JP4820097B2 - Aluminum nitride sintered body and method for producing the same - Google Patents

Aluminum nitride sintered body and method for producing the same Download PDF

Info

Publication number
JP4820097B2
JP4820097B2 JP2005012823A JP2005012823A JP4820097B2 JP 4820097 B2 JP4820097 B2 JP 4820097B2 JP 2005012823 A JP2005012823 A JP 2005012823A JP 2005012823 A JP2005012823 A JP 2005012823A JP 4820097 B2 JP4820097 B2 JP 4820097B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
zrn
compound
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005012823A
Other languages
Japanese (ja)
Other versions
JP2006199535A (en
Inventor
正人 山崎
健之 光石
功 原田
将夫 田中
渡利  広司
進宇 邱
裕司 堀田
佐藤  公泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005012823A priority Critical patent/JP4820097B2/en
Publication of JP2006199535A publication Critical patent/JP2006199535A/en
Application granted granted Critical
Publication of JP4820097B2 publication Critical patent/JP4820097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、窒化アルミニウム系焼結体およびその製造方法に関する。本発明の窒化アルミニウム系焼結体は、窒化アルミニウムとZr化合物との混合物を焼結体原料とすることで、高密度、高強度の焼結体として得られる。   The present invention relates to an aluminum nitride sintered body and a method for producing the same. The aluminum nitride-based sintered body of the present invention can be obtained as a high-density, high-strength sintered body by using a mixture of aluminum nitride and a Zr compound as a sintered body raw material.

近年、電子材料の高集積化、高出力化に伴い、これまで使用されてきたアルミナ基板に代わる高放熱性(高熱伝導性)基板に対するニーズが高まりつつある。ベリリア、ベリリアを焼結助剤とする炭化珪素、窒化アルミニウムなどは上記ニーズに適合する材料と言われている。とりわけ窒化アルミニウムは、低毒性、高絶縁性などの特徴を有するため、高熱伝導性基板(放熱基板)材料として最も注目を集めている。   In recent years, with the high integration and high output of electronic materials, there is an increasing need for a high heat dissipation (high thermal conductivity) substrate that replaces the alumina substrate used so far. Beryllia, silicon carbide using beryllia as a sintering aid, aluminum nitride, and the like are said to be materials that meet the above needs. In particular, since aluminum nitride has characteristics such as low toxicity and high insulation, it has attracted the most attention as a highly thermally conductive substrate (heat dissipation substrate) material.

さらに最近では、高熱伝導性基板の用途は自動車関連などの民生用にまで拡がり、それと共に、高熱伝導性基板の主原料である窒化アルミニウム系焼結体にも、熱伝導率のみならずその信頼性(強靭性)の一層の向上が求められる。   More recently, the use of high thermal conductivity substrates has expanded to consumer use such as automobiles, and at the same time, aluminum nitride-based sintered bodies, which are the main raw materials for high thermal conductivity substrates, are not only reliable in terms of thermal conductivity. Further improvement of the property (toughness) is required.

窒化アルミニウム系焼結体の機械的強度ひいては靭性を向上させるために、窒化アルミニウムに他の無機材料を微量添加した複合材料の研究がなされている。該複合材料としては、たとえば、AlN−TiN系、AlN−BN系、AlN-SiC系などが挙げられる(たとえば、非特許文献1〜3参照)。しかしながら、これらの複合材料における機械的強度の向上は満足できる水準にはない。また、AlN−ZrN系複合材料については、Zr含有量が比較的多い領域での検討がなされている(たとえば、非特許文献4参照)。しかしながら、該複合材料の機械的強度(曲げ強度)は490MPa程度に過ぎず、やはり機械的強度の充分な向上は認められない。   In order to improve the mechanical strength and thus toughness of aluminum nitride-based sintered bodies, studies have been made on composite materials obtained by adding a small amount of other inorganic materials to aluminum nitride. Examples of the composite material include AlN—TiN, AlN—BN, and AlN—SiC (see, for example, Non-Patent Documents 1 to 3). However, the improvement in mechanical strength of these composite materials is not satisfactory. Moreover, about the AlN-ZrN type composite material, examination in the area | region where Zr content is comparatively large is made | formed (for example, refer nonpatent literature 4). However, the mechanical strength (bending strength) of the composite material is only about 490 MPa, and no sufficient improvement in mechanical strength is recognized.

