JP2005022064A - Coating drilling tool - Google Patents

Coating drilling tool Download PDF

Info

Publication number
JP2005022064A
JP2005022064A JP2003270714A JP2003270714A JP2005022064A JP 2005022064 A JP2005022064 A JP 2005022064A JP 2003270714 A JP2003270714 A JP 2003270714A JP 2003270714 A JP2003270714 A JP 2003270714A JP 2005022064 A JP2005022064 A JP 2005022064A
Authority
JP
Japan
Prior art keywords
drilling tool
coated
groove
coating
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003270714A
Other languages
Japanese (ja)
Inventor
Katsuhisa Otomo
克久 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2003270714A priority Critical patent/JP2005022064A/en
Publication of JP2005022064A publication Critical patent/JP2005022064A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating drilling tool excellent in chip discharging property of a groove without requiring a post-process of removing bulky articles. <P>SOLUTION: In the coating drilling tool, assuming an arithmetical mean roughness of an outer peripheral margin section 2 of the coating drilling tool is Ra(M) and an arithmetical mean roughness of the groove is Ra(F), 0.03 μm < Ra(M) < 0.3 μm and 0.01 μm < Ra(F) < 0.15 μm. The postprocessing is not required, the controlled surface roughness of the groove 3 causes improvement of the chip handling property and deficit resistance and chipping resistance in drilling. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、穴あけ加工に使用されるドリル、ガンドリル、リーマなどの被覆穴あけ工具に関する。具体的には、外周マージン部と溝部において優れた表面状態を形成することにより、優れた切り屑排出性を有し、加工中の突発的な欠損およびチッピングを抑えて、安定した長寿命を有する被覆穴あけ工具に関する。 The present invention relates to a covering drilling tool such as a drill, a gun drill, and a reamer used for drilling. Specifically, by forming an excellent surface state in the outer peripheral margin and the groove, it has excellent chip evacuation, suppresses sudden chipping and chipping during processing, and has a stable long life The present invention relates to a covering drilling tool.

被膜表面のマクロ粒子を除去することによって、耐溶着性を改善している被覆工具がある(例えば、特許文献1参照。)。しかしながら、マクロ粒子を除去した後の凹部(マクロ粒子の抜けた部分)から剥離が生じ、突発的に切り屑詰まりが起き、刃先においては、チッピングが起き短寿命になるという問題がある。 There is a coated tool that has improved welding resistance by removing macro particles on the surface of the coating (see, for example, Patent Document 1). However, there is a problem that peeling occurs from the concave portion (the portion from which the macro particles have been removed) after the removal of the macro particles, and chip clogging occurs suddenly and chipping occurs at the cutting edge, resulting in a short life.

また、PVDコーティングしたドリルの溝部の微細突起部を後処理で除去することによって、切り屑排出性の改善を試みた深穴加工用ドリルが提案されている(例えば、特許文献2参照。)。しかし、処理部位を限定せず処理を一様に行なうことによって、本来切り屑処理性に対しては影響を与えないマージン部にも、その処理が強力に成されてしまい、その結果、必要以上に表面粗さが平滑になってしまうために、被削材との切削面積が大きくなり切削抵抗が増加して、かえって寿命低下を招くことがある。なお、外周マージン部をマスキングして溝部だけに処理する方法も考えられるが、ドリルすべての外周マージン部にマスキングすることは極めて困難である。また、特許文献1、2に記載された技術は、コーティング後に別処理をおこなうため、コストがかかるという問題がある。 Further, a drill for deep hole drilling has been proposed in which the fine protrusions of the groove portions of the PVD-coated drill are removed by post-processing to try to improve the chip dischargeability (see, for example, Patent Document 2). However, by performing the process uniformly without limiting the processing site, the process is strongly performed even in the margin portion that does not have an influence on the chip disposal, and as a result, more than necessary. In addition, since the surface roughness becomes smooth, the cutting area with the work material increases and the cutting resistance increases, which may in turn lead to a decrease in life. Although a method of masking the outer peripheral margin portion and processing only the groove portion is conceivable, it is extremely difficult to mask the outer peripheral margin portion of all the drills. In addition, the techniques described in Patent Documents 1 and 2 have a problem that costs are increased because separate processing is performed after coating.

