JP4824816B2 - Substrate support mechanism - Google Patents

Substrate support mechanism Download PDF

Info

Publication number
JP4824816B2
JP4824816B2 JP2009519227A JP2009519227A JP4824816B2 JP 4824816 B2 JP4824816 B2 JP 4824816B2 JP 2009519227 A JP2009519227 A JP 2009519227A JP 2009519227 A JP2009519227 A JP 2009519227A JP 4824816 B2 JP4824816 B2 JP 4824816B2
Authority
JP
Japan
Prior art keywords
substrate
end effector
support surface
support mechanism
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009519227A
Other languages
Japanese (ja)
Other versions
JPWO2008152940A1 (en
Inventor
和博 武者
展史 南
崇文 川口
村上  裕彦
美尚 中野
洋一 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009519227A priority Critical patent/JP4824816B2/en
Publication of JPWO2008152940A1 publication Critical patent/JPWO2008152940A1/en
Application granted granted Critical
Publication of JP4824816B2 publication Critical patent/JP4824816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material

Description

本発明は、例えば半導体基板の搬送用ロボットに適用される基板支持機構に関する。   The present invention relates to a substrate support mechanism applied to, for example, a semiconductor substrate transfer robot.

従来から、半導体製造の分野においては、多関節アームを備えた基板搬送ロボットが用いられている。図7は、この種の従来の基板搬送ロボットの概略構成を示す斜視図である。この基板搬送ロボット1は、駆動部2と、この駆動部2に連結された多関節構造のアーム3と、アーム3の先端に連結されたエンドエフェクタ(ハンド)4とを有している。エンドエフェクタ4はその上面で基板の裏面を支持し、成膜室やエッチング室等の複数の処理室間において基板の搬送を行ったり、ステージや基板収納カセット等との間において基板の受け渡しを行ったりする。   Conventionally, in the field of semiconductor manufacturing, a substrate transfer robot having an articulated arm has been used. FIG. 7 is a perspective view showing a schematic configuration of this type of conventional substrate transfer robot. The substrate transfer robot 1 includes a drive unit 2, an articulated arm 3 connected to the drive unit 2, and an end effector (hand) 4 connected to the tip of the arm 3. The end effector 4 supports the back surface of the substrate on its upper surface, transports the substrate between a plurality of processing chambers such as a film forming chamber and an etching chamber, and transfers the substrate to and from a stage and a substrate storage cassette. Or

エンドエフェクタ4は、一般に、セラミックスやステンレス鋼などで形成されている。したがって、エンドエフェクタ4を高速で動作させると、基板に加わる加速度の影響で基板がエンドエフェクタ4上を滑ってしまい、基板を正しい位置に搬送できなくなる。そこで、エンドエフェクタ4の上面に、図8に示すように、基板Wの裏面の所定箇所に接触する複数の保持部5が設けられている。これらの保持部5は、ゴムやエラストマー等の弾性材料で形成され、基板Wの裏面に対する滑り止め機能をもつ。これにより、エンドエフェクタ4の上面において基板Wの安定した搬送姿勢を保持するようにしている(例えば下記特許文献1参照)。   The end effector 4 is generally formed of ceramics or stainless steel. Therefore, when the end effector 4 is operated at high speed, the substrate slides on the end effector 4 due to the effect of acceleration applied to the substrate, and the substrate cannot be transported to the correct position. Therefore, as shown in FIG. 8, a plurality of holding portions 5 that are in contact with predetermined locations on the back surface of the substrate W are provided on the upper surface of the end effector 4. These holding portions 5 are formed of an elastic material such as rubber or elastomer, and have a non-slip function with respect to the back surface of the substrate W. Thereby, the stable conveyance attitude | position of the board | substrate W is hold | maintained on the upper surface of the end effector 4 (for example, refer the following patent document 1).

特開2002−353291号公報JP 2002-353291 A

エラストマー等の弾性材料で形成された保持部5は、基板Wや周囲の温度が比較的低い場合(例えば200℃以下の場合)には、効率よく基板Wの滑りを抑えることができる。しかし、温度が高い場合(例えば300〜500℃の場合)には、保持部5が熱で変質したり、溶けて形状が維持できなくなったりすることがあり、その結果、基板Wの滑りを抑える効果が得られなくなる。   The holding portion 5 formed of an elastic material such as an elastomer can efficiently suppress the slip of the substrate W when the temperature of the substrate W or the surroundings is relatively low (for example, 200 ° C. or less). However, when the temperature is high (for example, when the temperature is 300 to 500 ° C.), the holding unit 5 may be deteriorated by heat or melted and the shape cannot be maintained. As a result, the slip of the substrate W is suppressed. The effect cannot be obtained.