S.Burkhardt et al,J.Eur.Ceram.Soc.,17,pp.3,(1997)S. Burkhardt et al, J. Eur. Ceram. Soc., 17, pp. 3, (1997) K.S.Mazdiyasn et al,Am.Ceram.Soc.Bull.,64,pp.1149,(1985)K.S.Mazdiyasn et al, Am.Ceram.Soc.Bull., 64, pp. 1149, (1985) J.-L.Huang et al,J.Mater.Res.,10,pp.651,(1995)J.-L. Huang et al, J. Mater. Res., 10, pp. 651, (1995) C.Toy and E.Savrun,J.Eur.Ceram.Soc.,18,pp.23,(1998)C. Toy and E. Savrun, J. Eur. Ceram. Soc., 18, pp. 23, (1998)

本発明の目的は、高熱伝導性、高密度および高機械的強度を併せ持ち、高熱伝導性材料として有用な窒化アルミニウム系焼結体ならびに該窒化アルミニウム系焼結体を簡便な方法でかつ安価に製造する方法を提供することである。   An object of the present invention is to provide an aluminum nitride-based sintered body that has high thermal conductivity, high density, and high mechanical strength and is useful as a high-thermal-conductivity material, and to produce the aluminum nitride-based sintered body by a simple method and at a low cost. Is to provide a way to do.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、窒化アルミニウムとそのZr化合物を物理的に混合したものを焼結体原料とすることによって、1)窒化アルミニウムの焼結性が高まり、焼結温度を極めて低くすることができること、2)焼結時のグレイン径の粗大化を抑制できること、および3)得られる窒化アルミニウム系焼結体が高熱伝導性、高密度および高機械的強度を併せ持つことを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have made 1) sintering of aluminum nitride by using a material obtained by physically mixing aluminum nitride and its Zr compound as a sintered body raw material. The sintering temperature can be made extremely low, 2) the coarsening of the grain diameter during sintering can be suppressed, and 3) the resulting aluminum nitride sintered body has high thermal conductivity, high density and high It has been found that it has mechanical strength, and the present invention has been completed.

本発明は、ZrNと窒化アルミニウムとからなり、
ZrNをZr換算で1〜10重量%含みかつ残部が窒化アルミニウムである窒化アルミニウム系焼結体であって、グレイン径が0.1〜1μm、密度が理論値の98%以上であり、4点曲げ法(JIS R 1601準拠)による機械強度が540〜550MPa(パスカル)であることを特徴とする窒化アルミニウム系焼結体である。
The present invention consists of ZrN and aluminum nitride,
The ZrN comprises 1 to 10% by weight in terms of Zr and an aluminum nitride sintered body is a balance of aluminum nitride, the grain diameter of 0.1 to 1 [mu] m, Ri der 98% density theory, 4 mechanical strength through point bending method (JIS R 1601 compliant) is aluminum nitride sintered body, characterized in 540~550MPa (Pascal) der Rukoto.

また本発明は、(i)焼結時の加熱により窒化されてZrNを生成するZr化合物と1次粒子径0.1〜0.8μmである窒化アルミニウム粉末とを物理的方法により混合する工程であって、前記ZrNを生成するZr化合物をZr換算で窒化アルミニウム系焼結体全量の1〜10重量%になる量用いる工程と、
(ii)(i)で得られる混合物を1400℃以上、1700℃以下の温度で焼結する工程とを含むことを特徴とするZr化合物と窒化アルミニウムとからなるグレイン径が0.1〜1μm、密度が理論値の98%以上であり、4点曲げ法(JIS R 1601準拠)による機械強度が540〜550MPa(パスカル)である窒化アルミニウム系焼結体の製造方法である。
The present invention also includes (i) a step in which a Zr compound that is nitrided by heating during sintering to produce ZrN and an aluminum nitride powder having a primary particle size of 0.1 to 0.8 μm are mixed by a physical method. A step of using the Zr compound for generating ZrN in an amount of 1 to 10% by weight of the total amount of the aluminum nitride sintered body in terms of Zr ;
(Ii) a step of sintering the mixture obtained in (i) at a temperature of 1400 ° C. or higher and 1700 ° C. or lower, wherein the grain diameter of the Zr compound and aluminum nitride is 0.1 to 1 μm, This is a method for producing an aluminum nitride-based sintered body having a density of 98% or more of the theoretical value and a mechanical strength of 540 to 550 MPa (Pascal) by a four-point bending method (based on JIS R 1601) .

さらに本発明の窒化アルミニウム系焼結体の製造方法は、物理的方法よる混合が、焼結時の加熱により窒化されてZrNを生成するZr化合物と1次粒子径0.1〜0.8μmである窒化アルミニウム粉末とを解砕することにより行われることを特徴とする。 Further method for manufacturing an aluminum-nitride-based sintered body of the present invention, physical methods mixed by the, Zr compound that produces a ZrN is nitrided by heating in the sintering and the primary particle diameter 0.1~0.8μm It is characterized by performing by pulverizing the aluminum nitride powder.

さらに本発明の窒化アルミニウム系焼結体の製造方法は、焼結時の加熱により窒化されてZrNを生成するZr化合物と1次粒子径0.1〜0.8μmである窒化アルミニウム粉末との解砕が不活性雰囲気下に行われることを特徴とする。 Furthermore, the method for producing an aluminum nitride sintered body according to the present invention comprises a solution of a Zr compound that is nitrided by heating during sintering to produce ZrN and an aluminum nitride powder having a primary particle diameter of 0.1 to 0.8 μm. The crushing is performed under an inert atmosphere.

本発明によれば、従来の窒化アルミニウムの焼結温度よりも200〜300℃も低い温度で窒化アルミニウムを焼結することができるので、焼結に要するエネルギーコストの著しい低減が可能であり、また焼結炉としてもカーボン炉などの特殊な電気炉を用いる必要がないので、窒化アルミニウム系焼結体を安価に製造できる。   According to the present invention, since aluminum nitride can be sintered at a temperature 200 to 300 ° C. lower than the sintering temperature of conventional aluminum nitride, the energy cost required for sintering can be significantly reduced. Since it is not necessary to use a special electric furnace such as a carbon furnace as a sintering furnace, an aluminum nitride sintered body can be manufactured at low cost.

しかも、得られる窒化アルミニウム系焼結体は、高熱伝導性、高密度および高機械的強度を併せ持ち、グレイン径が非常に小さいため、高熱伝導性基板の材料として好適に使用できる。   Moreover, the obtained aluminum nitride-based sintered body has high thermal conductivity, high density, and high mechanical strength, and has a very small grain diameter. Therefore, it can be suitably used as a material for a high thermal conductivity substrate.

したがって、本発明の窒化アルミニウム系焼結体およびその製造方法は、産業に資する事きわめて大である。   Therefore, the aluminum nitride sintered body and the method for producing the same according to the present invention are extremely useful for the industry.

(窒化アルミニウム系焼結体)
本発明の窒化アルミニウム系焼結体は、ZrNと窒化アルミニウムとからなり、ZrNをZr換算で1〜10重量%含みかつ残部が窒化アルミニウムである。
(Aluminum nitride sintered body)
The aluminum nitride based sintered body of the present invention is composed of ZrN and aluminum nitride, contains 1 to 10% by weight of ZrN in terms of Zr, and the balance is aluminum nitride.

ZrNの含有量は、Zr換算で、窒化アルミニウム系焼結体全量の1〜10重量%である。1重量%未満では、Zr化合物の添加効果が不充分になり、窒化アルミニウム焼結体のグレイン径の粗大化を招き、所望の機械的強度が得られない。一方、10重量%を超えると、窒化アルミニウムが本来有する高熱伝導性が低下する。 The content of ZrN is 1 to 10% by weight of the total amount of the aluminum nitride sintered body in terms of Zr. If it is less than 1% by weight, the effect of adding the Zr compound becomes insufficient, and the grain diameter of the aluminum nitride sintered body becomes coarse, and the desired mechanical strength cannot be obtained. On the other hand, if it exceeds 10% by weight, the high thermal conductivity inherent in aluminum nitride is lowered.

なお、本発明の窒化アルミニウム系焼結体は、ZrNと窒化アルミニウムとからなるものであるが、微量成分として、酸素、炭素、ケイ素、鉄などを含むことがある。これらの微量成分は、原料窒化アルミニウム粉末および取扱い雰囲気ガス由来のものである。 The aluminum nitride sintered body of the present invention is composed of ZrN and aluminum nitride, but may contain oxygen, carbon, silicon, iron, etc. as trace components. These trace components are derived from the raw material aluminum nitride powder and the handling atmosphere gas.

また本発明の窒化アルミニウム系焼結体は、グレイン径が0.1〜1μmであり、密度が理論値の98%以上である。グレイン径がこの範囲にあることで、結晶粒界の総面積が大きくなることにより、硬度および引張り強度の大きい焼結体となる。ここでの密度の理論値とは、窒化アルミニウムおよびZrNの密度の加重平均値である。密度がこの範囲以下では焼結が不充分であり、所望の強度を得ることができない。 The aluminum nitride sintered body of the present invention has a grain diameter of 0.1 to 1 μm and a density of 98% or more of the theoretical value. When the grain diameter is within this range, the total area of the crystal grain boundaries is increased, and a sintered body having high hardness and tensile strength is obtained. The theoretical value of density here is a weighted average value of the densities of aluminum nitride and ZrN . If the density is below this range, the sintering is insufficient and the desired strength cannot be obtained.

(窒化アルミニウム系焼結体の製造方法)
本発明の窒化アルミニウム系焼結体は、焼結時の加熱により窒化されてZrNを生成するZr化合物と窒化アルミニウムとを物理的に混合し、得られる混合物を焼結することにより製造できる。
(Method for producing aluminum nitride sintered body)
The aluminum nitride based sintered body of the present invention can be manufactured by physically mixing a Zr compound that is nitrided by heating during sintering to produce ZrN and aluminum nitride, and sintering the resulting mixture.

ここで使用するZr化合物は、焼結時の加熱により窒化されてZrNを生成するもの(以下、単にZr化合物という)であり、たとえば、ZrO2などが挙げられる。Zr化合物は1種を使用できまたは2種以上を併用できる。Zr化合物は、得られる窒化アルミニウム系焼結体におけるZr化合物含有量が、Zr換算で焼結体全量の1〜10重量%になるように使用される。 Zr compound used herein is intended to generate a ZrN is nitrided by heating in the sintering (hereinafter, simply referred to as Zr compound) is, For example other, and the like ZrO2. One type of Zr compound can be used, or two or more types can be used in combination. The Zr compound is used so that the Zr compound content in the obtained aluminum nitride-based sintered body is 1 to 10% by weight of the total amount of the sintered body in terms of Zr.

窒化アルミニウムとしては、1次粒子径が0.1〜0.8μmの窒化アルミニウム粉末を使用する。得られる窒化アルミニウム系焼結体のグレイン径は原料である窒化アルミニウム粉末の1次粒子径に依存する。すなわち、窒化アルミニウム粉末の粒子径が0.8μmを超えると、本発明の窒化アルミニウム系焼結体が得られない。逆に1次粒子径が0.1μm未満になると、焼結時の雰囲気中に酸素が存在する場合に、酸素によって酸化されやすくなり、熱伝導率が低下する恐れがあるので好ましくない。この窒化アルミニウム粉末の製造方法は特に制限されないが、原料としてアルキルアルミニウムとアンモニアとを用い、気相合成法により合成を行うと、所望の窒化アルミニウム粉末が得やすいので好適である。   As aluminum nitride, aluminum nitride powder having a primary particle size of 0.1 to 0.8 μm is used. The grain diameter of the obtained aluminum nitride-based sintered body depends on the primary particle diameter of the aluminum nitride powder as a raw material. That is, when the particle diameter of the aluminum nitride powder exceeds 0.8 μm, the aluminum nitride sintered body of the present invention cannot be obtained. Conversely, if the primary particle diameter is less than 0.1 μm, it is not preferable because oxygen is likely to be oxidized by oxygen when oxygen is present in the sintering atmosphere and the thermal conductivity may be lowered. The method for producing the aluminum nitride powder is not particularly limited, but it is preferable to use alkyl aluminum and ammonia as raw materials and perform synthesis by a gas phase synthesis method because a desired aluminum nitride powder can be easily obtained.

物理的な混合とは、混合機、粉砕機、解砕機などを用いて機械的に混合することである。これらの中でも、ボールミルなどの解砕機を用い、解砕しながら混合するのが好ましい。解砕機による混合は、Zr化合物と窒化アルミニウム粉末との緊密混合性を充分に高める目的で採用される。物理的な混合には、粉末の凝集を低減し、成型性、焼結性を向上させるという副次的な効果がある。解砕に使用される解砕機としては特に制限されず、セラミックス粉末の解砕に使用される一般的な解砕機をいずれも使用できる。その中でも、3mm以下の微粒をボールメディアとして用いて湿式解砕を行い得る解砕機が好ましい。湿式混合に用いる分散媒としては特に制限されず、無機粉末の湿式解砕に常用されるものをいずれも使用でき、たとえば、メタノール、トルエンなどが挙げられる。解砕条件は、熱処理粉末の特性、解砕機の機種等により異なるため一概に規定することはできないが、緊密に混合することで比重差の大きい両者を窒化アルミニウム粉末とZr化合物とが分離しないような条件を選択する必要がある。   Physical mixing is mechanical mixing using a mixer, a pulverizer, a crusher, or the like. Among these, it is preferable to use a crusher such as a ball mill and mix while crushing. Mixing by a crusher is employed for the purpose of sufficiently increasing the intimate mixing of the Zr compound and the aluminum nitride powder. Physical mixing has secondary effects of reducing powder aggregation and improving moldability and sinterability. The crusher used for crushing is not particularly limited, and any general crusher used for crushing ceramic powder can be used. Among these, a pulverizer capable of performing wet pulverization using fine particles of 3 mm or less as ball media is preferable. The dispersion medium used for wet mixing is not particularly limited, and any of those commonly used for wet crushing of inorganic powders can be used, and examples thereof include methanol and toluene. The crushing conditions vary depending on the characteristics of the heat-treated powder, the type of crusher, etc., and thus cannot be specified unconditionally. However, the aluminum nitride powder and the Zr compound are not separated from each other by mixing them closely. It is necessary to select a proper condition.

物理的な混合は、不活性ガス雰囲気中で行うのが好ましい。これによって、混合の過程において窒化アルミニウムの酸化が実質的に起こらず、ひいては所望の窒化アルミニウム系焼結体が得られる。   The physical mixing is preferably performed in an inert gas atmosphere. Thereby, the oxidation of aluminum nitride does not substantially occur during the mixing process, and as a result, a desired aluminum nitride-based sintered body can be obtained.

物理的な混合により得られるZr化合物と窒化アルミニウムとの緊密混合体を、必要に応じて冷間静水圧法(CIP)その他の任意の粉体成型方法により成型した後、焼成することにより、所望の形状を有する本発明の窒化アルミニウム系焼結体が得られる。   The intimate mixture of the Zr compound and aluminum nitride obtained by physical mixing is molded by a cold isostatic pressure method (CIP) or any other powder molding method as necessary, and then fired to obtain a desired The aluminum nitride sintered body of the present invention having the following shape is obtained.

焼成には、たとえば、シリコニット発熱体を用いる電気炉などの一般的な高温度用の焼成炉を使用できる。また、製造コストを使用しなければ、高周波炉なども使用できる。   For firing, for example, a general high-temperature firing furnace such as an electric furnace using a siliconite heating element can be used. Moreover, a high frequency furnace etc. can also be used if manufacturing cost is not used.

焼成温度は、1400℃〜1700℃、好ましくは1500℃〜1650℃である。この範囲の温度で焼成することによって、充分に高い焼結体密度および機械的強度を有する窒化アルミニウム系焼結体が得られる。1400℃未満では、焼結が不十分になり、所望の機械的強度を有する窒化アルミニウム系焼結体が得られない場合がある。また、焼成温度が1800℃を超えると、グレインの粗大化を招き、所望の機械的強度を有する窒化アルミニウム系焼結体が得られないおそれがある。また、高周波炉や、カーボン炉といった高価な炉の使用を必須とし、エネルギーの損失が大きくなるばかりでなく、地球温暖化の原因とも言われているCOを間接的に多く排出することになり好ましくない。 The firing temperature is 1400 ° C to 1700 ° C, preferably 1500 ° C to 1650 ° C. By firing at a temperature in this range, an aluminum nitride-based sintered body having a sufficiently high sintered body density and mechanical strength can be obtained. If it is less than 1400 ° C., the sintering becomes insufficient, and an aluminum nitride sintered body having a desired mechanical strength may not be obtained. On the other hand, if the firing temperature exceeds 1800 ° C., grain coarsening may occur, and an aluminum nitride sintered body having a desired mechanical strength may not be obtained. In addition, it is essential to use an expensive furnace such as a high-frequency furnace or a carbon furnace, which not only increases energy loss but also indirectly emits a large amount of CO 2 , which is also said to cause global warming. It is not preferable.

焼成時間は、焼成温度、焼結助剤の種類、使用量などに応じて広い範囲から適宜選択できるが、1400〜1700℃の範囲における任意の温度に達してから、同温度を保持しながら通常1〜10時間程度焼成すればよい。   The firing time can be appropriately selected from a wide range according to the firing temperature, the kind of sintering aid, the amount used, etc., but usually reaches the arbitrary temperature in the range of 1400 to 1700 ° C. and maintains the same temperature. It may be fired for about 1 to 10 hours.

焼成時の雰囲気は、酸素との接触を避けるのが良いので、不活性ガス雰囲気とするのが好ましい。不活性ガス雰囲気としては、たとえば、ヘリウム、アルゴン、窒素などが挙げられる。   The atmosphere at the time of firing is preferably an inert gas atmosphere because it is preferable to avoid contact with oxygen. Examples of the inert gas atmosphere include helium, argon, nitrogen, and the like.

このようにして得られる本発明の窒化アルミニウム系焼結体は、従来から窒化アルミニウムが用いられる全ての用途に好適に使用できる。   The aluminum nitride-based sintered body of the present invention thus obtained can be suitably used for all applications where aluminum nitride is conventionally used.

以下に実施例および比較例を示し、本発明を具体的に説明する。以下の実施例は本発明の有効性を示すことに資するためのものであり、本発明を制約するものではない。なお、焼結体の評価は以下の方法によった。   The present invention will be specifically described below with reference to examples and comparative examples. The following examples serve to show the effectiveness of the present invention and do not limit the present invention. The sintered body was evaluated by the following method.

機械的特性は焼結体を3×4×30mmの寸法で切り出した試験片にて評価を行った。強度はスパン距離30mm、クロスヘッドスピード0.5mm/分の条件で4点曲げ法(JIS R 1601準拠)により測定した。微細組織の観察には透過型電子顕微鏡(TEM)を使用した。相対密度はアルキメデス法により実質密度を測定し理論密度より算出した The mechanical properties were evaluated using a test piece obtained by cutting the sintered body with a size of 3 × 4 × 30 mm. The strength was measured by a four-point bending method (based on JIS R 1601) under the conditions of a span distance of 30 mm and a crosshead speed of 0.5 mm / min. A transmission electron microscope (TEM) was used for observation of the fine structure. The relative density was calculated from the theoretical density by measuring the real density by Archimedes method .