特開平7−157862号公報JP-A-7-157862 特開2000−52119号公報JP 2000-52119 A

近年、製造現場の無人化が進み、信頼性の高く長時間加工できる被覆穴あけ工具が求められるようになった。従来の技術として、被膜に存在する粗大粒子を後処理によって除去し工具寿命を向上させる方法が提案されている。しかしながら、これらの方法は、被膜の凹部が生じたり、コストがかかるなどの問題がある。そこで本発明は、粗大粒子を除去する後工程を必要とせず、溝部の切り屑排出性に優れた被覆穴あけ工具の提供を目的とする。 In recent years, unmanned manufacturing sites have progressed, and a coated drilling tool that can be machined with high reliability for a long time has been demanded. As a conventional technique, a method has been proposed in which coarse particles present in a coating are removed by post-treatment to improve the tool life. However, these methods have problems such as formation of recesses in the coating and cost. Therefore, an object of the present invention is to provide a covered drilling tool that does not require a post-process for removing coarse particles and is excellent in chip evacuation of a groove.

本発明者は、長年に亘り、PVD法による被覆穴あけ工具について研究したところ、従来採用されていた金属ボンバードに替えてArボンバードを行うなどの改良により、被覆穴あけ工具の外周マージン部と溝部の表面状態を穴あけ加工に最適な構成にすることにより、耐欠損性および耐チッピング性を改善し、安定した長寿命加工ができることを見出した。 The present inventor has studied the PVD method for a covering drilling tool for many years, and has improved the outer peripheral margin and groove surface of the covering drilling tool by improving Ar bombarding in place of the conventionally employed metal bombardment. It was found that by making the state optimal for drilling, chipping resistance and chipping resistance were improved and stable long-life processing was possible.

本発明は、PVD法により基材に被膜を被覆した被覆穴あけ工具であって、該被覆穴あけ工具の外周マージン部の算術表面粗さRa(M)、該被覆穴あけ工具の溝部の算術表面粗さRa(F)と表したとき、0.03μm<Ra(M)<0.3μm、および、0.01μm<Ra(F)<0.15μmであることを特徴とする被覆穴あけ工具である。 The present invention relates to a coated drilling tool in which a base material is coated with a PVD method, the arithmetic surface roughness Ra (M) of the outer peripheral margin of the coated drilling tool, the arithmetic surface roughness of the groove of the coated drilling tool When expressed as Ra (F), it is a covered drilling tool characterized by 0.03 μm <Ra (M) <0.3 μm and 0.01 μm <Ra (F) <0.15 μm.

ここで、算術表面粗さRa(M)、Ra(F)、および、表面粗さにおける最大高さRz(M)、Rz(F)の測定は、図1および図2に示すようにドリル先端1からドリル直径dの2倍の位置(A−A’線)における外周マージン部2および溝部3でおこなう。測定方法としては、触針式粗さ計もしくはレーザー式粗さ計のいずれを用いても良い。 Here, the arithmetic surface roughness Ra (M), Ra (F) and the maximum heights Rz (M) and Rz (F) in the surface roughness are measured as shown in FIGS. This is performed at the outer margin portion 2 and the groove portion 3 at a position (AA ′ line) that is 1 to twice the drill diameter d. As a measuring method, either a stylus roughness meter or a laser roughness meter may be used.

外周マージン部の算術表面粗さRa(M)が0.3μm以上では、表面凸部の脱落によるチッピングが生じやすくなる。またRa(M)が0.03μm以下では、被削材と被膜表面の接触面積が大きくなり、切削抵抗が増加し欠損を引き起こしやすくなる。したがって、0.03μm<Ra(M)<0.3μmとした。 When the arithmetic surface roughness Ra (M) of the outer peripheral margin portion is 0.3 μm or more, chipping due to dropping of the surface convex portion is likely to occur. On the other hand, when Ra (M) is 0.03 μm or less, the contact area between the work material and the coating surface is increased, and the cutting resistance is increased to easily cause defects. Therefore, 0.03 μm <Ra (M) <0.3 μm.

溝部の算術表面粗さRa(F)が0.15μm以上では、被膜表面の凸部が多くなり、切り屑の流れによって粒子の脱落が起き、切り屑詰まりによる欠損を引き起こしやすくなる。またRa(F)が0.01μm以下では、切り屑と被膜表面の接触面積が大きくなり、摩擦抵抗が増加し切り屑詰まりが起きやすくなる。したがって、0.01μm<Ra(F)<0.15μmとした。 When the arithmetic surface roughness Ra (F) of the groove is 0.15 μm or more, the convex portions on the surface of the coating film increase, and particles fall off due to the flow of the chips, and defects due to chip clogging are likely to occur. On the other hand, when Ra (F) is 0.01 μm or less, the contact area between the chip and the coating surface is increased, the frictional resistance is increased, and chip clogging is likely to occur. Therefore, 0.01 μm <Ra (F) <0.15 μm.

本発明被覆穴あけ工具について、該被覆穴あけ工具の外周マージン部の表面粗さにおける最大高さをRz(M)、該被覆穴あけ工具の溝部の表面粗さにおける最大高さをRz(F)と表したとき、0.03μm<Rz(M)<3.0μm、および、0.01μm<Rz(F)<3.0μmであると、被膜の粗大粒子を起点にしたチッピングをなくし、より安定した加工が可能となるため好ましい。 For the coated drilling tool of the present invention, the maximum height in the surface roughness of the outer peripheral margin of the coated drilling tool is represented by Rz (M), and the maximum height in the surface roughness of the groove of the coated drilling tool is represented by Rz (F). When 0.03 μm <Rz (M) <3.0 μm and 0.01 μm <Rz (F) <3.0 μm, chipping originating from the coarse particles of the coating is eliminated and more stable processing is achieved. Is preferable.

PVD法による被覆穴あけ工具の製造工程において、被覆の前処理として雰囲気ガスによるボンバード処理を行い、そのときの雰囲気ガス圧力を調整して雰囲気ガスの平均自由工程の長さを基材の穴あけ工具の溝幅に合わせた条件にすることによって、本発明被覆穴あけ工具を得ることができる。雰囲気ガスによるボンバード処理方法としては、具体的には、熱フィラメントを用いる三極直流スパッタ法などを挙げることができる。ボンバード時の雰囲気ガスとしては不活性ガスが好ましく、その中でもArが特に好ましい。また、熱フィラメント材料としては、Wが好ましい。また、雰囲気ガスによるボンバード処理時、基板にかけるバイアス電圧V(bias)としては、150V<V(bias)<450Vが好ましい。これは、450V以上ではエッチングレートが大きくなり、基材の表面粗さが粗くなるためであり、150V以下では、エッチングレートが小さくなり、それによって処理時間が長くなり生産効率が落ちるためである。 In the manufacturing process of the coating drilling tool by the PVD method, the bombardment treatment with the atmospheric gas is performed as the pretreatment of the coating, and the atmospheric gas pressure at that time is adjusted to set the length of the mean free process of the atmospheric gas of the base material drilling tool. By setting the conditions according to the groove width, the coated drilling tool of the present invention can be obtained. Specific examples of the bombardment method using the atmospheric gas include a three-pole DC sputtering method using a hot filament. As the atmospheric gas during bombardment, an inert gas is preferable, and Ar is particularly preferable among them. Moreover, W is preferable as the hot filament material. Further, it is preferable that the bias voltage V (bias) applied to the substrate during the bombardment process with the atmospheric gas is 150V <V (bias) <450V. This is because the etching rate increases at 450V or higher and the surface roughness of the substrate becomes rough, and at 150V or lower, the etching rate decreases, thereby increasing the processing time and lowering the production efficiency.

本発明被覆穴あけ工具の被膜は、硬質な被膜であれば特に材質を問わないが、周期律表の4a、5a、6a族元素、アルミニウム、シリコンの炭化物、窒化物、酸化物およびこれらの相互固溶体の中から選ばれた1種以上であると、耐摩耗性に優れるため好ましい。具体的には、TiC、TiN、TiCN、TiCNO、TiAlN、TiAlCN、TiAlCNO、TiAlSiN、TiSiN、CrSiN、TiCrN、Al23を挙げることができる。その中でもTiAlNは、耐酸化性および耐摩耗性に優れているため特に好ましい。 The coating of the coated drilling tool of the present invention is not particularly limited as long as it is a hard coating, but is a group 4a, 5a, 6a element of the periodic table, aluminum, silicon carbide, nitride, oxide, and their mutual solid solutions. Since it is excellent in abrasion resistance, it is preferable that it is 1 or more types selected from these. Specific examples include TiC, TiN, TiCN, TiCNO, TiAlN, TiAlCN, TiAlCNO, TiAlSiN, TiSiN, CrSiN, TiCrN, and Al 2 O 3 . Among them, TiAlN is particularly preferable because it is excellent in oxidation resistance and wear resistance.

本発明被覆穴あけ工具の基材としては、超硬合金、サーメット、工具鋼が好ましく、具体的には、WC−Co系、WC−(WTiTa)C−Co系、WC−TaC−Co系に代表される超硬合金、TiC−Mo−Ni系、TiCN−WC−TaC−Ni−Co系などのサーメット、高速度工具鋼、合金工具鋼、炭素工具鋼などの工具鋼を挙げることができる。その中でもWCを主成分とした超硬合金は、靱性および耐摩耗性が高いため、特に好ましい。 As the base material of the coated drilling tool of the present invention, cemented carbide, cermet, and tool steel are preferable. Specifically, representative examples are WC-Co, WC- (WTiTa) C-Co, and WC-TaC-Co. Cermets such as cemented carbide, TiC—Mo—Ni, TiCN—WC—TaC—Ni—Co, and tool steels such as high speed tool steel, alloy tool steel, and carbon tool steel. Among them, a cemented carbide containing WC as a main component is particularly preferable because it has high toughness and wear resistance.

本発明被覆穴あけ工具の形状としては、穴あけ加工に用いる工具形状であればよく、例えばドリル、ガンドリル、リーマなどが挙げられる。その中でもドリルは多量の切り屑を溝部から排出するため本発明の効果が高く、本発明をドリルに適用することは非常に好ましい。本発明被覆穴あけ工具の用途の一つとして、金属材料の穴あけ加工を挙げることができる。 The shape of the coated drilling tool of the present invention may be any tool shape used for drilling, and examples thereof include a drill, a gun drill, and a reamer. Among them, since the drill discharges a large amount of chips from the groove portion, the effect of the present invention is high, and it is very preferable to apply the present invention to the drill. One of the uses of the coated drilling tool of the present invention is to drill a metal material.

本発明被覆穴あけ工具は、従来被覆穴あけ工具と比較して溝部の切り屑排出性、耐欠損性および耐チッピング性に優れる。溝部の制御された表面粗さが、切り屑処理性を向上させる作用をし、穴あけ加工における耐欠損性および耐チッピング性を向上させる作用をしているものである。 The coated drilling tool of the present invention is superior in chip evacuation property, chipping resistance, and chipping resistance of the groove as compared with the conventional coated drilling tool. The controlled surface roughness of the groove has the effect of improving chip disposal and the effect of improving chipping resistance and chipping resistance in drilling.

基材として、市販されている超硬合金製ソリッドドリル(φ8.0mm、組成:90重量%WC−10重量%Co、硬さ:HRA=91.5、溝幅:5mm)を用意し、被膜の被覆装置として、4極のターゲット着装が可能なアークイオンプレーティング装置を使用した。まず、基材ドリルを装置内に挿入して1×10-3Paの真空とし、炉内ヒーターで500℃まで加熱した後、表1に示した条件で、Aを除いたB〜Iの基材についてはボンバード処理を行ない、その後、A〜Iの基材に表1に示した被覆条件(ターゲット種類、雰囲気ガス、圧力、バイアス電圧、処理時間)で被覆処理を行なうことによって、A〜Iの被覆ドリルを得た。また各種ボンバード処理時および被覆処理時のアーク電流は、A〜Iすべてにおいて100Aとした。Arボンバードは、Wフィラメントを用いた三極直流スパッタ法で表面処理を行った。 As a base material, a commercially available solid drill (φ 8.0 mm, composition: 90 wt% WC-10 wt% Co, hardness: HRA = 91.5, groove width: 5 mm) is prepared and coated As the coating apparatus, an arc ion plating apparatus capable of mounting a four-pole target was used. First, a base material drill was inserted into the apparatus to make a vacuum of 1 × 10 −3 Pa, heated to 500 ° C. with an in-furnace heater, and then subjected to the conditions of B to I except for A under the conditions shown in Table 1. The materials are subjected to bombarding, and then the materials A to I are coated on the substrates A to I under the coating conditions (target type, atmospheric gas, pressure, bias voltage, treatment time) shown in Table 1. A coated drill was obtained. The arc current during various bombardment treatments and coating treatments was 100 A in all of A to I. Ar bombard was surface-treated by a three-pole DC sputtering method using a W filament.

Figure 2005022064
Figure 2005022064

得られたA〜Iの被覆ドリルにおける外周マージン部の算術平均粗さRa(M)および表面粗さにおける最大高さRz(M)と、溝部の算術平均粗さRa(F)および表面粗さにおける最大高さRz(F)をレーザー式粗さ計を用いて測定し、その結果を表2に示した。 Arithmetic mean roughness Ra (M) of outer peripheral margin portion and maximum height Rz (M) in surface roughness, arithmetic mean roughness Ra (F) and surface roughness of groove portion in the obtained A to I coated drills The maximum height Rz (F) was measured using a laser roughness meter, and the results are shown in Table 2.

Figure 2005022064
Figure 2005022064

得られたA〜Iの被覆ドリルを用いて、被削材:S45C、切削外周速度:80m/min、穴深さ:40mm、乾式加工の条件で穴あけ加工を連続して行った。刃先のチッピング発生、折損あるいは切り屑詰まりによる急激なトルク上昇が発生するまでの加工可能な穴数を表3に示す。400穴加工まで正常であった場合には、刃先の平均逃げ面摩耗量を併記した。 Using the obtained A to I coated drills, drilling was continuously performed under the conditions of work material: S45C, cutting peripheral speed: 80 m / min, hole depth: 40 mm, and dry processing. Table 3 shows the number of holes that can be processed until a sharp torque increase occurs due to chipping, breakage, or chip clogging. When it was normal up to the 400 hole machining, the average flank wear amount of the cutting edge was also shown.

Figure 2005022064
Figure 2005022064

表3に示されるように発明品は、比較品の2〜100倍の穴加工数を加工できる。発明品は、比較品と比較して欠損、刃先チッピング、切り屑詰まりがなく、安定した長寿命加工が可能であった。 As shown in Table 3, the inventive product can process 2 to 100 times as many holes as the comparative product. The inventive product was free from defects, cutting edge chipping, and clogging of chips as compared with the comparative product, and stable long-life processing was possible.

本発明被覆穴あけ工具の側面図。先端から直径dの2倍の位置(A−A’線)を図示する。The side view of this invention covering drilling tool. A position (A-A 'line) twice the diameter d from the tip is shown. 本発明被覆穴あけ工具のA−A’線における断面図。Sectional drawing in the A-A 'line of this invention covering drilling tool.

符号の説明Explanation of symbols

1 先端
2 外周マージン部
3 溝部
1 Tip 2 Peripheral margin 3 Groove

Claims (4)

PVD法により基材に被膜を被覆した被覆穴あけ工具であって、該被覆穴あけ工具の外周マージン部の算術平均粗さをRa(M)、該被覆穴あけ工具の溝部の算術平均粗さをRa(F)と表したとき、0.03μm<Ra(M)<0.3μm、および、0.01μm<Ra(F)<0.15μmであることを特徴とする被覆穴あけ工具。 A coated drilling tool in which a base material is coated with a PVD method, wherein the arithmetic average roughness of the outer peripheral margin of the coated drilling tool is Ra (M), and the arithmetic average roughness of the groove of the coated drilling tool is Ra ( A coated drilling tool represented by F3: 0.03 μm <Ra (M) <0.3 μm and 0.01 μm <Ra (F) <0.15 μm. 上記被覆穴あけ工具の外周マージン部の表面粗さにおける最大高さをRz(M)、該被覆穴あけ工具の溝部の表面粗さにおける最大高さをRz(F)と表したとき、0.03μm<Rz(M)<3.0μm、および、0.01μm<Rz(F)<3.0μmであることを特徴とする請求項1に記載の被覆穴あけ工具。 When the maximum height in the surface roughness of the outer peripheral margin portion of the above-described coated drilling tool is represented as Rz (M), and the maximum height in the surface roughness of the groove portion of the coated drilling tool is represented as Rz (F), 0.03 μm < 2. The coated drilling tool according to claim 1, wherein Rz (M) <3.0 μm and 0.01 μm <Rz (F) <3.0 μm. 上記被膜は、周期律表の4a、5a、6a族元素、アルミニウム、シリコンの炭化物、窒化物、酸化物およびこれらの相互固溶体の中から選ばれた1種以上であることを特徴とする請求項1または2に記載の被覆穴あけ工具。 The film is one or more selected from Group 4a, 5a, and 6a elements of the periodic table, aluminum, silicon carbide, nitride, oxide, and their mutual solid solutions. The covered drilling tool according to 1 or 2. 上記基材は、超硬合金、サーメット、工具鋼の中から選ばれた1種からなることを特徴とする請求項1〜3のいずれか1項に記載の被覆穴あけ工具。
The said base material consists of 1 type chosen from cemented carbide, cermet, and tool steel, The covering drilling tool of any one of Claims 1-3 characterized by the above-mentioned.
JP2003270714A 2003-07-03 2003-07-03 Coating drilling tool Withdrawn JP2005022064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270714A JP2005022064A (en) 2003-07-03 2003-07-03 Coating drilling tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270714A JP2005022064A (en) 2003-07-03 2003-07-03 Coating drilling tool

Publications (1)

Publication Number Publication Date
JP2005022064A true JP2005022064A (en) 2005-01-27

Family

ID=34190603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270714A Withdrawn JP2005022064A (en) 2003-07-03 2003-07-03 Coating drilling tool

Country Status (1)

Country Link
JP (1) JP2005022064A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212722A (en) * 2005-02-02 2006-08-17 Hitachi Tool Engineering Ltd Deep hole drill with through hole for feeding fluid
WO2008149464A1 (en) * 2007-06-08 2008-12-11 Osg Corporation Tap covered with hard coating, and process for manufacturing the same
US20100232898A1 (en) * 2007-09-17 2010-09-16 Arno Friedrichs Only partly ground tool rod made of sintered material
JP2010207919A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability
US20120063857A1 (en) * 2009-06-02 2012-03-15 Tungaloy Corporation Indexable Drill and Drill Body
JP2013018111A (en) * 2011-06-13 2013-01-31 Mitsubishi Materials Corp Surface coated drill having excellent abrasion resistance and chip disposal property
US20160151842A1 (en) * 2013-06-28 2016-06-02 Seco Tools Ab Twist drill for metal machining
WO2020003680A1 (en) * 2018-06-28 2020-01-02 株式会社アライドマテリアル Reamer
JP2020011313A (en) * 2018-07-13 2020-01-23 株式会社アライドマテリアル Rotary cutting tool

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212722A (en) * 2005-02-02 2006-08-17 Hitachi Tool Engineering Ltd Deep hole drill with through hole for feeding fluid
WO2008149464A1 (en) * 2007-06-08 2008-12-11 Osg Corporation Tap covered with hard coating, and process for manufacturing the same
US8740517B2 (en) * 2007-09-17 2014-06-03 Arno Friedrichs Only partly ground tool rod made of sintered material
US20100232898A1 (en) * 2007-09-17 2010-09-16 Arno Friedrichs Only partly ground tool rod made of sintered material
JP2010207919A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability
US20120063857A1 (en) * 2009-06-02 2012-03-15 Tungaloy Corporation Indexable Drill and Drill Body
US8393831B2 (en) * 2009-06-02 2013-03-12 Tungaloy, Corporation Indexable drill and drill body
CN102802850A (en) * 2009-06-02 2012-11-28 株式会社钨钛合金 Cutting edge replaceable drill and drill main body
JP2013018111A (en) * 2011-06-13 2013-01-31 Mitsubishi Materials Corp Surface coated drill having excellent abrasion resistance and chip disposal property
US20160151842A1 (en) * 2013-06-28 2016-06-02 Seco Tools Ab Twist drill for metal machining
US9844819B2 (en) * 2013-06-28 2017-12-19 Seco Tools Ab Twist drill for metal machining
WO2020003680A1 (en) * 2018-06-28 2020-01-02 株式会社アライドマテリアル Reamer
JP6670422B1 (en) * 2018-06-28 2020-03-18 株式会社アライドマテリアル Reamer
CN112351853A (en) * 2018-06-28 2021-02-09 联合材料公司 Reamer bit
US11407047B2 (en) 2018-06-28 2022-08-09 A.L.M.T. Corp. Reamer
CN112351853B (en) * 2018-06-28 2023-10-03 联合材料公司 Reamer bit
JP2020011313A (en) * 2018-07-13 2020-01-23 株式会社アライドマテリアル Rotary cutting tool
JP7214386B2 (en) 2018-07-13 2023-01-30 株式会社アライドマテリアル rotary cutting tool

Similar Documents

Publication Publication Date Title
JP5289042B2 (en) Multilayer hard material coating for tools
JP5008984B2 (en) Surface-coated cutting tool and method for manufacturing surface-coated cutting tool
JP4018480B2 (en) Coated hard tool
JP2009249664A (en) Hard film, method for forming the same, and member coated with hard film
JP2005022064A (en) Coating drilling tool
JP5315526B2 (en) Surface coated cutting tool
JP5315527B2 (en) Surface coated cutting tool
JP2007084899A (en) Coating member, and method for coating coating member
JP2009061540A (en) Amorphous carbon film coating tool
JPWO2007010601A1 (en) Drill
JP2006035345A (en) Surface-coated cutting tool
JP4815925B2 (en) Coated sintered alloy
JPWO2016136520A1 (en) Rotating tool
JP2004066361A (en) Coated cutting tool
JP2006055950A (en) Coated cutting tool
JP2005153072A (en) Coating tool suitable for mist machining
JP7029700B2 (en) Hard film coating member and hard film coating tool
JP4908767B2 (en) Surface covering member and cutting tool
JP5376374B2 (en) Surface coated cutting tool
JP4535249B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP2008030158A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed cutting of heat-resistant alloy
JP2005028474A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP2005335040A (en) Surface coating cutting tool
JP2006181705A (en) Surface coated cutting tool and manufacturing method thereof
JP7463772B2 (en) Cutting tools

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905