一方、温度が比較的低い場合(200℃以下の場合)でも、基板Wが保持部5の粘着で貼り付いてしまい、エンドエフェクタ4から基板Wが適正に離れなくなることがある。例えば、プロセスチャンバ内のステージに基板を受け渡す際、保持部から基板が離れず、基板が割れたり、あるいは、正しい位置に基板を搬送できなかったりする問題が生じる。   On the other hand, even when the temperature is relatively low (when the temperature is 200 ° C. or lower), the substrate W may stick to the holding portion 5 and the substrate W may not be properly separated from the end effector 4. For example, when the substrate is delivered to the stage in the process chamber, there arises a problem that the substrate is not separated from the holding unit, the substrate is cracked, or the substrate cannot be transported to a correct position.

本発明は上述の問題に鑑みてなされ、基板の高速搬送を実現できるとともに適正な搬送動作を確保できる基板支持機構を提供することを課題とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a substrate support mechanism that can realize high-speed transport of a substrate and ensure an appropriate transport operation.

本発明の一形態に係る基板支持機構は、搬送物を支持する支持面と、支持面の少なくとも一部に設けられたカーボンナノチューブからなる保持部とを具備する。   A substrate support mechanism according to an embodiment of the present invention includes a support surface that supports a conveyed product, and a holding portion that is formed of carbon nanotubes provided on at least a part of the support surface.

本発明の一実施の形態に係る基板支持機構は、搬送物を支持する支持面と、支持面の少なくとも一部に設けられたカーボンナノチューブからなる保持部とを具備する。   A substrate support mechanism according to an embodiment of the present invention includes a support surface that supports a conveyed product, and a holding unit that includes carbon nanotubes provided on at least a part of the support surface.

本発明の一実施の形態では、基板支持機構の保持部がカーボンナノチューブで構成されている。搬送物は、カーボンナノチューブの先端で支持される。このとき、搬送物とカーボンナノチューブとの間には分子間力が発生しており、搬送物は、支持面に対して一定の吸着力をもって支持される。この吸着力は、大気中においても真空中においても発生し、単位面積あたりのカーボンナノチューブの本数が多いほど大きな力が得られる。以上の構成により、支持面上における搬送物の滑りを効果的に抑制でき、基板の高速搬送を実現することが可能となる。   In one embodiment of the present invention, the holding portion of the substrate support mechanism is composed of carbon nanotubes. The conveyed product is supported at the tip of the carbon nanotube. At this time, an intermolecular force is generated between the conveyed product and the carbon nanotube, and the conveyed product is supported with a certain adsorption force on the support surface. This adsorption force is generated both in the air and in a vacuum, and the greater the number of carbon nanotubes per unit area, the greater the force. With the above configuration, it is possible to effectively suppress slipping of the conveyed product on the support surface, and to realize high-speed conveyance of the substrate.

また、カーボンナノチューブは耐熱性に優れているので、高温環境下での使用時においても保持部の熱による変質あるいは劣化を回避できる。更に、カーボンナノチューブによる搬送物の保持力は、例えば粘着テープのような粘着力ではないので、貼り付きによる移載時の搬送物の破損や搬送不良の発生を防ぐことができる。したがって、基板の適正な搬送動作が確保される。   In addition, since carbon nanotubes are excellent in heat resistance, it is possible to avoid alteration or deterioration due to heat of the holding portion even when used in a high temperature environment. Furthermore, since the holding force of the conveyed product by the carbon nanotubes is not an adhesive force such as an adhesive tape, for example, it is possible to prevent the conveyed product from being damaged or poorly conveyed during transfer due to sticking. Therefore, an appropriate transfer operation of the substrate is ensured.

したがって、上記基板支持機構によれば、支持面における搬送物の滑りを抑制して基板の高速搬送を実現することができる。また、保持部の変質を回避できるので、適正な搬送動作を確保することができる。   Therefore, according to the said board | substrate support mechanism, the slip of the conveyed product in a support surface can be suppressed, and a high-speed conveyance of a board | substrate can be implement | achieved. Further, since the alteration of the holding portion can be avoided, an appropriate transport operation can be ensured.

上記搬送物は、半導体基板やガラス基板等の板状部品が挙げられるが、勿論これに限られない。支持面としては、基板搬送ロボット等の搬送装置における基板支持用のエンドエフェクタ(ハンド)の上面が該当する。保持部は、支持面の複数個所に設けられてもよいし、支持面の全面を保持部として構成することも可能である。   Examples of the conveyed product include plate-like parts such as a semiconductor substrate and a glass substrate, but of course not limited thereto. The support surface corresponds to the upper surface of an end effector (hand) for supporting a substrate in a transfer device such as a substrate transfer robot. The holding unit may be provided at a plurality of locations on the support surface, or the entire support surface may be configured as the holding unit.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態を示す図であり、搬送物として半導体基板(以下単に「基板」という。)Wを搬送する基板搬送ロボットのエンドエフェクタ(ハンド)14を示している。基板搬送ロボットは図示せずとも、例えば図7を参照して説明した従来の基板搬送ロボットと同様に、駆動部や多関節アーム等を備え、エンドエフェクタ14は上記多関節アームの先端に連結されている。   FIG. 1 is a view showing an embodiment of the present invention, and shows an end effector (hand) 14 of a substrate transfer robot that transfers a semiconductor substrate (hereinafter simply referred to as “substrate”) W as a transfer object. Although the substrate transfer robot is not shown, for example, similarly to the conventional substrate transfer robot described with reference to FIG. 7, it includes a drive unit, a multi-joint arm, etc., and the end effector 14 is connected to the tip of the multi-joint arm. ing.

エンドエフェクタ14はフォーク状に形成されており、その上面は基板Wの裏面を支持する支持面14aとされている。そして、エンドエフェクタ14の支持面14aには、基板Wの裏面の所定箇所に接触する複数の保持部15が設けられている。これら支持面14aおよび保持部15は、本発明に係る「基板支持機構」を構成している。なお、図において保持部15は、支持面14aに対して突出形成されているが、支持面14aと同一面に構成されていてもよい。   The end effector 14 is formed in a fork shape, and its upper surface is a support surface 14 a that supports the back surface of the substrate W. The support surface 14 a of the end effector 14 is provided with a plurality of holding portions 15 that come into contact with predetermined locations on the back surface of the substrate W. The support surface 14a and the holding portion 15 constitute a “substrate support mechanism” according to the present invention. In addition, although the holding | maintenance part 15 is protruded and formed with respect to the support surface 14a in the figure, you may be comprised in the same surface as the support surface 14a.

エンドエフェクタ14の支持面14aは、アルミナ、窒化珪素などの耐熱性を有するセラミックス材料あるいはステンレス鋼などで構成されているが、材料はこれに限定されない。また、エンドエフェクタ14の形状は図示する形状のものに限られず、他の形状であっても勿論構わない。   The support surface 14a of the end effector 14 is made of a heat-resistant ceramic material such as alumina or silicon nitride, or stainless steel, but the material is not limited to this. Further, the shape of the end effector 14 is not limited to the shape shown in the figure, and may be any other shape.

保持部15は、カーボンナノチューブ(CNT)で構成されている。カーボンナノチューブは、グラファイトのシートを丸めた筒状の構造をした物質で、直径が数nmから数十nm、長さが数μmから数mmと高いアスペクト比を有し、高導電性、高熱伝導性、機械的な強靭性など特徴的な物性をもつことから、近年、ナノテクノロジー分野を中心として半導体や医療、バイオなどの広い分野で応用が期待されている。カーボンナノチューブの成膜方法としては、例えば、熱CVD法が知られている。熱CVD法を用いたカーボンナノチューブの作製においては、基板が設置されている反応管の内部に、メタンやアセチレン等の原料ガスを導入し、加熱された基板上で原料ガスを分解させて、配向制御したカーボンナノチューブを成長させる。   The holding part 15 is composed of carbon nanotubes (CNT). A carbon nanotube is a material with a cylindrical structure made by rolling up a graphite sheet, and has a high aspect ratio of several nanometers to several tens of nanometers and a length of several micrometers to several millimeters, and has high conductivity and high thermal conductivity. In recent years, it has been expected to be applied in a wide range of fields such as semiconductors, medicine, and biotechnology, mainly in the nanotechnology field. As a method for forming a carbon nanotube, for example, a thermal CVD method is known. In the production of carbon nanotubes using the thermal CVD method, a raw material gas such as methane or acetylene is introduced into the reaction tube in which the substrate is installed, and the raw material gas is decomposed on the heated substrate for orientation. Grow controlled carbon nanotubes.

本実施形態では、カーボンナノチューブが成膜された基板を分割して一定の形状、大きさのCNTチップを形成し、支持面14aの所定位置に固定した。カーボンナノチューブの形成密度は、1平方センチメートルあたり100億本以上である。保持部(CNTチップ)15の形状や設置個数は特に限定されず、本実施形態では四角形状あるいは円形状のCNTチップが支持面14a上の所定の3箇所に固定されている。また、保持部15の面積も特に限定されず、設置個数、基板Wや支持面14aの大きさ等に応じて適宜設定可能である。また、支持面14aに対する保持部15の固定方法も特に制限されず、両面テープや接着剤、ネジ止め等の公知の手法が採用可能である。   In this embodiment, the substrate on which the carbon nanotubes are formed is divided to form a CNT chip having a certain shape and size, and is fixed at a predetermined position on the support surface 14a. The formation density of carbon nanotubes is 10 billion or more per square centimeter. The shape and number of the holding portions (CNT chips) 15 are not particularly limited. In the present embodiment, square or circular CNT chips are fixed at predetermined three locations on the support surface 14a. Further, the area of the holding unit 15 is not particularly limited, and can be set as appropriate according to the number of installed units, the size of the substrate W, the support surface 14a, and the like. Moreover, the fixing method of the holding part 15 with respect to the support surface 14a is not particularly limited, and a known method such as double-sided tape, an adhesive, and screwing can be employed.

図2は、保持部15を構成するカーボンナノチューブの断面SEM写真である。形成密度は、1平方センチメートルあたり約100億本(1010/cm)、高さは50μmである。カーボンナノチューブの成膜は、以下の手順で行った。FIG. 2 is a cross-sectional SEM photograph of the carbon nanotube constituting the holding unit 15. The formation density is about 10 billion per square centimeter (10 10 / cm 2 ), and the height is 50 μm. The carbon nanotube film was formed according to the following procedure.

まず、Si基板の(100)面に触媒層としてFeをスパッタ法で5nm成膜した。スパッタはAr雰囲気(0.6Pa)中で行い、100WのDCスパッタ条件にて行った。
次に、Fe膜を形成した基板を石英反応管のゴールドイメージ炉に装填し、1.33Paまで真空排気した後、窒素(N)を1000sccmの流量で供給し、1気圧中で750℃まで炉内を昇温させた。750℃に到達した後、全圧1気圧のまま、炉内にアセチレン(C)ガスを300sccmで供給し、基板上へのカーボンナノチューブの成長を開始させた。1分間成長させた後、炉内の排気および降温を行って、CNT基板を取り出した。
First, 5 nm of Fe was formed as a catalyst layer on the (100) surface of the Si substrate by sputtering. Sputtering was performed in an Ar atmosphere (0.6 Pa) and under 100 W DC sputtering conditions.
Next, the substrate on which the Fe film was formed was loaded into a gold image furnace of a quartz reaction tube, evacuated to 1.33 Pa, then supplied with nitrogen (N 2 ) at a flow rate of 1000 sccm, and up to 750 ° C. at 1 atmosphere. The temperature inside the furnace was raised. After reaching 750 ° C., acetylene (C 2 H 2 ) gas was supplied into the furnace at 300 sccm while maintaining a total pressure of 1 atm to start the growth of carbon nanotubes on the substrate. After growing for 1 minute, the furnace was evacuated and the temperature was lowered, and the CNT substrate was taken out.

以上のように構成される本実施形態においては、支持面14a上の保持部15がカーボンナノチューブで構成されていることから、基板Wは当該カーボンナノチューブの先端で支持される。このとき、基板Wと保持部(カーボンナノチューブ)15との間には分子間力が発生しており、基板Wは、支持面14に対して一定の吸着力をもって支持される。この吸着力は、大気中においても真空中においても発生し、単位面積あたりのカーボンナノチューブの本数が大きいほど大きな吸着力が得られる。これにより、支持面14a上における基板の滑りを効果的に抑制でき、基板の高速搬送を実現することができる。   In the present embodiment configured as described above, since the holding portion 15 on the support surface 14a is composed of carbon nanotubes, the substrate W is supported by the tips of the carbon nanotubes. At this time, an intermolecular force is generated between the substrate W and the holding portion (carbon nanotube) 15, and the substrate W is supported with a fixed adsorption force with respect to the support surface 14. This adsorption force is generated both in the air and in a vacuum, and the greater the number of carbon nanotubes per unit area, the greater the adsorption force. Thereby, the slip of the board | substrate on the support surface 14a can be suppressed effectively, and a high-speed conveyance of a board | substrate can be implement | achieved.

図3A,Bは、大気中および真空中(圧力4.0×10−3Pa)における、シリコンウエハと各材料との間の摩擦力の測定値を示している。図中「アルミナ」はアルミナ製の板上に、また「CNT」は、シリコンウエハ上に成長させたカーボンナノチューブ上に、それぞれ2インチシリコンウエハを置いて測定した値を示している。また「フッ素系ゴム」は、φ6mmのフッ素系ゴム板3枚の上にシリコンウエハを支持した場合を示している。3A and 3B show measured values of the frictional force between the silicon wafer and each material in the air and in vacuum (pressure 4.0 × 10 −3 Pa). In the figure, “alumina” represents a value measured by placing a 2-inch silicon wafer on a plate made of alumina and “CNT” on a carbon nanotube grown on a silicon wafer. “Fluorine rubber” indicates a case where a silicon wafer is supported on three fluorine rubber plates of φ6 mm.

図3A,Bから明らかなように、大気中および真空中のいずれについても、「アルミナ」に対して「CNT」および「フッ素系ゴム」の方が摩擦力は大きい。したがって、例えばアルミナ製エンドエフェクタ上に直接基板を支持した場合に比べ、「CNT」もしくは「フッ素系ゴム」の保持部を介在させて基板を支持する場合の方が摩擦力は大きく、エンドエフェクタの支持面における基板の滑りを抑制して、搬送速度の高速化を図れるようになる。   As is clear from FIGS. 3A and 3B, the friction force of “CNT” and “fluorinated rubber” is larger than that of “alumina” in both air and vacuum. Therefore, for example, compared to the case where the substrate is directly supported on the alumina end effector, the friction force is larger when the substrate is supported through the holding portion of “CNT” or “fluorinated rubber”, and the end effector The substrate can be prevented from slipping on the support surface, and the conveyance speed can be increased.

また、図3A,Bより、カーボンナノチューブ製の保持部に比べて、フッ素系ゴム製の保持部の方が大きな摩擦力が得られることがわかる。したがって、フッ素系ゴム製の保持部を採用することで、基板の搬送速度の更なる高速化を図ることが可能となる。しかしながら、このようなゴム系の弾性材料は、基板や周囲温度の影響によって変質しやすく、また、基板に対する貼り付きが生じて搬送トラブルの原因となる場合がある。   3A and 3B, it can be seen that a larger frictional force can be obtained with the fluororubber holding portion than with the carbon nanotube holding portion. Therefore, it is possible to further increase the substrate transport speed by employing the fluorine rubber holding portion. However, such a rubber-based elastic material easily changes in quality due to the influence of the substrate and the ambient temperature, and may stick to the substrate and cause a conveyance trouble.

これに対して、カーボンナノチューブは耐熱性に優れているので、高温環境下での使用時においても保持部の熱による変質あるいは劣化を回避できる。更に、カーボンナノチューブによる基板の保持力は非粘着性であるため、貼り付きによる移載時の基板の割れや搬送不良の発生を防ぐことができる。したがって、周囲温度に関係なく、基板の適正な搬送動作を確保することができる。   On the other hand, since carbon nanotubes are excellent in heat resistance, it is possible to avoid alteration or deterioration of the holding portion due to heat even when used in a high temperature environment. Furthermore, since the holding force of the substrate by the carbon nanotubes is non-adhesive, it is possible to prevent the substrate from being cracked or transported due to sticking. Therefore, it is possible to ensure an appropriate transfer operation of the substrate regardless of the ambient temperature.

以下、本発明の実施例について説明する。本実施例では、基板搬送ロボットを用いて、基板(ウエハサイズ300mm)の搬送テストを行い、エンドエフェクタに対する基板の位置ズレ量を測定した。   Examples of the present invention will be described below. In this example, a substrate transport robot was used to perform a substrate (wafer size 300 mm) transport test, and the amount of positional displacement of the substrate relative to the end effector was measured.

エンドエフェクタはアルミナ製であり、その上に図1及び図2に示したカーボンナノチューブ製の保持部(15)を取り付けたものを用いた。保持部の取付け箇所は、図1に示した3箇所であり、フォーク先端部2箇所と、フォーク基部1箇所とした。保持部は、シリコンウエハに、図2に示したサンプルと同一の条件でカーボンナノチューブを作製したものを用いた。保持部の合計の面積は、11.5cmであった。The end effector is made of alumina, and a carbon nanotube holding part (15) shown in FIGS. 1 and 2 is attached to the end effector. The attachment parts of the holding part are the three parts shown in FIG. 1, and two fork tip parts and one fork base part are provided. As the holding part, a silicon wafer having carbon nanotubes produced under the same conditions as the sample shown in FIG. 2 was used. The total area of the holding part was 11.5 cm 2 .

搬送テストは、ロボットに以下の(1)〜(5)の動作を繰り返し行わせた。測定は、大気中と真空中(圧力2×10−3Pa以下)で行った。
(1)ホイストとの間で一旦ウエハの受け渡し。
(2)ウエハ中心位置をCCDセンサで計測。
(3)所定の動作(伸び動作、縮み動作、180度時計周り旋回、180度反時計周り旋回)。
(4)低速で計測位置に移動。
(5)ウエハ中心位置をCCDセンサで計測。
In the conveyance test, the robot was repeatedly performed the following operations (1) to (5). The measurement was performed in the atmosphere and in vacuum (pressure 2 × 10 −3 Pa or less).
(1) The wafer is temporarily transferred to and from the hoist.
(2) The wafer center position is measured with a CCD sensor.
(3) Predetermined operations (extension operation, contraction operation, 180 degree clockwise rotation, 180 degree counterclockwise rotation).
(4) Move to the measurement position at low speed.
(5) The wafer center position is measured with a CCD sensor.

