JP4817938B2 - Valve operation confirmation device for thermoforming device, thermoforming device and valve operation confirmation method thereof - Google Patents

Valve operation confirmation device for thermoforming device, thermoforming device and valve operation confirmation method thereof Download PDF

Info

Publication number
JP4817938B2
JP4817938B2 JP2006102297A JP2006102297A JP4817938B2 JP 4817938 B2 JP4817938 B2 JP 4817938B2 JP 2006102297 A JP2006102297 A JP 2006102297A JP 2006102297 A JP2006102297 A JP 2006102297A JP 4817938 B2 JP4817938 B2 JP 4817938B2
Authority
JP
Japan
Prior art keywords
valve
air
open
opening
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006102297A
Other languages
Japanese (ja)
Other versions
JP2007276169A (en
Inventor
洋充 田中
直子 井桁
俊広 高井
和司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asano Laboratories Co Ltd
Original Assignee
Asano Laboratories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asano Laboratories Co Ltd filed Critical Asano Laboratories Co Ltd
Priority to JP2006102297A priority Critical patent/JP4817938B2/en
Publication of JP2007276169A publication Critical patent/JP2007276169A/en
Application granted granted Critical
Publication of JP4817938B2 publication Critical patent/JP4817938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

本発明は、バルブを開いて開閉用通気経路にエアの差圧を加えて被成形材を熱成形する熱成形装置並びにそのバルブ動作確認装置およびそのバルブ動作確認方法に関する。   The present invention relates to a thermoforming apparatus for thermoforming a material to be molded by opening a valve and applying a differential pressure of air to an opening / closing ventilation path, a valve operation confirmation apparatus thereof, and a valve operation confirmation method thereof.

特許文献1には、樹脂シート搬入機構により樹脂シートを搬入するときには加熱板と型とを離間させるとともに、搬入された樹脂シートに向けて加熱板と型とを近接させ、同樹脂シートを加熱軟化させつつ、この加熱軟化した樹脂シートを型の型面形状に合わせて変形させることにより成形品を形成する熱成形装置が記載されている。
加熱板を用いた従来の熱成形装置では、加熱板に複数の通気孔が形成され、これらの通気孔にエアを流通させながら樹脂シートを差圧成形している。
特開2005−297399号公報
In Patent Document 1, when the resin sheet is carried in by the resin sheet carrying-in mechanism, the heating plate and the mold are separated from each other, and the heating plate and the mold are brought close to the carried resin sheet to soften the resin sheet by heating. In addition, there is described a thermoforming apparatus that forms a molded product by deforming the heat-softened resin sheet according to the shape of the mold surface.
In a conventional thermoforming apparatus using a heating plate, a plurality of ventilation holes are formed in the heating plate, and a resin sheet is differential pressure-molded while air is circulated through these ventilation holes.
JP 2005-297399 A

加熱板の通気孔に接続された通気経路を開閉する電磁弁等のバルブを設けるとき、しばらく成形を行わなかったり雌型が小さかったりする等の理由により成形に使用しないバルブが生じることがあるが、このようなバルブでは閉じた状態が長く続き、固着してしまうことが想定される。そこで、成形に使用する段階でバルブを確実に開動作させたいという希望があった。   When providing a valve such as an electromagnetic valve that opens and closes the ventilation path connected to the ventilation hole of the heating plate, a valve that is not used for molding may occur due to reasons such as not performing molding for a while or the female mold being small. In such a valve, it is assumed that the closed state lasts for a long time and sticks. Therefore, there has been a desire to reliably open the valve at the stage of use for molding.

本発明は、通気経路を開閉可能なバルブの開閉動作を容易に確認させ、確実にバルブを開いて被成形材を熱成形することを目的とする。   An object of the present invention is to make it easy to confirm the opening / closing operation of a valve capable of opening and closing a ventilation path, and to surely open the valve to thermoform a material to be molded.

上記目的を達成するため、本発明は、エアを流通させる開閉用通気経路と、該開閉用通気経路を開閉可能なバルブと、の組み合わせが複数設けられるとともに、大気圧とは異なるエアの差圧を前記開閉用通気経路に加える差圧供給機構を有して前記バルブを開いて前記開閉用通気経路にエアの差圧を加えて被成形材を熱成形する成形機構を備える熱成形装置のバルブ動作確認装置であって、前記バルブの全てを閉じた状態で前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加え、該開閉用通気経路にエアが流れるか否かを検出し、エアが流れると検出したときにその旨を通知し、エアが流れないと検出したとき、前記複数のバルブの中からエアの流れを検出する対象のバルブを順次設定し、該対象のバルブについて前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加えて開く制御を行ったときに該対象のバルブと組み合わされた開閉用通気経路にエアが流れるか否かを検出し、エアが流れないと検出したときに前記対象のバルブが開閉しない旨を通知するバルブ動作判定手段を備えることを特徴とする。
また、本発明の熱成形装置は、上記開閉用通気経路と、上記バルブと、上記成形機構と、上記バルブ動作判定手段とを備えることを特徴とする。
さらに、本発明は、熱成形装置のバルブ動作確認方法であって、前記バルブの全てを閉じた状態で前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加え、該開閉用通気経路にエアが流れるか否かを検出し、エアが流れると検出したときにその旨を通知し、エアが流れないと検出したとき、前記複数のバルブの中からエアの流れを検出する対象のバルブを順次設定し、該対象のバルブについて前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加えて開く制御を行ったときに該対象のバルブと組み合わされた開閉用通気経路にエアが流れるか否かを検出し、エアが流れないと検出したときに前記対象のバルブが開閉しない旨を通知することを特徴とする。
In order to achieve the above object, the present invention is provided with a plurality of combinations of an opening / closing ventilation path for circulating air and a valve capable of opening / closing the opening / closing ventilation path, and a differential pressure of air different from atmospheric pressure. the thermoforming apparatus comprising a molding machine configured for an object to be profiled by adding a differential pressure of air in the opening and closing vent passage opens the valve with a differential pressure supply mechanism applied to the opening and closing vent passage thermoforming In the valve operation confirmation device, when all the valves are closed, the differential pressure supply mechanism applies a differential pressure of air to the open / close vent path to determine whether air flows through the open / close vent path. When the air flow is detected, the fact is notified. When it is detected that the air does not flow, the target valve for detecting the air flow is sequentially set from the plurality of valves. About the differential pressure supply mechanism for the valve When air pressure is applied to the open / close vent path to open it, it is detected whether air flows through the open / close vent path combined with the target valve. And a valve operation determining means for notifying that the target valve is not opened or closed .
Moreover, the thermoforming apparatus of the present invention is characterized by comprising the opening / closing vent path, the valve, the forming mechanism, and the valve operation determining means.
Furthermore, the present invention is a valve operation confirmation method for a thermoforming device , wherein the differential pressure supply mechanism applies a differential pressure of air to the open / close vent passage with all the valves closed, and the open / close An object that detects whether or not air flows through the ventilation path, notifies when the air flows, and detects air flow from the plurality of valves when it detects that air does not flow The valve for opening and closing is combined with the target valve when the target valve is controlled to open by applying a differential pressure of air to the opening and closing ventilation path with the differential pressure supply mechanism. Whether or not air flows through the path is detected, and when it is detected that air does not flow , a notification that the target valve does not open or close is notified.

すなわち、バルブの全てを閉じた状態で差圧供給機構にて開閉用通気経路にエアの差圧が加えられると、該開閉用通気経路にエアが流れるか否かが検出され、エアが流れると検出されたときにその旨が通知される。エアが流れないと検出されたとき、複数のバルブの中からエアの流れを検出する対象のバルブが順次設定され、該対象のバルブについて差圧供給機構にて開閉用通気経路にエアの差圧を加えて開く制御が行われたときに該対象のバルブと組み合わされた開閉用通気経路にエアが流れるか否かが検出され、エアが流れないと検出されたときに対象のバルブが開閉しない旨が通知される。これにより、熱成形装置の利用者は、開閉用通気経路の開閉用のバルブが開閉動作するか否かを容易に知ることができるので、バルブが開閉動作しないときに開閉動作するバルブに交換する等の対応をとることができる。従って、バルブが開閉しない状態で被成形材の熱成形を開始するような不都合が回避され、確実にバルブを開いて被成形材を熱成形することが可能になる。 That is, when air differential pressure is applied to the open / close vent path by the differential pressure supply mechanism with all the valves closed, it is detected whether air flows through the open / close vent path. When it is detected, this is notified. When it is detected that the air does not flow, a target valve for detecting the air flow is sequentially set from a plurality of valves, and the differential pressure of the target valve is set in the open / close ventilation path by the differential pressure supply mechanism. When the opening control is performed by adding air, it is detected whether or not air flows through the open / close ventilation path combined with the target valve, and the target valve does not open and close when it is detected that no air flows. fact is notified. Thereby, the user of the thermoforming apparatus can easily know whether or not the valve for opening and closing the opening and closing ventilation path opens and closes, so replace the valve with the valve that opens and closes when the valve does not open and close. Etc. can be taken. Accordingly, it is possible to avoid the inconvenience of starting the thermoforming of the molding material in a state where the valve is not opened and closed, and the molding material can be thermoformed by reliably opening the valve.

本発明を適用可能な被成形材は、熱成形可能な材質であればよく、樹脂シートや熱可塑性シート等のシート(フィルムを含む)、さらに厚みのある素材、等を用いることができる。上記熱成形には、加熱された被成形材を熱成形すること、熱板等の接触や輻射加熱や熱風等で被成形材を加熱して熱成形すること、加熱された被成形材を再加熱(保温)して熱成形すること、等が含まれ、差圧成形等を用いることができる。
上記バルブには、通電されると開となる一方で通電されていないときにはばねの力により閉となる電磁弁、通電されると閉となる一方で通電されていないときにはばねの力により開となる電磁弁、シリンダバルブ、等を用いることができる。
上記差圧供給機構が加えるエアの差圧は、大気圧よりも大きい圧空でも、真空圧のように大気圧よりも小さい空気圧でもよい。上記差圧供給機構は、圧空を供給する機構、真空圧を供給する機構、圧空と真空圧とを切り替えながら供給する機構、複数段階の空気圧を切り替えながら供給する機構、等が考えられる。
上記バルブが開閉するか否かの通知は、画面表示、印字出力、音声出力、等が考えられる。
上記開閉用通気経路にエアが流れるか否かの検出は、前記差圧供給機構と前記バルブとの間の前記開閉用通気経路内における空気圧の状態を検出する圧力検出手段による空気圧の状態の検出、開閉用通気経路内におけるエアの流量の状態を検出する流量検出手段によるエア流量の状態の検出、等が考えられる。空気圧の状態の検出には、開閉用通気経路内における空気圧と設定空気圧との大小の検出、空気圧自体の検出、等が考えられる。エア流量の状態の検出には、開閉用通気経路内におけるエア流量と設定流量との大小の検出、エア流量自体の検出、等が考えられる。
The material to which the present invention can be applied may be any material that can be thermoformed, such as a sheet (including a film) such as a resin sheet or a thermoplastic sheet, and a thicker material. In the above-described thermoforming, the heated molding material is thermoformed, the molding material is heated by contact with a hot plate, radiation heating, hot air, etc., and the heated molding material is re-formed. It includes heating (heat retention) and thermoforming, and differential pressure molding or the like can be used.
When the valve is energized, the valve is opened, but when not energized, the valve is closed by a spring force. When the valve is energized, the valve is closed, but when not energized, the valve is opened by a spring force. An electromagnetic valve, a cylinder valve, or the like can be used.
The differential pressure of air applied by the differential pressure supply mechanism may be a pressure air larger than the atmospheric pressure or an air pressure smaller than the atmospheric pressure such as a vacuum pressure. Examples of the differential pressure supply mechanism include a mechanism for supplying compressed air, a mechanism for supplying vacuum pressure, a mechanism for supplying pressure air and vacuum pressure while switching, and a mechanism for supplying air pressure while switching a plurality of stages.
Notification of whether or not the valve opens or closes may be screen display, print output, audio output, or the like.
Whether the air flows in the opening / closing ventilation path is detected by detecting the state of air pressure by a pressure detecting means for detecting the state of air pressure in the opening / closing ventilation path between the differential pressure supply mechanism and the valve. It is conceivable to detect the state of the air flow rate by a flow rate detecting means for detecting the state of the air flow rate in the open / close ventilation path. For the detection of the air pressure state, detection of the magnitude of the air pressure and the set air pressure in the open / close ventilation path, detection of the air pressure itself, and the like can be considered. As the detection of the air flow rate, detection of the magnitude of the air flow rate and the set flow rate in the open / close ventilation path, detection of the air flow rate itself, and the like can be considered.

また、差圧供給機構からエアの差圧を加えられる各開閉用通気経路に組み合わされたバルブの開閉動作がバルブ毎に検出されて通知されるので、バルブ毎にバルブが開閉するか否かを知ることができ、開閉動作しないバルブを開閉動作するバルブに交換することができる。 Further, since the opening and closing operation of the valve combined from the difference pressure supply mechanism to the open vent path applied differential pressure of the air is notified is detected for each valve, whether the valve in each valve is opened and closed It is possible to know and replace a valve that does not open and close with a valve that opens and closes.

請求項1、請求項5請求項7に係る発明によれば、エアの漏れが生じているか、差圧供給機構が機能していないか、等の不具合があるかどうかを容易に確認することができ、不具合箇所がある状態で被成形材の熱成形を開始するような不都合を回避することができて、確実にバルブを開いて被成形材を熱成形することが可能になる According to the first, fifth , and seventh aspects of the present invention, it is easy to check whether there is a problem such as air leakage or whether the differential pressure supply mechanism is not functioning. It is possible to avoid the inconvenience of starting the thermoforming of the molding material in a state where there is a defect, and to reliably thermoform the molding material by opening the valve .

請求項2請求項3に係る発明では、簡易な構成で開閉用通気経路を開閉するバルブが開閉動作するか否かを知ることが可能になる。 In the inventions according to claims 2 and 3 , it is possible to know whether or not the valve for opening and closing the opening and closing ventilation path is opened and closed with a simple configuration.

請求項4に係る発明では、開閉用通気経路を開閉可能なバルブについて、バルブの固着をある程度解消することができ、バルブの交換をある程度不要にさせることが可能になる。 In the invention according to claim 4 , the valve that can open and close the open / close vent path can be eliminated to some extent, and the exchange of the valve can be made unnecessary to some extent.

請求項6に係る発明では、熱成形に使用する通気孔を変更するために各通気経路を変更する作業が少なくて済み、通気経路を変更する作業を短時間で行うことが可能になる。また、自動的にシートが供給されて差圧成形されるので、利便性を向上させることができる。 In the invention which concerns on Claim 6 , the work which changes each ventilation path in order to change the ventilation hole used for thermoforming can be reduced, and it becomes possible to perform the operation | work which changes a ventilation path in a short time. Further, since the sheet is automatically supplied and differential pressure molding is performed, convenience can be improved.

以下、下記の順序に従って本発明の実施の形態について説明する。
(1)熱成形装置およびそのバルブ動作確認装置、方法の説明:
(2)熱成形装置およびそのバルブ動作確認装置、方法の動作および作用:
(3)変形例:
Hereinafter, embodiments of the present invention will be described in the following order.
(1) Description of thermoforming device and its valve operation confirmation device and method:
(2) Operation and action of thermoforming apparatus and its valve operation confirmation apparatus and method:
(3) Modification:

(1)熱成形装置およびそのバルブ動作確認装置、方法の説明:
図1は熱成形装置100の外観図、図2は熱成形装置の正面図、図3は成形用の型40が所定の離間位置L13にあるときの熱成形装置の右側面図、図4は型40が所定の近接位置L14にあるときの熱成形装置の右側面図、図5は成形機構20の要部を示す平面図、図6は固定部材51の下から成形機構20の要部を示す平面図、図7は型の下から型等を示す底面図、図8は型を組み立てる様子を示す分解斜視図、図9は型の下から熱成形装置の要部を示す平面図、図10は熱板60を支持する構造とエア結線を示す斜視図、図11は図10のA1の位置を断面視した垂直断面図、図12は熱板の上面図、図13と図14は台座65を示す図、図15は間座70,72,74の上面図、図16は間座とヒータ79を固定した台座の底面図、図17は下テーブル75をエア結線とともに示す上面図、図18は熱成形装置に設けられたコンピュータシステム95のブロック図、図19は熱板の表面に対応させた画面SC1を示す図、図20と図21はシステム95の処理を示す図、図22は成形機構の動作を示す図、図23は本熱成形装置の動作を示す図、図24はバルブ動作判定結果の表示例を示す図である。
なお、図2において、左から右へ向かう方向が所定の搬送方向D1であり、左側がシートS1の上流側、右側がシートS1の下流側である。図7、図9では、搬送されるシートS1の位置を破線で示している。図12では、通気孔61の区分SE1,2と非区分SE3とを二点鎖線で示している。図14では、内部通気経路67,69を破線で示している。図15では、台座65と下テーブル75の位置を二点鎖線で示している。図17では、間座70,72,74の位置を二点鎖線で示すとともに、テーブル内部通気経路77を破線で示している。
(1) Description of thermoforming device and its valve operation confirmation device and method:
1 is an external view of the thermoforming apparatus 100, FIG. 2 is a front view of the thermoforming apparatus, FIG. 3 is a right side view of the thermoforming apparatus when the molding die 40 is at a predetermined separation position L13, and FIG. 5 is a right side view of the thermoforming apparatus when the mold 40 is at a predetermined proximity position L14, FIG. 5 is a plan view showing the main part of the forming mechanism 20, and FIG. 6 shows the main part of the forming mechanism 20 from below the fixing member 51. FIG. 7 is a bottom view showing the mold and the like from below the mold, FIG. 8 is an exploded perspective view showing how the mold is assembled, and FIG. 9 is a plan view showing the main part of the thermoforming apparatus from below the mold. 10 is a perspective view showing the structure and air connection for supporting the hot plate 60, FIG. 11 is a vertical cross-sectional view of the position of A1 in FIG. 10, and FIG. 12 is a top view of the hot plate, FIG. 13 and FIG. FIG. 15 is a top view of the spacers 70, 72, 74, FIG. 16 is a bottom view of the pedestal to which the spacer and the heater 79 are fixed, 17 is a top view showing the lower table 75 together with air connection, FIG. 18 is a block diagram of a computer system 95 provided in the thermoforming apparatus, FIG. 19 is a view showing a screen SC1 corresponding to the surface of the hot plate, FIG. 21 is a diagram showing processing of the system 95, FIG. 22 is a diagram showing the operation of the molding mechanism, FIG. 23 is a diagram showing the operation of the thermoforming apparatus, and FIG. 24 is a diagram showing a display example of the valve operation determination result. .
In FIG. 2, the direction from left to right is the predetermined conveyance direction D1, the left side is the upstream side of the sheet S1, and the right side is the downstream side of the sheet S1. 7 and 9, the position of the conveyed sheet S1 is indicated by a broken line. In FIG. 12, the sections SE1 and SE3 and the non-section SE3 of the vent hole 61 are indicated by two-dot chain lines. In FIG. 14, the internal ventilation paths 67 and 69 are indicated by broken lines. In FIG. 15, the positions of the pedestal 65 and the lower table 75 are indicated by two-dot chain lines. In FIG. 17, the positions of the spacers 70, 72, and 74 are indicated by a two-dot chain line, and the table internal ventilation path 77 is indicated by a broken line.

本発明の熱成形装置100の基本部分は、成形機構20、開閉用通気経路66,67,71,77,80(通気経路B1)、電磁弁(バルブ)85、バルブ動作判定手段90、コンピュータシステム95(バルブ動作判定手段の一部、成形機構20の一部)、からなる。本装置100は、さらに、加熱板(熱板)60を備える。熱板60は、通気孔(第一の通気孔)61を有する。本熱板60には複数の通気孔61が形成され、これらの通気孔61は、便宜上、複数の区分SE1,SE2に区分される。複数の通気孔から区分される各区分に存在する通気孔は、一つでもよいし、二以上でもよい。該通気孔は、エアを噴出するものでもよいし、エアを吸引するものでもよいし、エアの吸引と噴出とを行うものでもよい。本実施形態の各通気孔61は、熱板60の表面60aから裏面60bへ貫通した貫通穴とされ、熱板の表面60a上で互いに異なるx方向とy方向とへそれぞれ配列されている。なお、x方向とy方向とは、互いに直交していると好適である。また、本実施形態ではシートの搬送方向D1をx方向、引出方向D2,D3をy方向としているが、これらの方向D1〜D3とは異なる方向をx方向やy方向としてもよい。
開閉用通気経路B1は、通気孔61に接続され、エアを流通させる。本実施形態では、前記開閉用通気経路と個別バルブ85との組み合わせが区分SE1,SE2と同数設けられ、該各開閉用通気経路は各区分SE1,SE2の通気孔61にそれぞれ接続されている。
電磁弁とされたバルブ85は、各開閉用通気経路B1を開閉可能とされている。本バルブ85は該各開閉用通気経路と同数設けられ、各バルブ85は該各開閉用通気経路をそれぞれ開閉することが可能とされている。本バルブ85は、通電されると開となる一方で通電されていないときにはばねの力により閉となる非通電時閉のばね付き電磁弁とされている。
成形機構20は、大気圧とは異なるエアの差圧を開閉用通気経路B1に加える差圧供給機構25を有し、バルブ85を開いて該開閉用通気経路にエアの差圧を加えてシート(被成形材)S1を熱成形する。本差圧供給機構は、前記開閉用通気経路に真空圧または圧空を加える機構とされ、複数とされた前記開閉用通気経路に同じエアの差圧を加える。
バルブ動作判定手段90は、差圧供給機構25にて開閉用通気経路B1にエアの差圧を加え、バルブ85を開く制御を行ったときに前記開閉用通気経路にエアが流れるか否かを検出し、検出した結果に基づいてバルブ85が開閉するか否かの少なくとも一方を通知する。本バルブ動作判定手段は、圧力スイッチ(圧力検出手段)91と非区分用バルブ92とを備えている。
The basic parts of the thermoforming apparatus 100 of the present invention are the forming mechanism 20, the open / close vent paths 66, 67, 71, 77, 80 (vent path B1), the electromagnetic valve (valve) 85, the valve operation determining means 90, and the computer system. 95 (part of the valve operation determination means, part of the molding mechanism 20). The apparatus 100 further includes a heating plate (hot plate) 60. The hot plate 60 has a vent hole (first vent hole) 61. A plurality of ventilation holes 61 are formed in the hot plate 60, and these ventilation holes 61 are divided into a plurality of sections SE1 and SE2 for convenience. There may be one or more than two vent holes in each section divided from the plurality of vent holes. The vent may be one that ejects air, one that sucks air, or one that sucks and blows air. Each vent hole 61 of the present embodiment is a through-hole penetrating from the front surface 60a to the back surface 60b of the hot plate 60, and is arranged in different x and y directions on the hot plate surface 60a. Note that the x direction and the y direction are preferably orthogonal to each other. In this embodiment, the sheet conveyance direction D1 is the x direction and the drawing directions D2 and D3 are the y direction. However, a direction different from these directions D1 to D3 may be the x direction and the y direction.
The opening / closing ventilation path B1 is connected to the ventilation hole 61 and allows air to flow therethrough. In the present embodiment, the same number of combinations of the opening / closing ventilation paths and the individual valves 85 are provided for the sections SE1, SE2, and the opening / closing ventilation paths are connected to the vent holes 61 of the sections SE1, SE2, respectively.
The valve 85, which is an electromagnetic valve, can open and close each opening / closing ventilation path B1. The number of the valves 85 is the same as the number of the open / close vent paths, and the valves 85 can open and close the open / close vent paths. The valve 85 is a solenoid valve with a spring which is closed when not energized and is opened by the force of the spring when it is not energized while being opened when energized.
The forming mechanism 20 includes a differential pressure supply mechanism 25 that applies a differential pressure of air different from the atmospheric pressure to the opening / closing ventilation path B1, and opens the valve 85 to apply the differential pressure of air to the opening / closing ventilation path. (Material to be molded) S1 is thermoformed. The differential pressure supply mechanism is a mechanism that applies a vacuum pressure or compressed air to the open / close vent path, and applies the same air differential pressure to the plural open / close vent paths.
The valve operation determining means 90 applies a differential pressure of air to the opening / closing ventilation path B1 by the differential pressure supply mechanism 25 to determine whether air flows through the opening / closing ventilation path when performing control to open the valve 85. Detection is performed, and at least one of whether the valve 85 is opened or closed is notified based on the detected result. This valve operation determining means includes a pressure switch (pressure detecting means) 91 and a non-segmenting valve 92.

しばらく熱成形を行わなかったり雌型が小さかったりする等の理由により熱成形に使用しないバルブが生じることがあるが、このようなバルブでは閉じた状態が長く続き、固着して開閉動作をしなくなることが想定される。なお、固着とはかたくしっかりとつくこと、一定の場所に留まって移らないことを意味し、バルブの固着とはバルブが閉または開の位置で固くしっかりと付き、バルブが閉の位置に留まって開の位置へ移らないこと、バルブが開の位置に留まって閉の位置へ移らないことを意味する。
本発明では、上述した理由等によりバルブが開閉動作しなくなっても、バルブが開閉するか否かの少なくとも一方が通知されるので、熱成形装置の利用者は、開閉用通気経路の開閉用のバルブが開閉動作をするか否かを容易に知ることができる。これにより、利用者は、バルブが開閉動作をしないときに開閉動作をするバルブに交換する等の対応をとることができる。従って、熱成形に用いられるバルブ85が確実に開いてシートS1が熱成形される。
A valve that is not used for thermoforming may occur due to reasons such as not performing thermoforming for a while or the female die being small, but such a valve will remain closed for a long time and will stick and stop opening and closing. It is assumed that Sticking means sticking firmly and does not stay in a certain place, and sticking of the valve means sticking firmly in the closed or open position of the valve, and the valve stays in the closed position. It means that the valve does not move to the open position, and that the valve stays in the open position and does not move to the closed position.
In the present invention, since at least one of whether or not the valve is opened or closed is notified even if the valve is not opened or closed due to the above-described reason, the user of the thermoforming apparatus can open and close the ventilation path for opening and closing. It can be easily known whether or not the valve opens and closes. Thereby, the user can take measures such as exchanging with a valve that opens and closes when the valve does not open and close. Therefore, the valve 85 used for thermoforming is surely opened and the sheet S1 is thermoformed.

本装置100は、さらに、コンピュータにて、熱成形に用いる範囲の入力を受け付ける成形範囲入力手段を備える。成形範囲入力手段を構成するコンピュータシステム95は、図19に示すように、熱板の表面60aに対応させた画面SC1を表示し、該画面の中から成形に用いる範囲R1の入力を受け付ける。
成形機構20は、各バルブ85のうち前記入力された範囲R1の中にある通気孔61に接続された通気経路80を開閉するバルブ85のみ開いて前記範囲R1中の通気孔61にエアを流通させながら熱板60を用いてシートS1を熱成形する。本実施形態の成形機構20は、成形位置L1にあるシートS1の下面(一面)S1b側となる所定の熱板側成形位置L3に配置される熱板60と、成形位置L1にあるシートS1の上面(他面)S1a側となる所定の型側成形位置L2に配置されて熱板60に対向する所定の成形面41aが形成された型40とを用い、熱板60と型40とを近接させて成形位置L1のシートS1を加熱しながら成形面41aの形状に合わせて熱成形する。
The apparatus 100 further includes molding range input means for receiving an input of a range used for thermoforming by a computer. As shown in FIG. 19, the computer system 95 constituting the molding range input unit displays a screen SC1 corresponding to the surface 60a of the hot plate, and receives an input of the range R1 used for molding from the screen.
The forming mechanism 20 opens only the valve 85 that opens and closes the vent path 80 connected to the vent hole 61 in the input range R1 among the valves 85, and distributes air to the vent hole 61 in the range R1. Then, the sheet S1 is thermoformed using the hot plate 60. The forming mechanism 20 of the present embodiment includes a hot plate 60 disposed at a predetermined hot plate side forming position L3 on the lower surface (one surface) S1b side of the sheet S1 at the forming position L1, and the sheet S1 at the forming position L1. Using the mold 40 which is disposed at a predetermined mold side molding position L2 on the upper surface (other surface) S1a side and has a predetermined molding surface 41a facing the hot plate 60, the hot plate 60 and the mold 40 are brought close to each other. Then, the sheet S1 at the forming position L1 is heated and formed according to the shape of the forming surface 41a.

熱板の表面に対応させた画面SC1の中から成形に用いる範囲R1を本装置100に入力すると、入力した範囲R1の中にある通気孔61に接続された通気経路80を開閉するバルブ85のみ開かれて前記範囲R1中の通気孔61にエアが流通することにより、シートS1に対して熱板60を用いた熱成形が行われる。これにより、熱成形に使用する通気孔61を変更するために各バルブ85を一つ一つ徒手で開閉する必要がなく、本装置100が自動的に必要なバルブ85のみ開いてシートS1を熱成形するので、通気経路を変更する作業が短時間で済む。   When the range R1 used for molding is input from the screen SC1 corresponding to the surface of the hot plate to the apparatus 100, only the valve 85 that opens and closes the ventilation path 80 connected to the ventilation hole 61 in the input range R1. When the air is passed through the vent hole 61 in the range R1, the sheet S1 is thermoformed using the hot plate 60. This eliminates the need to manually open and close each valve 85 one by one in order to change the ventilation holes 61 used for thermoforming, and the apparatus 100 automatically opens only the necessary valves 85 to heat the seat S1. Since the molding is performed, the work of changing the ventilation path can be completed in a short time.

本装置100は、さらに、以下の各部65,75,70,72,74,79,10,82,98,99を備える。
台座65は、表面65aで熱板の裏面60bに接し、各区分SE1,SE2の通気孔61にそれぞれ繋がった各溝66(開閉用通気経路の一部)が表面65a側に形成され、該各溝66から内部を貫通してそれぞれ各通気経路80に接続された各内部通気経路67(開閉用通気経路の一部)が形成されている。下テーブル75は、台座65の裏面65bに対向して配置されている。間座70,72,74は、下テーブル75と台座65との間で互いに間を置きながら下テーブル75と台座65とを架け渡している。ヒータ79は、複数の間部材70,72,74の間で下テーブル75から離れて台座の裏面65bに接して該台座65を介して熱板60を加熱する。シート搬送機構10は、所定の成形位置L1を通る所定の搬送方向D1へシートS1を搬送する。非開閉用通気経路82は、熱板の表面60a上における所定のx位置Lx1,Lx1からx方向内側の範囲Rx1、かつ、所定のy位置Ly1,Ly1からy方向内側の範囲Ry1に存在する非区分SE3の通気孔61に接続されている。型引出機構98は、型40を型側成形位置L2からシートS1の搬送方向D1とは異なる所定の引出方向D2へ引き出し可能にさせる。熱板引出機構99は、熱板60を熱板側成形位置L3からシートS1の搬送方向D1とは異なる所定の熱板引出方向D3へ引き出し可能にさせる。
The apparatus 100 further includes the following units 65, 75, 70, 72, 74, 79, 10, 82, 98, 99.
The pedestal 65 is in contact with the back surface 60b of the hot plate at the front surface 65a, and each groove 66 (a part of the opening / closing vent path) connected to the vent holes 61 of the sections SE1, SE2 is formed on the front surface 65a side. Each internal ventilation path 67 (a part of the opening / closing ventilation path) that penetrates the inside from the groove 66 and is connected to each ventilation path 80 is formed. The lower table 75 is disposed to face the back surface 65 b of the pedestal 65. The spacers 70, 72, and 74 bridge the lower table 75 and the pedestal 65 while keeping a space between the lower table 75 and the pedestal 65. The heater 79 is separated from the lower table 75 between the plurality of intermediate members 70, 72, 74, contacts the back surface 65 b of the pedestal, and heats the hot plate 60 via the pedestal 65. The sheet transport mechanism 10 transports the sheet S1 in a predetermined transport direction D1 passing through a predetermined forming position L1. The non-opening / closing vent path 82 is located on the surface 60a of the heat plate in a range Rx1 inside the x direction from the predetermined x position Lx1, Lx1 and in a range Ry1 inside the y direction from the predetermined y position Ly1, Ly1. It is connected to the vent hole 61 of the section SE3. The mold drawing mechanism 98 allows the mold 40 to be pulled out from the mold side forming position L2 in a predetermined pulling direction D2 different from the conveying direction D1 of the sheet S1. The hot plate drawing mechanism 99 allows the hot plate 60 to be drawn from the hot plate side forming position L3 in a predetermined hot plate drawing direction D3 different from the conveying direction D1 of the sheet S1.

熱成形可能なシートS1は、例えば、熱可塑性樹脂シートのような樹脂シート、熱可塑性を示す熱可塑性シート、等を用いることができる。前記樹脂シートは、樹脂を含むシートであればよく、樹脂のみからなるシートでも、樹脂に充てん材等の添加材が添加された材質からなるシートでもよく、単層シートでも、異なる材質をラミネートした積層シートでもよい。前記樹脂は、熱可塑性樹脂とすることができる。シートの素材としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、等を利用可能である。また、シートS1は、シート状ないしフィルム状になっていればよく、ロール状に巻かれていても、所定の長さにカットされていてもよい。シートの厚みは、1〜2mm程度、0.25〜1mm程度、等、様々な厚みとすることが可能であり、0.25mm程度以下のフィルムでもよい。当該程度の厚みの熱可塑性シートを用いると、差圧成形を良好に行うことができる。   As the heat-formable sheet S1, for example, a resin sheet such as a thermoplastic resin sheet, a thermoplastic sheet exhibiting thermoplasticity, or the like can be used. The resin sheet may be a sheet containing resin, and may be a sheet made of resin alone, a sheet made of a material in which an additive such as a filler is added to the resin, a single layer sheet, or a laminate of different materials. A laminated sheet may be used. The resin may be a thermoplastic resin. As the material of the sheet, for example, polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, ABS resin, polyethylene terephthalate resin, polycarbonate resin, and the like can be used. The sheet S1 may be in the form of a sheet or film, and may be wound in a roll or cut to a predetermined length. The thickness of the sheet can be various thicknesses such as about 1 to 2 mm and about 0.25 to 1 mm, and a film of about 0.25 mm or less may be used. When a thermoplastic sheet having such a thickness is used, differential pressure molding can be performed satisfactorily.

シートS1の成形は、熱成形により行われる。該熱成形には、予め加熱されて加熱軟化した被成形材を成形すること、熱板等による接触加熱やヒータ等による輻射加熱や熱風等による送風加熱等で被成形材を加熱軟化させて成形すること、加熱軟化した被成形材を再加熱(保温)して成形すること、等が含まれ、真空成形、圧空成形、真空圧空成形、といった差圧成形が好適である。
シートの搬送方向D1は、水平方向としているが、水平方向からずれた方向でも、鉛直方向でもよい。型や熱板の引出方向D2,D3は、搬送方向D1と平行でない水平方向かつ搬送方向D1と直交する方向としているが、直交する方向とは異なる方向とすることも可能である。
The sheet S1 is formed by thermoforming. In the thermoforming, the material to be molded is heated and softened by heating in advance, and the material to be molded is heated and softened by contact heating with a hot plate or the like, radiation heating with a heater or air blowing with hot air, or the like. And forming by heating (softening) the material to be molded that has been softened by heating and the like, and differential pressure forming such as vacuum forming, pressure forming, and vacuum / pressure forming is suitable.
The sheet conveyance direction D1 is a horizontal direction, but may be a direction deviated from the horizontal direction or a vertical direction. The drawing directions D2 and D3 of the mold and the hot plate are a horizontal direction not parallel to the transport direction D1 and a direction orthogonal to the transport direction D1, but may be different from the orthogonal direction.

シート搬送機構10のシート供給機構12は、ロール状に巻かれたシートS1を連続した状態で搬送方向D1へ送り出し可能とされている。シート搬送機構10のクランプ搬送機構14は、成形後のシートS2の両側縁部をクランプ(把持)するクランプ部材14aを有し、成形のタイミングに合わせて成形位置L1にて成形されたシートS2の両側縁部をクランプ部材14aでクランプして間欠的に連続した状態のシートS1を引っ張って搬送方向D1へ搬送する。   The sheet supply mechanism 12 of the sheet transport mechanism 10 can send out the sheet S1 wound in a roll shape in the transport direction D1 in a continuous state. The clamp conveyance mechanism 14 of the sheet conveyance mechanism 10 has a clamp member 14a for clamping (gripping) both side edges of the formed sheet S2, and the sheet S2 formed at the forming position L1 in accordance with the forming timing. Both side edges are clamped by the clamp members 14a, and the sheet S1 in an intermittently continuous state is pulled and conveyed in the conveying direction D1.

なお、本成形装置100に、成形後のシートS2を所定の長さでカット(切断)して取り出す成形品取出機構を設けてもよい。該成形品取出機構は、例えば、成形後のシートS2を所定の長さでカットする切断機構、カットされたシートを昇降テーブル上に載置して積み重ねる成形品積載機構、積み重ねられた成形品スタックを取出台上に取り出す取出機構、を備える機構としてもよい。   The forming apparatus 100 may be provided with a molded product take-out mechanism that takes out (cuts) the formed sheet S2 by a predetermined length. The molded product take-out mechanism includes, for example, a cutting mechanism that cuts the formed sheet S2 by a predetermined length, a molded product stacking mechanism that stacks the cut sheets placed on a lifting table, and a stacked molded product stack. It is good also as a mechanism provided with the taking-out mechanism taken out on a take-out stand.

以上の構成により、ロール状のシートS1は、順次必要量がシート供給機構12から巻き出され、所定の搬送方向D1へ搬送されて、成形位置L1に搬入される。なお、シートが搬送されるとき、熱板60と型40とは離間した状態にされている。ここで、成形位置にあるシートの下面S1b側に該下面と接触して熱板60が配置されているので、成形位置のシートS1は熱板60から熱を供給され、加熱されて軟化する。シートが成形位置まで搬送されたとき、熱板60と型40とが近接して成形位置の加熱軟化したシートS1を挟み、該シートS1を差圧成形により成形面41aに密接させる。これにより、シートS1が成形面41aの形状に合わせて成形される。
成形後、熱板60と型40とが離間すると、既に成形位置L1から搬送方向D1へ搬出された成形後のシートS2の両側縁部がクランプ位置L11のクランプ部材14aでクランプされ、クランプ搬送機構14が前記クランプ位置から所定の解放位置L12まで水平移動してシートS2をさらに搬送方向D1へ所定量搬送する。すると、既にクランプされていた成形後のシートS2が例えば成形品取出機構へ送られる。該成形品取出機構では、例えば、所定の長さでカットされて、必要に応じて順次下がっていく昇降テーブル上で積み重ねられ、成形品あるいは成形品スタックが取出機構により取出台上へ送り出される。
以上により、シートS1から成形品を形成することができる。
With the above configuration, the necessary amount of the roll-shaped sheet S1 is sequentially unwound from the sheet supply mechanism 12, conveyed in the predetermined conveyance direction D1, and carried into the forming position L1. When the sheet is conveyed, the hot plate 60 and the mold 40 are separated from each other. Here, since the hot plate 60 is disposed on the lower surface S1b side of the sheet at the forming position in contact with the lower surface, the sheet S1 at the forming position is supplied with heat from the hot plate 60 and is heated and softened. When the sheet is conveyed to the forming position, the hot plate 60 and the mold 40 come close to each other and sandwich the heated and softened sheet S1 at the forming position, and the sheet S1 is brought into close contact with the forming surface 41a by differential pressure forming. Thereby, the sheet S1 is formed according to the shape of the forming surface 41a.
After the forming, when the hot plate 60 and the mold 40 are separated from each other, both side edges of the sheet S2 after being already conveyed from the forming position L1 in the transport direction D1 are clamped by the clamp members 14a at the clamp position L11, and the clamp transport mechanism 14 horizontally moves from the clamp position to a predetermined release position L12 to further convey the sheet S2 by a predetermined amount in the conveyance direction D1. Then, the molded sheet S2 that has already been clamped is sent to, for example, a molded product take-out mechanism. In the molded product take-out mechanism, for example, the product is cut by a predetermined length and stacked on a lifting table that is sequentially lowered as necessary, and the molded product or the molded product stack is sent out onto the take-out table by the take-out mechanism.
As described above, a molded product can be formed from the sheet S1.

本成形機構20は、以下の各部21,25,40,45,50等からなる。
上テーブル(型用テーブル)45は、例えば金属製とされ、熱板60に対向する下面45aで型40を保持する。
The forming mechanism 20 includes the following parts 21, 25, 40, 45, 50 and the like.
The upper table (mold table) 45 is made of, for example, metal, and holds the mold 40 on the lower surface 45 a facing the hot plate 60.

本実施形態の型40は、図8に示すように、複数の交換用雌型(交換用型)41と、型ベース部材42とを有している。各雌型41は、例えば金属製とされ、それぞれ熱板60に対向する成形面41aが形成されて、該成形面に通気孔(第二の通気孔)41bが形成されている。型ベース部材42は、例えば、金属製とされ、略板状に形成されて、熱板に対向する下面42aで複数の雌型41を着脱可能に保持する型保持部位42eが形成されている。該型保持部位には、雌型の通気孔41bの位置に合わせて通気孔42bが多数形成されている。   As shown in FIG. 8, the mold 40 of the present embodiment includes a plurality of replacement female molds (exchange molds) 41 and a mold base member 42. Each female die 41 is made of, for example, metal, has a molding surface 41a facing the hot plate 60, and has a ventilation hole (second ventilation hole) 41b on the molding surface. The mold base member 42 is made of, for example, metal, is formed in a substantially plate shape, and is formed with a mold holding portion 42e that removably holds the plurality of female molds 41 on the lower surface 42a facing the hot plate. A number of vent holes 42b are formed in the mold holding portion in accordance with the position of the female vent hole 41b.

上テーブル45は、雌型41を保持した型ベース部材42の両側縁部42c,dをクランプ部材47a,47aでクランプして引き寄せる型ベース部材クランプ機構47,47を有し、該機構により熱板に対向する下面42aで型ベース部材42を保持する。型ベース部材クランプ機構47,47には、図示しないクランプ部材昇降切替スイッチが接続されており、このスイッチが下降側に切り替えられるとクランプ部材47a,47aを下降させて型ベース部材42を引出方向D2へ引出可能にさせ、前記スイッチが上昇側に切り替えられると型ベース部材42をクランプ部材47a,47aでクランプして上昇させて上テーブルの下面45aに接触させて保持する。これにより、型40を上テーブル45の下面に保持させることができる。   The upper table 45 includes mold base member clamping mechanisms 47 and 47 that clamp both side edges 42c and d of the mold base member 42 holding the female mold 41 with the clamp members 47a and 47a, and draw the hot plate by the mechanism. The mold base member 42 is held by the lower surface 42a facing the surface. The mold base member clamp mechanisms 47, 47 are connected to a clamp member elevation switch (not shown). When this switch is switched to the lower side, the clamp members 47a, 47a are lowered to move the mold base member 42 in the drawing direction D2. When the switch is switched to the ascending side, the mold base member 42 is clamped by the clamp members 47a and 47a and is lifted and brought into contact with the lower surface 45a of the upper table and held. Thereby, the mold 40 can be held on the lower surface of the upper table 45.

また、床に接触した金属製基台21には、搬送されるシートS1および引き出される型40と接触しない位置に複数の支柱55a〜dが上方に向かって立設されている。複数の支柱55は、熱板60を位置決めしながら固定部材51に向けて立設されて固定部材51を下から支持し、上テーブル45の近接および離間の往復動をガイドする。型用テーブル駆動機構50は、上テーブル45における熱板に対向する下面45aとは反対側の上部45bに取り付けられ、成形位置L1で型40を保持した上テーブル45を熱板60に対して近接および離間させる。   In addition, on the metal base 21 in contact with the floor, a plurality of support columns 55a to 55d are erected upward at positions where they do not contact the conveyed sheet S1 and the drawn mold 40. The plurality of support columns 55 are erected toward the fixing member 51 while positioning the heat plate 60, support the fixing member 51 from below, and guide the reciprocating movement of the upper table 45 toward and away from it. The mold table drive mechanism 50 is attached to the upper part 45b of the upper table 45 opposite to the lower surface 45a facing the hot plate, and the upper table 45 holding the mold 40 at the molding position L1 is close to the hot plate 60. And separate.

型用テーブル駆動機構50は、固定部材51と上テーブル45とを近接および離間させるリンク機構52を備えている。固定部材51は、例えば金属製のH字形に形成され、該H字形の4箇所の端部51a〜dで前記立設された円柱状支柱55a〜dの先端部に固定される。ここで、各支柱55a〜dの先端部にはねじ55eが形成されており、ナット56を用いて各支柱55a〜dの先端部に固定部材51を固定することができる。リンク機構52は、リンク部材52a、ボールねじ機構52b、電動モータ52c、を備え、固定部材51の前記H字形の中央部51eと上テーブル45との間に設けられて固定部材51と上テーブル45とを近接および離間させる。   The mold table drive mechanism 50 includes a link mechanism 52 that moves the fixing member 51 and the upper table 45 closer to and away from each other. The fixing member 51 is formed in, for example, a metal H-shape, and is fixed to the end portions of the columnar columns 55a to 55d standing at the four end portions 51a to 51d of the H-shape. Here, a screw 55e is formed at the tip of each column 55a-d, and the fixing member 51 can be fixed to the tip of each column 55a-d using a nut 56. The link mechanism 52 includes a link member 52 a, a ball screw mechanism 52 b, and an electric motor 52 c, and is provided between the H-shaped central portion 51 e of the fixing member 51 and the upper table 45, and the fixing member 51 and the upper table 45. And move them close and apart.

図6に示すように、上テーブル45には、支柱55a〜dを上下方向へ貫通させる支柱用上貫通穴46a〜dが形成されている。   As shown in FIG. 6, the upper table 45 is formed with upper through holes 46a to 46d for supporting pillars 55a to 55d extending vertically.

図10、図11、等に示すように、台座65の下面65bから下方に向けて間座70,72,74が立設されて固定され、下テーブル75の表面75aに間座70,72,74が載置されて固定され、台座の表面65aに熱板60が載置されて固定されている。
図2、図3、等に示すように、熱板60は、型40に対向する上面60aが成形位置L1のシートS1の下面S1bに接触するように配置され、成形位置L1に搬入されたシートS1を加熱して軟化させる。熱板60は、例えば金属製とされ、矩形板形状に形成されている。熱板の各通気孔61は、通気経路80が閉じていないときに、差圧供給機構25から真空圧を作用させられたり(空気を吸引されたり)、真空圧の供給(減圧)から解放されたり、圧空を供給されたり、圧空の供給を解除されたりする。
なお、差圧成形を円滑に行うため、雌型41の成形面41aにも複数の通気孔41bが形成されている。
As shown in FIGS. 10, 11, etc., spacers 70, 72, 74 are erected and fixed downward from the lower surface 65 b of the pedestal 65, and the spacers 70, 72, 74 are fixed to the surface 75 a of the lower table 75. 74 is mounted and fixed, and the hot plate 60 is mounted and fixed on the surface 65a of the base.
As shown in FIGS. 2, 3, etc., the hot plate 60 is arranged such that the upper surface 60 a facing the mold 40 is in contact with the lower surface S <b> 1 b of the sheet S <b> 1 at the forming position L <b> 1, and is brought into the forming position L < S1 is heated and softened. The hot plate 60 is made of, for example, metal and has a rectangular plate shape. When the ventilation path 80 is not closed, each ventilation hole 61 of the hot plate is subjected to a vacuum pressure from the differential pressure supply mechanism 25 (air is sucked) or released from the supply of vacuum pressure (decompression). Or the compressed air is supplied or the supply of compressed air is released.
In order to smoothly perform differential pressure molding, a plurality of vent holes 41 b are also formed on the molding surface 41 a of the female die 41.

ここで、熱板の表面60a上のy位置Ly1,Ly1からy方向外側の位置(範囲Ry2)では、便宜上、x方向に向けた線Lx2上に存在する通気孔61を各区分SE1としている。また、y位置Ly1,Ly1からy方向内側の位置(範囲Ry1)であってx位置Lx1,Lx1からx方向外側の位置(範囲Rx2)では、便宜上、y方向に向けた線Ly2上に存在する通気孔61を各区分SE2としている。さらに、範囲Ry1、かつ、x位置Lx1,Lx1からx方向内側の位置(範囲Rx1)では、便宜上、通気孔61の全てを非区分SE3としている。   Here, for convenience, the vent holes 61 existing on the line Lx2 in the x direction are defined as the sections SE1 at positions outside the y direction (range Ry2) from the y positions Ly1 and Ly1 on the surface 60a of the hot plate. Further, for the sake of convenience, it exists on a line Ly2 in the y direction at a position inside the y direction (range Ry1) from the y position Ly1, Ly1 and a position outside the x direction from the x position Lx1, Lx1 (range Rx2). The ventilation hole 61 is set as each division SE2. Furthermore, in the range Ry1 and the position (range Rx1) inside the x direction from the x positions Lx1 and Lx1, all the vent holes 61 are set as non-segmented SE3 for convenience.

図13、図14、等に示す台座65は、例えば金属製とされ、矩形板形状に形成されている。台座の表面65aには、上記区分SE1,SE2に対応した通気用の溝66a,bが形成され、上記非区分SE3に対応した通気用の複数の溝(凹部)68が形成されている。各溝66は、複数の通気孔から区分される各区分SE1,SE2の通気孔61にそれぞれ繋がり、それぞれ台座の裏面65bへ貫通した通気用の各第二の貫通穴(内部通気経路)67に繋がっている。また、溝68は、非区分SE3の通気孔61に繋がり、台座の裏面65bへ貫通した通気用の凹部用貫通穴(凹部用内部通気経路)69に繋がっている。   The pedestal 65 shown in FIGS. 13, 14, etc. is made of, for example, metal and is formed in a rectangular plate shape. Ventilation grooves 66a and 66b corresponding to the sections SE1 and SE2 are formed on the pedestal surface 65a, and a plurality of ventilation grooves (recesses) 68 corresponding to the non-section SE3 are formed. Each groove 66 is connected to a vent hole 61 of each of the sections SE1 and SE2 divided from a plurality of vent holes, and is connected to each second through hole (internal vent path) 67 for ventilation penetrating to the back surface 65b of the base. It is connected. Further, the groove 68 is connected to the vent hole 61 of the non-separated SE3, and is connected to a through hole for concave portion (internal vent passage for concave portion) 69 that penetrates to the back surface 65b of the base.

図15、図16、等に示すように、下テーブル75と台座65との間には、x方向外側の縁部で長手方向をy方向に向けた一対の第一の間座(第一の間部材)70,70が架け渡され、両間座70,70の間でそれぞれ通気用の第二の凹部用貫通穴73が形成された第二の間座(第二の間部材)72,72,…が架け渡され、両第一の間座70,70の間で第二の間座を取り巻くように配置された第三の間座(第三の間部材)74,74,…が架け渡されている。間座70,72,74は、樹脂、金属、等、様々な材質とすることができる。   As shown in FIGS. 15, 16, etc., a pair of first spacers (the first spacers between the lower table 75 and the pedestal 65 with the longitudinal direction in the y direction at the outer edge in the x direction) A second spacer (second intermediate member) 72 in which a second recess through-hole 73 for ventilation is formed between the spacers 70 and 70. 72,... Are spanned, and third spacers (third spacers) 74, 74,... Are arranged so as to surround the second spacer between the first spacers 70, 70. It is laid over. The spacers 70, 72, and 74 can be made of various materials such as resin and metal.

間座70,70は、細長い略四角柱状に形成され、台座の裏面65bにある各第二の貫通穴67に表面70a側でそれぞれ繋がり裏面70b側へ貫通した各第三の貫通穴71(開閉用通気経路の一部)が形成されている。ここで、下テーブル75上には長手方向をy方向に向けて一対のガイド部材99a,99aが立設され、両ガイド部材のx方向内側の垂直面に間座70,70のx方向外側の垂直面がスライド可能に接して配置されている。そして、間座70,70は、下テーブル75に対してシートの搬送方向D1とは異なる所定の熱板引出方向D3へ熱板側成形位置L3と所定の熱板引出位置との間で引出可能に設けられている。なお、間座の裏面70b,70bには熱板側成形位置L3で下テーブル75と係止する係止構造70c,70cが形成され、台座65を介して載置された熱板60が熱板側成形位置L3で固定されるようになっている。
間座72は、台座の裏面65bにある凹部用貫通穴69に繋がって表面72aから裏面72bに貫通した第二の凹部用貫通穴73が形成されている。間座74は、熱板60を載置した台座65の支持を補助している。
The spacers 70, 70 are formed in a substantially rectangular column shape, and are connected to the respective second through holes 67 on the back surface 65b of the pedestal on the front surface 70a side, and are connected to the respective third through holes 71 (opening / closing). A part of the ventilation path for use). Here, on the lower table 75, a pair of guide members 99a, 99a are erected with the longitudinal direction directed in the y direction, and the vertical surfaces on the inner side in the x direction of both guide members are located on the outer side in the x direction of the spacers 70, 70. The vertical plane is slidably arranged. The spacers 70 and 70 can be drawn between the hot plate forming position L3 and the predetermined hot plate drawing position in a predetermined hot plate drawing direction D3 different from the sheet conveying direction D1 with respect to the lower table 75. Is provided. Locking structures 70c and 70c for locking to the lower table 75 at the hot plate side molding position L3 are formed on the back surfaces 70b and 70b of the spacer, and the hot plate 60 placed via the pedestal 65 is the hot plate. It is fixed at the side molding position L3.
The spacer 72 is formed with a second through hole 73 for a recess that is connected to the through hole 69 for a recess on the back surface 65b of the base and penetrates from the front surface 72a to the back surface 72b. The spacer 74 assists the support of the pedestal 65 on which the heat plate 60 is placed.

下テーブル75には、支柱55a〜dを上下方向へ貫通させる支柱用下貫通穴76a〜dが形成され、第一の間座の裏面70bにある各第三の貫通穴71にそれぞれ繋がり内部を貫通して各通気経路80に接続された各テーブル内部通気経路77(開閉用通気経路の一部)が形成され、第二の間座の裏面72bにある第二の凹部用貫通穴73に繋がって内部を貫通して非開閉用通気経路82に接続された第三の凹部用貫通穴(凹部用テーブル内部通気経路)78が形成されている。下テーブルのx方向の縁部75c,dには通気経路80に接続するためのエア流通口75c1,75d1が設けられており、各テーブル内部通気経路77は、下テーブルの表面75aからx方向の縁部のエア流通口75c1,75d1へ貫通している。下テーブルの裏面75bには非開閉用通気経路82に接続するためのエア流通口75b1が設けられており、凹部用テーブル内部通気経路78は、下テーブルの表面75aから裏面75bのエア流通口75b1へ貫通している。下テーブルの表面75aには、第一の間座の係止構造70c,70c,…と係止する係止構造75e,75e,…が形成され、第一の間座70,70が熱板側成形位置L3で解放可能に固定されるようになっている。   The lower table 75 is formed with lower through holes 76a to 76d for supporting pillars 55a to 55d extending in the vertical direction. The lower through holes 76a to 76d are connected to the third through holes 71 on the back surface 70b of the first spacer. Each table internal ventilation path 77 (part of the opening / closing ventilation path) that penetrates and is connected to each ventilation path 80 is formed, and is connected to the second recess through hole 73 on the back surface 72b of the second spacer. A third recessed portion through hole (recessed table internal ventilation path) 78 is formed through the interior and connected to the non-opening / closing ventilation path 82. Air flow ports 75c1 and 75d1 for connecting to the ventilation path 80 are provided at the edges 75c and d of the lower table in the x direction. Each table internal ventilation path 77 extends from the surface 75a of the lower table in the x direction. It penetrates to the air circulation ports 75c1 and 75d1 at the edge. The lower table back surface 75b is provided with an air circulation port 75b1 for connection to the non-opening / closing ventilation path 82. The recess table internal ventilation path 78 is formed from the lower table surface 75a to the back surface 75b air circulation port 75b1. Has penetrated. On the surface 75a of the lower table, locking structures 75e, 75e,... For locking with the locking structures 70c, 70c,. It is fixed releasably at the molding position L3.

ヒータ(加熱機構)79に通電するとヒータから熱が発生し、台座65が加熱される結果、熱板60が加熱される。また、台座65には熱板60の温度を検出する温度センサも設けられており、図示しない加熱温度フィードバック制御機構により熱板60を設定温度となるように加熱する。熱板の加熱温度は、シートの材質や厚み等に応じて設定され、例えばシートが軟化する温度以上溶融する温度以下とすることができる。   When the heater (heating mechanism) 79 is energized, heat is generated from the heater and the pedestal 65 is heated. As a result, the hot plate 60 is heated. The pedestal 65 is also provided with a temperature sensor for detecting the temperature of the hot plate 60, and the hot plate 60 is heated to a set temperature by a heating temperature feedback control mechanism (not shown). The heating temperature of the hot plate is set according to the material, thickness, etc. of the sheet, and can be, for example, not less than the temperature at which the sheet is softened and below the temperature at which it is melted.

通気経路80,81,82は、ウレタンチューブ等の樹脂チューブ、樹脂ホース、樹脂管、金属管、等、継手や電磁弁に接続可能な耐圧チューブ等の耐圧管、および、耐圧管に取り付けられる継手との組み合わせ、等で構成することができる。
各通気経路80(開閉用通気経路の一部)は、一端がエア流通口75c1,75d1に接続され、他端が共通経路81に接続されている。エア流通口や共通経路に接続する際には、継手を介して接続してもよいし、継手を介さずに接続してもよい。各通気経路80は、下テーブルのx方向の縁部75c,dにある各テーブル内部通気経路77に繋げられて熱板60からx方向外側に向かって設けられ、第一の間座の各第三の貫通穴71、台座の各内部通気経路67、台座の各溝66を介して、熱板の各区分SE1,SE2の全通気孔61に接続されている。すなわち、各開閉用通気経路B1は、複数の通気孔61から区分される各区分SE1,SE2の通気孔61にそれぞれ接続され、熱板の表面60a上における所定のx位置からx方向外側の範囲Rx2または所定のy位置からy方向外側の範囲Ry2に存在する通気孔61のいずれかに接続されている。
The ventilation paths 80, 81, 82 are a pressure tube such as a pressure tube that can be connected to a joint or a solenoid valve, such as a resin tube such as a urethane tube, a resin hose, a resin tube, or a metal tube, and a joint attached to the pressure tube. Or a combination thereof.
Each ventilation path 80 (a part of the opening / closing ventilation path) has one end connected to the air circulation ports 75 c 1 and 75 d 1 and the other end connected to the common path 81. When connecting to the air circulation port or the common path, the connection may be made via a joint or may be made without going through the joint. Each ventilation path 80 is connected to each table internal ventilation path 77 at the edges 75c and d in the x direction of the lower table and is provided outward from the heat plate 60 in the x direction. The three through holes 71, the internal pedestal passages 67 of the pedestal, and the grooves 66 of the pedestal are connected to all the vent holes 61 of the sections SE1 and SE2 of the hot plate. That is, each open / close vent path B1 is connected to the vent hole 61 of each of the sections SE1 and SE2 divided from the plurality of vent holes 61, and ranges from the predetermined x position on the surface 60a of the heat plate to the outside in the x direction. It is connected to either Rx2 or a vent hole 61 existing in a range Ry2 outside the y direction from a predetermined y position.

非開閉用通気経路82は、分岐した一方の端部がエア流通口75b1に接続され、他方の端部が共通経路の分岐箇所81aに接続されている。エア流通口や共通経路に接続する際には、継手を介して接続してもよいし、継手を介さずに接続してもよい。非開閉用通気経路82は、下テーブルの裏面75bにある第三の凹部用貫通穴78に繋げられて熱板60から下方に向かって設けられ、第二の間座の各第二の凹部用貫通穴73、台座の各凹部用内部通気経路69、台座の溝68を介して、熱板の非区分SE3の全通気孔61に接続されている。非開閉用通気経路82の途中には、非開閉用通気経路の分岐箇所82aと共通経路の分岐箇所81aとの間で非開閉用通気経路82を開閉する非区分用バルブ92が設けられている。なお、バルブ92は、ばね付き電磁弁とされ、シートを熱成形するときには常時開かれ、各個別バルブ85の開閉動作の確認処理を行うときのみ閉じられるようになっている。
共通経路81は、一端が成形用バルブ26に接続されるとともに、上記通気経路80,82の他端側に接続されている。共通経路81の途中には、共通経路の分岐箇所81aとバルブ26との間で圧力スイッチ91が接続されている。なお、成形用バルブ26は、ばね付き電磁弁とされ、通気経路25aや真空圧空供給源25bとともに差圧供給機構25を構成し、開かれた状態で真空圧空供給源25bから真空圧が作用させられたり圧空を供給されたりし、閉じられると真空圧や圧空の供給が解除される。
圧力スイッチ(圧力検出手段)91は、差圧供給機構25と個別バルブ85との間の通気経路80内における空気圧と所定の設定空気圧Pt(単位:MPa)との大小(空気圧の状態)を検出し、対応する検出信号を生成する。差圧供給機構から圧空を供給する場合、大気圧をPat(単位:MPa)、圧空の圧力をPp(単位:MPa。Pp>Pat)とすると、設定圧Pt(Pat<Pt<Pp)から高い空気圧になると内蔵するばねの付勢力に逆らってスイッチをオンにし、同設定圧Ptから低い空気圧になるとスイッチをオフにする圧力スイッチを用いることができる。差圧供給機構からエアの負圧(真空圧)を供給する場合、負圧をPn(単位:MPa。Pn<Pat)とすると、設定圧Pt(Pn<Pt<Pat)から低い空気圧になると内蔵するばねの付勢力に逆らってスイッチをオンにし、同設定圧Ptから高い空気圧になるとスイッチをオフにする圧力スイッチを用いることができる。
The non-opening / closing vent path 82 has one branched end connected to the air circulation port 75b1 and the other end connected to the branching point 81a of the common path. When connecting to the air circulation port or the common path, the connection may be made via a joint or may be made without going through the joint. The non-opening / closing air passage 82 is connected to the third through hole 78 for the concave portion on the back surface 75b of the lower table and is provided downward from the hot plate 60 for each second concave portion of the second spacer. It is connected to all the vent holes 61 of the non-segmented SE3 of the hot plate through the through hole 73, the internal vent passage 69 for each recess of the pedestal, and the groove 68 of the pedestal. In the middle of the non-opening / closing vent path 82, a non-segmenting valve 92 for opening / closing the non-opening / closing vent path 82 is provided between the branch point 82a of the non-opening / closing vent path and the branch point 81a of the common path. . The valve 92 is a solenoid valve with a spring, and is always opened when the seat is thermoformed, and is closed only when confirmation processing of the opening / closing operation of each individual valve 85 is performed.
The common path 81 has one end connected to the molding valve 26 and the other end of the vent paths 80 and 82. In the middle of the common path 81, a pressure switch 91 is connected between the branch point 81 a of the common path and the valve 26. The molding valve 26 is a spring-loaded solenoid valve, and constitutes the differential pressure supply mechanism 25 together with the ventilation path 25a and the vacuum / pressure air supply source 25b, and the vacuum pressure is applied from the vacuum / pressure air supply source 25b in an opened state. When it is closed or supplied with compressed air, it is closed and the supply of vacuum pressure or compressed air is released.
The pressure switch (pressure detection means) 91 detects the magnitude (air pressure state) between the air pressure in the ventilation path 80 between the differential pressure supply mechanism 25 and the individual valve 85 and a predetermined set air pressure Pt (unit: MPa). And corresponding detection signals are generated. When supplying the pressure air from the differential pressure supply mechanism, if the atmospheric pressure is Pat (unit: MPa) and the pressure air pressure is Pp (unit: MPa. Pp> Pat), it is higher than the set pressure Pt (Pat <Pt <Pp). A pressure switch can be used that turns on the switch against the biasing force of the built-in spring when the air pressure is reached, and turns off the switch when the air pressure is lower than the set pressure Pt. When supplying negative air pressure (vacuum pressure) from the differential pressure supply mechanism, assuming that the negative pressure is Pn (unit: MPa, Pn <Pat), it is built-in when the air pressure becomes lower than the set pressure Pt (Pn <Pt <Pat). It is possible to use a pressure switch that turns on the switch against the biasing force of the spring to be turned off and turns off the switch when the air pressure becomes higher than the set pressure Pt.

各電磁弁85および電磁弁92,26は、内蔵するばねの付勢力により常時は閉となり、通電されると内蔵するばねの付勢力に逆らって開となるソレノイドバルブとされている。各電磁弁85は、各通気経路80の途中に挿入されて、各通気経路80をそれぞれ開閉可能とされている。すなわち、各電磁弁85は、各区分SE1,SE2の通気孔61にエアを流通させるかエアの流通を遮断するかを切り替え可能とされている。   Each electromagnetic valve 85 and the electromagnetic valves 92 and 26 are normally closed by an urging force of a built-in spring, and are solenoid valves that are opened against the urging force of the built-in spring when energized. Each electromagnetic valve 85 is inserted in the middle of each ventilation path 80 so that each ventilation path 80 can be opened and closed. In other words, each solenoid valve 85 can be switched between the air flow through the vent holes 61 of the sections SE1 and SE2 or the air flow is blocked.

各個別バルブ85の切り替えは、例えば図18に示すように、パーソナルコンピュータ等で構成されるコンピュータ96とシーケンサ回路等で構成される制御盤97とを備えるコンピュータシステム95で行うことができる。制御盤97は、シートを熱成形する設定(自動モード)とシートを熱成形しない設定(型替モード)とを少なくとも有する複数のモード(設定)の中でいずれかのモードに切り替え操作可能なセレクトスイッチ97a、圧力スイッチ91に接続されて該スイッチの状態を読み込むスイッチ状態読込回路91a、成形機構20に接続されて該成形機構の動作を制御する成形機構制御回路20a、各電磁弁26,92,85にそれぞれ接続されて該電磁弁の動作を制御する各電磁弁制御回路26a,92a,85a、等の回路を備えている。
コンピュータ96の内部では、バス96zに、CPU96a、半導体メモリ96b,c、I/O回路(入出力回路)96d、タイマ回路96k、等が接続されるとともに、ハードディスクドライブを介してハードディスク(磁気記録媒体)96e、I/F(インターフェイス)を介してディスプレイ96f、I/Fを介して音声出力器96g、I/Fを介してマウス(ポインティングデバイス)96h、I/Fを介してキーボード96i、I/Fを介してプリンタ96j、等も接続されている。CPU96aは、ROM96bやハードディスク96eに記録された制御プログラムに基づいてメモリ96c,eをワークエリアとして利用しながら各部を制御する。
Switching of each individual valve 85 can be performed by a computer system 95 including a computer 96 constituted by a personal computer and a control panel 97 constituted by a sequencer circuit and the like, for example, as shown in FIG. The control panel 97 is a selectable switchable operation to any one of a plurality of modes (settings) having at least a setting for thermoforming the sheet (automatic mode) and a setting for not thermoforming the sheet (remodeling mode). A switch 97a, a switch state reading circuit 91a that is connected to the pressure switch 91 and reads the state of the switch, a molding mechanism control circuit 20a that is connected to the molding mechanism 20 and controls the operation of the molding mechanism, and the electromagnetic valves 26, 92, 85 is provided with circuits such as electromagnetic valve control circuits 26a, 92a, 85a, etc., which are respectively connected to 85 and control the operation of the electromagnetic valve.
Inside the computer 96, a CPU 96a, semiconductor memories 96b and c, an I / O circuit (input / output circuit) 96d, a timer circuit 96k, and the like are connected to a bus 96z, and a hard disk (magnetic recording medium) is connected via a hard disk drive. 96e, display 96f via I / F (interface), audio output device 96g via I / F, mouse (pointing device) 96h via I / F, keyboard 96i via I / F, I / F A printer 96j and the like are also connected via F. The CPU 96a controls each unit while using the memories 96c and e as work areas based on control programs recorded in the ROM 96b and the hard disk 96e.

I/O回路96dには、制御盤97のセレクトスイッチ97aやスイッチ状態読込回路91aや成形機構制御回路20aや各電磁弁制御回路26a,92a,85a等が接続されている。I/O回路と制御盤との接続は、USBやRS−232C等のシリアルインターフェイスによる接続、パラレルインターフェイスによる接続、無線による接続、等、様々な接続が考えられる。スイッチ状態読込回路91aは、圧力スイッチ91のオンオフの状態をI/O回路96dへ伝達する。成形機構制御回路20aは、成形機構20に接続され、コンピュータ96の指示に従ってシーケンサにより成形機構20の動作を制御する。各電磁弁制御回路26a,92a,85aは、それぞれコンピュータ96の指示に従って電磁弁26,92,85に通電したり該電磁弁への通電を停止したりする。
システム95は、図20と図21に示す処理を行い、図19に示すように熱板の表面60aに対応させた画面SC1を表示し、該画面の中から成形に用いる範囲R1x,R1yの操作入力を受け付ける。ここで、S104〜S130の処理を行うシステム95がバルブ動作判定手段90の一部を構成し、S140〜S144の処理を行うシステム95が成形機構20の一部を構成し、S132の処理を行うシステム95が成形範囲入力手段を構成する。
Connected to the I / O circuit 96d are a select switch 97a of the control panel 97, a switch state reading circuit 91a, a molding mechanism control circuit 20a, each solenoid valve control circuit 26a, 92a, 85a and the like. Various connections such as a connection using a serial interface such as USB or RS-232C, a connection using a parallel interface, or a connection using a wireless connection are conceivable for connecting the I / O circuit and the control panel. The switch state reading circuit 91a transmits the on / off state of the pressure switch 91 to the I / O circuit 96d. The molding mechanism control circuit 20a is connected to the molding mechanism 20, and controls the operation of the molding mechanism 20 by a sequencer in accordance with instructions from the computer 96. Each solenoid valve control circuit 26 a, 92 a, 85 a energizes the solenoid valves 26, 92, 85 according to instructions from the computer 96, and stops energization of the solenoid valves.
The system 95 performs the processing shown in FIGS. 20 and 21, displays a screen SC1 corresponding to the surface 60a of the hot plate as shown in FIG. 19, and operates the ranges R1x and R1y used for molding from the screen. Accept input. Here, the system 95 that performs the processes of S104 to S130 constitutes a part of the valve operation determination means 90, and the system 95 that performs the processes of S140 to S144 constitutes a part of the molding mechanism 20 and performs the process of S132. System 95 constitutes a forming range input means.

成形機構20は、非区分用バルブ92を開いておくとともに、シートS1が成形位置L1まで搬送されて熱板60と型40とを所定の近接位置(L14)まで近接させるときには、各電磁弁85のうちシステム95に入力された範囲R1x,R1yの中にある通気孔61に接続された通気経路80を開閉する電磁弁85のみ開いて熱板の通気孔61に真空圧を作用させてシートS1を熱板60に密接させる。そして、熱板60と型40とが近接位置(L14)まで近接したときに熱板の通気孔61に作用させた真空圧を解除してシートS1を型の成形面41aに密接させることにより差圧成形する。本成形機構は、熱板と型との近接時に差圧供給機構25から通気孔61に圧空を供給して真空圧を解除し、型の通気孔41bからシートS1の上側の空気を抜けさせて該シートを成形面41aに密接させる圧空成形を行う。   The forming mechanism 20 keeps the non-sorting valve 92 open, and when the sheet S1 is conveyed to the forming position L1 and brings the hot plate 60 and the mold 40 close to a predetermined proximity position (L14), each electromagnetic valve 85 is provided. Among them, only the electromagnetic valve 85 that opens and closes the ventilation path 80 connected to the ventilation hole 61 in the range R1x, R1y input to the system 95 is opened, and the vacuum pressure is applied to the ventilation hole 61 of the hot plate to cause the sheet S1. Is brought into close contact with the hot plate 60. Then, when the hot plate 60 and the mold 40 are close to the close position (L14), the vacuum pressure applied to the vent hole 61 of the hot plate is released to bring the sheet S1 into close contact with the mold forming surface 41a. Press molding. The main forming mechanism supplies pressure air from the differential pressure supply mechanism 25 to the vent hole 61 when the hot plate and the mold are close to release the vacuum pressure, and allows the air above the sheet S1 to escape from the vent hole 41b of the mold. Compressed air forming is performed to bring the sheet into close contact with the forming surface 41a.

図22に示すように、初期状態では、クランプ搬送機構のクランプ部材14aのシートクランプをオフにしてシートS2のクランプを解除させた状態にし、クランプ搬送機構14を上流側の所定のクランプ位置L11にさせ、型40を所定の離間位置L13にさせ、成形用バルブ26を閉じて差圧供給機構25から通気孔61への真空圧または圧空の供給を解除している状態にしている。また、非区分用バルブ92を開いている。この状態で、まず、クランプ部材14aのシートクランプをオンにしてシートS2の両側縁部をクランプ搬送機構14にクランプさせる(タイミングt1)。次に、クランプ搬送機構14をクランプ位置L11から下流側の所定の解放位置L12まで移動させる(タイミングt2〜t3)。すると、成形後のシートS2が所定量搬送方向D1へ搬送され、成形前のシートS1も成形後のシートS2に引っ張られて所定量搬送方向D1へ搬送されて、成形されていないシートS1が成形位置L1に搬入される。さらに、クランプ部材14aのシートクランプをオフにしてシートS2のクランプを解除させた状態にする(タイミングt4)。なお、タイミングt2に戻るまでに、所定のタイミングでクランプ搬送機構14を解放位置L12から上流側のクランプ位置L11まで移動させるようにしている。   As shown in FIG. 22, in the initial state, the sheet clamp of the clamp member 14a of the clamp transport mechanism is turned off to release the clamp of the sheet S2, and the clamp transport mechanism 14 is moved to a predetermined clamp position L11 on the upstream side. The mold 40 is moved to the predetermined separation position L13, the molding valve 26 is closed, and the supply of the vacuum pressure or air pressure from the differential pressure supply mechanism 25 to the vent hole 61 is released. Further, the non-sorting valve 92 is opened. In this state, first, the sheet clamp of the clamp member 14a is turned on, and both side edges of the sheet S2 are clamped by the clamp transport mechanism 14 (timing t1). Next, the clamp conveyance mechanism 14 is moved from the clamp position L11 to a predetermined release position L12 on the downstream side (timing t2 to t3). Then, the sheet S2 after molding is conveyed in a predetermined amount conveyance direction D1, the sheet S1 before molding is also pulled by the sheet S2 after molding and conveyed in the predetermined amount conveyance direction D1, and an unmolded sheet S1 is molded. It is carried into position L1. Further, the sheet clamp of the clamp member 14a is turned off, and the clamp of the sheet S2 is released (timing t4). Note that the clamp transport mechanism 14 is moved from the release position L12 to the upstream clamp position L11 at a predetermined timing before returning to the timing t2.

その後、成形用バルブ26を開いて差圧供給機構25から通気孔61へ真空圧を作用させ、成形位置L1のシートS1を熱板の表面60aに密接させる(タイミングt5)。すると、成形位置のシートS1は、熱板60にて加熱され、軟化する。次に、図4に示すように、型用テーブル駆動機構50にて上テーブル45を下降させ、型40を所定の近接位置L14にさせて、熱板60と型40とを近接させる(タイミングt6〜t7)。そして、成形用バルブ26を開いたまま差圧供給機構25から通気孔61へ圧空を供給して、型の通気孔41bからエアを排出させながら加熱軟化状態のシートS1を型の成形面41aに密接させる(タイミングt8)。ここで、雌型41の温度は熱板60よりも低いため、成形面41aに密接したシートが冷却され、固化する。これにより、シートが圧空成形され、カット前の成形品が形成される。
なお、型の通気孔41bに真空圧を作用させる(空気を吸引する)減圧機構を該通気孔41bに接続し、タイミングt8〜t9で通気孔41bに真空圧を作用させてもよい。すると、シートに対して真空圧空成形を行うことができる。このとき、差圧供給機構25から通気孔61へ圧空を供給しないと、シートに対して真空成形を行うことができる。
Thereafter, the molding valve 26 is opened to apply a vacuum pressure from the differential pressure supply mechanism 25 to the vent hole 61 to bring the sheet S1 at the molding position L1 into close contact with the surface 60a of the hot plate (timing t5). Then, the sheet S1 at the forming position is heated by the hot plate 60 and softened. Next, as shown in FIG. 4, the upper table 45 is lowered by the mold table drive mechanism 50, the mold 40 is brought to a predetermined proximity position L14, and the hot plate 60 and the mold 40 are brought closer (timing t6). ~ T7). Then, pressure air is supplied from the differential pressure supply mechanism 25 to the vent hole 61 while the molding valve 26 is opened, and the heat-softened sheet S1 is discharged to the mold molding surface 41a while discharging air from the mold vent hole 41b. Close (timing t8). Here, since the temperature of the female die 41 is lower than that of the hot plate 60, the sheet in close contact with the molding surface 41a is cooled and solidified. As a result, the sheet is formed by pressure forming, and a molded product before cutting is formed.
A pressure reducing mechanism that applies a vacuum pressure (sucks air) to the vent hole 41b of the mold may be connected to the vent hole 41b, and the vacuum pressure may be applied to the vent hole 41b at timings t8 to t9. Then, vacuum / pressure forming can be performed on the sheet. At this time, if compressed air is not supplied from the differential pressure supply mechanism 25 to the vent hole 61, vacuum forming can be performed on the sheet.

タイミングt9で成形用バルブ26を閉じて差圧供給機構25から通気孔61への圧空の供給を解除すると、型用テーブル駆動機構50にて上テーブル45を上昇させ、型40を所定の離間位置L13にさせて、熱板60と型40とを離間させる(タイミングt10〜t11)。
以上で1サイクルが終了し、以下、タイミングt1〜t11を繰り返すことにより、シートから熱板を用いた差圧成形を連続して行うことができる。
When the molding valve 26 is closed at timing t9 and the supply of compressed air from the differential pressure supply mechanism 25 to the vent hole 61 is released, the upper table 45 is raised by the mold table drive mechanism 50, and the mold 40 is moved to a predetermined separation position. L13 is used to separate the hot plate 60 and the mold 40 (timing t10 to t11).
Thus, one cycle is completed, and thereafter, differential pressure molding using a hot plate can be continuously performed from the sheet by repeating the timings t1 to t11.

(2)熱成形装置およびそのバルブ動作確認装置、方法の動作および作用:
図20に示す処理を行う前提として、全てのバルブ85,26は、通電されず、閉じた状態にされているものとする。また、真空圧空供給源25bから圧空が供給されているが、閉じたバルブ26により差圧供給機構25から開閉用通気経路へは圧空が供給されていないものとする。
システム95の電源をオンにする等して図20に示す処理を開始すると、まず、セレクトスイッチ97aの状態に応じて処理を分岐させる(ステップS102。以下、「ステップ」の記載を省略)。セレクトスイッチが「型替モード」に切り替えられている場合、本実施形態では全個別バルブ85を開閉させる(S104〜S106)。むろん、S104〜S106の処理を省略しても、本発明の基本的な効果が得られる。ここで、バルブを開閉させることには、バルブを一旦開いて閉じること、バルブを一旦閉じて開くこと、等が考えられる。本実施形態では、S104で全バルブ85に通電して全バルブ85を一旦開き、所定のT1秒後、S106で全バルブ85への通電を停止して全バルブ85を閉じる。時間T1は、確実にバルブの開閉を切り替えることができる時間以上であればよく、例えば、0.2〜10秒、0.5〜5秒程度とすることができる。むろん、バルブ92,26も同時に開閉させてもよい。
以上により、セレクトスイッチがシートを熱成形しない設定に切り替えられると全バルブ85が開閉するので、バルブ85の固着を防ぐことができる。
(2) Operation and action of thermoforming apparatus and its valve operation confirmation apparatus and method:
As a premise for performing the processing shown in FIG. 20, it is assumed that all the valves 85 and 26 are not energized and are closed. Further, it is assumed that compressed air is supplied from the vacuum / pressure air supply source 25b, but no compressed air is supplied from the differential pressure supply mechanism 25 to the opening / closing ventilation path by the closed valve 26.
When the process shown in FIG. 20 is started by turning on the power of the system 95, for example, the process is branched according to the state of the select switch 97a (step S102; hereinafter, description of “step” is omitted). When the select switch is switched to the “remodeling mode”, all the individual valves 85 are opened and closed in this embodiment (S104 to S106). Of course, even if the processing of S104 to S106 is omitted, the basic effect of the present invention can be obtained. Here, to open and close the valve, it is conceivable to temporarily open and close the valve, close and open the valve, and the like. In this embodiment, all the valves 85 are energized in S104 to open all the valves 85, and after a predetermined T1 seconds, the energization to all the valves 85 is stopped and all the valves 85 are closed in S106. The time T1 should just be more than the time which can switch the opening and closing of a valve | bulb reliably, for example, can be about 0.2 to 10 second and 0.5 to 5 second. Of course, the valves 92 and 26 may be opened and closed simultaneously.
As described above, since all the valves 85 are opened and closed when the select switch is switched to a setting in which the sheet is not thermoformed, the valve 85 can be prevented from being fixed.

また、S104〜S106の処理を連続してn回(nは2以上の整数)行ってもよい。バルブの開閉を複数回連続して行うと、長期間使用しないことによるバルブの固着をさらに確実に防ぐことができ、さらに確実にバルブを開いてシートを熱成形することが可能になる。   Moreover, you may perform the process of S104-S106 continuously n times (n is an integer greater than or equal to 2). When the valve is continuously opened and closed a plurality of times, it is possible to more reliably prevent the valve from sticking due to the fact that it is not used for a long period of time, and it is possible to more reliably open the valve and thermoform the seat.

次に、非区分用バルブ92へ通電しないようにして該バルブを閉じる(S108)。これにより、差圧供給機構25からエアの差圧を共通経路81へ加えたときに非区分SE3の通気孔61にエアが流通しないようになり、各個別バルブ85の開閉動作を判定することが可能になる。
その後、複数の個別バルブ85の中からエアの流れを検出する判定対象のバルブを順次設定する(S110)。例えば、N個(Nは2以上の整数)の個別バルブがあるとき、各バルブを1〜Nの整数に対応させるとともに、1〜Nの整数を表す変数をRAMに用意して、この変数を1からNまで順番に1つずつ変更する処理により、判定対象のバルブを設定する。次に、全個別バルブ85を閉じた状態で、成形用バルブ26に通電することにより該バルブを開く制御を行う(S112)。すると、図23に示すように、タイミングt21から差圧供給機構のバルブ26と個別バルブ85との間の通気経路80,81内の空気圧が大気圧から上昇し、圧力スイッチ91の設定圧Ptより高くなって、該スイッチがオンとなる(タイミングt22)。さらに、成形用バルブ26を開いてからT2秒後、S114で成形用バルブ26への通電を停止することにより該バルブを閉じる制御を行う(タイミングt23)。このとき、バルブ26,85間の通気経路80,81(通気経路B2)内の空気圧は、既にほぼ圧空の圧力Ppとなっており、該圧力が維持される。なお、時間T2は、通気経路B2内の空気圧を確実に設定圧Ptより高くすることができる時間以上であればよく、例えば、0.2〜5秒、0.5〜2秒程度とすることができる。
Next, the valve is closed without energizing the non-sorting valve 92 (S108). As a result, when the differential pressure of air is applied from the differential pressure supply mechanism 25 to the common path 81, the air does not flow through the vent holes 61 of the non-segmented SE3, and the opening / closing operation of each individual valve 85 can be determined. It becomes possible.
Thereafter, the target valves for detecting the air flow are sequentially set from the plurality of individual valves 85 (S110). For example, when there are N (N is an integer of 2 or more) individual valves, each valve is made to correspond to an integer of 1 to N, and a variable representing an integer of 1 to N is prepared in the RAM. A valve to be determined is set by a process of changing one by one from 1 to N in order. Next, control is performed to open the valves by energizing the molding valve 26 with all the individual valves 85 closed (S112). Then, as shown in FIG. 23, the air pressure in the ventilation passages 80 and 81 between the valve 26 of the differential pressure supply mechanism and the individual valve 85 rises from the atmospheric pressure from the timing t21, and the set pressure Pt of the pressure switch 91 increases. It becomes higher and the switch is turned on (timing t22). Further, T2 seconds after the molding valve 26 is opened, the energization to the molding valve 26 is stopped in S114 to control the valve to be closed (timing t23). At this time, the air pressure in the ventilation paths 80 and 81 (ventilation path B2) between the valves 26 and 85 is already almost the pressure Pp of the compressed air, and the pressure is maintained. Note that the time T2 may be longer than the time during which the air pressure in the ventilation path B2 can be surely made higher than the set pressure Pt, for example, about 0.2 to 5 seconds and 0.5 to 2 seconds. Can do.

その後、判定対象の個別バルブに通電することにより該バルブのみ開く制御を行う(S116)。判定対象の個別バルブが開閉動作するバルブであれば、図23の上段に示すように、タイミングt24で開くので、タイミングt24から通気経路B2内の空気圧が大気圧まで下降し、圧力スイッチ91の設定圧Ptより低くなって、圧力スイッチ91がオフとなる(タイミングt25)。すなわち、検出される空気圧の状態が個別バルブを開く制御を行う前の空気圧の状態から変化し、判定対象の個別バルブに組み合わされた開閉用通気経路にエアが流れていることになる。一方、判定対象の個別バルブが開閉動作しないバルブであれば、図23の下段に示すように、タイミングt24で閉じたままであるので、タイミングt24から通気経路B2内の空気圧がほぼ圧空の圧力Ppのまま維持され、圧力スイッチ91の設定圧Ptより高く、圧力スイッチ91がオンのままとなる。すなわち、検出される空気圧の状態が個別バルブを開く制御を行う前の空気圧の状態から変化せず、判定対象の個別バルブに組み合わされた開閉用通気経路にエアが流れていないことになる。   Thereafter, control is performed to open only the individual valve to be determined by energizing the individual valve (S116). If the individual valve to be judged is a valve that opens and closes, as shown in the upper part of FIG. 23, it opens at timing t24, so that the air pressure in the ventilation path B2 drops to atmospheric pressure from timing t24, and the pressure switch 91 is set. It becomes lower than the pressure Pt, and the pressure switch 91 is turned off (timing t25). That is, the detected air pressure state changes from the air pressure state before performing the control for opening the individual valve, and the air flows through the open / close ventilation path combined with the individual valve to be determined. On the other hand, if the individual valve to be determined is a valve that does not open and close, as shown in the lower part of FIG. The pressure switch 91 is kept on, and remains higher than the set pressure Pt of the pressure switch 91. That is, the detected air pressure state does not change from the air pressure state before the control for opening the individual valve, and air does not flow through the open / close ventilation path combined with the individual valve to be determined.

判定対象の個別バルブのみ開く制御を行ってからT3秒後、通気経路B2内の空気圧の状態を圧力検出手段91にて検出する(S118)。具体的には、圧力スイッチ91のオンオフの状態を読み込む。なお、時間T3は、判定対象の個別バルブが開閉動作する場合に通気経路B2内の空気圧を確実に設定圧Ptより低くすることができる時間以上であればよく、例えば、0.2〜10秒、0.5〜5秒程度とすることができる。
以上により、全個別バルブを閉じた状態で差圧供給機構にて通気経路B2にエアの差圧を加え、判定対象の個別バルブを開く制御を行って所定時間T3経過後に圧力スイッチにて通気経路80,81内の空気圧と設定圧Ptとの大小(空気圧の状態)を検出する。すなわち、開閉用通気経路にエアが流れるか否かを検出していることになる。
そして、検出した空気圧の状態が設定圧Ptより低いか否かを判断する(S120)。この判断処理は、読み出した圧力スイッチ91の状態がオフであるか否かを判別することにより行うことができる。圧力スイッチ91がオフであると判別した場合、検出した空気圧の状態が設定圧Ptより低くて開閉用通気経路にエアが流れており、判定対象の個別バルブが開閉動作していることになるので、判定対象のバルブが動作する意味の情報をRAMに記憶し(S122)、S126に進む。例えば、各個別バルブI(Iは1〜Nの整数)に対応させた配列変数F(I)を用意し、動作する意味の”1”をF(I)に代入する。一方、圧力スイッチ91がオンであると判別した場合、検出した空気圧の状態が設定圧Ptより高くて開閉用通気経路にエアが流れておらず、判定対象の個別バルブが開閉動作していないことになるので、判定対象のバルブが動作しない意味の情報をRAMに記憶し(S124)、S126に進む。例えば、非動作の意味の”0”をF(I)に代入する。
After T3 seconds after performing control to open only the individual valve to be determined, the pressure detecting means 91 detects the state of air pressure in the ventilation path B2 (S118). Specifically, the on / off state of the pressure switch 91 is read. Note that the time T3 may be equal to or longer than the time during which the air pressure in the ventilation path B2 can be reliably lowered below the set pressure Pt when the individual valve to be determined is opened and closed, for example, 0.2 to 10 seconds. , About 0.5 to 5 seconds.
As described above, the differential pressure supply mechanism applies air differential pressure to the ventilation path B2 with all the individual valves closed, and performs control to open the determination target individual valve. After a predetermined time T3 has elapsed, the ventilation switch uses the pressure switch. The magnitude (air pressure state) between the air pressure in 80 and 81 and the set pressure Pt is detected. That is, it is detected whether air flows through the opening / closing ventilation path.
Then, it is determined whether or not the detected air pressure is lower than the set pressure Pt (S120). This determination process can be performed by determining whether or not the read state of the pressure switch 91 is OFF. If it is determined that the pressure switch 91 is off, the detected air pressure is lower than the set pressure Pt and air is flowing through the opening / closing ventilation path, and the determination target individual valve is opening / closing. Then, information on the meaning of operation of the valve to be determined is stored in the RAM (S122), and the process proceeds to S126. For example, an array variable F (I) corresponding to each individual valve I (I is an integer from 1 to N) is prepared, and “1” meaning to operate is substituted into F (I). On the other hand, if it is determined that the pressure switch 91 is on, the detected air pressure is higher than the set pressure Pt, air is not flowing through the open / close vent passage, and the determination target individual valve is not open / closed. Therefore, information indicating that the determination target valve does not operate is stored in the RAM (S124), and the process proceeds to S126. For example, “0” indicating non-operation is substituted for F (I).

S126では、判定対象の個別バルブへの通電を停止することにより該バルブを閉じる制御を行う(図23のタイミングt26)。そして、S128では、全ての個別バルブ85を設定したか否かを判断し、未設定の個別バルブが残っていればS110〜S128を繰り返し、全ての個別バルブを設定した場合にはS130に進む。S130では、開閉用通気経路にエアが流れるか否かの検出結果に基づいて、図24に示すように、各個別バルブ85が開閉するか否かを表すバルブ動作判定結果を通知する。同図では、ディスプレイの画面にバルブ動作判定結果が表示された例が示され、各区分SE1,SE2の通気孔に接続された開閉用通気経路を開閉する各個別バルブ85に対応させた各ボタンSC8,SC9が表示され、開閉動作する個別バルブに対応するボタンには×印が表示されない一方、開閉動作しない個別バルブに対応するボタンSC8b,SC9bが表示されている。例えば、各個別バルブIに対応させた配列変数F(I)を参照して、”1”が格納された個別バルブIに対応するボタンに×印を表示させない一方、”0”が格納された個別バルブIに対応するボタンに×印を表示させる。なお、同様の画面内容をプリンタ96jで印字して通知してもよいし、バルブ動作判定結果を音声出力器96gから音声出力して通知してもよい。
以上により、個別バルブIに組み合わされた開閉用通気経路内の空気圧が設定空気圧Ptより大きくて該開閉用通気経路内の空気圧の状態が個別バルブIを開く制御を行う前の空気圧の状態から変化せず、エアが流れないと検出されたときに個別バルブIが開閉しない旨が通知される。
In S126, control to close the valve is performed by stopping energization of the individual valve to be determined (timing t26 in FIG. 23). In S128, it is determined whether or not all the individual valves 85 are set. If there are any unset individual valves, S110 to S128 are repeated. If all the individual valves are set, the process proceeds to S130. In S130, as shown in FIG. 24, a valve operation determination result indicating whether each individual valve 85 opens or closes is notified based on the detection result of whether air flows through the opening / closing ventilation path. The figure shows an example in which the valve operation determination result is displayed on the screen of the display, and each button corresponding to each individual valve 85 that opens and closes the opening / closing ventilation path connected to the ventilation holes of the respective sections SE1 and SE2. SC8 and SC9 are displayed, and the button corresponding to the individual valve that opens and closes is not displayed with a cross, whereas the button SC8b and SC9b that corresponds to the individual valve that does not open and close is displayed. For example, referring to the array variable F (I) associated with each individual valve I, the button corresponding to the individual valve I in which “1” is stored is not displayed with a cross, whereas “0” is stored. An X mark is displayed on the button corresponding to the individual valve I. Note that the same screen content may be printed and notified by the printer 96j, or the valve operation determination result may be notified by voice output from the voice output device 96g.
As described above, the air pressure in the opening / closing ventilation path combined with the individual valve I is larger than the set air pressure Pt, and the state of the air pressure in the opening / closing ventilation path changes from the state of the air pressure before the control for opening the individual valve I is performed. If it is detected that the air does not flow, it is notified that the individual valve I is not opened or closed.

バルブ動作判定結果を通知後、S132で、図21に示すバルブ切替処理を行う。まず、図19に示すように、熱板の表面に対応させた画面SC1をディスプレイ96fに表示する(S152)。同画面SC1では、熱板の表面60aに対応する四角形SC2を表示するとともに、該四角形の中で、各区分SE1,SE2に対応する細長い各四角形SC3,SC4、非区分SE3に対応する四角形SC5、x,y方向の成形範囲R1x,R1yを選択操作するための複数のボタンSC6,SC7、を表示している。さらに、画面SC1上で、成形に用いる範囲であって所定のx位置Lx1,Lx1および所定のy位置Ly1,Ly1に対応させた四角形SC5を含む範囲R1の操作入力を操作入力デバイス96h,iから受け付け、x,y方向の範囲R1x,R1yを表す情報をRAMに記憶する(S154)。   After notifying the valve operation determination result, the valve switching process shown in FIG. 21 is performed in S132. First, as shown in FIG. 19, a screen SC1 corresponding to the surface of the hot plate is displayed on the display 96f (S152). In the same screen SC1, a quadrangle SC2 corresponding to the surface 60a of the hot plate is displayed, and among the quadrangles, the long and narrow quadrilaterals SC3 and SC4 corresponding to the sections SE1 and SE2, and the quadrangular SC5 corresponding to the non-section SE3, A plurality of buttons SC6 and SC7 for selecting and operating the molding ranges R1x and R1y in the x and y directions are displayed. Further, on the screen SC1, the operation input of the range R1 including the quadrangular SC5 corresponding to the predetermined x positions Lx1, Lx1 and the predetermined y positions Ly1, Ly1 is used from the operation input devices 96h, i. The information indicating the ranges R1x and R1y in the x and y directions is received and stored in the RAM (S154).

その後、複数の個別バルブ85の中から切り替え対象のバルブを順次設定する(S156)。この処理は、S110と同じようにして行うことができる。次に、切り替え対象のバルブ85が成形に用いる範囲R1の中の通気孔61に接続された通気経路80を開閉するバルブであるか否かを判断する(S158)。この判断処理は、細長い各四角形SC3,SC4のうち少なくとも一部が範囲R1内に入っている場合に成形範囲R1の中の通気孔に接続された通気経路を開閉するバルブであると判断し、細長い各四角形SC3,SC4のうち全く範囲R1内に入っていない場合に成形範囲R1の中の通気孔に接続されていない通気経路を開閉するバルブであると判断することにより、行うことができる。   Thereafter, the switching target valves are sequentially set from the plurality of individual valves 85 (S156). This process can be performed in the same manner as S110. Next, it is determined whether or not the valve 85 to be switched is a valve that opens and closes the ventilation path 80 connected to the ventilation hole 61 in the range R1 used for molding (S158). This determination process determines that the valve is a valve that opens and closes the ventilation path connected to the ventilation hole in the molding range R1 when at least a part of each of the elongated rectangles SC3 and SC4 is within the range R1. This can be done by determining that the valve is a valve that opens and closes a ventilation path that is not connected to the ventilation hole in the molding range R1 when the elongated rectangles SC3 and SC4 are not within the range R1.

S158で条件成立時、切り替え対象のバルブ85に通電することにより、バルブ85を開いて(S160)、S164に進む。一方、S158で条件不成立時、切り替え対象のバルブ85には通電せず、バルブ85を閉じた状態にして(S162)、S164に進む。なお、バルブ85は常時は閉とされているため、S162の処理を行わずにS164に進んでもよい。
S164では、全てのバルブ85を設定したか否かを判断し、未設定のバルブが残っていればS152〜S164を繰り返し、全てのバルブを設定した場合にはバルブ切替処理を終了して、S102に戻る。
以上により、成形範囲R1内の通気孔に接続された開閉用通気経路を開閉する電磁弁85が開き、成形範囲R1内の通気孔に接続されていない開閉用通気経路を開閉する電磁弁85が閉じたままとなる。
When the condition is satisfied in S158, the valve 85 is opened by energizing the valve 85 to be switched (S160), and the process proceeds to S164. On the other hand, when the condition is not satisfied in S158, the valve 85 to be switched is not energized, the valve 85 is closed (S162), and the process proceeds to S164. Since the valve 85 is normally closed, the process may proceed to S164 without performing the process of S162.
In S164, it is determined whether or not all the valves 85 have been set. If there are any unset valves, S152 to S164 are repeated. If all the valves have been set, the valve switching process is terminated. Return to.
Thus, the electromagnetic valve 85 that opens and closes the open / close vent path connected to the vent hole in the molding range R1 opens, and the electromagnetic valve 85 that opens and closes the open / close vent path not connected to the vent hole in the molding range R1. It stays closed.

S102でセレクトスイッチが「自動モード」に切り替えられていると判断した場合、まず、非区分用バルブ92に通電することにより該バルブを開く制御を行う(S140)。次に、図22のタイミングチャートで示される動作を行う制御を行う成形処理を行い(S142)、区分SE1,SE2にある全通気孔61のうち開かれた個別バルブ85に接続された通気孔と、非区分SE3にある全通気孔61とにエアを流通させながら、シートS1に対して上述した差圧成形を行う。ここで、シートS1が成形位置L1まで搬送されて熱板60と型40とを近接位置L14まで近接させるときには、各個別バルブ85のうち入力された範囲R1の中にある通気孔61に接続された通気経路80を開閉するバルブ85のみ開いて前記範囲R1中の通気孔に真空圧を作用させてシートS1を熱板60に密接させる。熱板60と型40とが近接位置L14まで近接したとき、前記範囲R1中の通気孔61に作用させた真空圧を解除してシートS1を型の成形面40aに密接させることにより差圧成形する。   When it is determined in S102 that the select switch is switched to the “automatic mode”, first, the valve is opened by energizing the non-sorting valve 92 (S140). Next, a molding process for performing the control shown in the timing chart of FIG. 22 is performed (S142), and the vent holes connected to the opened individual valves 85 among all the vent holes 61 in the sections SE1 and SE2. The differential pressure forming described above is performed on the sheet S1 while air is circulated through all the vent holes 61 in the non-separated SE3. Here, when the sheet S1 is conveyed to the forming position L1 and the hot plate 60 and the mold 40 are brought close to the proximity position L14, the individual valves 85 are connected to the ventilation holes 61 in the input range R1. Only the valve 85 that opens and closes the ventilation path 80 is opened and a vacuum pressure is applied to the ventilation holes in the range R1 to bring the sheet S1 into close contact with the hot plate 60. When the hot plate 60 and the mold 40 are close to the proximity position L14, the vacuum pressure applied to the vent hole 61 in the range R1 is released, and the sheet S1 is brought into close contact with the molding surface 40a of the mold to perform differential pressure molding. To do.

その後、操作入力デバイス96h,iにて成形終了を意味する所定の操作が行われたか否かを判断する等により、成形を終了するか否かを判断する(S144)。操作入力デバイスにて成形終了の所定の操作が行われていない場合、S142〜S144の処理を繰り返すことにより、上述した差圧成形を連続して行う。操作入力デバイスにて成形終了の所定の操作が行われた場合、上述した差圧成形を終了して、S102に戻る。そして、システム95の電源がオフにされると、各個別バルブ85は、内蔵するばねの付勢力により閉となる。なお、S144からS102に戻る前に、通電していた電磁弁85への通電を停止して全個別バルブ85を閉じるようにしてもよい。
以上により、セレクトスイッチがシートを熱成形する設定に切り替えられると、入力範囲R1の中にある通気孔61に接続された開閉用通気経路を開閉する個別バルブ85のみ開いて通気孔61にエアが流通し、熱板60によりシートが連続して熱成形される。
Thereafter, it is determined whether or not the molding is to be ended by determining whether or not a predetermined operation meaning the end of molding has been performed with the operation input devices 96h, i (S144). When the predetermined operation for finishing the molding is not performed by the operation input device, the above-described differential pressure molding is continuously performed by repeating the processes of S142 to S144. When a predetermined operation for finishing molding is performed with the operation input device, the above-described differential pressure molding is finished and the process returns to S102. When the system 95 is powered off, each individual valve 85 is closed by the biasing force of the built-in spring. Before returning from S144 to S102, the energization of the energized solenoid valve 85 may be stopped and all the individual valves 85 may be closed.
As described above, when the select switch is switched to the setting for thermoforming the seat, only the individual valve 85 that opens and closes the opening / closing ventilation path connected to the ventilation hole 61 in the input range R1 is opened and air is supplied to the ventilation hole 61. The sheet is continuously formed by the hot plate 60 and thermoformed.

以上説明したように、本発明によると、簡易な構成で開閉用通気経路の開閉用のバルブが開閉するか否かが通知されるので、熱成形装置の利用者は、該バルブが開閉動作をするか否かを容易に知ることができる。また、共通の差圧供給機構からエアの差圧を加えられる各開閉用通気経路に組み合わされたバルブの開閉動作がバルブ毎に検出されて通知されるので、バルブ毎にバルブが開閉するか否かを知ることができる。その結果、利用者は、熱成形用のバルブの開閉動作を容易に確認することができ、バルブが開閉動作しないときに開閉動作をするバルブに交換する等の対応をとることができて、バルブが開閉しない状態で被成形材の熱成形を開始するような不都合が回避される。従って、確実にバルブを開いて被成形材を熱成形することが可能になる。   As described above, according to the present invention, it is notified whether or not the valve for opening and closing the opening and closing ventilation path is opened and closed with a simple configuration, so that the user of the thermoforming apparatus can perform the opening and closing operation. You can easily know whether or not to do. Further, since the opening / closing operation of the valve combined with each opening / closing ventilation path to which the differential pressure of air is applied from the common differential pressure supply mechanism is detected and notified for each valve, whether or not the valve opens / closes for each valve. Can know. As a result, the user can easily check the opening / closing operation of the thermoforming valve, and can take measures such as replacing the valve with an opening / closing operation when the valve does not open / close. Inconveniences such as starting the thermoforming of the material to be molded without opening and closing are avoided. Therefore, it is possible to reliably thermoform the workpiece by opening the valve.

(3)変形例:
上記シートの一面側に配置される熱板は、該シートの一面に接触しても、接触せず該シートの一面に対面配置されてもよい。なお、シートを加熱する際には、接触加熱する以外にも、輻射加熱や、接触加熱と輻射加熱の併用によりシートを加熱してもよい。上記シートの他面側に配置される型は、該シートの他面に接触しても、接触せず該シートの他面に対面配置されてもよい。
上記熱板と上記型とを近接および離間させる際には、型のみ移動させる以外にも、熱板のみ移動させても、熱板と型の両方を移動させてもよい。また、熱板と型との近接および離間の際、シートの位置を変えないのみならず、シートを移動させてもよい。
型用テーブルを熱板に対して近接および離間させる機構は、上記リンク機構以外にも、各種クランク機構、エアシリンダや油圧シリンダのようなシリンダを用いた機構、等でもよい。
上記被成形材は、極薄の樹脂フィルム、極薄の可塑性フィルム、厚みのある樹脂素材、厚みのある可塑性素材、等でもよい。
熱板に形成される通気孔は、表面から縁部へ貫通した通気孔、等でもよい。
上記台座と上記間座と上記下テーブルとを設けず、熱板の各区分SE1,SE2の通気孔61に直接各通気経路80(開閉用通気経路)を接続してもよい。
上記加熱機構は、ヒータ以外にも、熱風を供給する機構、ガス等の燃料を燃焼させる機構、等としてもよい。
(3) Modification:
The hot plate disposed on the one surface side of the sheet may contact the one surface of the sheet or may contact the one surface of the sheet without contacting. In addition, when heating a sheet | seat, you may heat a sheet | seat by combined use of radiation heating or contact heating and radiation heating besides contact heating. The mold disposed on the other surface side of the sheet may contact the other surface of the sheet or may not contact the other surface of the sheet.
When the hot plate and the die are brought close to and away from each other, in addition to moving only the die, only the hot plate or both the hot plate and the die may be moved. Further, when the hot plate and the mold are brought close to and away from each other, not only the position of the sheet is not changed, but the sheet may be moved.
In addition to the link mechanism, the mechanism for moving the mold table close to and away from the hot plate may be various crank mechanisms, a mechanism using a cylinder such as an air cylinder or a hydraulic cylinder, and the like.
The molding material may be an ultrathin resin film, an ultrathin plastic film, a thick resin material, a thick plastic material, or the like.
The vent hole formed in the hot plate may be a vent hole penetrating from the surface to the edge.
Instead of providing the pedestal, the spacer, and the lower table, the ventilation paths 80 (opening and closing ventilation paths) may be directly connected to the ventilation holes 61 of the sections SE1 and SE2 of the hot plate.
In addition to the heater, the heating mechanism may be a mechanism for supplying hot air, a mechanism for burning fuel such as gas, or the like.

開閉動作を確認するバルブは、非区分用バルブ92も含めてもよい。この場合、S110ではバルブ85,92の中から判定対象のバルブを設定し、非区分用バルブが判定対象となったとき、S116で非区分用バルブのみ開く制御を行えば、S120で非区分用バルブがエアを流通させるか否かを検出することができる。
圧力スイッチの代わりに圧力センサ等を用いて通気経路B2内の空気圧空気圧をアナログ量またはデジタル量で検出し、S120で該空気圧が所定の圧力Ptから高いか低いかを判断して処理を分岐してもよい。
S130でバルブ動作判定結果を通知する際には、バルブが開閉しないことのみを通知してもよいし、バルブが開閉することのみを通知してもよい。例えば、個別バルブIのうちI=1とI=9のバルブが開閉動作しないと判定したとき、「No.1,No.9のバルブが動作しません」といった画面表示でバルブが開閉動作しないことを通知してもよいし、「No.2,No.3,…のバルブが動作します」といった画面表示でバルブが開閉動作することを通知してもよい。
The valve for confirming the opening / closing operation may include a non-segmenting valve 92. In this case, if the valve to be determined is set from among the valves 85 and 92 in S110, and the control for opening only the non-partitioning valve is performed in S116 when the non-partitioning valve becomes the determination target, the non-partitioning is performed in S120. It is possible to detect whether the valve allows air to flow.
A pressure sensor or the like is used in place of the pressure switch to detect the pneumatic air pressure in the ventilation path B2 as an analog amount or a digital amount, and in S120, it is determined whether the air pressure is higher or lower than a predetermined pressure Pt, and the process is branched. May be.
When notifying the valve operation determination result in S130, it may be notified only that the valve is not opened or closed, or may be notified only that the valve is opened or closed. For example, when it is determined that the valves I = 1 and I = 9 of the individual valves I do not open / close, the valve does not open / close with a screen display such as “No.1, No.9 valve does not operate”. May be notified, or it may be notified that the valve is opened and closed by a screen display such as “No.2, No.3,...

図25に示すように、差圧供給機構25から真空圧(負圧)を供給してバルブの開閉動作を判定してもよい。同図の例では、図20のS112,S120の代わりにS202,S204の処理を行っている。S102〜S110の処理を行って判定対象のバルブを順次設定すると、S202で全個別バルブ85を閉じた状態で、成形用バルブ26を開く制御を行う。すると、通気経路B2内の空気圧が大気圧から下降し、圧力スイッチ91の設定圧Ptより低くなって、該スイッチがオンとなる。S114〜S118の処理を行って通気経路B2内の空気圧の状態を圧力検出手段91にて検出すると、S204で空気圧の状態が設定圧Ptより高いか否かを判断する。圧力スイッチ91がオフである(真空圧が加わっていない)と判別した場合、検出した空気圧の状態が設定圧Ptより高くて開閉用通気経路にエアが流れていることになるので、判定対象のバルブが動作する意味の情報を記憶し(S122)、S126〜S132の処理を行う。一方、圧力スイッチ91がオンである(真空圧が加わっている)と判別した場合、検出した空気圧の状態が設定圧Ptより低くて開閉用通気経路にエアが流れてことになるので、判定対象のバルブが動作しない意味の情報を記憶し(S124)、S126〜S132の処理を行う。本変形例でも、バルブが開閉するか否かが通知されるので、熱成形用のバルブの開閉動作を容易に確認することができる。   As shown in FIG. 25, the opening / closing operation of the valve may be determined by supplying a vacuum pressure (negative pressure) from the differential pressure supply mechanism 25. In the example of FIG. 20, the processes of S202 and S204 are performed instead of S112 and S120 of FIG. When the processing of S102 to S110 is performed and the valves to be determined are sequentially set, in S202, the molding valve 26 is controlled to be opened with all the individual valves 85 closed. Then, the air pressure in the ventilation path B2 drops from the atmospheric pressure, becomes lower than the set pressure Pt of the pressure switch 91, and the switch is turned on. If the process of S114-S118 is performed and the state of the air pressure in the ventilation path B2 is detected by the pressure detecting means 91, it is determined in S204 whether the state of the air pressure is higher than the set pressure Pt. If it is determined that the pressure switch 91 is OFF (no vacuum pressure is applied), the detected air pressure is higher than the set pressure Pt and air is flowing through the open / close ventilation path. Information on the meaning of the valve operation is stored (S122), and the processing of S126 to S132 is performed. On the other hand, if it is determined that the pressure switch 91 is on (vacuum pressure is applied), the detected air pressure is lower than the set pressure Pt and air flows through the open / close ventilation path. Information indicating that the valve is not operating is stored (S124), and the processing of S126 to S132 is performed. Also in this modification, since it is notified whether the valve is opened or closed, the opening / closing operation of the thermoforming valve can be easily confirmed.

図26に示すように、通気経路B2内におけるエアの流量の状態を検出する流量センサ(流量計、流量検出手段)を圧力検出手段の代わりに設けてもよい。この場合、圧力スイッチ91の接続箇所で共通経路81に流量センサを介在させればよい。また、図18のシステム95では、流量センサに接続されて該センサの流量検出信号を読み込む流量センサ読込回路をスイッチ状態読込回路91aの代わりに制御盤97に設ければよい。この流量センサ読込回路は、流量センサで検出された流量のデータをI/O回路96dへ伝達する。   As shown in FIG. 26, a flow sensor (flow meter, flow rate detection means) for detecting the state of the air flow rate in the ventilation path B2 may be provided instead of the pressure detection means. In this case, a flow sensor may be interposed in the common path 81 at the connection point of the pressure switch 91. In the system 95 of FIG. 18, a flow rate sensor reading circuit that is connected to the flow rate sensor and reads the flow rate detection signal of the sensor may be provided in the control panel 97 instead of the switch state reading circuit 91a. This flow sensor reading circuit transmits the flow data detected by the flow sensor to the I / O circuit 96d.

図26の例では、図20のS118,S120の代わりにS212,S214の処理を行っている。S102〜S116の処理を行って全個別バルブを閉じた状態で差圧供給機構にて通気経路B2に圧空(エアの差圧)を加えて判定対象の個別バルブのみ開く制御を行うと、S212で通気経路B2内におけるエアの流量の状態を流量検出手段で検出する。具体的には、流量センサで検出された流量のデータを読み込む。そして、検出した流量の状態が所定の設定流量Ft(単位:m3/s)より高いか否かを判断する(S214)。差圧供給機構から圧空を供給する場合、成形用バルブ26から個別バルブ85へ向かう向きのエア流量を正の流量としてFt>0とされる。差圧供給機構から真空圧(負圧)を供給する場合、個別バルブ85から成形用バルブ26へ向かう向きのエア流量を正の流量としてFt>0とされる。S214の判断処理は、読み出した流量データが設定流量Ftよりも低い流量のデータであるか否かを判別することにより行うことができる。読み出した流量データが設定流量Ftよりも高い流量のデータであると判別した場合、検出したエア流量の状態が設定流量Ftより高くて判定対象のバルブを開く制御を行う前のエア流量の状態から変化しており、開閉用通気経路にエアが流れていることになるので、判定対象のバルブが動作する意味の情報をRAMに記憶し(S122)、S126〜S132の処理を行う。一方、読み出した流量データが設定流量Ftよりも低い流量のデータであると判別した場合、検出したエア流量の状態が設定流量Ftより低くて判定対象のバルブを開く制御を行う前のエア流量の状態から変化しておらず、開閉用通気経路にエアが流れていないことになるので、判定対象のバルブが動作しない意味の情報をRAMに記憶し(S124)、S126〜S132の処理を行う。本変形例でも、バルブが開閉するか否かが通知されるので、簡易な構成で熱成形用のバルブの開閉動作を容易に確認することができる。 In the example of FIG. 26, the processes of S212 and S214 are performed instead of S118 and S120 of FIG. When the process of S102 to S116 is performed and all the individual valves are closed, the air pressure (mechanism differential pressure) is applied to the ventilation path B2 by the differential pressure supply mechanism to perform control to open only the individual valve to be determined in S212. The flow rate detection means detects the state of the air flow rate in the ventilation path B2. Specifically, the flow rate data detected by the flow rate sensor is read. Then, it is determined whether or not the detected flow rate is higher than a predetermined set flow rate Ft (unit: m 3 / s) (S214). When supplying compressed air from the differential pressure supply mechanism, the air flow rate from the molding valve 26 toward the individual valve 85 is a positive flow rate, and Ft> 0. When vacuum pressure (negative pressure) is supplied from the differential pressure supply mechanism, the air flow rate from the individual valve 85 toward the molding valve 26 is a positive flow rate, and Ft> 0. The determination process in S214 can be performed by determining whether or not the read flow rate data is data having a flow rate lower than the set flow rate Ft. When it is determined that the read flow rate data is higher than the set flow rate Ft, the detected air flow rate is higher than the set flow rate Ft and the air flow rate before the control for opening the determination target valve is performed. Since the air has changed and air is flowing through the opening / closing ventilation path, information on the meaning of the operation of the determination target valve is stored in the RAM (S122), and the processes of S126 to S132 are performed. On the other hand, if it is determined that the read flow rate data is lower than the set flow rate Ft, the detected air flow rate is lower than the set flow rate Ft and the air flow rate before the control of opening the determination target valve is performed. Since it has not changed from the state and air does not flow through the opening / closing ventilation path, information indicating that the valve to be determined does not operate is stored in the RAM (S124), and the processing of S126 to S132 is performed. Also in this modification, since it is notified whether the valve opens or closes, it is possible to easily check the opening / closing operation of the thermoforming valve with a simple configuration.

図27の例では、図20のS126の代わりにS222の処理を行い、S118の代わりにS224の処理を行うようにしている。S102〜S116の処理を行って判定対象の個別バルブのみ開く制御を行うと、この制御を行ってからT3秒後、S222で判定対象の個別バルブを閉じる制御を行う。次に、S224で通気経路B2内の空気圧の状態を圧力検出手段91にて検出する。そして、S120で検出した空気圧の状態が設定圧Ptより低いか否かを判断する。判定対象の個別バルブが開閉動作する場合、該個別バルブを開いてから閉じるまでの間に該個別バルブが開放され、通気経路B2内に供給された圧空が逃げる。この場合、検出した空気圧の状態が設定圧Ptより低くなるので、判定対象のバルブが動作する意味の情報を記憶し(S122)、S126〜S132の処理を行う。一方、判定対象の個別バルブが開閉動作しない場合、該個別バルブを開いて閉じる制御を行った間に該個別バルブが開放されず、通気経路B2内に供給された圧空が逃げない。この場合、検出した空気圧の状態が設定圧Ptより高くなるので、判定対象のバルブが動作しない意味の情報を記憶し(S124)、S126〜S132の処理を行う。本変形例でも、バルブが開閉するか否かが通知されるので、熱成形用のバルブの開閉動作を容易に確認することができる。   In the example of FIG. 27, the process of S222 is performed instead of S126 of FIG. 20, and the process of S224 is performed instead of S118. If the process of S102 to S116 is performed and only the determination target individual valve is controlled to open, T3 seconds after performing this control, the control of closing the determination target individual valve is performed in S222. Next, the pressure detecting means 91 detects the state of air pressure in the ventilation path B2 in S224. Then, it is determined whether or not the air pressure detected in S120 is lower than the set pressure Pt. When the individual valve to be determined opens and closes, the individual valve is opened between the opening and closing of the individual valve, and the compressed air supplied into the ventilation path B2 escapes. In this case, since the detected air pressure state is lower than the set pressure Pt, information on the meaning of the operation of the determination target valve is stored (S122), and the processes of S126 to S132 are performed. On the other hand, when the individual valve to be determined does not open / close, the individual valve is not opened during the control to open and close the individual valve, and the compressed air supplied into the ventilation path B2 does not escape. In this case, since the detected air pressure is higher than the set pressure Pt, information indicating that the valve to be determined does not operate is stored (S124), and the processing of S126 to S132 is performed. Also in this modification, since it is notified whether the valve is opened or closed, the opening / closing operation of the thermoforming valve can be easily confirmed.

図28に示すように、個別バルブ85の全てを閉じた状態で差圧供給機構25にて通気経路B2にエアの差圧を加えたときに該通気経路にエアが流れるか否かを検出し、エアが流れると検出したときにその旨を通知するようにしてもよい。同図の例では、図20のS114とS116との間にS232〜S236が挿入されている。
S102〜S114の処理を行って全個別バルブ85と非区分用バルブ92とを閉じて圧空を供給して成形用バルブ26を閉じる制御を行うと、成形用バルブ26を閉じる制御を行ってからT4秒後、S232で通気経路B2内の空気圧の状態を圧力スイッチ(圧力検出手段)91にて検出する。なお、時間T4は、通気経路B2でエアの漏れがある場合に当該エアの漏れにより空気圧が設定圧Ptより低くなる時間以上であればよく、例えば、0.5〜10秒、1〜5秒程度とすることができる。次に、検出した空気圧の状態が設定圧Ptより低いか否かを判断する(S234)。この判断処理は、読み出した圧力スイッチ91の状態がオフであるか否かを判別することにより行うことができる。差圧供給機構25と圧力スイッチ91とが機能し、バルブや通気経路からエアの漏れが生じていない場合、通気経路B2内で圧空が保持されるので、検出される空気圧の状態は設定圧Ptより高くなる。この場合、上述したS116〜S132の処理を行い、個別バルブが開閉するか否かを通知する。一方、エアの漏れが生じていたり、差圧供給機構25が機能していなかったり、圧力スイッチ91が機能していなかったりすると、検出される空気圧の状態が設定圧Ptより低くなることがあり得る。この場合、S236に進んでエアが漏れている旨を画面表示等で通知し、S102に戻る。
As shown in FIG. 28, it is detected whether or not air flows through the ventilation path when the differential pressure supply mechanism 25 applies a differential pressure of air to the ventilation path B2 with all the individual valves 85 closed. When it is detected that air flows, the fact may be notified. In the example of the figure, S232 to S236 are inserted between S114 and S116 of FIG.
When the process of S102 to S114 is performed to close all the individual valves 85 and the non-partitioning valve 92 and supply the compressed air to close the molding valve 26, the control is performed to close the molding valve 26 and then T4. After a second, the pressure switch (pressure detection means) 91 detects the state of air pressure in the ventilation path B2 in S232. Note that the time T4 may be equal to or longer than the time when the air pressure is lower than the set pressure Pt due to air leakage when there is air leakage in the ventilation path B2, for example, 0.5 to 10 seconds, 1 to 5 seconds. Can be about. Next, it is determined whether or not the detected air pressure state is lower than the set pressure Pt (S234). This determination process can be performed by determining whether or not the read state of the pressure switch 91 is OFF. When the differential pressure supply mechanism 25 and the pressure switch 91 function and no air leaks from the valve or the ventilation path, the compressed air is held in the ventilation path B2, and therefore the detected air pressure state is the set pressure Pt. Get higher. In this case, the process of S116-S132 mentioned above is performed and it is notified whether an individual valve opens and closes. On the other hand, if air leakage occurs, the differential pressure supply mechanism 25 is not functioning, or the pressure switch 91 is not functioning, the detected air pressure state may be lower than the set pressure Pt. . In this case, it progresses to S236 and notifies that air is leaking by a screen display etc., and returns to S102.

本変形例によると、全個別バルブ85を閉じた状態で開閉用通気経路に圧空を加えた場合に本来高圧を検出すべき圧力検出手段が高圧を検出しない場合、例えば、バルブや通気経路からエアが漏れていたり差圧供給機構や圧力検出手段が機能していなかったりする場合に、エアが流れる旨が通知される。これにより、不具合があるかどうかを容易に確認することができ、不具合箇所を直すことができるので、不具合箇所がある状態で被成形材の熱成形を開始するような不都合を回避することができて、確実にバルブを開いて被成形材を熱成形することが可能になる。   According to this modification, when pressure is applied to the open / close ventilation path with all the individual valves 85 closed, if the pressure detection means that should originally detect high pressure does not detect high pressure, for example, air is supplied from the valve or the ventilation path. When the air leaks or the differential pressure supply mechanism or the pressure detecting means is not functioning, it is notified that air flows. As a result, it is possible to easily check whether there is a defect, and it is possible to correct the defective part, so that it is possible to avoid the inconvenience of starting the thermoforming of the molding material in a state where there is a defective part. Thus, it is possible to reliably heat-mold the material to be molded by opening the valve.

図29に示すように、個別バルブ85の全てを閉じた状態で差圧供給機構25にて通気経路B2にエアの差圧を加えて判定対象の個別バルブを開く制御を行ったときに該通気経路にエアが流れると検出したとき、判定対象の個別バルブを開閉動作させてもよい。同図の例では、図20のS120とS124との間にS242〜S254が挿入されている。   As shown in FIG. 29, when the differential pressure supply mechanism 25 controls the opening of the individual valve to be determined by applying the differential pressure of air to the ventilation path B2 with all the individual valves 85 closed, the ventilation is performed. When it is detected that air flows through the path, the individual valve to be determined may be opened and closed. In the example of the figure, S242 to S254 are inserted between S120 and S124 of FIG.

S102〜S120の処理を行って空気圧の状態が設定圧Ptより低くないと判断すると、判定対象の個別バルブが開閉動作していないことになり、S242に進む。ここで、判定対象の個別バルブを開閉させる制御を行うと、該個別バルブの固着が解消され、該個別バルブが開閉動作するようになって熱成形に使用することができる場合が想定される。そこで、まず、判定対象の個別バルブを閉じる制御を行い(S242)、S104〜S106と同様にして判定対象の個別バルブを開閉させる制御を行う(S244)。次に、成形用バルブ26を開く制御を行って通気経路B2に圧空を供給し(S246)、T2秒後、成形用バルブ26を閉じる制御を行う(S248)。さらに、判定対象の個別バルブのみを開く制御を行い(S250)、T3秒後、通気経路B2内の空気圧の状態を圧力検出手段91にて検出する(S252)。そして、検出した空気圧の状態が設定圧Ptより低いか否かを判断する(S254)。このとき、空気圧の状態が設定圧Ptより高ければ、判定対象の個別バルブが開閉動作しないことが確認されたことになり、S124に進んで該個別バルブが動作しない意味の情報を記憶し、S126〜S132の処理を行う。一方、検出した空気圧の状態が設定圧Ptより低ければ、判定対象の個別バルブが開閉動作していることになり、S122に進んで該個別バルブが動作する意味の情報を記憶し、S126〜S132の処理を行う。本変形例によると、個別バルブが固着した場合にその固着をある程度解消することが可能になるので、バルブの交換がある程度不要になる点で有用である。   If the processing of S102 to S120 is performed and it is determined that the air pressure state is not lower than the set pressure Pt, the determination target individual valve has not been opened / closed, and the process proceeds to S242. Here, when the control for opening and closing the individual valve to be determined is performed, the sticking of the individual valve is eliminated, and the individual valve can be opened and closed and used for thermoforming. Therefore, first, control for closing the individual valve to be determined is performed (S242), and control for opening and closing the individual valve to be determined is performed similarly to S104 to S106 (S244). Next, control is performed to open the molding valve 26 to supply compressed air to the ventilation path B2 (S246), and after T2 seconds, control to close the molding valve 26 is performed (S248). Further, control is performed to open only the individual valve to be determined (S250), and after T3 seconds, the pressure detecting means 91 detects the state of air pressure in the ventilation path B2 (S252). Then, it is determined whether or not the detected air pressure state is lower than the set pressure Pt (S254). At this time, if the air pressure state is higher than the set pressure Pt, it is confirmed that the individual valve to be determined does not open / close, and the process proceeds to S124 to store information indicating that the individual valve does not operate. Processing of ~ S132 is performed. On the other hand, if the detected air pressure state is lower than the set pressure Pt, it means that the individual valve to be determined is opening and closing, the process proceeds to S122, and information on the meaning of operating the individual valve is stored, and S126 to S132 are stored. Perform the process. According to this modification, when an individual valve is fixed, it is possible to eliminate the fixing to some extent, which is useful in that it is unnecessary to replace the valve to some extent.

なお、熱成形装置の基本部分である成形機構20、開閉用通気経路B1、バルブ85、バルブ動作判定手段90、システム95のみでも、熱成形用のバルブの開閉動作を容易に確認することができ、確実にバルブを開いて被成形材を熱成形することが可能になる効果が得られる。   In addition, it is possible to easily confirm the opening / closing operation of the thermoforming valve by using only the forming mechanism 20, the opening / closing ventilation path B1, the valve 85, the valve operation determining means 90, and the system 95, which are the basic parts of the thermoforming apparatus. An effect is obtained in which the valve can be reliably opened and the material to be molded can be thermoformed.

なお、本発明は、上述した実施形態や変形例に限られず、上述した実施形態および変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術並びに上述した実施形態および変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も含まれる。   Note that the present invention is not limited to the above-described embodiments and modifications, but the configurations disclosed in the above-described embodiments and modifications are mutually replaced, the combinations are changed, known techniques, and the above-described configurations. Configurations in which the respective configurations disclosed in the embodiments and modifications are mutually replaced or combinations thereof are also included.

熱成形装置の外観を示す斜視図。The perspective view which shows the external appearance of a thermoforming apparatus. 熱成形装置を正面から見て示す正面図。The front view which shows a thermoforming apparatus seeing from the front. 型が所定の離間位置にあるときの熱成形装置を示す右側面図。The right view which shows a thermoforming apparatus when a type | mold exists in a predetermined separation position. 型が所定の近接位置にあるときの熱成形装置を示す右側面図。The right view which shows a thermoforming apparatus when a type | mold exists in a predetermined | prescribed proximity position. 成形機構の要部を上面から見て示す平面図。The top view which shows the principal part of a shaping | molding mechanism seeing from an upper surface. 固定部材の下から成形機構の要部を上面から見て示す平面図。The top view which shows the principal part of a shaping | molding mechanism seeing from the upper surface from under a fixing member. 型の下から型等の底面を見て示す底面図。The bottom view which shows the bottom face of a mold etc. from the bottom of the mold. 型を組み立てる様子を底面側から見て示す分解斜視図。The exploded perspective view which shows a mode that a type | mold is assembled from the bottom face side. 型の下から熱成形装置の要部を上面から見て示す平面図。The top view which shows the principal part of a thermoforming apparatus from the upper surface seeing from the bottom of a type | mold. 熱板を支持する構造とエア結線を模式的に示す斜視図。The perspective view which shows typically the structure and air connection which support a hot platen. 図10のA1の位置を断面視して示す垂直断面図。FIG. 11 is a vertical sectional view showing the position of A1 in FIG. 熱板を上面から見て示す上面図。FIG. 3 is a top view showing the hot plate as viewed from above. 台座を上面から見て示す上面図。The top view which shows a pedestal seeing from the upper surface. 台座を底面から見て示す底面図。The bottom view which shows a base from the bottom. 間部材を上面から見て示す上面図。The top view which shows an intermediate | middle member seeing from an upper surface. 間部材とヒータを固定した台座を底面から見て示す底面図。The bottom view which shows the base which fixed the intermediate member and the heater seeing from a bottom face. 下テーブルの上面をエア結線とともに示す上面図。The top view which shows the upper surface of a lower table with an air connection. コンピュータシステムの回路構成の概略を示すブロック図。The block diagram which shows the outline of the circuit structure of a computer system. 熱板の表面に対応させた画面の表示例を示す図。The figure which shows the example of a display of the screen matched with the surface of a hot platen. コンピュータシステムが実行する処理を示すフローチャート。The flowchart which shows the process which a computer system performs. バルブ切替処理を示すフローチャート。The flowchart which shows a valve | bulb switching process. 成形機構の動作を示すタイミングチャート。The timing chart which shows operation | movement of a shaping | molding mechanism. 本熱成形装置の動作を示すタイミングチャート。The timing chart which shows operation | movement of this thermoforming apparatus. バルブ動作判定結果の表示例を示す図。The figure which shows the example of a display of a valve operation | movement determination result. 変形例において、コンピュータシステムの処理を示すフローチャート。The flowchart which shows the process of a computer system in a modification. 変形例において、コンピュータシステムの処理を示すフローチャート。The flowchart which shows the process of a computer system in a modification. 変形例において、コンピュータシステムの処理を示すフローチャート。The flowchart which shows the process of a computer system in a modification. 変形例において、コンピュータシステムの処理を示すフローチャート。The flowchart which shows the process of a computer system in a modification. 変形例において、コンピュータシステムの処理を示すフローチャート。The flowchart which shows the process of a computer system in a modification.

符号の説明Explanation of symbols

10…シート搬送機構、
20…成形機構、21…基台、
25…差圧供給機構、25a…通気経路、26…成形用バルブ、
40…型、
60…加熱板(熱板)、60a…型に対向する表面、60b…裏面、
61…第一の通気孔(貫通穴)、
65…台座(台部材)、65a…表面、65b…裏面、
66,66a,66b…溝(開閉用通気経路の一部)、
67…第二の貫通穴(内部通気経路、開閉用通気経路の一部)、
68…溝(凹部)、
69…凹部用貫通穴(凹部用内部通気経路)、
70…第一の間座(第一の間部材)、71…第三の貫通穴(開閉用通気経路の一部)、
72…第二の間座(第二の間部材)、74…第三の間座(第三の間部材)、
75…下テーブル(熱板用テーブル)、75a…表面、75b…裏面、
77…テーブル内部通気経路(開閉用通気経路の一部)、
79…ヒータ(加熱機構)、
80…通気経路(開閉用通気経路の一部)、81…共通経路、
82…非開閉用通気経路、
85…電磁弁(バルブ)、
90…バルブ動作判定手段、
91…圧力スイッチ(圧力検出手段)、92…非区分用バルブ、
95…コンピュータシステム(バルブ動作判定手段の一部、成形範囲入力手段、成形機構の一部)、
96…コンピュータ、97…制御盤、
100…熱成形装置、
B1…開閉用通気経路、B2…バルブ26,85間の通気経路、
S1…シート(被成形材)、S2…成形後のシート、
10: Sheet transport mechanism,
20 ... Molding mechanism, 21 ... Base,
25 ... Differential pressure supply mechanism, 25a ... Ventilation path, 26 ... Molding valve,
40 ... mold,
60 ... heating plate (hot plate), 60a ... front surface facing the mold, 60b ... back surface,
61 ... first ventilation hole (through hole),
65 ... pedestal (base member), 65a ... front surface, 65b ... back surface,
66, 66a, 66b ... groove (a part of the opening / closing ventilation path),
67 ... second through hole (internal ventilation path, part of opening / closing ventilation path),
68 ... groove (recess),
69 ... through hole for recess (internal ventilation path for recess),
70 ... 1st spacer (1st spacer), 71 ... 3rd through-hole (a part of ventilation path for opening and closing),
72 ... second spacer (second spacer), 74 ... third spacer (third spacer),
75 ... Lower table (hot plate table), 75a ... front surface, 75b ... back surface,
77 ... Table internal ventilation path (part of the opening and closing ventilation path),
79 ... heater (heating mechanism),
80 ... ventilation path (a part of opening and closing ventilation path), 81 ... common path,
82 ... non-opening and closing ventilation path,
85 ... Solenoid valve (valve),
90 ... Valve operation determining means,
91 ... Pressure switch (pressure detection means), 92 ... Non-partitioning valve,
95. Computer system (part of valve operation determination means, molding range input means, part of molding mechanism),
96 ... Computer, 97 ... Control panel,
100 ... thermoforming device,
B1 ... Opening / closing ventilation path, B2 ... Ventilation path between valves 26, 85,
S1 ... sheet (material to be molded), S2 ... sheet after molding,

Claims (7)

エアを流通させる開閉用通気経路と、該開閉用通気経路を開閉可能なバルブと、の組み合わせが複数設けられるとともに、大気圧とは異なるエアの差圧を前記開閉用通気経路に加える差圧供給機構を有して前記バルブを開いて前記開閉用通気経路にエアの差圧を加えて被成形材を熱成形する成形機構を備える熱成形装置のバルブ動作確認装置であって、
前記バルブの全てを閉じた状態で前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加え、該開閉用通気経路にエアが流れるか否かを検出し、エアが流れると検出したときにその旨を通知し、エアが流れないと検出したとき、前記複数のバルブの中からエアの流れを検出する対象のバルブを順次設定し、該対象のバルブについて前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加えて開く制御を行ったときに該対象のバルブと組み合わされた開閉用通気経路にエアが流れるか否かを検出し、エアが流れないと検出したときに前記対象のバルブが開閉しない旨を通知するバルブ動作判定手段を備えることを特徴とする熱成形装置のバルブ動作確認装置。
A plurality of combinations of an opening / closing ventilation path for circulating air and a valve capable of opening / closing the opening / closing ventilation path, and a differential pressure supply for applying a differential pressure of air different from atmospheric pressure to the opening / closing ventilation path to be profiled by adding a differential pressure of air in the opening and closing vent path has a mechanism opening the valve a valve operation check device thermoforming apparatus comprising a molding machine configured for thermoforming,
With all the valves closed, the differential pressure supply mechanism applies air differential pressure to the open / close vent path to detect whether air flows through the open / close vent path, and detects when air flows. When it is detected that the air does not flow, a target valve for detecting the air flow is sequentially set from the plurality of valves, and the target valve is set in the differential pressure supply mechanism. When air pressure is applied to the open / close vent path to open it, it is detected whether air flows through the open / close vent path combined with the target valve. A valve operation confirmation device for a thermoforming apparatus , comprising: a valve operation determination means for notifying that the target valve does not open or close when the operation is performed.
前記バルブ動作判定手段は、前記差圧供給機構と前記バルブとの間の前記開閉用通気経路内における空気圧の状態を検出する圧力検出手段を備え、前記バルブを閉じた状態で前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加え、前記バルブを開く制御を行って前記圧力検出手段にて前記開閉用通気経路内における空気圧の状態を検出し、検出した空気圧の状態が前記バルブを開く制御を行う前の空気圧の状態から変化していないときに前記バルブが開閉しない旨を通知することを特徴とする請求項1に記載の熱成形装置のバルブ動作確認装置。 The valve operation determination means includes pressure detection means for detecting a state of air pressure in the opening / closing ventilation path between the differential pressure supply mechanism and the valve, and the differential pressure supply mechanism is in a state where the valve is closed. To apply a differential pressure of air to the opening / closing ventilation path, perform control to open the valve, and detect the state of air pressure in the opening / closing ventilation path by the pressure detecting means, and the detected air pressure state is The valve operation confirmation device for a thermoforming device according to claim 1 , wherein a notification that the valve does not open or close is notified when there is no change from a state of air pressure before performing control for opening the valve. 前記バルブ動作判定手段は、前記開閉用通気経路内におけるエアの流量の状態を検出する流量検出手段を備え、前記バルブを閉じた状態で前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加え、前記バルブを開く制御を行って前記流量検出手段にて前記開閉用通気経路内におけるエアの流量の状態を検出し、検出した流量の状態が前記バルブを開く制御を行う前のエアの流量の状態から変化していないときに前記バルブが開閉しない旨を通知することを特徴とする請求項1に記載の熱成形装置のバルブ動作確認装置。 The valve operation determining means includes a flow rate detecting means for detecting a state of an air flow rate in the opening / closing ventilation path, and the differential pressure supply mechanism in the state where the valve is closed causes air A differential pressure is applied to control the opening of the valve, and the flow rate detection means detects the state of the air flow rate in the open / close ventilation path, and the detected flow rate state before performing the control to open the valve 2. The valve operation confirmation device for a thermoforming device according to claim 1 , wherein a notification is made that the valve does not open or close when there is no change from the state of the air flow rate. 前記バルブ動作判定手段は、前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加え、前記バルブを開く制御を行ったときに前記開閉用通気経路にエアが流れると検出したとき、前記バルブを開閉動作させることを特徴とする請求項1〜請求項3のいずれか一項に記載の熱成形装置のバルブ動作確認装置。 When the valve operation determining means detects that air flows through the opening / closing ventilation path when the differential pressure supply mechanism applies a differential pressure of air to the opening / closing ventilation path and performs control to open the valve. The valve operation confirmation device for a thermoforming device according to any one of claims 1 to 3 , wherein the valve is opened and closed. エアを流通させる開閉用通気経路と、該開閉用通気経路を開閉可能なバルブと、の組み合わせが複数設けられるとともに、大気圧とは異なるエアの差圧を前記開閉用通気経路に加える差圧供給機構を有して前記バルブを開いて前記開閉用通気経路にエアの差圧を加えて被成形材を熱成形する成形機構を備える熱成形装置であって、
前記バルブの全てを閉じた状態で前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加え、該開閉用通気経路にエアが流れるか否かを検出し、エアが流れると検出したときにその旨を通知し、エアが流れないと検出したとき、前記複数のバルブの中からエアの流れを検出する対象のバルブを順次設定し、該対象のバルブについて前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加えて開く制御を行ったときに該対象のバルブと組み合わされた開閉用通気経路にエアが流れるか否かを検出し、エアが流れないと検出したときに前記対象のバルブが開閉しない旨を通知するバルブ動作判定手段を備えることを特徴とする熱成形装置。
And opening and closing the ventilation path for circulating air, and open valve the opening and closing the vent passage, with a combination of is plurality, differential pressure supply adding a differential pressure of different air to the opening and closing vent path to the atmospheric pressure A thermoforming apparatus comprising a molding mechanism that has a mechanism to open the valve and apply a differential pressure of air to the open / close vent path to thermoform a material to be molded ;
With all the valves closed, the differential pressure supply mechanism applies air differential pressure to the open / close vent path to detect whether air flows through the open / close vent path, and detects when air flows. When it is detected that the air does not flow, a target valve for detecting the air flow is sequentially set from the plurality of valves, and the target valve is set in the differential pressure supply mechanism. When air pressure is applied to the open / close vent path to open it, it is detected whether air flows through the open / close vent path combined with the target valve. thermoforming apparatus, characterized in that it comprises a valve operation decision hand stage the target valve when to notify that no opening.
所定の成形位置を通る所定の搬送方向へ成形可能なシートを搬送するシート搬送機構と、
表面から裏面へ貫通した複数の通気孔を有し、前記成形位置にあるシートの一面側に配置される熱板と、
該熱板を加熱するヒータと、
前記複数の通気孔から区分される各区分の通気孔にそれぞれ前記熱板の裏面で接続された各開閉用通気経路と、
該各開閉用通気経路をそれぞれ開閉可能であるとともに通電されると開となる一方で通電されていないときにはばねの力により閉となる各電磁弁と、
前記熱板の表面に対応させた画面を表示して該画面の中から成形に用いる範囲の入力を受け付ける成形範囲入力手段と、
前記成形位置にあるシートの前記一面側とは反対の他面側に配置されて前記熱板に対向する成形面が形成された型と、大気圧とは異なるエアの差圧を前記開閉用通気経路に加える差圧供給機構とを有し、前記シート搬送機構により前記シートが搬送されるときには前記熱板と前記型とを所定の離間位置まで離間させ、前記熱板と前記型とを所定の近接位置まで近接させて前記シートを加熱しながら前記成形面の形状に合わせて熱成形する際、前記シートが前記成形位置まで搬送されて前記熱板と前記型とを前記近接位置まで近接させるときには前記各電磁弁のうち前記入力された範囲の中にある通気孔に接続された開閉用通気経路を開閉する電磁弁のみ通電して開いて前記差圧供給機構にて前記範囲中の通気孔に真空圧を作用させて前記シートを前記熱板の表面に密接させ、前記熱板と前記型とが前記近接位置まで近接したときに前記通気孔に作用させた真空圧を解除して前記シートを前記型の成形面に密接させることにより熱成形する成形機構と、
前記差圧供給機構と前記電磁弁との間の前記開閉用通気経路内における空気圧と設定空気圧との大小を検出して対応する検出信号を生成する圧力スイッチを有し、前記電磁弁の全てを閉じた状態で前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加え、該開閉用通気経路にエアが流れるか否かを検出し、エアが流れると検出したときにその旨を通知し、エアが流れないと検出したとき、前記複数の電磁弁の中からエアの流れを検出する対象の電磁弁を順次設定し、該対象の電磁弁について前記差圧供給機構にて前記開閉用通気経路に圧空を加えて開く制御を行って所定時間経過後に前記圧力スイッチにて前記開閉用通気経路内の空気圧と前記設定空気圧との大小を検出し、前記開閉用通気経路内の空気圧が前記設定空気圧より大きいときに前記対象の電磁弁が開閉しない旨を画面に表示するバルブ動作判定手段を備えることを特徴とする熱成形装置。
A sheet transport mechanism for transporting a sheet that can be molded in a predetermined transport direction passing through a predetermined molding position;
A plurality of air holes penetrating from the front surface to the back surface, and a hot plate disposed on one surface side of the sheet at the molding position;
A heater for heating the hot plate;
Each opening and closing ventilation path connected to the ventilation hole of each section divided from the plurality of ventilation holes on the back surface of the hot plate;
Each of the open / close vent passages can be opened and closed, and opened when energized, while open when energized, and each solenoid valve closed by the force of a spring;
A molding range input means for displaying a screen corresponding to the surface of the hot plate and receiving an input of a range used for molding from the screen;
A mold having a molding surface disposed on the other surface side opposite to the one surface side of the sheet in the molding position and formed with a molding surface facing the hot plate, and a differential pressure of air different from atmospheric pressure is used for the opening / closing vent A differential pressure supply mechanism applied to the path, and when the sheet is conveyed by the sheet conveying mechanism, the hot plate and the die are separated to a predetermined separation position, and the hot plate and the die are separated from each other by a predetermined amount. When thermoforming according to the shape of the molding surface while heating the sheet close to a proximity position, when the sheet is conveyed to the molding position and the hot plate and the mold are brought close to the proximity position Only the solenoid valve that opens and closes the open / close vent path connected to the vent hole in the input range among the solenoid valves is opened by energizing the vent valve in the range by the differential pressure supply mechanism. Apply vacuum pressure to the Is brought into close contact with the surface of the hot plate, and when the hot plate and the mold are close to the close position, the vacuum pressure applied to the vent hole is released to bring the sheet into close contact with the molding surface of the mold. A molding mechanism for thermoforming,
A pressure switch for detecting the magnitude of the air pressure and the set air pressure in the open / close ventilation path between the differential pressure supply mechanism and the solenoid valve and generating a corresponding detection signal ; In the closed state, the differential pressure supply mechanism applies a differential pressure of air to the open / close vent path to detect whether air flows through the open / close vent path, and when it detects that the air flows, to that effect notifies, when detecting that no air flow, the plurality of sequentially sets the electromagnetic valve of the subject to detect the flow of air from the solenoid valve, said at the differential pressure supplying mechanism for an electromagnetic valve of the subject Control is performed by applying compressed air to the open / close vent path to open it, and after a predetermined time has elapsed, the pressure switch detects the magnitude of the air pressure in the open / close vent path and the set air pressure, and the air pressure in the open / close vent path Is larger than the set air pressure Thermoforming apparatus, characterized in that it comprises a valve operation decision means the solenoid valve of the subject is displayed on the screen to the effect that not open or close the can.
エアを流通させる開閉用通気経路と、該開閉用通気経路を開閉可能なバルブと、の組み合わせが複数設けられるとともに、大気圧とは異なるエアの差圧を前記開閉用通気経路に加える差圧供給機構を有して前記バルブを開いて前記開閉用通気経路にエアの差圧を加えて被成形材を熱成形する成形機構を備える熱成形装置のバルブ動作確認方法であって、
前記バルブの全てを閉じた状態で前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加え、該開閉用通気経路にエアが流れるか否かを検出し、エアが流れると検出したときにその旨を通知し、エアが流れないと検出したとき、前記複数のバルブの中からエアの流れを検出する対象のバルブを順次設定し、該対象のバルブについて前記差圧供給機構にて前記開閉用通気経路にエアの差圧を加えて開く制御を行ったときに該対象のバルブと組み合わされた開閉用通気経路にエアが流れるか否かを検出し、エアが流れないと検出したときに前記対象のバルブが開閉しない旨を通知することを特徴とする熱成形装置のバルブ動作確認方法。
A plurality of combinations of an opening / closing ventilation path for circulating air and a valve capable of opening / closing the opening / closing ventilation path, and a differential pressure supply for applying a differential pressure of air different from atmospheric pressure to the opening / closing ventilation path to be profiled by adding a differential pressure of air in the opening and closing vent path has a mechanism opening the valve a valve operation check method of thermoforming apparatus comprising a molding machine configured for thermoforming,
With all the valves closed, the differential pressure supply mechanism applies air differential pressure to the open / close vent path to detect whether air flows through the open / close vent path, and detects when air flows. When it is detected that the air does not flow, a target valve for detecting the air flow is sequentially set from the plurality of valves, and the target valve is set in the differential pressure supply mechanism. When air pressure is applied to the open / close vent path to open it, it is detected whether air flows through the open / close vent path combined with the target valve. A valve operation confirmation method for a thermoforming apparatus, which notifies that the target valve does not open or close when the operation is performed.
JP2006102297A 2006-04-03 2006-04-03 Valve operation confirmation device for thermoforming device, thermoforming device and valve operation confirmation method thereof Active JP4817938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006102297A JP4817938B2 (en) 2006-04-03 2006-04-03 Valve operation confirmation device for thermoforming device, thermoforming device and valve operation confirmation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006102297A JP4817938B2 (en) 2006-04-03 2006-04-03 Valve operation confirmation device for thermoforming device, thermoforming device and valve operation confirmation method thereof

Publications (2)

Publication Number Publication Date
JP2007276169A JP2007276169A (en) 2007-10-25
JP4817938B2 true JP4817938B2 (en) 2011-11-16

Family

ID=38678163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102297A Active JP4817938B2 (en) 2006-04-03 2006-04-03 Valve operation confirmation device for thermoforming device, thermoforming device and valve operation confirmation method thereof

Country Status (1)

Country Link
JP (1) JP4817938B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846796B2 (en) * 2011-08-01 2016-01-20 株式会社浅野研究所 Thermoforming apparatus and thermoforming method using hot plate
US10086555B2 (en) 2011-10-27 2018-10-02 Whirlpool Corporation Method for forming a laminated part
CN114683523A (en) * 2022-03-29 2022-07-01 安徽鲲鹏装备模具制造有限公司 Bubble suction system of vacuum forming machine for refrigerator liner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673913B2 (en) * 1991-04-06 1994-09-21 三和樹脂産業株式会社 Method and device for attaching sheet by vacuum press
JP4416212B2 (en) * 1999-08-02 2010-02-17 株式会社浅野研究所 Thermoforming apparatus and thermoforming method
JP3846320B2 (en) * 2002-01-29 2006-11-15 松下電器産業株式会社 Electronic component mounting apparatus and air blow circuit abnormality detection method in electronic component mounting apparatus
JP4166722B2 (en) * 2004-04-13 2008-10-15 株式会社浅野研究所 Thermoforming apparatus and method for cleaning thermoforming apparatus
JP2005330929A (en) * 2004-05-21 2005-12-02 Hitachi Ltd Diagnostic device of secondary air feeder

Also Published As

Publication number Publication date
JP2007276169A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4817938B2 (en) Valve operation confirmation device for thermoforming device, thermoforming device and valve operation confirmation method thereof
US10751939B2 (en) Desktop printing apparatus for 3D printing an object and duplex printing module
CN203792933U (en) Sheet processing device
CN102177010A (en) Device and method for thermoforming by hot-plate heating
CN108349151A (en) Thermal formation apparatus and thermoforming process
JP2013220536A (en) Foil stamping device
JP4392403B2 (en) Thermoforming equipment
JP4817885B2 (en) Thermoforming apparatus and thermoforming method
KR20160130523A (en) Thermoforming apparatus
DE502005007167D1 (en) welding device
JP2007094380A5 (en)
JP5846796B2 (en) Thermoforming apparatus and thermoforming method using hot plate
JP4817937B2 (en) Thermoforming equipment
JP2011037060A (en) Apparatus for sealing side end of hollow synthetic resin plate, and method for producing hollow synthetic resin plate with side end sealed
JP2009023205A (en) Thermoforming device and thermoforming method
JP2011026169A (en) Single-curved glass manufacturing system, single-curved glass and single curved glass manufacturing method
EP3608079A1 (en) Base material holding mechanism, transport device, holding member, base material molding system, method for holding base material, and method for molding base material
JP5431878B2 (en) Mold fixing apparatus, thermoforming apparatus, mold fixing method, and thermoforming method
JP5010379B2 (en) Thermoforming apparatus and thermoforming method
JP4812090B2 (en) Molding apparatus and molding mechanism support position fixing method
JPH08290439A (en) Injection molding simultaneous patterning method and apparatus
CN108839327A (en) Adsorption type material part surface molding machine
CN203622949U (en) Dual-cover plate laminating check system of airbag restraint system
JP5937313B2 (en) Thermoforming apparatus and temperature control unit thereof
JP2005066967A (en) Apparatus and method for laminating laminated plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250