JP4819383B2 - 光学顕微鏡と光学的観察方法 - Google Patents

光学顕微鏡と光学的観察方法 Download PDF

Info

Publication number
JP4819383B2
JP4819383B2 JP2005086550A JP2005086550A JP4819383B2 JP 4819383 B2 JP4819383 B2 JP 4819383B2 JP 2005086550 A JP2005086550 A JP 2005086550A JP 2005086550 A JP2005086550 A JP 2005086550A JP 4819383 B2 JP4819383 B2 JP 4819383B2
Authority
JP
Japan
Prior art keywords
light
light beam
specimen
optical microscope
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005086550A
Other languages
English (en)
Other versions
JP2005309415A5 (ja
JP2005309415A (ja
Inventor
茂 小林
良治 斎藤
元 佐崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005086550A priority Critical patent/JP4819383B2/ja
Publication of JP2005309415A publication Critical patent/JP2005309415A/ja
Publication of JP2005309415A5 publication Critical patent/JP2005309415A5/ja
Application granted granted Critical
Publication of JP4819383B2 publication Critical patent/JP4819383B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Description

本発明は、透明物質の表面形状(段差)を光学的に高分解能で観察する顕微鏡(の観察方法)に関する。
従来、結晶・鉱物・生物細胞などの表面形状は、光学顕微鏡・電子顕微鏡・原子間力顕微鏡などを使用して観察されている。
特に表面形状は、微細な形状変化などを捉える必要があるため、観察方法には工夫が必要であり、観察条件などに適した観察方法が使用されている。
一般的に、電子顕微鏡は、観察分解能が高く、微細な形状を見る場合に非常に優れている。しかし電子顕微鏡は標本を真空中で観察するため、すでに形状が固定されている材料や細胞など静的な標本の観察に利用されている。
また、原子間力顕微鏡(AFM)は、自由端に探針を備えているカンチレバーを試料に近接させ、試料に対してカンチレバーを走査しながら、カンチレバーのたわみを検出することによって試料表面の形状を測定する。例えば、探針先端の原子と試料表面の原子とに働く原子間力が一定になるように探針の高さをフィードバック制御しながら探針を走査すると、探針先端は試料表面から一定の距離を保って表面の凹凸に応じて上下しながら表面をなぞる。探針先端の上下位置は試料表面の凹凸を反映しており、カンチレバーのたわみを検出することによって求められる。従って、探針の走査位置と上下位置とから試料表面の凹凸を求めることができる。なお、カンチレバーのたわみを測定する手段としては、光テコ法・光干渉計・ピエゾ抵抗などがある。中でも最も簡便な手段である光テコ法が多く用いられている。
AFMは、標本の微細な数nm程度の段差を捉えることができる。何人かの研究者はAFMを使って蛋白質結晶の微細形状を観察した例を以下の文献で報告している。
1)S.D. Durbin, W.E. Carlson, J. Crystal Growth 122 (1992) 71.
2)S.D. Durbin, W.E. Carlson, M.T, Saros, J. Phys. D 26 (1993) B128.
3)A. McPherson, A.J. MaIkin, Yu.G. Kuznetsov, Annu. Rev. Biophys. Biomol. Struct. 29 (2000) 361.
4)J.J. De Yoreo, C.A. Orme, T.A. Land, in: K. Sato, Y. Furukawa, K. Nakajima (Eds.), Advances in Crystal Growth Research Elsevier, Tokyo, 2001, p. 361.
5)A.J. Malkin, A. McPherson, in: X.Y. Lin, J.J. De Yoreo (Eds.), Nanoscale Structure and Assembly at Solid-fluid Interface, Plenum Press/Kluwer Academic Publisher, New York, Dordrecht, in press.
その他、光を使って微細な段差を測定する例の提案もある。
特開平9−42938号公報は、落射の微分干渉の光学系によって、ノマルスキープリズムを通したレーザー光を標本に照射し、その反射光をノマルスキープリズムによって干渉させて、干渉縞の位相変化量を検出器によって計測して表面形状を計測する手法を開示している。これによって、サブミクロンオーダーの計測が可能となる。
光学的観察は、外界からの衝撃によるダメージを与えない、結晶表面を乱さない、などの利点がある。非破壊でリアルタイム性を有し、その場観察できる手法でもあり、動的な変化を画像化できる。ただし、光学顕微鏡の平面分解能は光の波長によって制限を受けるためにサブミクロンまでに制限されるが、垂直分解能は観察方法を選択することによってAFMの垂直分解能と同程度にすることが可能である。
光学顕微鏡にはいくつか観察方法があるが、観察対象の標本が無色透明であると可視化に難しい点も多い。例えば、標本の光吸収が少なく、光軸方向に数十nm以下の変化しかない場合、光学像の明暗の変化が僅かしかないため、通常の透過観察方法では観察が難しい。また、反射光学系においても、標本が無色透明で反射率が低い場合、標本の段差などに依存する戻り光よりも標本や光学系の途中から反射する戻り光の方が大幅に多いため、光軸方向に数十nm以下の段差を持つ標本を観察することが難しい。
このため、無色透明な標本の微細構造を明暗の差として観察する観察法として位相差顕微鏡と微分干渉顕微鏡が広く利用されている。
位相差顕鏡法は、微細構造の情報を反映している標本からの回折光の位相を変えることによって、観察像の明暗の差が出るようにした観察法である。実際は、標本内を変化なく直接透過(または反射)する光の位相と、標本の微細構造を反映する回折光の位相が異なるので、直接透過(または反射)光の成分の位相を回折光の位相に合わせ、直接光と回折光を干渉させ、明暗の差が出るようにしている。この手法で、10nm程度の光軸方向の標本構造変化を像の明暗の差で検出できるため、無染色の培養標本の観察に広く用いられている。ただし、形状変化が大きい標本の輪郭部は、回折光だけでなく、散乱光や屈折光などが混ざるために、明るくなりすぎて鮮明に観察できない場合もある。また、位相差顕微鏡は、装置構造的に対物レンズのNAよりかなり小さいNAで照明するシステムのために解像度が低い。このため、光軸方向と垂直方向に高解像観察を行なうには、次に述べる微分干渉顕鏡法が広く利用されている。
微分干渉(シアリング干渉)顕鏡法は、数十nm〜数μmに分離した二つの光束を標本に照射し、標本通過後、この二つの光束を合成干渉させる観察法であり、位相差法と同様に透明な標本の微細構造を明暗として可視化する観察方法である。通常、顕微鏡では、偏光した光を複屈折プリズム(ノマルスキープリズム)に入射させ、照明用コンデンサーレンズと合わせて、標本をわずかに分離させた二つの光束で照明し、対物レンズと観察光路に置かれた複屈折プリズム(ノマルスキープリズム)で光束を再び一本にし、最後に偏光子で、重ね合わせた二本の光束を干渉させることによって、標本の微細構造を可視化している。この手法では、二本の光束が通る光路中の標本の位相差(例えば段差や屈折率差)を明暗として観察でき、位相差顕微鏡と同様に光軸方向の10nm程度の微小段差などを検出できる。また、位相差顕微鏡と異なり照明NAに制約がないので、光軸と垂直方向の解像力を顕微鏡対物レンズの限界まで発揮することができる。さらに、位相差法と比べて輪郭が光ることがなく、解像度の高い像を得ることができる。
このような観察系を用いて標本表面の微細な凹凸を観察した落射型の例も応用物理第60巻第9号1991に紹介されている。
特開平9−42938号公報 S.D. Durbin, W.E. Carlson, J. Crystal Growth 122 (1992) 71. S.D. Durbin, W.E. Carlson, M.T, Saros, J. Phys. D 26 (1993) B128. A. McPherson, A.J. MaIkin, Yu.G. Kuznetsov, Annu. Rev. Biophys. Biomol. Struct. 29 (2000) 361. J.J. De Yoreo, C.A. Orme, T.A. Land, in: K. Sato, Y. Furukawa, K. Nakajima (Eds.), Advances in Crystal Growth Research Elsevier, Tokyo, 2001, p. 361. A.J. Malkin, A. McPherson, in: X.Y. Lin, J.J. De Yoreo (Eds.), Nanoscale Structure and Assembly at Solid-fluid Interface, Plenum Press/Kluwer Academic Publisher, New York, Dordrecht, in press. 応用物理第60巻第9号1991
標本のその場観察を行なうためには、標本の所定の保存環境を保持した状態で観察すること、好ましくは観察中にその環境を自在に制御できることが必要である。例えば生物標本や蛋白質結晶の標本などでは、標本を所定の媒質中に保存した状態で観察したり、この媒質の条件(温度、溶液濃度など)を還流装置などによって観察中に制御したりすることが行なわれる。
電子顕微鏡は観察中に容易に条件設定を変えられないなど自由度が低い。また観察できる標本にも制限がある。電子顕微鏡は、形状が固定された材料などの観察には威力を発揮するが、培養細胞や蛋白質結晶成長過程のように水分や溶液に満たされた標本に対しては、真空を保てないため、また電子を目的の標本に直接照射できないため、そもそも観察ができない。
原子間力顕微鏡(AFM)は、表面段差に対するカンチレバー走査の追従性が悪いため走査速度を十分に上げることができない。例えば、媒質中に保存した標本を観察しようとすると、標本の保存容器(シャーレなど)上部の標本に遠い位置からカンチレバーをアプローチしなければならない。従って、走査部分が大型化するので走査速度を上げることができず、1フレームの画像取得に数分かかってしまう。つまり、その場観察は可能であっても、観察の速度が不十分である。走査速度を無理に上げると、カンチレバーに支持された探針が試料表面の段差部分に接触する危険が高まる。探針が試料に接触した場合には接触部分が破壊されてしまうこともあり、非破壊観察が難しくなる。
近年では、1秒間に10フレーム以上の画像取得が可能な光束AFMも開発されているが、このタイプのAFMでは高速性を確保するために標本の観察面(表面)にカンチレバー走査装置を近接して配置する必要があるので、媒質の中に置かれた標本の観察は困難である。標本の条件設定や変更のための制御装置を組み込むことも難しい。
特開平9−42938号公報においては、標本の全体の画像を得るためにその走査法としてステージを使っている。このため、駆動部分の質量が大きく、速い走査つまりは高速な画像取得に向かない。従って、上記の各種方法は、リアルタイム性に欠けるため、動的な標本観察に適さない。
動的な標本を非接触で観察できる可能性があるのは光学顕微鏡である。光学顕微鏡は、標本からある程度離れた距離から観察でき、AFMのような可動プローブもないので、標本の設置状態の自由度があり、その場観察に好適である。観察のリアルタイム性も満足される。しかし従来の光学顕微鏡では、観察能力が十分でない面がある。
光学顕微鏡において、透明な標本の微細構造を検出できる観察法は前述したように位相差検鏡法と微分干渉顕鏡法である。透明な標本の微細構造を観察するには、透過照明観察では、光軸方向の段差が数nm(すなわち蛋白質1分子)程度になると、位相差検鏡法や微分干渉検鏡法を利用しても、検出シグナルが弱くなって様々なノイズの中に埋もれてしまうために観察が難しい。また、落射照明観察では、位相差検鏡法や微分干渉検鏡法を用いると、光が標本を二度通るので光路変化量が二倍になるため標本構造からのシグナルは強くなるが、標本面からの反射・散乱光や照明光学系の途中(特に対物レンズ)からの反射光が透過照明観察よりも1ケタ以上強くなるため、透過照明観察と同様に、透明な標本の数nmオーダーの微細構造観察は難しい。
本発明は、この様な実状を考慮して成されたものであり、その目的は、透明な標本を設置状態の自由度を確保し非破壊でリアルタイム性をもって観察するのに好適な新しい技術を提供することである。
本発明は、ひとつには、透明な標本の観察に好適な光学顕微鏡に向けられている。本発明の光学顕微鏡は、標本の近くに配置される対物レンズと、透明な標本の厚みよりも短い可干渉距離を有する光束を発するための光源と、光源から発せられる光束から直線偏光の光束を作り出すためのポラライザーと、ポラライザーからの光束を偏光成分に従って空間的に分離している二つの光束に分割するとともに標本から戻ってくる二つの光束を合成する光束分割合成素子とポラライザーからの光束を対物レンズに方向付けるとともに対物レンズを通って標本から戻ってくる光束を対物レンズに方向付けられた光束から分離する光束分離素子と、対物レンズに方向付けられた光束を二次元的に偏向して標本に形成される光スポットを二次元的に走査するための二次元走査部と、光束分離素子によって分離された標本から戻ってくる光束のうち標本内の所望の観察面近傍からの光束だけを選択的に通過させるためのピンホールと、ピンホールを通過した光束から特定の直線偏光の光束を取り出すためのアナライザーと、アナライザーを通過した光束を検出するための検出器と、検出器によって検出された情報と二次元走査部から得られる光スポットの位置情報とに基づいて標本内の観察面の画像を形成する画像処理部とを備えている。
本発明は、ひとつには、透明な標本の観察に好適な光学的観察方法に向けられている。本発明の光学的観察方法は、透明な標本の観察に好適な光学的観察方法であり、透明な標本の厚みよりも短い可干渉距離を有する直線偏光の光束を偏光成分に従って空間的に分離している二つの光束に分割して標本に照射し、分割された二つの光束を二次元的に偏向して標本に形成される光スポットを二次元的に走査し、標本で反射された二つの光束を合成し、合成された光束を標本に照射される直線偏光の光束から分離し、合成された光束のうち標本内の所望の観察面近傍からの光束だけを選択的に取り出し、観察面近傍からの光束から特定の直線偏光の光束を検出し、検出された情報と光スポットの位置情報とに基づいて標本の観察面の画像を形成する。
本発明によれば、透明な標本を設置状態の自由度を確保し非破壊でリアルタイム性をもって観察するのに好適な新しい技術が提供される。
以下、図面を参照しながら本発明の実施形態について説明する。
第一実施形態
本実施形態は、透明な標本の観察に好適な光学顕微鏡に向けられている。図1は、本発明の第一実施形態の光学顕微鏡を概略的に示している。
図1に示されるように、本実施形態の光学顕微鏡100は、標本116を載せるためのステージ115と、標本116の近くに配置される対物レンズ107と、観察のための光束を発するための光源101と、光源101と対物レンズ107の間の光路上に配置されたポラライザー102と、ポラライザー102と対物レンズ107の間の光路上に配置された光束分割合成素子106と、ポラライザー102と光束分割合成素子106の間の光路上に配置された二次元走査部104と、二次元走査部104と光束分割合成素子106の間の光路上に配置された偏向ミラー105と、ポラライザー102と二次元走査部104の間の光路上に配置された光束分離素子103とを備えている。
本実施形態の光学顕微鏡100が倒立型である。このため、対物レンズ107は標本116の下方に配置されている。しかし光学顕微鏡100は正立型であってもよく、その場合には対物レンズ107は標本116の上方に配置される。
光源101は好ましくはレーザー光源であるとよい。レーザー光源は波長域や発振形態に特に限定はない。レーザー光源は気体レーザーであっても半導体レーザーであってもよい。例えば、気体レーザーでは、488nmの波長の光を発するArレーザーや、543nmや633nmの波長の光を発するHeNeレーザーなどがある。レーザー光意外にも、輝度が高く集光性の良い光を用いることができる。
ポラライザー102は偏光板であり、入射する光束のうち特定の偏光成分の光束だけを選択的に透過する。このため、ポラライザー102は、光源101から発せられる光束から直線偏光の光束を作り出す。