測定結果を図4及び図5に示す。各図においてAは大気中での測定結果を示し、Bは真空中での測定結果を示す。図中のプロットは、各7回測定したものの平均値を表している。なお、比較例として、アルミナ製のエンドエフェクタ上に直接ウエハを載置して同様の試験を行ったときの測定結果を示す。   The measurement results are shown in FIGS. In each figure, A shows the measurement result in the atmosphere, and B shows the measurement result in vacuum. The plots in the figure represent the average values of the seven measurements. As a comparative example, a measurement result when a similar test is performed by placing a wafer directly on an end effector made of alumina is shown.

図4A,Bは、伸び/縮み動作時間とウエハのズレ量との関係を示している。動作時間が1.62秒という比較的低速の場合、実施例、比較例ともにウエハのズレは認められない。一方、これよりも動作時間を高速化した場合、比較例ではウエハのズレが大きくなるのに対し、CNT製の保持部を備えた実施例の場合には、1.16秒という比較的高速の場合でも、ウエハのズレはほとんど認められなかった。この結果は、大気中でも真空中でも同じであった。   4A and 4B show the relationship between the expansion / contraction operation time and the amount of wafer misalignment. When the operation time is relatively low at 1.62 seconds, no wafer displacement is observed in both the example and the comparative example. On the other hand, when the operating time is increased, the wafer shift in the comparative example increases, whereas in the embodiment including the CNT holder, the relatively high speed of 1.16 seconds is obtained. Even in this case, the wafer was hardly displaced. This result was the same both in air and in vacuum.

図5A,Bは、180度旋回動作時間とウエハのズレ量との関係を示している。動作時間が3.31秒という比較的低速の場合、実施例、比較例ともにウエハのズレは認めらない。一方、これよりも動作時間を高速化した場合、比較例ではウエハのズレが大きくなるのに対し、CNT製の保持部を備えた実施例の場合には、2.36秒という比較的高速の場合でも、ウエハのズレはほとんど認められなかった。この結果は、大気中でも真空中でもほぼ同じであった。   5A and 5B show the relationship between the 180-degree turning operation time and the wafer shift amount. When the operation time is a comparatively low speed of 3.31 seconds, no deviation of the wafer is recognized in both the example and the comparative example. On the other hand, when the operating time is increased, the wafer shift in the comparative example increases, whereas in the embodiment including the CNT holder, the relatively high speed of 2.36 seconds. Even in this case, the wafer was hardly displaced. This result was almost the same in air and in vacuum.

本実施例によれば、伸び/縮み動作時間に関しては、1.62秒から1.16秒へ0.46秒短縮することが可能となった。また、180度旋回動作時間に関しては、3.31秒から2.36秒へ0.95秒短縮することが可能となった。この結果を例えば、成膜室から基板をロボットが取り出す動作(ピック動作)に換算すると、動作時間は図6のようになり、動作時間は6.65秒から5.23秒へ1.42秒短縮されることが可能となる。   According to the present embodiment, the expansion / contraction operation time can be shortened from 1.62 seconds to 1.16 seconds by 0.46 seconds. Further, regarding the 180-degree turning operation time, 0.95 seconds can be shortened from 3.31 seconds to 2.36 seconds. When this result is converted into, for example, an operation in which the robot removes the substrate from the film forming chamber (pick operation), the operation time is as shown in FIG. 6, and the operation time is 1.42 seconds from 6.65 seconds to 5.23 seconds. It can be shortened.

以上、本発明の実施形態および実施例について説明したが、勿論、本発明はこれらに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。   As mentioned above, although embodiment and the Example of this invention were described, of course, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.

例えば以上の実施形態では、カーボンナノチューブ製の保持部15をエンドエフェクタ14の支持面14上に複数設置した例を説明したが、これに限られず、例えば、支持面の全面または一部に直接カーボンナノチューブを成膜して本発明の基板支持機構を構成することも可能である。   For example, in the above-described embodiment, an example in which a plurality of carbon nanotube holding portions 15 are installed on the support surface 14 of the end effector 14 has been described. However, the present invention is not limited to this. It is also possible to form a substrate support mechanism of the present invention by forming a nanotube.

また、以上の実施形態では、本発明に係る基板支持機構を基板搬送装置のエンドエフェクタに適用した例について説明したが、これ以外にも、基板搬送用のトレイ、ステージ、リフターピン等、基板を所定姿勢で支持する基板支持系全般に対して本発明は適用可能である。   In the above embodiment, the example in which the substrate support mechanism according to the present invention is applied to the end effector of the substrate transport apparatus has been described. The present invention is applicable to all substrate support systems that support a predetermined posture.

本発明の実施形態による基板支持機構を備えた基板搬送ロボットのエンドエフェクタの構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the end effector of the board | substrate conveyance robot provided with the board | substrate support mechanism by embodiment of this invention. 本発明に係る保持部を構成するカーボンナノチューブの一例を示すSEM写真である。It is a SEM photograph which shows an example of the carbon nanotube which comprises the holding | maintenance part which concerns on this invention. エンドエフェクタと基板の間の摩擦力を示す一実験結果である。It is one experimental result which shows the frictional force between an end effector and a board | substrate. 本発明の実施例におけるロボット動作時間とウエハのズレ量との関係を示す一実験結果である。It is one experimental result which shows the relationship between the robot operation time in the Example of this invention, and the deviation | shift amount of a wafer. 本発明の実施例におけるロボット動作時間とウエハのズレ量との関係を示す一実験結果である。It is one experimental result which shows the relationship between the robot operation time in the Example of this invention, and the deviation | shift amount of a wafer. 本発明の実施例の一評価結果を示す図である。It is a figure which shows one evaluation result of the Example of this invention. 従来の基板搬送ロボットの構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the conventional substrate transfer robot. 従来の基板搬送ロボットのエンドエフェクタの概略構成図である。It is a schematic block diagram of the end effector of the conventional substrate transfer robot.

符号の説明Explanation of symbols

14 エンドエフェクタ
14a 支持面
15 保持部
W 基板
14 End effector 14a Support surface 15 Holding part W Substrate

Claims (4)

搬送物を支持する支持面と、
前記支持面の少なくとも一部に設けられたカーボンナノチューブからなる保持部と
を具備する基板支持機構。
A support surface for supporting the conveyed product;
A substrate support mechanism comprising: a holding portion made of carbon nanotubes provided on at least a part of the support surface.
請求項1に記載の基板支持機構であって、
前記保持部は、前記支持面の複数個所に設けられている
基板支持機構。
The substrate support mechanism according to claim 1,
The holding portion is provided at a plurality of locations on the support surface.
請求項2に記載の基板支持機構であって、
前記基板支持機構は、前記搬送物を支持するエンドエフェクタを有する基板搬送ロボットであり、
前記支持面は、前記エンドエフェクタの上面に形成されている
基板支持機構。
The substrate support mechanism according to claim 2,
The substrate support mechanism is a substrate transfer robot having an end effector for supporting the transfer object,
The support surface is formed on an upper surface of the end effector.
請求項1に記載の基板支持機構であって、
前記カーボンナノチューブの形成密度は、1平方センチメートルあたり100億本以上である
基板支持機構。
The substrate support mechanism according to claim 1,
The formation density of the carbon nanotubes is 10 billion or more per square centimeter.
JP2009519227A 2007-06-13 2008-06-03 Substrate support mechanism Active JP4824816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009519227A JP4824816B2 (en) 2007-06-13 2008-06-03 Substrate support mechanism

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007155913 2007-06-13
JP2007155913 2007-06-13
PCT/JP2008/060187 WO2008152940A1 (en) 2007-06-13 2008-06-03 Substrate supporting mechanism
JP2009519227A JP4824816B2 (en) 2007-06-13 2008-06-03 Substrate support mechanism

Publications (2)

Publication Number Publication Date
JPWO2008152940A1 JPWO2008152940A1 (en) 2010-08-26
JP4824816B2 true JP4824816B2 (en) 2011-11-30

Family

ID=40129550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009519227A Active JP4824816B2 (en) 2007-06-13 2008-06-03 Substrate support mechanism

Country Status (5)

Country Link
JP (1) JP4824816B2 (en)
KR (1) KR101207594B1 (en)
CN (1) CN101678970A (en)
TW (1) TWI407529B (en)
WO (1) WO2008152940A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140109953A (en) * 2011-12-16 2014-09-16 브룩스 오토메이션 인코퍼레이티드 Transport apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109376B2 (en) * 2007-01-22 2012-12-26 東京エレクトロン株式会社 Heating device, heating method and storage medium
JP5454286B2 (en) * 2010-03-26 2014-03-26 東京エレクトロン株式会社 Substrate processing equipment
JP5522181B2 (en) * 2012-01-26 2014-06-18 株式会社安川電機 Transfer robot
CN107073446B (en) * 2014-09-16 2022-07-01 东丽株式会社 Metal composite carbon material, catalyst for fuel cell, hydrogen storage material, hydrogen tank, and method for producing metal composite carbon material
JP2017126695A (en) * 2016-01-15 2017-07-20 日東電工株式会社 Method for manufacturing holder member
JP6549995B2 (en) * 2016-01-15 2019-07-24 日東電工株式会社 Mounting member
JP6616194B2 (en) * 2016-01-15 2019-12-04 日東電工株式会社 Placement member
JP2017175126A (en) * 2016-03-18 2017-09-28 日東電工株式会社 Conveying fixing jig
JP6796984B2 (en) * 2016-10-03 2020-12-09 日東電工株式会社 Carbon nanotube aggregate
WO2018066233A1 (en) * 2016-10-03 2018-04-12 日東電工株式会社 Carbon nanotube aggregate
JP6855298B2 (en) * 2017-03-23 2021-04-07 日東電工株式会社 Transport fixing jig
JP7144149B2 (en) * 2018-02-06 2022-09-29 日東電工株式会社 carbon nanotube assembly
KR102301114B1 (en) * 2019-09-06 2021-09-10 주식회사 글린트머티리얼즈 Anti-slip pad with dual structure and robot to transfer wafer having the same
JP2021082654A (en) * 2019-11-15 2021-05-27 株式会社ディスコ Processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353291A (en) * 2001-05-30 2002-12-06 Ulvac Japan Ltd Apparatus for transferring substrate
JP2003226509A (en) * 2001-12-12 2003-08-12 Electrovac Fabrikation Elektrotechnischer Spezialartikel Gmbh Method for synthesizing carbon nanotube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815385B2 (en) * 1999-12-20 2014-08-26 The Regents Of The University Of California Controlling peel strength of micron-scale structures
US6872439B2 (en) * 2002-05-13 2005-03-29 The Regents Of The University Of California Adhesive microstructure and method of forming same
JP2004040011A (en) * 2002-07-08 2004-02-05 Toyo Kohan Co Ltd Tool, apparatus, and method for supplying and taking out substrate
US20060215347A1 (en) * 2005-03-28 2006-09-28 Tokyo Electron Limited Processing apparatus and recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353291A (en) * 2001-05-30 2002-12-06 Ulvac Japan Ltd Apparatus for transferring substrate
JP2003226509A (en) * 2001-12-12 2003-08-12 Electrovac Fabrikation Elektrotechnischer Spezialartikel Gmbh Method for synthesizing carbon nanotube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140109953A (en) * 2011-12-16 2014-09-16 브룩스 오토메이션 인코퍼레이티드 Transport apparatus
JP2015502667A (en) * 2011-12-16 2015-01-22 ブルックス オートメーション インコーポレイテッド Transport device
US10137576B2 (en) 2011-12-16 2018-11-27 Brooks Automation, Inc. Transport apparatus
US10556351B2 (en) 2011-12-16 2020-02-11 Brooks Automation, Inc. Transport apparatus
KR102135466B1 (en) 2011-12-16 2020-07-17 브룩스 오토메이션 인코퍼레이티드 Transport apparatus
US11420337B2 (en) 2011-12-16 2022-08-23 Brooks Automation Us, Llc Transport apparatus

Also Published As

Publication number Publication date
JPWO2008152940A1 (en) 2010-08-26
TW200910511A (en) 2009-03-01
TWI407529B (en) 2013-09-01
WO2008152940A1 (en) 2008-12-18
KR20100029122A (en) 2010-03-15
KR101207594B1 (en) 2012-12-03
CN101678970A (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4824816B2 (en) Substrate support mechanism
JP5763302B2 (en) Method for producing graphene
JP5137066B2 (en) Graphene sheet manufacturing method
JP5727017B2 (en) Method for graphene growth
WO2006022282A1 (en) Silicon carbide single crystal wafer and method for manufacturing the same
US20180222038A1 (en) Conveying device
US20170040205A1 (en) High-hardness-material-powder infused elastomer for high friction and compliance for silicon wafer transfer
WO2005034219A1 (en) Production method for silicon epitaxial wafer, and silicon epitaxial wafer
WO2016194291A1 (en) Epitaxial growth device, method of manufacturing epitaxial wafer, and lift pin for epitaxial growth device
JP4600160B2 (en) Group III nitride crystal growth method
JP2000150402A (en) Substrate supporting jig
JP4631072B2 (en) Crystal growth equipment
US10562774B2 (en) Method for separating carbon nanotube array from growth substrate
US11390525B2 (en) Carbon nanotube aggregate comprising a non-aligned portion
TW200425384A (en) Wafer carrier having improved processing characteristics
JP2005203648A (en) Vertical type boat for heat treating silicon wafer and heat treating method
JP2005235906A (en) Wafer holding jig and vapor phase growing apparatus
JP7144149B2 (en) carbon nanotube assembly
CN109971387B (en) Application of carbon nanotube structure as double-sided adhesive tape
TWI694127B (en) A method of bonding
JP7333675B2 (en) LIFT PIN, SEMICONDUCTOR MANUFACTURING APPARATUS AND LIFT PIN MANUFACTURING METHOD
JP6964520B2 (en) Cleaning method for SiC single crystal growth furnace
JP2003100648A (en) Heat treatment jig of semiconductor wafer
JP2004241616A (en) Wafer holder and method for transferring wafer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent or registration of utility model

Ref document number: 4824816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250