(実施例1)
純度98%以上であり、実質的にZr元素を含有しない、1次粒子径0.5μmの窒化アルミニウム粉末100gおよびZrO粉末(商品名:OZC−3YFA、住友大阪セメント(株)製)9gにエタノールを分散媒として加え、ボールミル(商品名:スーパーアペックスミル、コトブキ技研工業(株)製)を用いて0.5時間湿式混合した。粉砕メディアとしては0.1mmφのジルコニア製ボールを用いた。得られたスラリーを乾燥したのち比表面積を測定したところ70m/gであった。またレーザー回折法(商品名:SALDA2000、(株)島津製作所製)で測定した平均粒子径は0.15μmであった。
Example 1
9 g of aluminum nitride powder having a purity of 98% or more and substantially free of Zr element and having a primary particle diameter of 0.5 μm and ZrO 2 powder (trade name: OZC-3YFA, manufactured by Sumitomo Osaka Cement Co., Ltd.) Ethanol was added as a dispersion medium, and wet-mixed for 0.5 hours using a ball mill (trade name: Super Apex Mill, manufactured by Kotobuki Giken Kogyo Co., Ltd.). As the grinding media, zirconia balls having a diameter of 0.1 mmφ were used. It was 70 m < 2 > / g when the specific surface area was measured after drying the obtained slurry. Moreover, the average particle diameter measured by the laser diffraction method (trade name: SALDA2000, manufactured by Shimadzu Corporation) was 0.15 μm.

この湿式混合物を8MPa(パスカル)の圧力で1軸成型し、さらに150MPa(パスカル)の圧力で120秒間CIP成型し、10φ×4mmの成形体を得た。この成形体を窒素気流下にて1500℃で6時間保持した。得られた窒化アルミニウム系焼結体について、アルキメデス法による密度測定およびレーザーフラッシュ法による熱伝導率の測定を行った。焼結体の密度は3.53g/cm3(相対密度98.0)、熱伝導率は61W/mKであった。また、別途大型の焼結体を作成して4点曲げ強度を測定したところ、その強度は540MPa(パスカル)であった。さらに、焼結体中のZr分はZr換算で9.1重量%であった。グレイン径は約0.2μmであったThe wet mixture was uniaxially molded at a pressure of 8 MPa (Pascal), and further CIP-molded at a pressure of 150 MPa (Pascal) for 120 seconds to obtain a molded body of 10φ × 4 mm. This molded body was held at 1500 ° C. for 6 hours under a nitrogen stream. The obtained aluminum nitride-based sintered body was subjected to density measurement by Archimedes method and thermal conductivity measurement by laser flash method. The density of the sintered body was 3.53 g / cm 3 (relative density 98.0), and the thermal conductivity was 61 W / mK. Further, when a large sintered body was separately prepared and the 4-point bending strength was measured, the strength was 540 MPa (Pascal). Furthermore, the Zr content in the sintered body was 9.1% by weight in terms of Zr. The grain diameter was about 0.2 μm .

(実施例2)
ZrO2粉末の添加量を5gにする以外は実施例1と同様の方法で窒化アルミニウム系焼結体を得た。該焼結体の密度は3.43g/cm3(相対密度99.4%)、熱伝導率は85W/mKであった。また、別途大型の焼結体を作成して4点曲げ強度を測定したところ、その強度は550MPa(パスカル)であった。また、該焼結体中のZr分はZr換算で5.1重量%であった。グレイン径は約0.2μmであった。図1に得られた窒化アルミニウム系焼結体の透過型電子顕微鏡写真を示す。図2に得られた窒化アルミニウム系焼結体のX線回折パターンを示す。
(Example 2)
An aluminum nitride-based sintered body was obtained in the same manner as in Example 1 except that the amount of ZrO2 powder added was 5 g. The sintered body had a density of 3.43 g / cm 3 (relative density 99.4%) and a thermal conductivity of 85 W / mK. Further, when a large sintered body was separately prepared and the 4-point bending strength was measured, the strength was 550 MPa (pascal). The Zr content in the sintered body was 5.1% by weight in terms of Zr . Grayed rain diameter was about 0.2μm. FIG. 1 shows a transmission electron micrograph of the aluminum nitride-based sintered body obtained. FIG. 2 shows an X-ray diffraction pattern of the aluminum nitride-based sintered body obtained.

(比較例1)
実施例で用いた窒化アルミニウム粉末を、樹脂製ポットおよび鉄芯入ナイロンボール(10mmφ)を用い、エタノールを分散媒として40時間ボールミルで解砕した。この解砕粉末を用いて、焼成温度を1800℃として3時間焼成し、窒化アルミニウム系焼結体を得た。該焼結体の密度は3.27g/cm(相対密度100%)、グレイン径は8μmであった。また4点曲げ強度は410MPa(パスカル)であった。
(Comparative Example 1)
The aluminum nitride powder used in the examples was crushed by a ball mill for 40 hours using ethanol as a dispersion medium using a resin pot and an iron-cored nylon ball (10 mmφ). Using this pulverized powder, the firing temperature was 1800 ° C. for 3 hours to obtain an aluminum nitride-based sintered body. The density of the sintered body was 3.27 g / cm 3 (relative density 100%), and the grain diameter was 8 μm. The 4-point bending strength was 410 MPa (Pascal).

(比較例2)
焼成を1500℃、6時間で行った以外は比較例1と同様の方法で窒化アルミニウム系焼結体を得た。該焼結体の密度は2.45g/cm(相対密度71%)であった。焼結体は脆く焼結が不十分と認められたので機械強度他は測定を行わなかった。
(Comparative Example 2)
An aluminum nitride-based sintered body was obtained in the same manner as in Comparative Example 1 except that firing was performed at 1500 ° C. for 6 hours. The density of the sintered body was 2.45 g / cm 3 (relative density 71%). Since the sintered body was brittle and the sintering was found to be insufficient, no measurements were made on the mechanical strength and others.

(比較例3)
窒化アルミニウム粉末として、純度98%以上であり、実質的にZr元素を含有しない1次粒子径1.2μmのものを用い、また焼成を1800℃、3時間とする以外は実施例2と同様の方法で窒化アルミニウム系焼結体を得た。該焼結体の密度は3.43g/cm(相対密度99.4%)、熱伝導率は170W/mKであった。また、別途大型の焼結体を作成して4点曲げ強度を測定したところ、その強度は420MPa(パスカル)であった。目視観察によるグレイン径は約3μmであった。また、焼結体中のZr分はZr換算で4.9重量%であった。
(Comparative Example 3)
As the aluminum nitride powder, a powder having a purity of 98% or more and having a primary particle diameter of 1.2 μm substantially not containing a Zr element is used, and the same as in Example 2 except that firing is performed at 1800 ° C. for 3 hours. An aluminum nitride sintered body was obtained by this method. The sintered body had a density of 3.43 g / cm 3 (relative density 99.4%) and a thermal conductivity of 170 W / mK. Moreover, when a large sintered body was separately prepared and the 4-point bending strength was measured, the strength was 420 MPa (pascal). The grain diameter by visual observation was about 3 μm. The Zr content in the sintered body was 4.9% by weight in terms of Zr.

(比較例4)
ZrO粉末の添加量を15gにする以外は実施例1と同様の方法で窒化アルミニウム系焼結体を得た。該焼結体の密度は3.57g/cm(相対密度94.2%)、熱伝導率は34W/mKであった。またその強度は460MPa(パスカル)であった。また、焼結体中のZr分はZr換算で14.1重量%であった。
(Comparative Example 4)
An aluminum nitride-based sintered body was obtained in the same manner as in Example 1 except that the amount of ZrO 2 powder added was 15 g. The density of the sintered body was 3.57 g / cm 3 (relative density 94.2%), and the thermal conductivity was 34 W / mK. Its strength was 460 MPa (Pascal). The Zr content in the sintered body was 14.1% by weight in terms of Zr.

実施例2で得られた窒化アルミニウム系焼結体の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of an aluminum nitride-based sintered body obtained in Example 2. FIG. 実施例2で得られた窒化アルミニウム系焼結体のX線回折スペクトルである。3 is an X-ray diffraction spectrum of an aluminum nitride-based sintered body obtained in Example 2.

Claims (4)

ZrNと窒化アルミニウムとからなり、
ZrNをZr換算で1〜10重量%含みかつ残部が窒化アルミニウムである窒化アルミニウム系焼結体であって、グレイン径が0.1〜1μm、密度が理論値の98%以上であり、4点曲げ法(JIS R 1601準拠)による機械強度が540〜550MPa(パスカル)であることを特徴とする窒化アルミニウム系焼結体。
Consisting of ZrN and aluminum nitride,
The ZrN comprises 1 to 10% by weight in terms of Zr and an aluminum nitride sintered body is a balance of aluminum nitride, the grain diameter of 0.1 to 1 [mu] m, Ri der 98% density theory, 4 point bending method (JIS R 1601 compliant) by mechanical strength 540~550MPa (Pascal) der Rukoto aluminum nitride sintered body according to claim.
(i)焼結時の加熱により窒化されてZrNを生成するZr化合物と1次粒子径0.1〜0.8μmである窒化アルミニウム粉末とを物理的方法により混合する工程であって、前記ZrNを生成するZr化合物をZr換算で窒化アルミニウム系焼結体全量の1〜10重量%になる量用いる工程と、
(ii)(i)で得られる混合物を1400℃以上、1700℃以下の温度で焼結する工程とを含むことを特徴とするZr化合物と窒化アルミニウムとからなるグレイン径が0.1〜1μm、密度が理論値の98%以上であり、4点曲げ法(JIS R 1601準拠)による機械強度が540〜550MPa(パスカル)である窒化アルミニウム系焼結体の製造方法。
(I) A step of mixing a Zr compound that is nitrided by heating during sintering to produce ZrN and an aluminum nitride powder having a primary particle diameter of 0.1 to 0.8 μm by a physical method , the ZrN A step of using the amount of Zr compound that produces 1 to 10% by weight of the total amount of the aluminum nitride sintered body in terms of Zr ;
(Ii) a step of sintering the mixture obtained in (i) at a temperature of 1400 ° C. or higher and 1700 ° C. or lower, wherein the grain diameter of the Zr compound and aluminum nitride is 0.1 to 1 μm, A method for producing an aluminum nitride-based sintered body having a density of 98% or more of the theoretical value and a mechanical strength of 540 to 550 MPa (pascal) by a four-point bending method (based on JIS R 1601) .
物理的方法よる混合が、焼結時の加熱により窒化されてZrNを生成するZr化合物と1次粒子径0.1〜0.8μmである窒化アルミニウム粉末とを解砕することにより行われることを特徴とする請求項記載の窒化アルミニウム系焼結体の製造方法。 The mixing by physical methods is carried out by crushing the aluminum nitride powder is Zr compound and a primary particle diameter 0.1~0.8μm for generating ZrN is nitrided by heating in the sintering The method for producing an aluminum nitride based sintered body according to claim 2 . 焼結時の加熱により窒化されてZrNを生成するZr化合物と1次粒子径0.1〜0.8μmである窒化アルミニウム粉末との解砕が不活性雰囲気下に行われることを特徴とする請求項記載の窒化アルミニウム系焼結体の製造方法。 The pulverization of a Zr compound that is nitrided by heating during sintering to produce ZrN and an aluminum nitride powder having a primary particle diameter of 0.1 to 0.8 µm is performed in an inert atmosphere. Item 4. A method for producing an aluminum nitride-based sintered body according to Item 3 .
JP2005012823A 2005-01-20 2005-01-20 Aluminum nitride sintered body and method for producing the same Expired - Fee Related JP4820097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012823A JP4820097B2 (en) 2005-01-20 2005-01-20 Aluminum nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012823A JP4820097B2 (en) 2005-01-20 2005-01-20 Aluminum nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006199535A JP2006199535A (en) 2006-08-03
JP4820097B2 true JP4820097B2 (en) 2011-11-24

Family

ID=36957864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012823A Expired - Fee Related JP4820097B2 (en) 2005-01-20 2005-01-20 Aluminum nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4820097B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080422B1 (en) * 2020-06-22 2022-06-03 デンカ株式会社 Aluminum nitride sintered body and its manufacturing method, circuit board, and bonded substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191955A (en) * 1992-12-22 1994-07-12 Matsushita Electric Works Ltd Production of aluminum mitride sintered compact
JP2807430B2 (en) * 1995-09-14 1998-10-08 株式会社東芝 Aluminum nitride sintered body and method for producing the same

Also Published As

Publication number Publication date
JP2006199535A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
Chakravarty et al. Spark plasma sintering of magnesia‐doped alumina with high hardness and fracture toughness
Zhou et al. Effects of yttria and magnesia on densification and thermal conductivity of sintered reaction‐bonded silicon nitrides
Kusano et al. Effects of impurity oxygen content in raw Si powder on thermal and mechanical properties of sintered reaction‐bonded silicon nitrides
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP2009067642A (en) Boron carbide ceramic and its production method
Yang et al. Comparative study of fluoride and non-fluoride additives in high thermal conductive silicon nitride ceramics fabricated by spark plasma sintering and post-sintering heat treatment
Lukianova et al. Microstructure and phase composition of cold isostatically pressed and pressureless sintered silicon nitride
Chockalingam et al. Microwave sintering of β-SiAlON–ZrO2 composites
JP2004262750A (en) Aluminum nitride-based material and component for apparatus to manufacture semiconductor
Zhou et al. Tailoring the mechanical properties of silicon carbide ceramics by modification of the intergranular phase chemistry and microstructure
JPWO2019235594A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
Shin et al. Tribological properties of Si3N4/SiC nano–nano composite ceramics
US5773733A (en) Alumina-aluminum nitride-nickel composites
KR101633035B1 (en) Yttria Based Conductive Plasma-resistant Member And Methods Thereof
Fan et al. Fabrication and properties of Si2N2O ceramics for microwave sintering furnace
Qiao et al. Sintering behavior of aluminum nitride powder prepared by self-propagating high-temperature synthesis method
Shi et al. Fine TiC dispersed Al2O3 composites fabricated via in situ reaction synthesis and conventional process
Kleebe et al. B6O: A correlation between mechanical properties and microstructure evolution upon Al2O3 addition during hot pressing
Cheng et al. Development of translucent aluminum nitride (AIN) using microwave sintering process
Zhou et al. On the synthesis and properties of bulk ternary Cr2AlC ceramics
JP4820097B2 (en) Aluminum nitride sintered body and method for producing the same
Liu et al. Highly dense β-SiC ceramics with submicron grains prepared by sintering of nanocrystalline powders
Santos et al. α-SiAlON–SiC composites obtained by gas-pressure sintering and hot-pressing
JP2008001536A (en) Aluminum nitride-boron nitride composite powder and method for producing the same
Ma et al. Preparation, properties and growth mechanism of low-cost porous Si3N4 ceramics with high levels of β-Si3N4 powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees