JP4817405B2 - Hydrodesulfurization catalyst and method for producing the same - Google Patents

Hydrodesulfurization catalyst and method for producing the same Download PDF

Info

Publication number
JP4817405B2
JP4817405B2 JP2001098291A JP2001098291A JP4817405B2 JP 4817405 B2 JP4817405 B2 JP 4817405B2 JP 2001098291 A JP2001098291 A JP 2001098291A JP 2001098291 A JP2001098291 A JP 2001098291A JP 4817405 B2 JP4817405 B2 JP 4817405B2
Authority
JP
Japan
Prior art keywords
catalyst
solution
desulfurization
hydrodesulfurization
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001098291A
Other languages
Japanese (ja)
Other versions
JP2002292281A (en
Inventor
泰仁 小川
雄二 葭村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001098291A priority Critical patent/JP4817405B2/en
Publication of JP2002292281A publication Critical patent/JP2002292281A/en
Application granted granted Critical
Publication of JP4817405B2 publication Critical patent/JP4817405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石油精製の分野で用いられる水素化脱硫触媒とその製造方法に関する。
【0002】
【従来の技術】
化石燃料資源の有効利用及び地球環境保全の点から、石油精製の分野に於ける炭化水素油の水素化処理の重要性は増加する傾向にあり、水素化処理に対してより高い性能を誇るプロセスの開発が求められている。なかでもガソリンや軽油のような内燃機関用の燃料油中に含まれる硫黄化合物は、燃焼の際に硫黄酸化物として大気中に放出される。このため、燃料面での大気汚染防止対策として、より低い硫黄分濃度の軽油がディーゼル燃料として求められている。日本国内では1997年10月から、軽油中の硫黄分は500ppm以下に引き下げられたが、更なる燃料油の硫黄分低減が求められている。
【0003】
このような背景により、軽油中の硫黄分を大幅に引き下げる技術の開発が求められている。軽油中の硫黄分低減は、通常は精製工程における水素化脱硫処理で行われる。処理後の油中に含まれる硫黄分濃度をより下げる方法として、処理温度や液空間速度等の工程の運転条件を過酷にする方法があるが、これらの方法は処理容量能力の低下や処理油の色相低下などの問題がある。従って、これらの問題を伴うことなく、より低硫黄分の軽油を得る方法としては、使用する水素化脱硫触媒の高性能化に求められるところが大きい。
【0004】
水素化脱硫触媒は、対象とする原料や反応等の目的に応じて、活性金属種の組み合わせ、担持量、担体種、添加成分などについて様々なものが工業的規模で用いられている。中でも炭化水素油の水素化脱硫触媒としては、アルミナ、シリカ、ゼオライトといった耐火性の多孔性金属酸化物が単成分又は複成分で担体として用いられることが多い。これらの担体にモリブデンやタングステンといった周期表第6族金属と、コバルトやニッケルといった第8族金属を酸化物形態で担持された触媒を用いることが多い。これらの触媒は通常予備硫化処理で活性化された後に使用される。
【0005】
【発明が解決しようとする課題】
硫黄分を500ppmレベルとする従来の深度脱硫であれば現在の脱硫技術での達成は比較的容易であるが、500ppm以下の超深度脱硫レベルでは4,6−ジメチルジベンゾチオフェンを初めとする従来の水素化脱硫触媒では脱硫が困難な化合物(以下、「難脱硫化合物」ともいう)の効率的な脱硫が求められる。しかしこれらの難脱硫化合物の脱硫は従来の脱硫触媒では困難であることから、特にこれらの難脱硫化合物の脱硫に優れた性能を有する触媒が求められる。
【0006】
例えば特開2000−342976号公報ではブレンステッド酸点やルイス酸点を付与した成分を担体に使用することで4,6−ジメチルジベンゾチオフェンなどの難脱硫化合物を易脱硫化合物に変化させて脱硫する方法が開示されているが、ブレンステッド酸点は異性化と同時にクラッキングを引き起こすため炭化水素の軽質化、液収率の低下、コーキングによる触媒表面の被覆による早期劣化をもたらすなど好ましくない一面を有する。
本発明は、このような課題を解決するため、水素化脱硫されにくい難脱硫化合物の脱硫性能に優れた水素化脱硫触媒及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記のような目的を達成するために鋭意研究した結果、周期表第6族金属の少なくとも1種、周期表第8族金属の少なくとも1種、及びランタノイドから選ばれた少なくとも1種が溶解した担持溶液を調製し、該担持溶液を多孔質な耐火性金属酸化物からなる担体に含浸することにより製造された水素化脱硫触媒が、難脱硫化合物に対する脱硫性能に優れていることを見出した。
【0008】
担持溶液は、pHが7以下であること、また、有機酸、特にはカルボキシル基を分子内に2つ以上有する構造である有機酸を含有することが好ましい。周期表第6族金属がモリブデン、タングステンから選ばれた少なくとも1つであること、周期表第8族金属が、鉄、コバルト、ニッケルから選ばれた少なくとも1つであること、また、ランタノイドが原子番号57〜71から選ばれた少なくとも1種であることが好ましい。触媒重量に対し、ランタノイドを酸化物として0.03〜30重量%含有することが好ましい。多孔質な耐火性金属酸化物からなる担体がアルミナ、シリカ、ボリア、チタニア、ジルコニア、ゼオライトの少なくとも1種から実質的に構成されることが好ましい。
5%留出温度が200℃以上、95%留出温度が400℃以下、硫黄分が500ppm以下の石油留分と本発明による水素化脱硫触媒を水素の存在下で接触させることによる水素化脱硫が好ましい。
【0009】
【発明の実施の形態】
本発明が示す周期表第6族金属には、クロム、モリブデン、タングステンなどが1種又は複数種で用いられる。担持液に導入する化合物の形態としては、たとえば酸化クロム、酸化モリブデン、酸化タングステンなどの金属酸化物の他に、硫酸塩、有機酸塩などの金属塩を使用することができるが、不要成分の触媒中への残留や後の焼成処理工程での排出ガスを考慮すると特に金属酸化物又は有機酸塩を用いるのが好ましい。モリブデン又はタングステンのいずれかが第6族金属に占める原子比として単一で50モル%以上含む触媒が好ましい。周期表第6族金属の合計の含有量は、触媒重量に対し、酸化物として5〜35重量%、特には10〜32重量%が好ましい。5重量%未満では十分な脱硫活性が得られず、また35重量%を越えると担体表面における金属の分散性が飽和してこれ以上の触媒活性向上が得られないためにコスト面で見合わない。
【0010】
本発明が示す周期表第8族金属には、鉄、コバルト、ニッケルなどが1種又は複数種で用いられる。担持液に導入する化合物の形態としては、たとえば硝酸塩、硫酸鉛、炭酸塩、水酸化物、有機酸塩などが挙げられるが、不要成分の触媒中への残留や後の焼成処理工程での排出ガスを考慮すると炭酸塩または有機酸塩を用いるのが特に好ましい。周期表第8族金属の合計の含有量は、触媒重量に対し、酸化物として0.5〜7重量%、特には1〜5重量%が好ましく、また第6族金属に対する含有量が金属モル比で25〜75モル%である触媒が特に好ましい。
【0011】
本発明が示すランタノイドには、ランタン、セリウム、イッテルビウムなどに代表される、周期表にて原子番号57〜71で示されるランタノイド金属が1種又は複数種で用いられる。担持液に導入する化合物の形態としては、たとえば酸化ランタン、酸化セリウム、酸化イッテルビウムなどの金属酸化物の他に、硫酸塩、硝酸塩、有機酸塩などの金属塩化合物を使用することができる。触媒中のランタノイドの合計量は、酸化物として0.03〜30重量%、好ましくは0.03〜6重量%、更に好ましくは0.1〜5重量%である。ランタノイドの使用量は少量では十分な添加効果が得られず、また多量に加えると担体表面におけるランタノイドの分散性が飽和してこれ以上の触媒活性向上が得られず、コスト面で見合わないので好ましくない。
【0012】
本発明では、これらの金属成分が全て共存する均一な担持溶液を作成して一液とし、これを担体に一度で担持処理して導入する方法を用いる。これにより、金属成分の触媒中での分散性が向上し、特に含有量の少ないランタノイドを他の金属に対して均一に分散させることができるため、触媒活性に優れると考えられる。また、二液以上の担持溶液を用いた場合と比べて、担持液の含浸工程を少なくすることもできる。
【0013】
これらの金属成分を均一に溶解させる方法としては有機酸を用いる方法が効果的である。この有機酸は求められる全ての金属成分を均一に溶解せしめるものであれば特に制約を受けるものではないが、たとえばリンゴ酸、酒石酸、クエン酸、シュウ酸などのカルボキシル基を分子内に2つ以上有する構造のものを用いることで、安定かつ高い均一性を有する担持溶液を得ることができる。これらの有機酸は1種単独で用いても2種以上を併用してもよい。本発明に用いる担持溶液中の有機酸の濃度は、使用する金属化合物の種類やそれらの使用量により異なるので一概には規定できないが、おおよそ通常水などの溶媒1リットルに対して30g以上300g以下が好ましく、50g以上250g以下が特に好ましい。300gを越える高濃度では担持溶液の粘度が上がり、分散度の高い含浸担持が困難になる恐れがあるので好ましくない。
【0014】
本発明に使用する担体は、アルミナ、シリカ、ボリア、チタニア、ジルコニア、ゼオライトといった耐火性金属酸化物の少なくとも1種を主なる成分として含有し、好ましくは1種の金属酸化物が30重量%以上、特には50重量%以上含まれているものである。例えばアルミナには、α−アルミナ、β−アルミナ、γ−アルミナ、δ−アルミナ、η−アルミナなどの結晶形態を有するアルミナの他に、非晶質(アモルファス)のアルミナを用いることができる。
【0015】
本発明に使用する担体の比表面積、細孔容積、及び平均細孔半径は特に制限されないが、比表面積は5〜700m2/gが好ましく、特に好ましくは50〜500m2/gのものが用いられる。5m2/g未満のものは他金属成分の分散性に乏しく、好適な脱硫性能を得られない。また700m2/gを越えるものは孔径の微小化を伴い反応物の拡散性に劣るため好ましくない。細孔容積は0.2cc/g以上が好ましく、特に好ましくは0.3〜1.0cc/gのものが用いられる。細孔容積が0.2cc/g未満では有効に機能する金属成分の含有量に制約が生じるので好ましくない。細孔半径は処理の対象とする油種により好ましいものを選択することができる。例えば軽油留分の水素化脱硫処理では、平均細孔半径が30〜50Åにあるものが好ましい。
【0016】
本発明が示す水素化脱硫触媒は形状によって限定されるものではなく、粉末状、円柱状、球状、葉状、ハニカム状など、使用目的や使用条件に応じて適宜選択することができるが、固定床反応装置では円柱状、球状、葉状、ハニカム状といった定形で用いられるのが好ましい。
【0017】
本発明における担持溶液を前記の担体に含浸することによって所定の金属成分を導入することができる。担持溶液と担体を含浸する操作は公知の含浸手法、たとえば含浸法、湿式吸着法、湿式混練法、スプレー法、塗布法、浸漬法など、あるいはこれらの組み合わせ法などが利用できるが、担持溶液と担体を接触させる方式であれば操作の方式及び条件を問わない。
【0018】
本発明による水素化脱硫触媒の製造方法では、担持溶液が含浸された担体を酸素雰囲気中で焼成することが好ましい。また含浸された担体は必要に応じて前乾燥処理を施しておくこともできる。好ましくは担持後50〜180℃で乾燥した後に酸素雰囲気中300〜600℃で2〜8時間焼成する。
【0019】
本発明で得られる水素化脱硫触媒は、そのまま所定の触媒又は触媒成分の一部として利用することができるが、必要に応じて成形、粉砕等の処理を施すこともできる。また必要に応じて種々の前処理を行ってから用いることもできる。この前処理は公知の手法、たとえば水素などの還元剤を用いた還元処理や硫化水素などの硫化剤を用いた予備硫化処理などが挙げられる。
【0020】
本発明が適用される水素化脱硫処理の対象油は、特に制限されるものではないが、直留軽油、脱硫処理後軽油、水素化処理軽油、接触分解軽油、熱分解軽油、減圧蒸留軽油などの、沸点範囲が150〜450℃、含有硫黄分が2重量%以下の軽油留分が最も適している。特には、軽油留分の超深度脱硫、具体的には5%留出温度が200℃以上、95%留出温度が400℃以下の軽油留分を硫黄分50ppm以下に水素化脱硫する触媒として本発明で得られる水素化脱硫触媒は好ましく用いられる。
【0021】
【実施例】
以下に本発明の実施例及び比較例を示して具体的な説明を行うが、本発明はこれらの実施例に限定されるものではない。
【0022】
〔実施例1〕
三酸化モリブデン 138g、塩基性炭酸ニッケル 61g、酢酸ランタンn水和物 13g、クエン酸 116gを熱水に溶解し、緑色透明な担持溶液500cc(pH 2.07)を調製した。この担持溶液は室温下で均一溶液であり、室温で1ヶ月放置した後も不溶物の析出は確認されなかった。この担持溶液100ccを比表面積176m2/g、細孔容積0.77cc/gのγ−アルミナ担体(円柱形1/16インチ径)130gに減圧含浸法で含浸した後、大気雰囲気下120℃で3時間乾燥処理を施し、続いて大気雰囲気下500℃で3時間焼成して触媒Aを得た。
【0023】
〔比較例1〕
酢酸ランタンn水和物を用いなかったこと以外は実施例1と同様に500ccの担持溶液(pH 1.40)を調製し、これを用いて実施例1と同様に調製を行い、触媒Bを得た。
【0024】
〔比較例2〕
実施例1で使用したγ−アルミナ担体に先に酢酸ランタン水溶液を含浸し、これを大気雰囲気下500℃で3時間焼成して、酸化ランタン1.0重量%を含有するγ−アルミナ担体を調製した。これを担体として酢酸ランタンn水和物を用いなかったこと以外は実施例1と同様の担持溶液を用いて実施例1と同様に調製を行い、触媒Cを得た。
【0025】
〔比較例3〕
クエン酸を用いなかったこと以外は実施例1と同様に行ったが、得られた担持溶液には多量の沈殿が発生しており、安定かつ均一な含浸液を調製することができなかった。不溶物としての沈殿が多く、pHは測定不能であった。
【0026】
〔実施例2〕
三酸化モリブデン 136g、塩基性炭酸コバルト 60g、酢酸イッテルビウム(III)四水和物 5.3g、クエン酸 116gを熱水に溶解し、赤紫色透明な担持溶液500cc(pH 2.05)を調製した。この担持溶液は室温下で均一溶液であり、室温で1ヶ月放置した後も不溶物の析出は確認されなかった。この担持溶液を用いて実施例1と同様に調製を行い、触媒Dを得た。
【0027】
〔比較例4〕
酢酸イッテルビウム(III)四水和物を用いなかったこと以外は実施例2と同様に500ccの担持溶液(pH 1.50)を調製し、これを用いて実施例2と同様に調製を行い、触媒Eを得た。
【0028】
〔比較例5〕
モリブデン酸アンモニウム四水和物 129g、硝酸コバルト(II)六水和物109g、酢酸ランタンn水和物 4.8g、25重量%アンモニア水 300ccを熱水中に加えて500ccの担持溶液を調製したが、一部白色沈殿が析出した(溶液のpHは9.85)。更にこの担持溶液を室温下で1日放置すると徐々に赤紫色の結晶が析出したため、安定かつ均一な担持溶液を得ることができなかった。
【0029】
〔実施例3〕
日本無機化学工業製のメタタングステン酸アンモニウム濃厚水溶液(三酸化タングステン50.74重量%含有) 630g、塩基性炭酸ニッケル 77g、酢酸セリウム(III)一水和物 65g、クエン酸 123gを水に溶解し、緑色透明な担持溶液500cc(pH 3.86)を調製した。この担持溶液は室温下で均一溶液であり、室温で1ヶ月放置した後も不溶物の析出は確認されなかった。この担持溶液を用いて実施例1と同様に行い、触媒Fを得た。
【0030】
〔比較例6〕
酢酸セリウム(III)一水和物を用いなかったこと以外は実施例3と同様に500ccの担
持溶液(pH 3.58)を調製し、これを用いて実施例3と同様に調製を行い、触媒Gを得た。
【0031】
以上の実施例及び比較例で得た担持溶液の性状を表1に示し、これらのうち均一な担持溶液を用いて調製した触媒A〜Gの元素分析値を表2に示す。
【0032】
【表1】

Figure 0004817405
【0033】
【表2】
Figure 0004817405
【0034】
〔反応評価1〕
実施例及び比較例で得た触媒はそれぞれ硫化水素・水素混合ガス(硫化水素:水素=5:95)雰囲気下400℃で3時間予備硫化処理を行い、硫化後の触媒50mgを採取して容量37ccのオートクレーブに投入し、以下の条件で反応評価を行った。反応温度:310℃、初期張り込み水素圧(常温):3.5MPaであり、原料油として、4,6−ジメチルジベンゾチオフェン0.5重量%を含むn−ドデカン溶液(内部標準としてn−エイコサンを0.3重量%含む) 5ccを用いた。反応時間は触媒毎に0.5、1.0、1.5、2.0時間の4バッチ行い、反応後に回収した反応液及びガス中に含まれる成分をそれぞれガスクロマトグラフィーで分析定量した。回収したガス中にはいずれも炭素数8以上の物質は確認されなかった。従って反応結果については以下の方法で解析した。
【0035】
{1}転化反応速度定数比:4,6−ジメチルジベンゾチオフェンの反応液中の減少量に対して、1次の反応次数を得る反応速度式の速度定数を求め、基準となる触媒による速度定数との比により比較した。比が1より大きいほど4,6−ジメチルジベンゾチオフェンの転化活性に相対的に優れている触媒であることを示す。
【0036】
{2}脱硫反応速度定数比:4,6−ジメチルジベンゾチオフェンの脱硫反応によって反応液中に生成した非硫黄含有物質(ジメチルビフェニル類、メチルシクロヘキシルトルエン類、ビメチルシクロヘキシル類)の生成量の増加量に対して、1次の反応次数を得る反応速度式の速度定数を求め、基準となる触媒による速度定数との比により比較した。比が1より大きいほど4,6−ジメチルジベンゾチオフェンの脱硫活性に相対的に優れている触媒であることを示す。
【0037】
{3}分解生成物(%):2時間反応した後に回収したガス及び反応液中に含まれる炭素数7以下の化合物の生成量を分解生成物とする。回収したガス及び反応液の全重量に対する重量割合を%で表し、この値が低いほど副反応である分解反応が抑制された触媒であることを示す。
【0038】
これらの結果を表3、表4、表5に示す。表2に示されるように担持金属量がほぼ同じである触媒Aと触媒Cを比較すると、本発明の実施例である触媒Aが、転化反応速度定数及び脱硫反応速度定数において優れていることがわかる。また、これらの触媒は低い分解率を示す。
【0039】
【表3】
Figure 0004817405
【0040】
【表4】
Figure 0004817405
【0041】
【表5】
Figure 0004817405
【0042】
〔反応評価2〕
触媒A、Bについて、2.5ccをそれぞれ固定床流通式反応装置に充填し、原料油として直留軽油(LGO)(硫黄濃度1.2重量%、比重0.855)を用いて、液空間速度2.0h−1、温度350℃、水素/油比250Nl/l、水素分圧6MPaにて水素化脱硫を行い、生成油中の硫黄濃度を同様に分析定量して脱硫性能の評価を行った。尚、触媒は反応に先立って前処理として直留軽油(LGO)にDMDS(ジメチルジスルフィド)を添加した混合油(硫黄濃度3重量%)を水素ガスとともに250℃で20時間流通して予備硫化を行った。評価の結果、触媒Bによる生成油中の硫黄分は115重量ppmであり、99.04%の脱硫率であるが、触媒Aによる生成油中の硫黄分は39重量ppmであり、99.67%の脱硫率が得られた。これにより、本発明による水素化脱硫触媒は、水素化脱硫活性に優れている触媒であることが示された。
【0043】
【発明の効果】
以上詳述したように、本発明による水素化脱硫触媒の製造方法は、周期表第6族金属の少なくとも1種、周期表第8族金属の少なくとも1種、及びランタノイドから選ばれた少なくとも1種が溶解した担持溶液を調製し、該担持溶液を多孔質な耐火性金属酸化物からなる担体に含浸することを特徴としており、この方法により製造された水素化脱硫触媒は、水素化脱硫性能、特に難脱硫化合物に対する脱硫性能に優れており、かつ、クラッキングによる分解をほとんど生じない。したがって、軽油留分などの超深度脱硫レベルの水素化脱硫にいる触媒の製造に極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodesulfurization catalyst used in the field of petroleum refining and a method for producing the same.
[0002]
[Prior art]
From the viewpoint of effective use of fossil fuel resources and global environmental conservation, the importance of hydrotreating hydrocarbon oils in the field of petroleum refining tends to increase, and a process with higher performance for hydrotreating Development is required. In particular, sulfur compounds contained in fuel oils for internal combustion engines such as gasoline and light oil are released into the atmosphere as sulfur oxides during combustion. For this reason, as a measure against air pollution on the fuel side, diesel oil having a lower sulfur concentration is required as diesel fuel. In Japan, the sulfur content in light oil has been reduced to 500 ppm or less since October 1997, but further reduction in the sulfur content of fuel oil is required.
[0003]
Against this background, there is a demand for the development of technology that significantly reduces the sulfur content in light oil. Reduction of sulfur content in light oil is usually performed by hydrodesulfurization treatment in the refining process. As a method for further lowering the concentration of sulfur contained in the oil after treatment, there are methods for making the operating conditions of the process such as treatment temperature and liquid space velocity more severe. There is a problem such as a decrease in hue. Therefore, as a method for obtaining a light oil having a lower sulfur content without these problems, there is a great demand for high performance of the hydrodesulfurization catalyst to be used.
[0004]
Various hydrodesulfurization catalysts, such as combinations of active metal species, supported amounts, carrier types, and additive components, are used on an industrial scale according to the purpose of the target raw materials and reactions. Among them, as a hydrodesulfurization catalyst for hydrocarbon oil, a refractory porous metal oxide such as alumina, silica, or zeolite is often used as a carrier as a single component or multiple components. In many cases, a catalyst in which a periodic table group 6 metal such as molybdenum or tungsten and a group 8 metal such as cobalt or nickel are supported in an oxide form is used on these carriers. These catalysts are usually used after being activated by a presulfidation treatment.
[0005]
[Problems to be solved by the invention]
With conventional deep desulfurization with a sulfur content of 500 ppm, it is relatively easy to achieve with the current desulfurization technology, but with ultra deep desulfurization levels of 500 ppm or less, conventional deep desulfurization such as 4,6-dimethyldibenzothiophene. There is a demand for efficient desulfurization of a compound that is difficult to desulfurize with a hydrodesulfurization catalyst (hereinafter also referred to as “hardly desulfurized compound”). However, since desulfurization of these difficult desulfurization compounds is difficult with conventional desulfurization catalysts, a catalyst having excellent performance for desulfurization of these difficult desulfurization compounds is particularly required.
[0006]
For example, in Japanese Patent Application Laid-Open No. 2000-342976, a desulfurized compound such as 4,6-dimethyldibenzothiophene is changed to an easily desulfurized compound by using a component having a Bronsted acid point or a Lewis acid point as a carrier, and desulfurized. Although the method is disclosed, the Bronsted acid point causes cracking at the same time as isomerization, and thus has an unfavorable aspect such as lightening of hydrocarbons, reduction of liquid yield, and premature deterioration due to coating of the catalyst surface by coking. .
In order to solve such problems, an object of the present invention is to provide a hydrodesulfurization catalyst excellent in desulfurization performance of a difficult-to-desulfurize compound that is difficult to hydrodesulfurize and a method for producing the same.
[0007]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present inventors have found that at least one selected from Group 6 metals of the periodic table, at least one Group 8 metals of the periodic table, and at least one selected from lanthanoids. A hydrodesulfurization catalyst produced by preparing a support solution in which one kind is dissolved and impregnating the support solution made of a porous refractory metal oxide is excellent in desulfurization performance for difficult-to-desulfurize compounds. I found out.
[0008]
The supporting solution preferably has a pH of 7 or less and contains an organic acid, particularly an organic acid having a structure having two or more carboxyl groups in the molecule. The Group 6 metal of the periodic table is at least one selected from molybdenum and tungsten, the Group 8 metal of the periodic table is at least one selected from iron, cobalt, and nickel, and the lanthanoid is an atom. It is preferable that it is at least 1 sort (s) chosen from numbers 57-71. It is preferable to contain 0.03 to 30% by weight of lanthanoid as an oxide with respect to the catalyst weight. It is preferable that the carrier made of a porous refractory metal oxide is substantially composed of at least one of alumina, silica, boria, titania, zirconia, and zeolite.
Hydrodesulfurization by contacting a petroleum fraction having a 5% distillation temperature of 200 ° C. or more, a 95% distillation temperature of 400 ° C. or less, and a sulfur content of 500 ppm or less with a hydrodesulfurization catalyst according to the present invention in the presence of hydrogen. Is preferred.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As the Group 6 metal of the periodic table shown in the present invention, chromium, molybdenum, tungsten, or the like is used as one kind or plural kinds. As the form of the compound to be introduced into the supporting liquid, for example, metal salts such as sulfates and organic acid salts can be used in addition to metal oxides such as chromium oxide, molybdenum oxide and tungsten oxide. In consideration of residual in the catalyst and exhaust gas in the subsequent calcination process, it is particularly preferable to use a metal oxide or an organic acid salt. A catalyst containing at least 50 mol% of the atomic ratio of either molybdenum or tungsten in the Group 6 metal is preferable. The total content of Group 6 metals of the periodic table is preferably 5 to 35% by weight, particularly 10 to 32% by weight, as an oxide, based on the weight of the catalyst. If it is less than 5% by weight, sufficient desulfurization activity cannot be obtained, and if it exceeds 35% by weight, the dispersibility of the metal on the support surface is saturated and no further improvement in catalyst activity can be obtained. .
[0010]
As the Group 8 metal of the periodic table shown in the present invention, iron, cobalt, nickel and the like are used in one kind or plural kinds. Examples of the form of the compound to be introduced into the support liquid include nitrate, lead sulfate, carbonate, hydroxide, organic acid salt, etc., but residual components in the catalyst and discharge in the subsequent calcination process In view of gas, it is particularly preferable to use a carbonate or an organic acid salt. The total content of Group 8 metals in the periodic table is preferably 0.5 to 7% by weight, particularly 1 to 5% by weight, in terms of oxides, based on the catalyst weight, and the content relative to Group 6 metals is preferably metal mole A catalyst having a ratio of 25 to 75 mol% is particularly preferred.
[0011]
As the lanthanoid represented by the present invention, one or more lanthanoid metals represented by atomic numbers 57 to 71 in the periodic table represented by lanthanum, cerium, ytterbium and the like are used. As the form of the compound to be introduced into the supporting liquid, for example, metal salt compounds such as sulfates, nitrates and organic acid salts can be used in addition to metal oxides such as lanthanum oxide, cerium oxide and ytterbium oxide. The total amount of lanthanoid in the catalyst is 0.03 to 30% by weight, preferably 0.03 to 6% by weight, more preferably 0.1 to 5% by weight as an oxide. If the amount of lanthanoid used is small, a sufficient addition effect cannot be obtained, and if it is added in a large amount, the dispersibility of the lanthanoid on the surface of the carrier is saturated and no further improvement in catalytic activity can be obtained. It is not preferable.
[0012]
In the present invention, there is used a method in which a uniform supporting solution in which all of these metal components coexist is prepared to form a single solution, and this is supported on the support and introduced at a time. Thereby, the dispersibility of the metal component in the catalyst is improved, and a lanthanoid having a particularly small content can be uniformly dispersed with respect to other metals. Therefore, it is considered that the catalyst activity is excellent. Moreover, the impregnation process of a supporting liquid can also be reduced compared with the case where the supporting solution of two or more liquids is used.
[0013]
As a method for uniformly dissolving these metal components, a method using an organic acid is effective. This organic acid is not particularly limited as long as it uniformly dissolves all the required metal components. For example, two or more carboxyl groups such as malic acid, tartaric acid, citric acid and oxalic acid are present in the molecule. By using the structure having the structure, a supported solution having a stable and high uniformity can be obtained. These organic acids may be used alone or in combination of two or more. The concentration of the organic acid in the supporting solution used in the present invention varies depending on the type of metal compound used and the amount of the metal compound used, and thus cannot be defined unconditionally, but is generally 30 g or more and 300 g or less with respect to 1 liter of a solvent such as water. Is preferable, and 50 g or more and 250 g or less are particularly preferable. A high concentration exceeding 300 g is not preferable because the viscosity of the support solution increases and impregnation support with high dispersibility may be difficult.
[0014]
The carrier used in the present invention contains at least one refractory metal oxide such as alumina, silica, boria, titania, zirconia, and zeolite as a main component, and preferably one metal oxide is 30% by weight or more. In particular, 50% by weight or more is contained. For example, amorphous alumina can be used in addition to alumina having a crystal form such as α-alumina, β-alumina, γ-alumina, δ-alumina, and η-alumina.
[0015]
The specific surface area, pore volume, and average pore radius of the carrier used in the present invention are not particularly limited, but the specific surface area is preferably 5 to 700 m <2> / g, particularly preferably 50 to 500 m <2> / g. When the amount is less than 5 m2 / g, the dispersibility of other metal components is poor, and a suitable desulfurization performance cannot be obtained. Moreover, the thing exceeding 700 m <2> / g is unpreferable since it is inferior to the diffusibility of a reaction material accompanying the miniaturization of a hole diameter. The pore volume is preferably 0.2 cc / g or more, particularly preferably 0.3 to 1.0 cc / g. If the pore volume is less than 0.2 cc / g, the content of the effectively functioning metal component is restricted, which is not preferable. A preferable pore radius can be selected depending on the type of oil to be treated. For example, in the hydrodesulfurization treatment of a light oil fraction, those having an average pore radius of 30 to 50 mm are preferable.
[0016]
The hydrodesulfurization catalyst shown in the present invention is not limited by the shape, and can be appropriately selected according to the purpose of use and use conditions such as powder, columnar, spherical, leaf-like, and honeycomb-like shapes. The reactor is preferably used in a fixed shape such as a columnar shape, a spherical shape, a leaf shape, or a honeycomb shape.
[0017]
A predetermined metal component can be introduced by impregnating the carrier with the supporting solution in the present invention. For the operation of impregnating the supporting solution and the carrier, a known impregnation method such as an impregnation method, a wet adsorption method, a wet kneading method, a spray method, a coating method, a dipping method, or a combination thereof can be used. The method and conditions of operation are not limited as long as the carrier is brought into contact.
[0018]
In the method for producing a hydrodesulfurization catalyst according to the present invention, the support impregnated with the support solution is preferably calcined in an oxygen atmosphere. Further, the impregnated carrier can be pre-dried as necessary. Preferably, after supporting, drying at 50 to 180 ° C., followed by baking at 300 to 600 ° C. in an oxygen atmosphere for 2 to 8 hours.
[0019]
The hydrodesulfurization catalyst obtained in the present invention can be used as it is as a part of a predetermined catalyst or catalyst component, but can be subjected to treatments such as molding and pulverization as necessary. Moreover, it can also use, after performing various pre-processing as needed. Examples of the pretreatment include known methods such as a reduction treatment using a reducing agent such as hydrogen and a preliminary sulfiding treatment using a sulfiding agent such as hydrogen sulfide.
[0020]
The target oil for hydrodesulfurization treatment to which the present invention is applied is not particularly limited, but straight-run gas oil, gas oil after desulfurization treatment, hydrogenated gas oil, catalytic cracking gas oil, pyrolysis gas oil, vacuum distillation gas oil, etc. A gas oil fraction having a boiling range of 150 to 450 ° C. and a sulfur content of 2% by weight or less is most suitable. In particular, as a catalyst for ultra-deep desulfurization of gas oil fractions, specifically, hydrodesulfurization of gas oil fractions having a 5% distillation temperature of 200 ° C. or higher and a 95% distillation temperature of 400 ° C. or lower to a sulfur content of 50 ppm or lower. The hydrodesulfurization catalyst obtained in the present invention is preferably used.
[0021]
【Example】
Hereinafter, examples and comparative examples of the present invention will be shown and described in detail, but the present invention is not limited to these examples.
[0022]
[Example 1]
138 g of molybdenum trioxide, 61 g of basic nickel carbonate, 13 g of lanthanum acetate n hydrate, and 116 g of citric acid were dissolved in hot water to prepare 500 cc (pH 2.07) of a green transparent support solution. This supported solution was a homogeneous solution at room temperature, and no insoluble precipitate was observed after standing at room temperature for 1 month. 100 g of this supported solution was impregnated with 130 g of a γ-alumina carrier (cylindrical 1/16 inch diameter) having a specific surface area of 176 m 2 / g and a pore volume of 0.77 cc / g by a reduced pressure impregnation method. A time drying treatment was performed, followed by calcination at 500 ° C. for 3 hours in an air atmosphere to obtain Catalyst A.
[0023]
[Comparative Example 1]
A 500 cc supported solution (pH 1.40) was prepared in the same manner as in Example 1 except that lanthanum acetate n hydrate was not used, and this was used in the same manner as in Example 1 to prepare catalyst B. Obtained.
[0024]
[Comparative Example 2]
The γ-alumina carrier used in Example 1 was first impregnated with an aqueous lanthanum acetate solution and calcined at 500 ° C. for 3 hours in an air atmosphere to prepare a γ-alumina carrier containing 1.0% by weight of lanthanum oxide. did. A catalyst C was obtained in the same manner as in Example 1 except that lanthanum acetate n hydrate was not used as a carrier and the same supporting solution as in Example 1 was used.
[0025]
[Comparative Example 3]
The procedure was the same as Example 1 except that citric acid was not used. However, a large amount of precipitate was generated in the obtained supporting solution, and a stable and uniform impregnation solution could not be prepared. There was much precipitation as an insoluble matter, and pH was not measurable.
[0026]
[Example 2]
136 g of molybdenum trioxide, 60 g of basic cobalt carbonate, 5.3 g of ytterbium (III) acetate tetrahydrate, and 116 g of citric acid were dissolved in hot water to prepare 500 cc of a red-purple transparent support solution (pH 2.05). . This supported solution was a homogeneous solution at room temperature, and no insoluble precipitate was observed after standing at room temperature for 1 month. Using this supported solution, preparation was performed in the same manner as in Example 1 to obtain Catalyst D.
[0027]
[Comparative Example 4]
A 500 cc supported solution (pH 1.50) was prepared in the same manner as in Example 2 except that ytterbium acetate (III) tetrahydrate was not used, and this was used to prepare in the same manner as in Example 2. Catalyst E was obtained.
[0028]
[Comparative Example 5]
129 g of ammonium molybdate tetrahydrate, 109 g of cobalt nitrate (II) hexahydrate, 4.8 g of lanthanum acetate n hydrate, and 300 cc of 25 wt% ammonia water were added to hot water to prepare a 500 cc supported solution. However, a white precipitate was partially deposited (pH of the solution was 9.85). Further, when this supported solution was allowed to stand at room temperature for 1 day, reddish purple crystals gradually precipitated, and a stable and uniform supported solution could not be obtained.
[0029]
Example 3
630 g of ammonium metatungstate concentrated aqueous solution (containing 50.74% by weight of tungsten trioxide) manufactured by Nippon Inorganic Chemical Industry, dissolved in 77 g of basic nickel carbonate, 77 g of cerium (III) acetate monohydrate, and 123 g of citric acid in water A green transparent supporting solution 500 cc (pH 3.86) was prepared. This supported solution was a homogeneous solution at room temperature, and no insoluble precipitate was observed after standing at room temperature for 1 month. Using this supported solution, a catalyst F was obtained in the same manner as in Example 1.
[0030]
[Comparative Example 6]
A 500 cc supported solution (pH 3.58) was prepared in the same manner as in Example 3 except that cerium (III) acetate monohydrate was not used, and this was used to prepare in the same manner as in Example 3. Catalyst G was obtained.
[0031]
Table 1 shows the properties of the supported solutions obtained in the above Examples and Comparative Examples, and Table 2 shows the elemental analysis values of Catalysts A to G prepared using a uniform supported solution.
[0032]
[Table 1]
Figure 0004817405
[0033]
[Table 2]
Figure 0004817405
[0034]
[Reaction Evaluation 1]
The catalysts obtained in the examples and comparative examples were each preliminarily sulfurized for 3 hours at 400 ° C. in a hydrogen sulfide / hydrogen mixed gas (hydrogen sulfide: hydrogen = 5: 95) atmosphere, and 50 mg of the catalyst after sulfidation was sampled. The reaction was evaluated under the following conditions after being put in a 37 cc autoclave. Reaction temperature: 310 ° C., initial inset hydrogen pressure (room temperature): 3.5 MPa, n-dodecane solution containing 0.5% by weight of 4,6-dimethyldibenzothiophene as raw material oil (n-eicosane as internal standard) 5 cc was used. The reaction time was 4 batches of 0.5, 1.0, 1.5, and 2.0 hours for each catalyst, and the components contained in the reaction liquid and gas collected after the reaction were analyzed and quantified by gas chromatography. No substance having 8 or more carbon atoms was found in any of the collected gases. Therefore, the reaction results were analyzed by the following method.
[0035]
{1} Conversion reaction rate constant ratio: The rate constant of the reaction rate equation for obtaining the first-order reaction order is obtained with respect to the decrease amount of 4,6-dimethyldibenzothiophene in the reaction solution, and the rate constant by the reference catalyst is obtained. It was compared by the ratio. A ratio larger than 1 indicates that the catalyst is relatively excellent in the conversion activity of 4,6-dimethyldibenzothiophene.
[0036]
{2} Desulfurization rate constant ratio: Increase in the amount of non-sulfur-containing substances (dimethylbiphenyls, methylcyclohexyltoluenes, bimethylcyclohexyls) produced in the reaction solution by desulfurization of 4,6-dimethyldibenzothiophene The rate constant of the reaction rate equation for obtaining the first-order reaction order was obtained with respect to the amount, and compared with the rate constant of the reference catalyst. A ratio larger than 1 indicates that the catalyst is relatively excellent in the desulfurization activity of 4,6-dimethyldibenzothiophene.
[0037]
{3} Decomposition product (%): The amount of the gas recovered after reacting for 2 hours and the amount of the compound having 7 or less carbon atoms contained in the reaction solution is defined as the decomposition product. The weight ratio with respect to the total weight of the collect | recovered gas and reaction liquid is represented by%, and it shows that it is a catalyst with which the decomposition reaction which is a side reaction is suppressed, so that this value is low.
[0038]
These results are shown in Table 3, Table 4, and Table 5. As shown in Table 2, when the catalyst A and the catalyst C having substantially the same amount of supported metal are compared, the catalyst A which is an example of the present invention is superior in the conversion reaction rate constant and the desulfurization reaction rate constant. Recognize. Moreover, these catalysts show a low decomposition rate.
[0039]
[Table 3]
Figure 0004817405
[0040]
[Table 4]
Figure 0004817405
[0041]
[Table 5]
Figure 0004817405
[0042]
[Reaction Evaluation 2]
About Catalysts A and B, 2.5 cc of each is packed into a fixed-bed flow reactor, and straight-run gas oil (LGO) (sulfur concentration: 1.2% by weight, specific gravity: 0.855) is used as a raw material oil. Hydrodesulfurization is performed at a speed of 2.0 h-1, a temperature of 350 ° C., a hydrogen / oil ratio of 250 Nl / l, and a hydrogen partial pressure of 6 MPa, and the sulfur concentration in the product oil is similarly analyzed and quantified to evaluate the desulfurization performance. It was. As a pretreatment prior to the reaction, the catalyst is pre-sulfided by flowing a mixed oil (sulfur concentration 3% by weight) obtained by adding DMDS (dimethyl disulfide) to straight-run gas oil (LGO) together with hydrogen gas at 250 ° C. for 20 hours. went. As a result of the evaluation, the sulfur content in the product oil by the catalyst B is 115 ppm by weight and the desulfurization rate is 99.04%, but the sulfur content in the product oil by the catalyst A is 39 ppm by weight, and 99.67. % Desulfurization rate was obtained. Thereby, it was shown that the hydrodesulfurization catalyst by this invention is a catalyst excellent in hydrodesulfurization activity.
[0043]
【The invention's effect】
As described above in detail, the method for producing a hydrodesulfurization catalyst according to the present invention comprises at least one selected from Group 6 metals of the periodic table, at least one Group 8 metals of the periodic table, and lanthanoids. Is prepared by impregnating a carrier made of a porous refractory metal oxide, and the hydrodesulfurization catalyst produced by this method has hydrodesulfurization performance, In particular, it is excellent in desulfurization performance for difficult desulfurization compounds and hardly decomposes by cracking. Therefore, it is extremely useful for the production of catalysts in hydrodesulfurization at ultra deep desulfurization levels such as gas oil fractions.

Claims (1)

周期表第6族金属の少なくとも1種、周期表第8族金属の少なくとも1種、及びランタノイドから選ばれた少なくとも1種が溶解した担持溶液に有機酸を含有させてpH7以下に調製し、該担持溶液を多孔質な耐火性金属酸化物からなる担体に含浸して、一度で金属成分を担持することを特徴とする水素化脱硫触媒の製造方法。An organic acid is contained in a support solution in which at least one selected from Group 6 metals of the periodic table, at least one selected from Group 8 metals of the periodic table, and at least one selected from lanthanoids is dissolved, and the pH is adjusted to 7 or less, A method for producing a hydrodesulfurization catalyst, comprising impregnating a support solution made of a porous refractory metal oxide and supporting a metal component at a time .
JP2001098291A 2001-03-30 2001-03-30 Hydrodesulfurization catalyst and method for producing the same Expired - Lifetime JP4817405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001098291A JP4817405B2 (en) 2001-03-30 2001-03-30 Hydrodesulfurization catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001098291A JP4817405B2 (en) 2001-03-30 2001-03-30 Hydrodesulfurization catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002292281A JP2002292281A (en) 2002-10-08
JP4817405B2 true JP4817405B2 (en) 2011-11-16

Family

ID=18951953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001098291A Expired - Lifetime JP4817405B2 (en) 2001-03-30 2001-03-30 Hydrodesulfurization catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4817405B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571885B2 (en) * 2005-05-12 2010-10-27 日本ケッチェン株式会社 Hydrotreating catalyst, method for producing the same, and hydrotreating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3333232B2 (en) * 1992-05-15 2002-10-15 日揮ユニバーサル株式会社 Hydrodesulfurization catalyst and method for producing the same
JPH11319567A (en) * 1998-05-11 1999-11-24 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst

Also Published As

Publication number Publication date
JP2002292281A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
JP5498702B2 (en) Selective catalyst with silica support for naphtha hydrodesulfurization
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
RU2377067C2 (en) Highly active desulphurisation catalyst, method of preparing said catalyst and method of producing middle distillate fuel with ultralow sulphur content
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP6506430B2 (en) Improved resid hydroprocessing catalyst containing titania
US20070175797A1 (en) Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
JP5217034B2 (en) Hydrodesulfurization / dewaxing catalyst for hydrocarbon oil, method for producing the same, and method for hydrotreating hydrocarbon oil using the catalyst
WO2014033653A2 (en) Hydrotreating catalyst and process for preparing the same
US6383975B1 (en) Procedure to obtain a catalyst for the hydrodenitrogenation and hydrodesulfurization of middle and heavy oil fraction and the resulting product
RU2639159C2 (en) Catalyst, method of producing carrier, method of producing catalyst and method of hydrofining hydrocarbon feedstock
JP3272384B2 (en) Catalyst composition, method for producing the same, and method for hydrodesulfurizing sulfur-containing hydrocarbons using the catalyst composition
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP4817405B2 (en) Hydrodesulfurization catalyst and method for producing the same
RU2385764C2 (en) Method of preparing catalysts for deep hydrofining oil fractions
RU2313390C1 (en) Catalyst, method of preparation thereof (variants), and diesel fraction hydrodesulfurization process
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JPS63123448A (en) Manufacture of hydrogenating treating catalyst from hydrogel
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
JP2920255B2 (en) Hydrodesulfurization catalyst
CN102614889A (en) Hydrotreatment catalyst and application thereof
JP2008105031A (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
JP2000233132A (en) Catalyst for hydrodesulfurization/isomerization of light hydrocarbon oil and production thereof
JP2006306974A (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil
JP2001198471A (en) Impregnation liquid for producing hydrogenation catalyst and method for producing hydrogenation catalyst
RU2773151C1 (en) Method for preparing a composition of a hydrotreating catalyst for the production of diesel fuel with an ultra-low sulfur content

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term