光束分割合成素子106は、ポラライザー102からの光束を偏光成分に従って二つの光束に分割する。二つの光束は空間的に分離しており、それらの偏光成分は互いに直交している。光束分割合成素子106によって分割された二つの光束は対物レンズ107を通って標本116に照射されて光スポットを形成する。さらに光束分割合成素子106は、対物レンズ107を通って標本116から戻ってくる二つの光束を合成する。光束分割合成素子106はこれに限らないが一般にノマルスキープリズムで構成される。
二次元走査部104は、標本116に形成される光スポットを二次元的に走査する。二次元走査部104は例えばガルバノミラーを利用したものであってよい。二次元走査部104はまた音響光学素子を利用したものであってもよい。図2は、ガルバノミラーを利用した二次元走査部104を概略的に示している。図2に示されるように、二次元走査部104は、例えば、X軸の周りに揺動可能な反射面を持つガルバノミラー121と、Y軸の周りに揺動可能な反射面を持つガルバノミラー122とを備えている。
ガルバノミラー121とガルバノミラー122とで順に反射された光束は標本116に照射された光スポットを形成する。標本116に形成された光スポットは、ガルバノミラー121のX軸周りの揺動に対応してX軸に沿って移動し、ガルバノミラー122のY軸周りの揺動に対応してY軸に沿って移動する。従って、ガルバノミラー121のX軸周りの揺動とガルバノミラー122のY軸周りの揺動とを適当に組み合わせることによって、標本116に形成された光スポットを例えば図2に示されるように長方形エリアの観察範囲内をラスター走査することもできる。
偏向ミラー105は、二次元走査部104を通過した光束を光束分割合成素子106に方向付けるとともに、標本116から戻ってくる光束を二次元走査部104に方向付ける。
光束分離素子103は、ポラライザー102からの光束を対物レンズ107に方向付けるとともに、対物レンズ107を通って標本116から戻ってくる光束を対物レンズ107に方向付けられた光束から分離する。光束分離素子103は、例えば、光を部分的に反射し部分的に透過するミラーで構成される。光束分離素子103は、例えば、光源101からの光束を20%反射し、標本116から戻ってくる光束を80%透過するミラーで構成される。ミラーは標本の反射率に応じで適切な透過率と反射率をもつものが選択されるとよい。
さらに光学顕微鏡100は、光束分離素子103によって分離された標本116から戻ってくる光束のうち標本116内の所望の観察面近傍からの光束だけを選択的に通過させるためのピンホール108と、ピンホール108を通過した光束から特定の直線偏光の光束を取り出すためのアナライザー109と、アナライザー109を通過した光束を検出するための検出器110と、検出器110によって検出された情報と二次元走査部104から得られる光スポットの位置情報(走査情報)とに基づいて標本116の観察面の画像を形成する画像処理部111とを備えている。
ピンホール108は、標本116内の観察面に対して光学的共役な位置に配置されている。その結果、ピンホール108は、光束分離素子103によって分離された標本116から戻ってくる光束のうち標本116内の観察面近傍からの光束が通過することは許すが、標本116内の観察面近傍から外れた面からの光束が通過することは許さない。ここで「観察面近傍」とは観察面を含む焦点深度程度の範囲を意味している。
アナライザー109は、ポラライザー102と同様に偏光板であり、入射する光束のうち特定の偏光成分の光束だけを選択的に透過する。アナライザー109はポラライザー102に対してクロスニコルの関係に配置されている。従って、アナライザー109は、ポラライザー102を透過する直線偏光に直交する直線偏光を選択的に透過する。言い換えれば、アナライザー109は、ピンホール108を通過した光束のうち、ポラライザー102を透過する直線偏光に直交する直線偏光の光束を取り出す。
検出器110は例えば光電子増倍管で構成される。しかし検出器110はこれに限定されるものではなく、光電変換機能をもってさえいればよく、フォトダイオード・CMD・CCDなどで構成されてもよい。
これまでの説明から分かるように光学顕微鏡100は走査型共焦点落射微分干渉光学系を備えている。
光源101から射出された光束はポラライザー102を通過することによって直線偏光の光束になる。ポラライザー102を通過した光束は光束分離素子103によって部分的に反射されて二次元走査部104に向かう。二次元走査部104に入射した光束は二次元走査部104によって二次元的に偏向される。二次元走査部104を通過した光束は偏向ミラー105で反射されて光束分割合成素子106に向かう。光束分割合成素子106に入射した光束は二つの直線偏光の光束に分割される。分割された二つの光束は、光軸に平行に互いに空間的に離れており、偏光成分が互いに直交している。二つの光束は対物レンズ107によって収束されて標本116に照射され、光スポットを形成する。標本116に形成された光スポットは、二次元走査部104による光束の偏向に対応して、二次元的に走査(例えばラスター走査)される。
標本116で反射された二つの光束は対物レンズ107を通って光束分割合成素子106に戻り、光束分割合成素子106によって一つの光束に結合される。光束分割合成素子106からの光束は偏向ミラー105で反射されて二次元走査部104に向かう。二次元走査部104を通過した光束は光束分離素子103を部分的に透過する。光束分離素子103を透過した光束はピンホール108に入射する。ピンホール108は、標本116から戻ってくる光束のうち、標本116内の観察面近傍からの光束だけを選択的に通過させ、そのほかの部分からの光束は遮断する。ピンホール108を通過した光束はアナライザー109に入射する。アナライザー109はポラライザー102を透過する直線偏光に直交する直線偏光を選択的に透過する。アナライザー109を透過した光束は検出器110に入射して強度を反映した電気信号に変換される。
検出器110は、入射した光束の強度を反映した電気信号を画像処理部111に出力する。また二次元走査部104は、標本116に形成された光スポットの位置を反映した電気信号、例えばガルバノミラーの揺動角を示す信号を画像処理部111に出力する。画像処理部111は、検出器110からの電気信号と二次元走査部104からの電気信号とを同期させて処理することによって標本116の観察面の画像を形成する。
つまり、本実施形態では、直線偏光の光束を偏光成分に従って空間的に分離している互い直交する二つの直線偏光の光束に分割して標本に照射し、標本に形成される二つの光束の光スポットを二次元的に走査し、標本で反射された二つの光束を合成し、合成された光束を標本に照射される直線偏光の光束から分離し、合成された光束のうち標本内の所望の観察面近傍からの光束だけを選択的に取り出し、観察面近傍からの光束から特定の直線偏光の光束を取り出して検出し、検出された情報と光スポットの位置情報(走査情報)とに基づいて標本の観察面の画像を形成する。
光学顕微鏡100では、光束分割合成素子106によって二つに分割された光束は、空間的に離れているため標本内の異なる二点に照射される。二つの光束がそれぞれ標本内を通過する部分の光路長の差に対応する位相差(リタデーション)が二つの光束の間に生じる。つまり、二つの光束が通過する部分の光学的な厚さの違いによって二つの光束の間に位相差が発生する。二つの光束の間の位相差は、ポラライザー102を透過する直線偏光に直交する直線偏光の成分を発生させる。従って、二つの光束の間の位相差はアナライザー109を通過した光束の強度として検出される。
つまり、二つの光束が通過する標本116内の部分の光学的な厚さが等しい場合には検出器110から信号が出力されないが、二つの光束が通過する標本116内の部分の光学的な厚さが異なる場合にはその光学的な厚さの違いに対応した信号が出力される。これによって、標本116内の観察対象物が光学的に透明であっても表面の段差や傾斜の情報を取得することができる。
光学顕微鏡100は光を使って非接触で標本を観察するので、AFMで懸念される接触による機械的なダメージを標本が受けることがない。標本の設置状態にも自由度がある。
光学顕微鏡100の光学系は落射型であるため、標本内の光路長は透過型に比べて二倍である。このため、観察面の位相変化を透過型に比べて二倍の感度で検出される。
また光学顕微鏡100の光学系は標本面と共役な位置に配置されたピンホールを持つ共焦点光学系であるため、観察面近傍を外れた部位からの反射光と散乱光や、光学系中の光学素子からの反射光など、観察面以外からの不所望な光はピンホール108で遮断される。これによって、従来の光学顕微鏡ではノイズに埋もれてしまっていた標本の微細構造の情報を取得できるようになる。また、点光源としてのレーザー光を対物レンズによって絞り標本に照射し、発生した光を同じ対物レンズによって結像し、ピンホールを通して焦点面からの光だけを検出する。従って、光束を二回絞って像を得るので、通常の顕微鏡観察より平面空間分解能は約1.4倍ほど優れている。また、光軸方向には従来の光学顕微鏡と比較にならないほどのサブミクロンの高い分解能を有する。
さらに光学顕微鏡100の光学系は走査型であるため、光束の照射範囲を微小領域に限ることができる。これによって、標本116内の観察対象でない領域に光束が照射されることがなくなる。その結果、標本116が受けるダメージが最小限に抑えられる。
また、光学顕微鏡100は標本116の観察面の画像をリアルタイム性をもって取得できる。ここで「リアルタイム性をもって取得できる」とは1秒間におよそ2枚以上の画像を取得できることを意味している。
結局、光学顕微鏡100は、透明な標本の微細構造を非破壊でリアルタイムに良質の画像で観察することができる。標本をAFM並みの分解能で非破壊で観察できる。透明物質の数nmの段差も観察できる。
第二実施形態
本実施形態は、透明な標本の観察に好適な別の光学顕微鏡に向けられている。より詳しくは、蛋白質結晶の表面の微細構造やその成長過程を各種条件を変えながらその場観察できる光学顕微鏡に向けられている。
図3は、本発明の第二実施形態の光学顕微鏡を概略的に示している。図3において、図1に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
図3に示されるように、本実施形態の光学顕微鏡200は、第一実施形態のステージ115に代えて、蛋白質結晶標本208を載せるためのヒートステージ207と、ヒートステージ207を制御するための温度制御部206とを備えている。ヒートステージ207と温度制御部206は、蛋白質結晶標本208の各種条件を設定したり変更したりするための条件設定変更部を構成している。ヒートステージ207と温度制御部206は、具体的には、蛋白質結晶標本208とその周辺部分の温度を制御する。
光学顕微鏡200は、倒立顕微鏡本体201と走査・検出部202とに大きく分けられる。倒立顕微鏡本体201は、対物レンズ107と光束分割合成素子106と偏向ミラー105とを収容している。走査・検出部202は、ポラライザー102と光束分離素子103と二次元走査部104とピンホール108とアナライザー109と検出器110とを収容している。
光学顕微鏡200はさらに、倒立顕微鏡本体201を支持するための除振台203を備えている。除振台203は、倒立顕微鏡本体201への外部からの振動の伝達を遮断して、画像取得中に振動によって対物レンズ107と蛋白質結晶標本208との距離が変化して観察像が乱れることを効果的に防止する
画像処理部111は、制御・記憶部204と、画像を表示するための表示部205とを含んでいる。制御・記憶部204は二次元走査部104を制御するとともに画像情報を記憶する。制御・記憶部204は温度制御部206の制御も行なう。
図4は、蛋白質結晶標本208を概略的に示している。図4に示されるように、蛋白質結晶215は、約1mmの間隔を保って配置された厚さ0.17mmの二枚のカバーガラス211と212の間に密閉されている。二枚のカバーガラス211と212の間の空間は蛋白質の溶液214で満たされていて、溶液中の分子が蛋白質結晶215の表面に結合し成長していく。溶液214の濃度を直接変えるか、温度を変えて飽和濃度を変えることによって、結晶の成長速度を変えることができる。溶液214の濃度を変化させるには、図4の標本密閉容器に不図示の還流装置を組み合わせればよい。結晶の大きさは約50〜100μm角であり、対物レンズのワーキングディスタンスの許容範囲であれば結晶の大きさに制限がなく画像化できる。
使用する対物レンズ107は、NAが大きいタイプが高解像で好適である。また、標本との間をオイルで満たすタイプは一般に屈折率が高く高解像であり、十分な反射光が得られる。また、オイルに限らず水を使用するタイプやドライ(空気)タイプであっても十分な反射光が得られる。
図5は、本実施形態の光学顕微鏡によって得られた反射像(反射微分干渉像)を示している。また図6は、比較例として、従来のレーザー走査型顕微鏡によって得られた反射像を示している。図6の観察画像は、段差部分の位置が表面上に線を付加したような画像となっており、各段差の高さ関係が認識しにくい。これに対して図5の反射微分干渉像は、結晶の1分子層の段差が鮮明に表示された画像となっており、各段差の高さ関係が識別できる。この段差は、5.6nmである。なおこの画像は、共焦点顕微鏡による三次元構造の観察に用いられるXYZ観察(標本に対する対物レンズの焦点位置を光軸方向に移動させながらXY画像を複数枚取得して三次元立体画像を構築すること)とは異なり、焦点位置を固定した状態で取得したものである。
この観察によって時間経過ごとに捉えた画像では、結晶表面の1分子層がさらに成長し、近隣の層と結合していく。さらに次の成長層が新たに発生していく。同じ手法によって蛋白質結晶の成長の様子を捉えた次の論文が発表されている。
G. Sazaki, A. Moreno, K. Nakajima, "Novel coupling effects of the magnetic and electric fields on protein crystallization", J. Crystal Growth, 262 (2004) 499-502.
このような蛋白質結晶の成長過程の画像観察において、本実施形態の光学顕微鏡200では最適な観察条件が実現できる。結晶成長速度を制御する因子は、周囲に満たした溶液濃度や周辺の温度変化であり、これらは温度制御部206によって変更できる。この成長速度に合わせて、必要な画像取得時間を設定し、時間経過毎(タイムラプス)の画像を記録していく。例えば、結晶成長の様子がコマ送りで分かるように、成長速度に合わせて無駄な画像を取得することがないように、所望の画像取得間隔(数秒間隔〜数時間間隔)を設定できる。これらの時間間隔は、温度制御部206の信号条件を、制御・記憶部204が読み取り、決定し設定される。
また、途中で成長条件を変えた際も、温度制御部206からの信号に基づいて制御・記憶部204によって画像取得時間間隔の変更ができ、標本の結晶成長速度に追従した画像を得ることができる。
従来のAFMは、数nmの微細な変化を観察できるが、標本設置環境の自由度が低く、リアルタイム性に欠けるため蛋白質結晶の様々な流れの場の中でのその場観察ができない。また、蛋白質結晶は柔らかいため破壊してしまうおそれもある。一方、通常の光学顕微鏡では、蛋白質結晶が透明であるため、画像にフレアがのってしまい十分な観察ができない。
本実施形態によれば、光学的観察によって簡便に通常の光の分解能を凌ぐオーダーで表面段差の様子を観測でき、様々な流れの場の中でのその場観察が可能となる。例えば、媒質とともに密閉容器に封入された標本の観察や、媒質の還流装置の使用も容易にできる。これによって、成長の様子や成長速度の測定、成長過程における結晶欠陥の発生過程などもその場観察可能となる。
また、本実施形態の光学顕微鏡200では、対物レンズ107などを含む倒立顕微鏡本体201を走査・検出部202などの他の構成から分離できるので、装置全体を温度制御する必要がなく、蛋白質結晶標本208とその周辺部分だけの温度制御によって観察が可能である。このため、顕微鏡上に標本と制御機材を配置して各種条件を変えながら観察できる。その場で容易に時間経過毎の結晶成長の様子を見ることができる。このため、特別な環境設備や高価な観察機材が不要となる。さらに、観察画像の画質が全体的な温度変化の影響を受けることが少ない。
また、倒立顕微鏡本体201が除振台203に載せられているので、観察画像の画質が全体的な振動の影響を受けることが少ない。
以上の手法は、特に実施形態で述べた標本に限定するのでなく、透明な標本で表面段差情報を得たい場合に広く利用できる。
第三実施形態
本実施形態は、透明な標本の観察に好適な別の光学顕微鏡に向けられている。
図7は、本発明の第三実施形態の光学顕微鏡を概略的に示している。図7において、図3に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
図7に示されるように、本実施形態の光学顕微鏡300は、第二実施形態の光学顕微鏡200における光源101がSLD(スーパールミネッセントダイオード)光源301に変更された構成をしている。それ以外の構成は、第二実施形態の光学顕微鏡200と同じである。
蛋白質結晶などの透明物質の表面反射は、注目している表面による反射のほかに、反対側の表面による反射も含んでいる。透明物質の表面の反射率は、その表面を規定している媒体の屈折率差に依存する。例えば図4において、蛋白質結晶215の下側表面215bすなわち蛋白質結晶215とカバーガラス211の境界面からの反射光のほかに、蛋白質結晶215の上側表面215aすなわち蛋白質結晶215と溶液214の境界面からの反射光も存在する。蛋白質結晶215の上側表面215aの反射率は蛋白質結晶215と溶液214の屈折率差に依存し、その反射率に応じて反射光量が決まる。
蛋白質結晶215と溶液214の屈折率の間に差がある場合、蛋白質結晶215に下方から入射したレーザー光は、下側の結晶表面215bで反射されるほかに、上側の結晶表面215aでも反射される。上側の結晶表面215aで反射された反射光は下側の結晶表面215bで反射されたレーザー光と干渉して画像上に干渉縞を形成する。
図8と図10は、第二実施形態の光源101に波長633nmの光を発するHeNeレーザーを適用した光学顕微鏡を用いて観察された蛋白質結晶の画像を示している。図8と図10の画像には、蛋白質結晶の上側表面215aからの反射光と下側表面215bからの反射光との干渉による干渉縞がはっきりと現われている。
干渉縞のピッチはレーザー光の半波長の整数倍となっており、干渉縞を作り出している物質間の距離を反映している。従って、干渉縞のピッチを計ることによって透明物質の厚さの情報を取得できる。また干渉縞は、表面全体の均一性や不均一性(歪み)などの情報の取得にも有益である。
干渉縞は、これらの情報の取得に役立つ反面、透明物質の微細な数nmオーダーの表面観察にとっては、干渉縞がその表面画像にオーバーラップして、しばしば表面情報を的確に取得する妨げになる。例えば、蛋白質結晶の表面情報は、蛋白質結晶の表面に存在する1分子スケールの微細な凹凸に起因するわずかな光の強度の違いを画像化することによって取得される。この場合、可干渉性が高いレーザーを使用したために屈折率の条件に応じて発生した干渉縞が観察画像にのってしまい、実際に観察したい微細表面情報が干渉縞に埋もれてしまうことがある。これでは、高さ情報などを得ることはできても、本来の表面情報を得ることはできない。
この不具合を避けるため、本実施形態の光学顕微鏡300は、SLD(スーパールミネッセントダイオード)光源301を備えている。SLD光源301は、可干渉性が抑えられた光である低コヒーレント光を発する光源を構成している。
SLD光源301は、半導体レーザーに構造が比較的似ているが、光導波端面の反射率を下げてレーザー発振を抑制する構造が採用されている。このため、SLD光源301は、通常の半導体レーザーに比べて広いスペクトル広がりを持つ光を出力する。広いスペクトル広がりを持つ光は単色性が悪くなるため、可干渉距離が短くなる。
SLD光源は、レーザー光源のように優れた可干渉特性を持たないが、十分な明るさの光を発する高輝度光源である。例えば、レーザー光源のひとつであるHeNeレーザーは単色性が良く、スペクトル広がり幅は非常に狭く、0.1nm以下であり、可干渉距離はおおよそ10km以上と言われている。一方、SLD光源は、一般的にスペクトル広がり幅が0.1〜10nmであり、可干渉距離は約1〜100μmオーダーである。
例えば、およその可干渉距離を見積もると、可干渉距離Lは、L=λ0×λ0/△λと近似的に表すことができる。ここで、λ0は中心波長、△λは発振スペクトルの半値全幅である。仮に、λ0=680nm、△λ=10nmのSLD光源の場合、可干渉距離は約46μmとなる。
このようにSLD光源301の可干渉距離は非常に短く、通常、蛋白質結晶215の厚さDよりも小さい。このため、蛋白質結晶215と溶液214の屈折率の間に差があり、蛋白質結晶215の上側表面215aからの反射光が存在する場合であっても、観察画像に干渉縞が現われることを避けることができる。蛋白質結晶の厚さDは、前述のとおり50〜100μm程度が普通なので、本実施形態のようなSLD光源(可干渉距離が約46μm)を用いることで干渉縞の発生が防止される。結晶の厚さDがさらに薄い場合には、可干渉距離が厚さDより短くなるような光を照明光として用いればよい。
図9と図11は、本実施形態の光学顕微鏡300を用いて観察された蛋白質結晶の画像を示している。図9は、図8と同じ蛋白質結晶の観察画像であり、図11は、図10と同じ蛋白質結晶の観察画像である。図9と図11をそれぞれ図8と図10と比較して分かるように、本実施形態の光学顕微鏡300によって得られる蛋白質結晶の画像には、干渉縞が生じておらず、表面(図4の215a)の微細な凹凸情報が捕らえられていることが分かる。このため、本実施形態の光学顕微鏡300によれば、第二実施形態の光学顕微鏡200では干渉縞に埋もれて観察できなかった蛋白質結晶の情報をも取得することできる。
本実施形態では、低コヒーレント光を発する光源がSLD光源301で構成されている例を述べたが、SLD光源301はASE(Amplified Spontaneous Emission)光源に置き換えられてもよい。ASE光源は、Er(エルビウム)やNd(ネオジウム)やYb(イットリビウム)などの希土類元素または希土類化合物をドープしたファイバーを光励起し増幅した自然放出光を用いた光源であり、SLD光源と同様に、低可干渉性の光を高出力で発する。
第四実施形態
本実施形態は、透明な標本の観察に好適な別の光学顕微鏡に向けられている。
図12は、本発明の第四実施形態の光学顕微鏡を概略的に示している。図12において、図3に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
図12に示されるように、本実施形態の光学顕微鏡400は、第二実施形態の光学顕微鏡200に、SLD光源301と光路合成素子401が付加された構成をしている。SLD光源301の詳細は第三実施形態で説明した通りである。光路合成素子401は、光源101とポラライザー102の間に配置されており、光源101から射出される光束を透過するとともに、SLD光源301から射出される光束を反射してポラライザー102に方向付ける。言い換えれば、光路合成素子401は、SLD光源301から射出される光束の光路を、光源101からポラライザー102に向かう光束の光路に合成する。それ以外の構成は、第二実施形態の光学顕微鏡200と同じである。
本実施形態の光学顕微鏡400では、蛋白質結晶標本208の観察の際には、光源101とSLD光源301のいずれか一方が選択的に駆動される。光源101である通常のレーザー光源が駆動された場合は、蛋白質結晶215の厚さ情報や表面形状の歪み情報などを取得することができる。また、SLD光源301が駆動された場合は、第三実施形態で述べたように干渉縞に邪魔されることなく蛋白質結晶215の情報(結晶表面の1分子レベルの微細な凹凸)を良好に取得することができる。
このように本実施形態の光学顕微鏡400によれば、使用する光源101とSLD光源301を切り換えながら観察することにより、蛋白質結晶215について、より多くの情報を取得することができる。
本実施形態では、光路合成素子401は、光源101から射出される光束を透過し、SLD光源301から射出される光束を反射する光学素子で構成されているが、光路合成素子401が通常のミラーで構成され、光源101とポラライザー102の間の光路上に適宜配置されることによりポラライザー102に入射する光束が切り換えられてもよい。
第五実施形態
本実施形態は、透明な標本の観察に好適な別の光学顕微鏡に向けられている。
図13は、本発明の第四実施形態の光学顕微鏡を概略的に示している。図13において、図3に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
図12に示されるように、本実施形態の光学顕微鏡500は、第二実施形態の光学顕微鏡200に、フォトニック結晶ファイバー501が付加された構成をしている。光源101は通常のレーザー光源で構成されている。フォトニック結晶ファイバー501は光源101に接続されており、光源101から発せられた光を案内して、ポラライザー102に向けて光束を射出する。さらに、フォトニック結晶ファイバー501は非線形ファイバーで構成されており、光源101から発せられた光を可干渉性が抑えられた低コヒーレント光に変換する光機能デバイスとして機能する。つまり、光源101とフォトニック結晶ファイバー501は共働して低コヒーレント光を発する光源を構成している。フォトニック結晶ファイバー501は、より詳しくは、光源101から発せられた光を非常に白色に近い広いスペクトルを持つ高輝度なスーパーコンティニウム光に変換する。それ以外の構成は、第二実施形態の光学顕微鏡200と同じである。
本実施形態の光学顕微鏡500では、光源101から発せられた光はフォトニック結晶ファイバー501によって低コヒーレント光に変換されてポラライザー102に入射する。従って、第三実施形態と同様に、干渉縞のない画像を取得できる。しかも、光源101から発せられた光がフォトニック結晶ファイバー501によってスーパーコンティニウム光に変換される。スーパーコンティニウム光はSLD光源301から発せられた光よりも可干渉距離がさらに短い。このため、第三実施形態よりも安定して干渉縞のない画像を取得できる。
第六実施形態
本実施形態は、透明な標本の観察に好適な別の光学顕微鏡に向けられている。
図14は、本発明の第四実施形態の光学顕微鏡を概略的に示している。図14において、図12に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
図14に示されるように、本実施形態の光学顕微鏡600は、第四実施形態の光学顕微鏡400におけるSLD光源301がレーザー光源601とフォトニック結晶ファイバー501とに置き換えられた構成をしている。レーザー光源601とフォトニック結晶ファイバー501は、第五実施形態の光源101とフォトニック結晶ファイバー501と同様に、低コヒーレント光を発する光源を構成している。それ以外の構成は、第四実施形態の光学顕微鏡400と同じである。
本実施形態の光学顕微鏡600では、第四実施形態と同様に、蛋白質結晶標本208の観察の際に、光源101とレーザー光源601のいずれか一方が選択的に駆動される。光源101である通常のレーザー光源が駆動された場合は、蛋白質結晶215の厚さ情報や表面の歪み情報などを取得することができる。また、レーザー光源601が駆動された場合は、レーザー光源601から発せられた光はフォトニック結晶ファイバー501によって低コヒーレント光に変換されてポラライザー102に入射するため、干渉縞のない画像を取得できる。しかも、フォトニック結晶ファイバー501によってレーザー光源601から発せられた光がスーパーコンティニウム光に変換されるため、第四実施形態よりも安定して干渉縞のない画像を取得できる。
本実施形態の光学顕微鏡600によれば、第四実施形態と同様に、蛋白質結晶215について、より多くの情報を取得することができる。しかも、干渉縞のない画像は第四実施形態よりも安定して取得できる。
第七実施形態
本実施形態は、透明な標本の観察に好適な別の光学顕微鏡に向けられている。
図15は、本発明の第四実施形態の光学顕微鏡を概略的に示している。図15において、図13に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
図15に示されるように、本実施形態の光学顕微鏡700は、第五実施形態の光学顕微鏡500に波長選択フィルター701が付加された構成をしている。本実施形態では、フォトニック結晶ファイバー501は単に光源101から発せられた光を低コヒーレント光に変換する光機能デバイスとして機能する。波長選択フィルター701は、図示しないスライダーなどの移動機構によって、フォトニック結晶ファイバー501とポラライザー102の間の光路上に適宜配置される。波長選択フィルター701は、ポラライザー102に入射する光束の波長域を制御し、これにより光束の可干渉距離が調整される。つまり、波長選択フィルター701は、光束の可干渉距離を調整する可干渉距離調整素子として機能する。それ以外の構成は、第五実施形態の光学顕微鏡500と同じである。
波長選択フィルター701は、可干渉距離Lを見積もる前述の式を用いて、所望の中心波長とスペクトルの半値全幅が所望の値となる波長透過性特性を持つものが選択して使用されるとよい。これにより、観察する蛋白質結晶215の厚さにあった可干渉距離を持つ光で観察を行なえる。さらに波長選択フィルター701は、観察の最適化のために、観察する蛋白質結晶標本208に応じて交換されてもよい。また波長選択フィルター701を交換する代わりに、ターレット切換機構により波長選択フィルター701を切り換えてもよい。
本実施形態の光学顕微鏡700では、光源101から発せられた光はフォトニック結晶ファイバー501によって低コヒーレント光に変換されてポラライザー102に入射する。これにより干渉縞のない画像を取得できる。しかも、波長選択フィルター701が光路上に配置されている場合には、光束の可干渉距離が波長選択フィルター701によって適切に調整される。このため、より安定して干渉縞のない画像を取得できる。
第八実施形態
本実施形態は、透明な標本の観察に好適な別の光学顕微鏡に向けられている。
図16は、本発明の第四実施形態の光学顕微鏡を概略的に示している。図16において、図14に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
図16に示されるように、本実施形態の光学顕微鏡800は、第六実施形態の光学顕微鏡600に波長選択フィルター701が付加された構成をしている。本実施形態では、フォトニック結晶ファイバー501は単に光源101から発せられた光を低コヒーレント光に変換する光機能デバイスとして機能する。波長選択フィルター701の詳細は第七実施形態で説明した通りである。それ以外の構成は、第六実施形態の光学顕微鏡600と同じである。
本実施形態の光学顕微鏡800では、蛋白質結晶標本208の観察の際に、光源101とレーザー光源601のいずれか一方が選択的に駆動される。光源101である通常のレーザー光源が駆動された場合は、蛋白質結晶215の厚さ情報や表面の歪み情報などを取得することができる。また、レーザー光源601が駆動された場合は、レーザー光源601から発せられた光はフォトニック結晶ファイバー501によって低コヒーレント光に変換されてポラライザー102に入射するため、干渉縞のない画像を取得できる。しかも、波長選択フィルター701が光路上に配置されている場合には、光束の可干渉距離が波長選択フィルター701によって適切に調整されるため、より安定して干渉縞のない画像を取得できる。
本実施形態の光学顕微鏡800によれば、第六実施形態と同様に、蛋白質結晶215について、より多くの情報を取得することができる。しかも、干渉縞のない画像は安定して取得できる。また、波長選択フィルター701と光源との組み合わせに制限はなく、SLD光源301やASE光源などと組み合わせてもよい。
以上の手法は、特に実施形態で述べた標本に限定するのでなく、透明な標本で表面段差情報を得たい場合に広く利用できる。
これまで、図面を参照しながら本発明の実施形態を述べたが、本発明は、これらの実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が施されてもよい。
上述した実施形態では本発明を倒立型顕微鏡に適用した例をあげたが、本発明は正立型顕微鏡に適用されてもよい。また、走査方法はラスター走査に限らず、任意の走査が適用可能である。走査速度や走査サイズなどに制限はない。
本発明の第一実施形態の光学顕微鏡を概略的に示している。 ガルバノミラーを利用した二次元走査部を概略的に示している。 本発明の第二実施形態の光学顕微鏡を概略的に示している。 図3に示された蛋白質結晶標本を概略的に示している。 本発明の第二実施形態の光学顕微鏡によって得られた反射像を示している。 従来のレーザー走査型顕微鏡によって得られた反射像を示している。 本発明の第三実施形態の光学顕微鏡を概略的に示している。 第二実施形態の光学顕微鏡を用いて観察された蛋白質結晶の画像を示している。 第三実施形態の光学顕微鏡を用いて観察された図8と同じ蛋白質結晶の画像を示している。 第二実施形態の光学顕微鏡を用いて観察された蛋白質結晶の画像を示している。 第三実施形態の光学顕微鏡を用いて観察された図10と同じ蛋白質結晶の画像を示している。 本発明の第四実施形態の光学顕微鏡を概略的に示している。 本発明の第五実施形態の光学顕微鏡を概略的に示している。 本発明の第六実施形態の光学顕微鏡を概略的に示している。 本発明の第七実施形態の光学顕微鏡を概略的に示している。 本発明の第八実施形態の光学顕微鏡を概略的に示している。
符号の説明
100…光学顕微鏡、101…光源、102…ポラライザー、103…光束分離素子、104…二次元走査部、105…偏向ミラー、106…光束分割合成素子、107…対物レンズ、108…ピンホール、109…アナライザー、110…検出器、111…画像処理部、115…ステージ、116…標本、121…ガルバノミラー、122…ガルバノミラー、200…光学顕微鏡、201…倒立顕微鏡本体、202…走査・検出部、203…除振台、204…制御・記憶部、205…表示部、206…温度制御部、207…ヒートステージ、208…蛋白質結晶標本、211…カバーガラス、212…カバーガラス、214…溶液、215…蛋白質結晶、215a…上側表面、215b…下側表面、300…光学顕微鏡、301…SLD光源、400…光学顕微鏡、401…光路合成素子、500…光学顕微鏡、501…フォトニック結晶ファイバー、600…光学顕微鏡、601…レーザー光源、700…光学顕微鏡、701…波長選択フィルター、800…光学顕微鏡。

Claims (15)

  1. 透明な標本の観察に好適な光学顕微鏡であり、
    標本の近くに配置される対物レンズと、
    透明な標本の厚みよりも短い可干渉距離を有する光束を発するための光源と、
    光源から発せられる光束から直線偏光の光束を作り出すためのポラライザーと、
    ポラライザーからの光束を偏光成分に従って空間的に分離している二つの光束に分割するとともに標本から戻ってくる二つの光束を合成する光束分割合成素子と
    ポラライザーからの光束を対物レンズに方向付けるとともに対物レンズを通って標本から戻ってくる光束を対物レンズに方向付けられた光束から分離する光束分離素子と、
    対物レンズに方向付けられた光束を二次元的に偏向して標本に形成される光スポットを二次元的に走査するための二次元走査部と、
    光束分離素子によって分離された標本から戻ってくる光束のうち標本内の所望の観察面近傍からの光束だけを選択的に通過させるためのピンホールと、
    ピンホールを通過した光束から特定の直線偏光の光束を取り出すためのアナライザーと、
    アナライザーを通過した光束を検出するための検出器と、
    検出器によって検出された情報と二次元走査部から得られる光スポットの位置情報とに基づいて標本内の観察面の画像を形成する画像処理部とを備えている光学顕微鏡。
  2. 請求項1において、光源がレーザー光源である光学顕微鏡。
  3. 請求項1において、標本の各種条件を設定したり変更したりするための条件設定変更部をさらに備えている光学顕微鏡。
  4. 請求項3において、条件設定変更部は標本とその周辺部分の温度を制御する光学顕微鏡。
  5. 請求項1〜請求項4のいずれかひとつにおいて、振動を除去するための除振台をさらに備えている光学顕微鏡。
  6. 請求項1において、光源が低コヒーレント光を発する光源である光学顕微鏡。
  7. 請求項6において、低コヒーレント光を発する光源がSLD光源である光学顕微鏡。
  8. 請求項6において、低コヒーレント光を発する光源がレーザー光源とフォトニック結晶ファイバーとから構成されている光学顕微鏡。
  9. 請求項6において、標本に照射する光束の可干渉距離を調整する可干渉距離調整手段をさらに備えている光学顕微鏡。
  10. 請求項において、可干渉距離調整手段が波長選択フィルターで構成されている光学顕微鏡。
  11. 請求項2において、低コヒーレント光を発するための第二の光源と、第二の光源から射出される光束の光路をレーザー光源からポラライザーに向かう光束の光路に合成するための光路合成素子とをさらに備えている光学顕微鏡。
  12. 透明な標本の観察に好適な光学的観察方法であり、
    透明な標本の厚みよりも短い可干渉距離を有する直線偏光の光束を偏光成分に従って空間的に分離している二つの光束に分割して標本に照射し、
    分割された二つの光束を二次元的に偏向して標本に形成される光スポットを二次元的に走査し、
    標本で反射された二つの光束を合成し、
    合成された光束を標本に照射される直線偏光の光束から分離し、
    合成された光束のうち標本内の所望の観察面近傍からの光束だけを選択的に取り出し、
    観察面近傍からの光束から特定の直線偏光の光束を検出し、
    検出された情報と光スポットの位置情報とに基づいて標本の観察面の画像を形成する光学的観察方法。
  13. 請求項12において、標本に照射する光束が低コヒーレント光である光学的観察方法。
  14. 透明な標本の観察に好適な光学顕微鏡であり、
    透明な標本の厚みよりも短い可干渉距離を有する直線偏光の光束を偏光成分に従って空間的に分離している二つの光束に分割して標本にスポット光として照射する手段と、
    分割された二つの光束を二次元的に偏向して標本に形成される光スポットを二次元的に走査する手段と、
    標本で反射された二つの光束を合成する手段と、
    合成された光束を標本に照射される直線偏光の光束から分離する手段と、
    合成された光束のうち標本内の所望の観察面近傍からの光束だけを選択的に通過させるピンホールと、
    取り出された観察面近傍からの光束から特定の直線偏光の光束を検出する手段とを備え、
    検出された情報と光スポットの位置情報とに基づいて標本の観察面の画像を形成する光学顕微鏡。
  15. 請求項14において、直線偏光の光束を標本に照射する手段は、標本の近くに配置される対物レンズと、観察のための光束を発するための光源と、光源から発せられる光束から直線偏光の光束を作り出すためのポラライザーと、ポラライザーからの光束を偏光成分に従って空間的に分離している二つの光束に分割するとともに標本から戻ってくる二つの光束を合成する光束分割合成素子とを備えている光学顕微鏡。
JP2005086550A 2004-03-26 2005-03-24 光学顕微鏡と光学的観察方法 Active JP4819383B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086550A JP4819383B2 (ja) 2004-03-26 2005-03-24 光学顕微鏡と光学的観察方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004093340 2004-03-26
JP2004093340 2004-03-26
JP2005086550A JP4819383B2 (ja) 2004-03-26 2005-03-24 光学顕微鏡と光学的観察方法

Publications (3)

Publication Number Publication Date
JP2005309415A JP2005309415A (ja) 2005-11-04
JP2005309415A5 JP2005309415A5 (ja) 2008-04-24
JP4819383B2 true JP4819383B2 (ja) 2011-11-24

Family

ID=35438212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086550A Active JP4819383B2 (ja) 2004-03-26 2005-03-24 光学顕微鏡と光学的観察方法

Country Status (1)

Country Link
JP (1) JP4819383B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095464A (zh) * 2019-04-12 2019-08-06 武汉科技大学 一种复杂组成的烧结矿矿相精细化定量分析方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992064B2 (ja) 2006-01-20 2007-10-17 住友電気工業株式会社 光学分析装置
JP5047669B2 (ja) * 2007-04-04 2012-10-10 オリンパス株式会社 走査型共焦点顕微鏡装置
EP2058643B1 (en) 2007-11-07 2018-12-26 Mitutoyo Corporation Noncontact measurement probe
JP5638793B2 (ja) * 2009-12-03 2014-12-10 オリンパス株式会社 顕微鏡装置
US9575090B2 (en) * 2013-12-07 2017-02-21 Bruker Nano, Inc. Force measurement with real-time baseline determination
CN111826422B (zh) * 2019-04-22 2024-03-26 康岭有限公司 检测荧光偏振的光学***以及偏振度测量单元
KR102252427B1 (ko) * 2019-12-26 2021-05-14 조선대학교산학협력단 3d 형상 측정을 위한 편광 패턴 조사 현미경

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260211A (ja) * 1985-05-15 1986-11-18 Hitachi Ltd 自動異物検出方法及びその装置
JPH0391709A (ja) * 1989-09-05 1991-04-17 Nikon Corp 走査型微分干渉顕微鏡
JPH0720382A (ja) * 1993-06-30 1995-01-24 Nikon Corp レ−ザ走査型顕微鏡
JP4673955B2 (ja) * 2000-03-24 2011-04-20 オリンパス株式会社 光学装置
DE20122782U1 (de) * 2000-06-17 2007-11-15 Leica Microsystems Cms Gmbh Beleuchtungseinrichtung
JP2002350117A (ja) * 2001-05-29 2002-12-04 Olympus Optical Co Ltd 形状計測装置及び形状計測方法
JP3581840B2 (ja) * 2001-07-13 2004-10-27 有限会社トッケン 顕微鏡観察用培養装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095464A (zh) * 2019-04-12 2019-08-06 武汉科技大学 一种复杂组成的烧结矿矿相精细化定量分析方法
CN110095464B (zh) * 2019-04-12 2022-01-28 武汉科技大学 一种复杂组成的烧结矿矿相精细化定量分析方法

Also Published As

Publication number Publication date
JP2005309415A (ja) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4819383B2 (ja) 光学顕微鏡と光学的観察方法
US6958470B2 (en) Scanning microscope with a detector and light source for exciting an energy state in a specimen and module for a scanning microscope
US6496267B1 (en) Scanning microscope
US7355710B2 (en) Optical system and method for exciting and measuring fluorescence on or in samples treated with fluorescent pigments
KR100743591B1 (ko) 사이드 로브가 제거된 공초점 자가 간섭 현미경
JP5712342B2 (ja) 光学顕微鏡、及びスペクトル測定方法
US8705172B2 (en) Microscopy method and microscope with enhanced resolution
US5874726A (en) Probe-type near-field confocal having feedback for adjusting probe distance
JP5547868B2 (ja) 顕微鏡系およびこれを用いた方法
JP5068121B2 (ja) 顕微鏡および三次元情報取得方法
JPH11503230A (ja) 走査型プローブ及び走査型エネルギーが組み合わされた顕微鏡
US6831780B2 (en) Microscope assemblage
US5859364A (en) Scanning probe microscope
JP6241858B2 (ja) 共焦点顕微鏡
AU755153B2 (en) Imaging system using multi-mode laser illumination to enhance image quality
JP6358577B2 (ja) 走査型光学顕微鏡
Boyde Confocal optical microscopy
JP2009540346A (ja) 干渉共焦点顕微鏡
US6975394B2 (en) Method and apparatus for measuring the lifetime of an excited state in a specimen
JPH05508031A (ja) 透過光および反射光の画像化のための装置および方法
US6744572B1 (en) System and method for imaging an object
JP3371135B2 (ja) 蛍光走査型プローブ顕微鏡
JP3523754B2 (ja) 走査型プローブ顕微鏡
JP5190603B2 (ja) 光学顕微鏡、及び観察方法
US9063335B2 (en) Apparatus and method for examining a specimen by means of probe microscopy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4819383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250