂直軸は7球体カムの円筒部と同軸で、前記円筒部は11フレームプレートの13軸受ベアリングに回転自由に支持され、1垂直軸は下側の11フレームプレートの13軸受ベアリングに支持されている。
7球体カムの円筒部の6頂上部には略飛行機の側面に類似の5風向板が取付けられている。7球体カムの外周には8カム溝が設けられ、その外半周を取巻く様に9迂回リンクが有り、14軸受に支持され左右に分割設置された2a、2b翼回転軸の内端と結合され、9迂回リンクの円弧中央部内側に10カムガイド(図2、図3参照)を取付け、8カム溝と係合して4角度変換部を構成し、5風向板の回転に伴い翼面方向を変換位置設定する機能を有している。
また、14軸受は1垂直軸に一体的に固定されている。
2a、2b翼回転軸の外側のいずれか一方は水平に、他方は垂直に3翼を取付けられ、前記9迂回リンクと8カム溝の作動により、1垂直軸が半回転する毎に前記3a翼面の角度が90度回転させる4角度変換部(図3参照)を構成している。
4角度変換部の作動を説明すると、7球体カムは5風向板の動きに連動して回転し、その外周に設けた8カム溝と10カムガイドが係合していることで8カム溝の上下変動で9迂回リンクが上下に移動して、2a、2b翼回転軸が回転し、3a翼面方向を変化させるものである。従って、風向が一定の場合は、7球体カムは回転せず、1垂直軸が半回転する毎に前記3a翼面の角度が90度回転を繰り返される。
3翼の形状は縦長の矩形で、3a翼面の垂直方向の両側面は3b折り曲げ部が形成され、風力変換効率を上げる工夫がされている。3翼の材質はアルミ合金又は強化プラスチック等の比重が軽く強度の高い材料が望まれる。2a、2b翼回転軸への3翼の取付けは、2a、2b翼回転軸への直接溶接か、取外し可能なように保持金具によってねじ締め固定にしても良い。
次に、図2と図5を用いて2a、2b翼回転軸と9迂回リンクと8カム溝の関係を詳細に説明する。図2の風向きは上から下に流れているとし、1垂直軸中心から下方に向けて5風向板が位置し、その直上X1を回転基点として左回りにX2,X3,X4が90度ピッチで表示され、図5のカム溝説明図では、上段カム溝の上側平行溝の中心がX2位置で10カムガイドの10bカムベアリングが示され、3翼は垂直で風を受けていることを示している。右方向に90度進行してX3を前後して8カム溝は斜めに下降し、この位置で3翼は垂直から水平に切り替り、更に90度進行してX4位置で下側平行溝中心となり、3翼は水平で風をエスケープしている事を示す。下段カム溝は後で説明する2a、2b翼回転軸が上下二段構成時のカム溝と翼の動きを説明したもので、第一実施例では存在しない。
1垂直軸の下端は13軸受ベアリングで軸支され、その下に15大型歯車を取付け、16小型歯車と噛合って増速され、その軸に直結された17発電機を回転させる。勿論この回転負荷はポンプや他の動力源として使用しても良い。
全体構成は4本の12フレームポールと2枚の11フレームプレートの組合せで、1垂直軸と7球体カムの軸部を上下の13軸受ベアリングで保持している。
The structure and operation of the present plan will be described below with reference to FIGS.
1 to 3 show the first embodiment of the present invention. One vertical axis is coaxial with a cylindrical portion of a seven-sphere cam, and the cylindrical portion is rotatably supported by 13 bearings of 11 frame plates. The shaft is supported by 13 bearings on the lower 11 frame plate.
At the top of 6 of the cylindrical part of the 7-sphere cam, a 5-wind plate similar to the side of the airplane is attached. Eight cam grooves are provided on the outer circumference of the seven-sphere cam, and there are nine detour links so as to surround the outer half circumference of the seven-sphere cam. , 9 A 10 cam guide (see Fig. 2 and Fig. 3) is attached to the inner side of the arc of the detour link, engages with 8 cam grooves to form a 4-angle conversion section, and the blade surface direction is accompanied by the rotation of 5 wind direction plates Has a function of setting the conversion position as the conversion position.
The 14 bearings are integrally fixed to one vertical shaft.
3a blades are attached each time one vertical shaft makes a half turn by the operation of the 9 bypass links and 8 cam grooves. A four-angle converter (see FIG. 3) that rotates the angle of the surface by 90 degrees is configured.
Explaining the operation of the four-angle converter, the seven-sphere cam rotates in conjunction with the movement of the five wind direction plates, and the eight cam grooves and the ten cam guides provided on the outer periphery engage with each other. The 9 detour links move up and down due to vertical movement, the 2a and 2b blade rotation shafts rotate, and the 3a blade surface direction changes. Therefore, when the wind direction is constant, the 7-sphere cam does not rotate, and the angle of the 3a blade surface is rotated 90 degrees every time one vertical axis makes a half rotation.
The shape of the three wings is a vertically long rectangle, and both side surfaces in the vertical direction of the wing surface of the 3a are formed with 3b bent portions, which are devised to increase the wind power conversion efficiency. The material of the three blades is desired to be a material having a light specific gravity and high strength such as aluminum alloy or reinforced plastic. The attachment of the three blades to the 2a and 2b blade rotation shafts may be directly welded to the 2a and 2b blade rotation shafts, or may be fixed by screwing with a holding bracket so that they can be removed.
Next, the relationship between the 2a and 2b blade rotation shafts, the 9 bypass links, and the 8 cam grooves will be described in detail with reference to FIGS. Assuming that the wind direction in FIG. 2 is flowing from top to bottom, five wind direction plates are located from the center of one vertical axis to the bottom, and X2, X3, and X4 are counterclockwise at a pitch of 90 degrees with X1 directly above as a rotation base point. The cam groove explanatory view of FIG. 5 shows that the center of the upper parallel groove of the upper cam groove is the X2 position, the 10b cam bearing of the 10 cam guide is shown, and the three blades are receiving the wind vertically. Yes. Proceeding 90 degrees to the right, the X8 cam groove descends diagonally before and after X3, and at this position, the 3 blades switch from vertical to horizontal, and further 90 degrees to the lower parallel groove center at the X4 position. 3 wings are horizontal and escape the wind. The lower cam groove explains the movement of the cam groove and the blades when the blade rotation shafts 2a and 2b, which will be described later, are configured in two upper and lower stages, and does not exist in the first embodiment.
The lower end of one vertical shaft is pivotally supported by 13 bearings, 15 large gears are attached below it, and the speed is increased by meshing with 16 small gears, and the 17 generator directly connected to the shaft is rotated. Of course, this rotational load may be used as a pump or other power source.
The overall configuration is a combination of four 12-frame poles and two 11-frame plates, and the vertical shaft and the shaft of the 7-sphere cam are held by upper and lower 13 bearings.

次に本案第二実施例を図4及び図5を用いて説明する。
作動原理は第一実施例と同様であるが、図5に示す様に2a、2b翼回転軸は上下二段に90度ずれて設置されている。
図4の上段の構造は第一実施例と同じであるが、下段では14軸受と7球体カムが下側に連設された構造で、下段の2a、2b翼回転軸は回転軸を中心に見ているので3翼は14軸受に隠れて見えないが、点線で示したように翼面が斜めになっていることが分かる。その状態を図5で見ると、風向は同じ時として、上段カム溝では10bカムベアリングが上側平行溝の中に有り3翼は垂直で風を受けているが、一方下段カム溝では10bカムベアリングが下側から上側に向かう右上り斜面の途中中心に有り3翼は斜めに傾斜して、水平に向かい途中を示している。
従って、この第二実施例では2軸で4枚の翼が、90度ピッチで上下二段に設けられており、風を受ける側に常に2枚の翼が90度ピッチで回転し、しかも翼が上下の交互に風を受けることになり、風影を作らず、風車の動力変換効率が極めて良いことが分かる。
この原理で考えれば3軸や4軸も考えられ、それぞれの軸が重ならないようにする為には軸の設置ずらし角度は180を設置軸個数で割った角度にすることが理想です。例えば第二実施例の場合は180÷2=90度ずらしとなり、3軸の場合は60度に成る。
しかし、設備投資金額と効果を考えると二段4枚翼が最適で、それ以上段数を増やすとコストも上がり、代わりに二段で翼面関を大きくした方が効果的ではないかと思われます。
Next, a second embodiment of the present plan will be described with reference to FIGS.
The operating principle is the same as in the first embodiment, but as shown in FIG. 5, the 2a and 2b blade rotation shafts are installed 90 degrees apart in two upper and lower stages.
The upper structure of FIG. 4 is the same as that of the first embodiment, but the lower stage is a structure in which 14 bearings and a 7-sphere cam are connected to the lower side, and the lower 2a and 2b blade rotation axes are centered on the rotation axis. As you can see, the three blades are hidden behind the 14 bearings, but you can see that the blade surfaces are slanted as shown by the dotted lines. FIG. 5 shows that the wind direction is the same, and the upper cam groove has a 10b cam bearing in the upper parallel groove, and the three blades receive a vertical wind, whereas the lower cam groove has a 10b cam bearing. Is located in the middle of the upper- right slope from the lower side to the upper side, and the three wings are slanted, showing the way toward the horizontal.
Therefore, in this second embodiment, four wings with two axes are provided in two upper and lower stages at a pitch of 90 degrees, and the two wings always rotate at a pitch of 90 degrees on the wind receiving side. Will receive wind alternately in the top and bottom, and it will be understood that the wind power is not converted and the power conversion efficiency of the windmill is very good.
Considering this principle, three or four axes can be considered, and in order to prevent the axes from overlapping each other, it is ideal to set the shaft displacement angle to 180 divided by the number of installed shafts. For example, in the case of the second embodiment, 180 ÷ 2 = 90 degrees is shifted, and in the case of three axes, the angle is 60 degrees.
However, considering the amount of capital investment and the effect, a two-stage, four-blade blade is optimal. Increasing the number of stages further increases the cost, and instead, it seems that it is more effective to increase the blade surface in two stages. .

現状では、水平軸にプロペラ翼を装着した大型風車が先行的に採用されている。
その理由は、水平軸ペロペラ風車が発電効率が良く、大型発電に適しているからである。
一方、家庭用では、太陽光発電が主に設置されているが、その理由は、設置場所が狭くプロペラ風車は設置できないからである。
しかし、太陽光発電は昼間のみで、好天気に恵まれる必要条件が有り、曇天時や夜間でも風があれば発電できる風力発電は魅力的である。
従って、今後の発電量増大策は、太陽光発電と風車発電のハイブリット化が有力視されているが、急がねばならないのは家庭で設置できる小型風力発電機である。小型化を進めるには垂直軸の風力発電装置の開発が必要です。本案はその目的を達する為に開発した物で、垂直軸のジャイロミル型風車の回転力に変換する効率を上げる為に、風を受ける側の翼は垂直にし、風に向かう側の翼は水平にして抵抗を減らす事で効率改善を達成しようとするものです。
本案では、それを可能な限り簡単な構造で、製造費を安く、維持管理費の安い安全設計を達成させたものです。
At present, large wind turbines equipped with propeller blades on the horizontal axis have been adopted in advance.
The reason for this is that the horizontal axis wind turbine has good power generation efficiency and is suitable for large-scale power generation.
On the other hand, for home use, photovoltaic power generation is mainly installed, because the installation place is small and a propeller windmill cannot be installed.
However, solar power generation is only necessary during the daytime, and there is a requirement to be blessed with good weather, and wind power generation that can generate electricity when there is wind even during cloudy weather or at night is attractive.
Therefore, a future plan to increase the amount of power generation is considered to be a hybrid of solar power generation and wind turbine power generation, but what is urgent is a small wind power generator that can be installed at home. Development of a vertical-axis wind power generator is necessary for further miniaturization. This plan was developed to achieve its purpose. In order to increase the efficiency of conversion to the rotational force of a vertical axis gyromill type wind turbine, the wing on the wind receiving side is vertical and the wing on the side facing the wind is horizontal. And trying to achieve efficiency improvements by reducing resistance.
In this proposal, we have achieved a safe design with the simplest possible structure, low manufacturing costs and low maintenance costs.

1垂直軸、2a翼回転軸左、2b翼回転軸右、3翼、3a翼面、3b折り曲げ部、4角度変換部、5風向板、6頂上部、7球体カム、8カム溝、9迂回リンク、
10カムガイド、10a軸部材、10bカムベアリング、11フレームプレート、12フレームポール、13軸受ベアリング、14軸受、15大径歯車、16小径歯車、17発電機
1 vertical axis, 2a blade rotation axis left, 2b blade rotation axis right, 3 blades, 3a blade surface, 3b bent section, 4 angle conversion section, 5 wind direction plate, 6 top, 7 spherical cam, 8 cam groove, 9 detour Link,
10 cam guide, 10a shaft member, 10b cam bearing, 11 frame plate, 12 frame pole, 13 bearing, 14 bearing, 15 large diameter gear, 16 small diameter gear, 17 generator

Claims (4)

垂直軸の左右に水平で回転自由に軸支された翼回転軸の軸受を前記垂直軸と一体的に設け、該翼回転軸の左右のいずれか一方は水平に、他方は垂直に翼面を取付け、前記垂直軸が半回転する毎に前記翼面の角度が90度回転する角度変換部と、該角度変換部を風向板の動きに連動して作動させ、風向と前記垂直軸の回転位置と翼面方向を連動させる風車動力装置において、
前記風向板を前記垂直軸の頂上部に回転自由に取付け、前記風向板と一体に構成される球体カムの外周にカム溝を形成し、前記垂直軸と直角に回転自由に軸支する軸受に前記翼回転軸を左右に分割設置し、前記翼回転軸の左右内端間に前記球体カムを迂回する迂回リンクを結合し、該迂回リンクの円弧中央部内側にカムガイドを取付け、前記カム溝と係合して前記角度変換部を構成し、前記風向板の回転位置方向を基点にして、前記角度変換部によって前記翼回転軸の回転で翼面方向を変換させるようにしたことを特徴とする風車動力装置。
A blade rotating shaft bearing that is supported horizontally and freely on the left and right of the vertical shaft is provided integrally with the vertical shaft, and either the left or right of the blade rotating shaft is horizontally disposed and the other is vertically disposed. Mounting, an angle conversion unit in which the angle of the blade surface rotates 90 degrees each time the vertical shaft makes a half rotation, and operating the angle conversion unit in conjunction with the movement of the wind direction plate, the wind direction and the rotational position of the vertical shaft In the wind turbine power unit that links the blade surface direction with
A bearing that rotatably attaches the wind direction plate to the top of the vertical shaft, forms a cam groove on the outer periphery of a spherical cam that is integrally formed with the wind direction plate, and rotatably supports the vertical direction perpendicular to the vertical axis. The blade rotation shaft is divided into left and right, a bypass link that bypasses the spherical cam is coupled between the left and right inner ends of the blade rotation shaft, a cam guide is attached to the inner side of the arc center of the bypass link, and the cam groove The angle conversion unit is configured by engaging with the rotation direction of the wind direction plate, and the blade surface direction is converted by the rotation of the blade rotation shaft by the angle conversion unit, with the rotational position direction of the wind direction plate as a base point. Windmill power unit to do.
前記請求項1に記載の風車動力装置において、左右に分割設置された前記翼回転軸と前記風向板と前記角度変換部をセットにして、前記垂直軸の上下方向に前記セットを複数段設置し、前記翼回転軸の設置位置ずらし角度間隔は、前記垂直軸を中心に180度を設置段数で除した値としたことを特徴とする風車動力装置。         The wind turbine power device according to claim 1, wherein the blade rotation shaft, the wind direction plate, and the angle conversion unit that are separately installed on the left and right are set as a set, and the set is installed in a plurality of stages in the vertical direction of the vertical axis. The wind turbine power unit characterized in that the installation position shift angle interval of the blade rotation shaft is a value obtained by dividing 180 degrees by the number of installation stages around the vertical axis. 前記請求項1及び2に記載の風車動力装置において、前記カムガイドは、前記迂回リンクの円弧中央部内側に、小径ベアリングの中心軸孔に軸部材を介して締結したことを特徴とする風車動力装置。 3. The wind turbine power device according to claim 1, wherein the cam guide is fastened to a center shaft hole of a small-diameter bearing via a shaft member inside an arc central portion of the detour link. apparatus. 前記請求項1から3に記載の風車動力装置において、前記翼の形状は、略矩形で水平方向の両端側面を内側へ折り曲げ部を設けると共に、前記翼の高さ幅の略中央を前記翼回転軸と結合したことを特徴とする風車動力装置。
4. The wind turbine power unit according to claim 1, wherein the blade has a substantially rectangular shape and is provided with bent portions at both side surfaces in the horizontal direction inwardly, and the blade rotation is performed at a substantially center in the height width of the blade. A windmill power device characterized by being coupled to a shaft.
JP2010241230A 2010-10-27 2010-10-27 Windmill power unit Expired - Fee Related JP4826932B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241230A JP4826932B1 (en) 2010-10-27 2010-10-27 Windmill power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010241230A JP4826932B1 (en) 2010-10-27 2010-10-27 Windmill power unit

Publications (2)

Publication Number Publication Date
JP4826932B1 true JP4826932B1 (en) 2011-11-30
JP2012092754A JP2012092754A (en) 2012-05-17

Family

ID=45327143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241230A Expired - Fee Related JP4826932B1 (en) 2010-10-27 2010-10-27 Windmill power unit

Country Status (1)

Country Link
JP (1) JP4826932B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012250A (en) * 2021-11-25 2022-02-08 重庆川宜机电设备有限公司 Arc welding cutting type robot with flexible angle adjusting mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110671263A (en) * 2019-10-30 2020-01-10 方晓峰 Vertical axis wind turbine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2397346A (en) * 1943-01-21 1946-03-26 Gimenez Leopoldo Ramos Rotary mill
JPS596457A (en) * 1982-06-30 1984-01-13 Sankyo Seisakusho:Kk Cam device
EP0379626A1 (en) * 1989-01-27 1990-08-01 Hsech-Pen Leu Self-restored windmill
JPH03202679A (en) * 1989-12-29 1991-09-04 Shogo Ogawa Vertical windmill
JPH10142362A (en) * 1996-11-11 1998-05-29 Sankyo Seisakusho:Kk Two-dimensional motion generator
WO2006041464A1 (en) * 2004-10-06 2006-04-20 Jack Penchuan Hung Sail wing type windmill and operation method of same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2397346A (en) * 1943-01-21 1946-03-26 Gimenez Leopoldo Ramos Rotary mill
JPS596457A (en) * 1982-06-30 1984-01-13 Sankyo Seisakusho:Kk Cam device
EP0379626A1 (en) * 1989-01-27 1990-08-01 Hsech-Pen Leu Self-restored windmill
JPH03202679A (en) * 1989-12-29 1991-09-04 Shogo Ogawa Vertical windmill
JPH10142362A (en) * 1996-11-11 1998-05-29 Sankyo Seisakusho:Kk Two-dimensional motion generator
WO2006041464A1 (en) * 2004-10-06 2006-04-20 Jack Penchuan Hung Sail wing type windmill and operation method of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012250A (en) * 2021-11-25 2022-02-08 重庆川宜机电设备有限公司 Arc welding cutting type robot with flexible angle adjusting mechanism
CN114012250B (en) * 2021-11-25 2023-10-20 重庆川宜机电设备有限公司 Arc welding cutting type robot with flexible angle adjusting mechanism

Also Published As

Publication number Publication date
JP2012092754A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
AU2010339143B2 (en) Wind turbine
EP2108821A2 (en) Shaftless vertical axis wind turbine
CN202531354U (en) Vertical axis wind power generation device capable of automatically adjusting attack angle
JP3187842U (en) Kinetic energy production equipment
JP4822195B1 (en) Wind power generator
JP4826932B1 (en) Windmill power unit
CN110360049A (en) A kind of horizontal axis wind-driven generator
CN101021203A (en) Vertical shaft wind power machine
KR101325752B1 (en) High Performance Counter Rotating Gearless Vertical Axis Wind Power Generator using Active Intelligent Dual Turbine Blade Layers
KR100929111B1 (en) Installation methods of windpower plant
JP2003214319A (en) Double dome type vertical blade type wind power generator
ES2639649T3 (en) Wind turbine with two rotors
KR101015437B1 (en) Dual eccentric rotor system
CN201065812Y (en) Tornado type wind power machine
KR20120115196A (en) Wind power generator with vertical rotor
CN102996351A (en) Vertical-shaft wind turbine
CN202056002U (en) Novel wind power generator
CN201050448Y (en) Horizontal lifting type vane wind-driven generator
JP2012163006A (en) Blade opening/closing type wind turbine
CN103388557A (en) Vertical axis wind power generation device capable of automatically adjusting attack angle
KR20130136027A (en) Aerogenerator
CN201502485U (en) Vertical-shaft wind driven generator
TW200946773A (en) Shaftless vertical axis wind turbine
KR200359792Y1 (en) A Horizontal cylindric water mill type which has high and low control unit of the bracket method
KR20130034645A (en) Wind turbine system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees