JP4814399B2 - Battery separator - Google Patents

Battery separator Download PDF

Info

Publication number
JP4814399B2
JP4814399B2 JP2011002058A JP2011002058A JP4814399B2 JP 4814399 B2 JP4814399 B2 JP 4814399B2 JP 2011002058 A JP2011002058 A JP 2011002058A JP 2011002058 A JP2011002058 A JP 2011002058A JP 4814399 B2 JP4814399 B2 JP 4814399B2
Authority
JP
Japan
Prior art keywords
core
sheath
fiber
polypropylene
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011002058A
Other languages
Japanese (ja)
Other versions
JP2011210701A (en
Inventor
展章 廣田
昌伸 松岡
真一 江角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2011002058A priority Critical patent/JP4814399B2/en
Priority to PCT/JP2011/052301 priority patent/WO2011096502A1/en
Priority to CN201180008419.6A priority patent/CN102725882B/en
Publication of JP2011210701A publication Critical patent/JP2011210701A/en
Application granted granted Critical
Publication of JP4814399B2 publication Critical patent/JP4814399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

本発明は、ニッケル−カドミウム電池、ニッケル−亜鉛電池、ニッケル−水素電池等のアルカリ二次電池に好適に使用できる電池用セパレータに関する。   The present invention relates to a battery separator that can be suitably used for alkaline secondary batteries such as nickel-cadmium batteries, nickel-zinc batteries, and nickel-hydrogen batteries.

ニッケル−カドミウム電池やニッケル−水素電池等のアルカリ二次電池は、充放電特性、過充放電特性に優れ、長寿命で繰り返し使用できるため、コードレス電話、ノートパソコン、オーディオ機器等の小型電子機器の他、電動工具、電動自転車等の小型動力用途、ハイブリッド自動車、電気自動車等の大型動力用途等にも広く使用されている。このアルカリ二次電池に用いられている電池用セパレータの役割としては、正極と負極の分離、短絡の防止、電解液(高濃度アルカリ性水溶液)の吸液及び保持、また、電極反応により生じるガスの透過等が挙げられる。   Alkaline secondary batteries such as nickel-cadmium batteries and nickel-hydrogen batteries have excellent charge / discharge characteristics and overcharge / discharge characteristics, and can be used repeatedly with a long service life. Therefore, they can be used in small electronic devices such as cordless phones, laptop computers, and audio equipment. In addition, it is widely used for small power applications such as electric tools and electric bicycles, and large power applications such as hybrid cars and electric cars. The role of the battery separator used in the alkaline secondary battery is to separate the positive electrode and the negative electrode, prevent short circuit, absorb and retain the electrolyte (high concentration alkaline aqueous solution), and prevent the gas generated by the electrode reaction. For example, transmission.

従来から、電池用セパレータとしては、一般に不織布が用いられてきた。ニッケル−カドミウム電池では、電解液に濡れやすく、その保液量が大きく、しかも電解液を含んだ状態で電気抵抗の低いポリアミド系繊維からなる不織布が使用されてきた。しかし、ニッケル−水素電池では、ポリアミド系繊維の加水分解による分解生成物が自己放電を促進してしまうために、耐アルカリ性及び耐酸化性に優れたポリオレフィン系繊維を主体とする不織布が主として使用されている。   Conventionally, a nonwoven fabric has generally been used as a battery separator. In a nickel-cadmium battery, a nonwoven fabric made of a polyamide fiber that is easily wetted by an electrolyte, has a large amount of liquid retention, and has a low electrical resistance in a state containing the electrolyte has been used. However, in nickel-hydrogen batteries, the decomposition products of polyamide fiber hydrolysis promote self-discharge, so nonwoven fabrics mainly composed of polyolefin fibers with excellent alkali resistance and oxidation resistance are mainly used. ing.

一方、ポリオレフィン系繊維を主体とする不織布は親水性が低いため、スルホン化処理、親水性単量体のグラフト処理、コロナ放電処理、界面活性剤付与処理等が施されるのが一般的である。   On the other hand, since nonwoven fabrics mainly composed of polyolefin fibers have low hydrophilicity, they are generally subjected to sulfonation treatment, hydrophilic monomer grafting treatment, corona discharge treatment, surfactant application treatment, and the like. .

このうち、スルホン化処理は、発煙硫酸や濃硫酸によって不織布にスルホン酸基を導入する方法である(例えば、特許文献1〜3参照)。スルホン化処理を施した不織布は電解液の吸液性や保液性が優れると共に、電池の自己放電反応を抑制する効果が見られる。   Among these, the sulfonation treatment is a method of introducing sulfonic acid groups into the nonwoven fabric by fuming sulfuric acid or concentrated sulfuric acid (see, for example, Patent Documents 1 to 3). The nonwoven fabric subjected to the sulfonation treatment is excellent in the ability to absorb and retain the electrolyte, and has the effect of suppressing the self-discharge reaction of the battery.

ここで電池の自己放電反応が促進される原因として、電池内に不純物として存在する含窒素化合物が分解され、生成したアンモニアが正極上で酸化されて硝酸イオンとなり、この硝酸イオンが移動し、負極上で還元されてアンモニアとなる繰り返し反応(シャトル機構)が生じて自己放電を加速するという説が提唱されている。スルホン化処理を施した不織布からなる電池用セパレータをこの電池内に導入することにより、繊維に導入されたスルホン酸基が生成するアンモニアを捕捉し、電池の自己放電反応を抑制すると考えられている。   Here, the reason why the self-discharge reaction of the battery is promoted is that the nitrogen-containing compound present as an impurity in the battery is decomposed, and the generated ammonia is oxidized on the positive electrode to become nitrate ion, and this nitrate ion moves, There has been proposed the theory that a repetitive reaction (shuttle mechanism) that is reduced to ammonia is generated to accelerate self-discharge. It is considered that by introducing into the battery a battery separator made of a nonwoven fabric subjected to sulfonation treatment, ammonia generated by the sulfonic acid group introduced into the fiber is captured and the self-discharge reaction of the battery is suppressed. .

スルホン化処理に用いられる不織布としては、乾式不織布又は湿式不織布が用いられるが、電池の高容量化や内部短絡防止のため、地合の均一性に優れる不織布が求められる。地合の均一性の良さを考慮すると、一般的に乾式不織布よりも湿式不織布が優れている。ポリオレフィン系繊維は、耐アルカリ性や耐酸化性に優れるため、電池の長寿命化に有効であるが、ポリオレフィン系繊維のみからなる不織布の製造は比較的難しく、特に湿式不織布の製造においては、加熱乾燥時の面割れ等が生じやすく、地合が不均一になる問題や製造安定性に劣るという問題があった。このため、ポリオレフィン系繊維と湿熱接着性に優れたエチレン−ビニルアルコール共重合体繊維を併用し、製造安定性を改善する試みが行われてきた(例えば、特許文献4参照)。しかしながら、ポリオレフィン系繊維とエチレン−ビニルアルコール共重合体繊維を併用した不織布にスルホン化処理を施した場合、エチレン−ビニルアルコール共重合体繊維が優先してスルホン化されるため、強アルカリ電解液中でのセパレータの劣化が進みやすく、自己放電抑制効果の持続性が短くなるという問題を有していた。   As the nonwoven fabric used for the sulfonation treatment, a dry nonwoven fabric or a wet nonwoven fabric is used. However, a nonwoven fabric excellent in uniformity of formation is required in order to increase the battery capacity and prevent internal short circuit. Considering good uniformity of formation, wet nonwoven fabrics are generally superior to dry nonwoven fabrics. Polyolefin fibers are excellent in alkali resistance and oxidation resistance, and are effective in extending the life of batteries. However, it is relatively difficult to produce non-woven fabrics consisting only of polyolefin fibers. There is a problem that surface cracks are likely to occur, the formation is uneven, and the production stability is poor. For this reason, attempts have been made to improve production stability by using polyolefin fibers and ethylene-vinyl alcohol copolymer fibers excellent in wet heat adhesion (see, for example, Patent Document 4). However, when a sulfonation treatment is applied to a nonwoven fabric that uses both polyolefin fibers and ethylene-vinyl alcohol copolymer fibers, the ethylene-vinyl alcohol copolymer fibers are preferentially sulfonated. However, there is a problem that the separator is easily deteriorated and the sustainability of the self-discharge suppressing effect is shortened.

特開昭58−175256号公報JP 58-175256 A 特開昭64−57568号公報Japanese Patent Application Laid-Open No. 64-57568 特開平6−140018号公報JP-A-6-140018 特開2002−134090号公報JP 2002-134090 A

本発明の課題は、不織布にスルホン化処理を施した電池用セパレータに関し、不織布の製造安定性が良好で、地合の均一性並びに自己放電抑制効果に優れた電池用セパレータを提供することにある。   The subject of this invention is related with the battery separator which performed the sulfonation process to the nonwoven fabric, It is providing the battery separator which was excellent in the manufacturing stability of a nonwoven fabric, and was excellent in formation uniformity and the self-discharge suppression effect. .

本発明者らは、この課題を解決するために鋭意検討を行った結果、スルホン化処理を施すポリオレフィン系不織布に、ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を含有させ、芯鞘型複合繊維の示差走査熱量分析における熱的挙動を制御することにより、上記課題を満足する電池用セパレータを提供できることを見出し、本発明に至ったものである。   As a result of intensive studies to solve this problem, the present inventors have determined that a core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component is added to a polyolefin-based nonwoven fabric to be sulfonated. The present inventors have found that a battery separator satisfying the above-mentioned problems can be provided by controlling the thermal behavior in differential scanning calorimetry of the core-sheath composite fiber.

即ち、本発明は、ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を含有するポリオレフィン系不織布をスルホン化処理した電池用セパレータにおいて、芯鞘型複合繊維の示差走査熱量分析により得られるDSC曲線で低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下であることを特徴とする電池用セパレータである。   That is, the present invention provides a battery separator obtained by sulfonating a polyolefin-based non-woven fabric containing a core-sheath composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component. In the DSC curve obtained by analysis, the ratio (A / B) of the melting peak area (A) derived from the high-density polyethylene on the low melting point side to the melting peak area (B) derived from the polypropylene on the high melting point side is 1.00 or more. 2. A battery separator characterized by being not more than 2.50.

更に、前記芯鞘型複合繊維の130℃、30分間の加熱処理後の熱収縮率が8.0%以下であることが好ましく、加えて、ポリオレフィン系不織布が熱板圧着方式で乾燥処理した湿式不織布であることがより好ましい。   Furthermore, it is preferable that the heat shrinkage ratio after the heat treatment at 130 ° C. for 30 minutes of the core-sheath type composite fiber is 8.0% or less. More preferably, it is a nonwoven fabric.

本発明の電池用セパレータは、示差走査熱量分析により得られるDSC曲線において、低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下であるポリプロピレンを芯成分、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を含有するポリオレフィン系不織布にスルホン化処理を施すことにより、不織布の製造安定性を向上させ、セパレータとしての地合の均一性を確保し、電池の自己放電を抑制して、長期にわたって電池容量を維持することができる。また、前記芯鞘型複合繊維の130℃、30分間の加熱処理による熱収縮率を8.0%以下とすることにより、不織布の製造安定性やセパレータとしての地合の均一性をより向上させることができ、前記ポリオレフィン系不織布がヤンキードライヤーに代表される熱板圧着方式による乾燥処理により製造した湿式不織布とすることにより、引張強度等のシート強度がより一層優れた電池用セパレータとすることができる。   In the DSC curve obtained by differential scanning calorimetry, the battery separator of the present invention has a melting peak area (A) derived from high-density polyethylene on the low melting side and a melting peak area (B) derived from polypropylene on the high melting point side. By subjecting a polyolefin nonwoven fabric containing a core-sheath type composite fiber having a core component of polypropylene having a ratio (A / B) of 1.00 to 2.50 to a core component and high-density polyethylene as a sheath component to a sulfonation treatment The production stability of the nonwoven fabric can be improved, the uniformity of formation as a separator can be ensured, the self-discharge of the battery can be suppressed, and the battery capacity can be maintained over a long period of time. Moreover, by making the heat shrinkage rate of the core-sheath type composite fiber by heat treatment at 130 ° C. for 30 minutes to 8.0% or less, the production stability of the nonwoven fabric and the uniformity of the formation as a separator are further improved. The polyolefin-based non-woven fabric can be made into a battery separator with even more excellent sheet strength such as tensile strength by making it a wet non-woven fabric produced by a drying process using a hot plate compression method represented by a Yankee dryer. it can.

本発明における電池用セパレータは、ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を含有するポリオレフィン系不織布をスルホン化処理したものであり、芯鞘型複合繊維の示差走査熱量分析(DSC)により得られるDSC曲線で低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下である。   The battery separator in the present invention is obtained by sulfonating a polyolefin-based nonwoven fabric containing a core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component, and differential scanning of the core-sheath type composite fiber. In the DSC curve obtained by calorimetric analysis (DSC), the ratio (A / B) of the melting peak area (A) derived from the high melting point polyethylene on the low melting point side and the melting peak area (B) derived from the polypropylene on the high melting point side is It is 1.00 or more and 2.50 or less.

ポリプロピレンを芯成分、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維の示差走査熱量分析は、JIS K 7121に準じて実施し、JIS K 7122に準じて融解ピークの面積を求める。示差走査熱量分析において、芯成分及び鞘成分それぞれに由来する融解ピークは単一であっても、複数のピークが重なった一連のものであっても構わない。複数のピークが重なった一連のものである場合、これを1つの融解ピークとしてピーク面積を求め、ピーク高さの大きい方を、芯成分及び鞘成分の融点とする。   Differential scanning calorimetric analysis of the core-sheath composite fiber using polypropylene as the core component and high-density polyethylene as the sheath component is performed according to JIS K 7121, and the area of the melting peak is determined according to JIS K 7122. In the differential scanning calorimetry, the melting peak derived from each of the core component and the sheath component may be single or may be a series of a plurality of overlapping peaks. In the case of a series of a plurality of overlapping peaks, the peak area is obtained as one melting peak, and the larger peak height is defined as the melting point of the core component and the sheath component.

本発明において、示差走査熱量分析により得られるDSC曲線における低融点側の高密度ポリエチレンに由来する融解ピークとは、120℃以上140℃以下の範囲に最もピーク高さの大きいピークを有する吸熱ピークであり、高融点側のポリプロピレンに由来する融解ピークとは、150℃以上180℃以下の範囲に最もピーク高さの大きいピークを有する吸熱ピークである。   In the present invention, the melting peak derived from high-density polyethylene on the low melting point side in the DSC curve obtained by differential scanning calorimetry is an endothermic peak having the largest peak height in the range of 120 ° C. or higher and 140 ° C. or lower. The melting peak derived from polypropylene on the high melting point side is an endothermic peak having a peak with the largest peak height in the range of 150 ° C. or higher and 180 ° C. or lower.

本発明において、前記芯鞘型複合繊維の示差走査熱量分析により得られるDSC曲線から求められる低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)は1.00以上2.50以下の範囲であり、1.20以上2.20以下の範囲がより好ましく、1.40以上2.00以下が更に好ましい。A/Bが1.00未満であると、熱融着成分である高密度ポリエチレンによる繊維同士の接着強度が十分でなく、不織布の強度が低下する。また、密度や結晶性の低下により、繊維表面付近のスルホン化が進みやすくなり、繊維内部のスルホン酸基の含有量が相対的に低下するため、自己放電抑制効果が低下しやすくなると考えられる。一方、A/Bが2.50を超えると、繊維の収縮率が大きくなり、不織布製造時に割れやシワ等が発生しやすくなり、地合の均一性や製造安定性が低下する。また、密度や結晶性が高くなり、スルホン化が進みにくくなると、スルホン酸基の含有量が低下し、自己放電抑制効果が低下すると考えられる。   In the present invention, the melting peak area (A) derived from the high melting point polyethylene on the low melting point side and the melting peak derived from the polypropylene on the high melting point side obtained from the DSC curve obtained by differential scanning calorimetry of the core-sheath type conjugate fiber. The area (B) ratio (A / B) is in the range of 1.00 to 2.50, more preferably 1.20 to 2.20, and even more preferably 1.40 to 2.00. . When A / B is less than 1.00, the bonding strength between the fibers due to the high-density polyethylene which is a heat-sealing component is not sufficient, and the strength of the nonwoven fabric is lowered. Further, due to the decrease in density and crystallinity, sulfonation near the fiber surface is likely to proceed, and the content of sulfonic acid groups inside the fiber is relatively decreased, so that the self-discharge suppressing effect is likely to decrease. On the other hand, when A / B exceeds 2.50, the shrinkage ratio of the fibers increases, and cracks and wrinkles are likely to occur during the production of the nonwoven fabric, resulting in reduced uniformity and manufacturing stability. Moreover, when density and crystallinity become high and sulfonation becomes difficult to proceed, it is considered that the content of sulfonic acid groups decreases and the self-discharge suppressing effect decreases.

本発明において、前記芯鞘型複合繊維の芯成分であるポリプロピレン及び鞘成分である高密度ポリエチレンの分子量、密度、結晶化度、芯成分と鞘成分の構成比率、芯鞘型複合繊維の延伸倍率を適宜変化させることにより、示差走査熱量分析における熱的挙動を制御することができる。例えば、ポリプロピレンや高密度ポリエチレンの密度を高くすると、融解熱量が大きくなり、示差走査熱量分析における融解ピーク面積も大きくなる。また、結晶化度を高くすることによっても、一般的に融解熱量が大きくなり、融解ピーク面積が大きくなるため、芯成分と鞘成分の構成比率が同じでも、A/Bを変化させることができる。   In the present invention, the molecular weight, the density, the crystallinity, the component ratio of the core component and the sheath component, the draw ratio of the core-sheath conjugate fiber, the polypropylene as the core component of the core-sheath conjugate fiber and the high-density polyethylene as the sheath component. By appropriately changing, the thermal behavior in the differential scanning calorimetry can be controlled. For example, when the density of polypropylene or high-density polyethylene is increased, the heat of fusion increases, and the melting peak area in the differential scanning calorimetry analysis also increases. Also, increasing the degree of crystallinity generally increases the amount of heat of fusion and increases the melting peak area, so A / B can be changed even if the constituent ratio of the core component and the sheath component is the same. .

前記芯鞘型複合繊維を構成する芯成分と鞘成分の含有比は、芯鞘型複合繊維を形成できる比であれば構わないが、芯/鞘質量比が、40/60から60/40が好ましく、より好ましくは、45/55から55/45である。   The content ratio of the core component and the sheath component constituting the core-sheath composite fiber may be any ratio that can form the core-sheath composite fiber, but the core / sheath mass ratio is 40/60 to 60/40. More preferably, it is 45/55 to 55/45.

本発明において、ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維の130℃、30分間の加熱処理後の熱収縮率は8.0%以下が好ましく、7.0%以下がより好ましく、6.0%以下が更に好ましい。ここで熱収縮率とは、以下の方法で算出したものである。即ち、温度23℃、湿度50%で24時間状態調節した前記芯鞘型複合繊維を、ガラス製キャピラリーチューブに入れ、デジタルマイクロスコープで撮影し、加熱前の繊維長(L)を測定する。次に、130℃で30分間加熱し、温度23℃、湿度50%で1時間放冷した後、加熱後の繊維長(L)を加熱前と同様にして測定する。加熱前の繊維長(L)に対する加熱前後の繊維長の差(L−L)の比を百分率で表したものを熱収縮率(%)とする。 In the present invention, the core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component has a heat shrinkage ratio of preferably not more than 8.0% after 130 ° C. for 30 minutes, 7.0% The following is more preferable, and 6.0% or less is still more preferable. Here, the heat shrinkage rate is calculated by the following method. That is, the core-sheath composite fiber conditioned at a temperature of 23 ° C. and a humidity of 50% for 24 hours is put into a glass capillary tube, photographed with a digital microscope, and the fiber length (L 1 ) before heating is measured. Next, after heating at 130 ° C. for 30 minutes and allowing to cool for 1 hour at a temperature of 23 ° C. and a humidity of 50%, the fiber length (L 2 ) after heating is measured in the same manner as before heating. The ratio of the difference in fiber length before and after heating (L 1 -L 2 ) to the fiber length before heating (L 1 ), expressed as a percentage, is defined as the thermal shrinkage rate (%).

本発明に使用されるポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維は、溶融紡糸機を用い、芯鞘型複合紡糸用口金を用いて溶融紡糸される。紡糸温度は、鞘成分である高密度ポリエチレンが変質しない温度で実施され、紡糸温度200℃以上300℃以下で重合体を押し出し、所定の繊度の紡糸フィラメントを作製する。紡糸フィラメントには、必要に応じて延伸処理を実施する。延伸処理は、鞘成分である高密度ポリエチレンが融着しない温度で実施され、例えば、延伸温度50℃以上100℃以下の範囲で、延伸倍率2倍以上で処理すると、繊維強度が向上して好ましい。得られたフィラメントには、必要に応じて繊維処理剤を付与し、親水性や分散性を制御した後、所定の長さに切断して不織布製造用の芯鞘型複合繊維として使用される。   The core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component used in the present invention is melt-spun using a melt-spinning machine and using a core-sheath type composite spinning die. The spinning temperature is a temperature at which the high density polyethylene as the sheath component does not change, and the polymer is extruded at a spinning temperature of 200 ° C. or higher and 300 ° C. or lower to produce a spinning filament having a predetermined fineness. The spinning filament is subjected to a stretching treatment as necessary. The stretching treatment is performed at a temperature at which the high-density polyethylene as the sheath component is not fused. For example, when the stretching temperature is 50 ° C. or more and 100 ° C. or less and the treatment is performed at a draw ratio of 2 times or more, the fiber strength is preferably improved. . The obtained filament is provided with a fiber treatment agent as necessary, and after controlling the hydrophilicity and dispersibility, it is cut into a predetermined length and used as a core-sheath type composite fiber for producing a nonwoven fabric.

前記芯鞘型複合繊維を構成する芯成分としては、ポリプロピレンを使用するが、繊維物性を調整するため、必要に応じて高密度ポリエチレンやポリメチルペンテン等のポリオレフィンを混合することができる。前記ポリオレフィンの混合比率としては、芯成分の10質量%以下であることが好ましい。また、必要に応じて、通常のポリオレフィンに用いられる樹脂添加剤を添加することができる。樹脂添加剤としては、各種酸化防止剤、中和剤、光安定剤、紫外線吸収剤、造核剤、滑剤、帯電防止剤等が挙げられ、添加する場合の添加量としては、樹脂に対して0.01質量%以上1.0質量%以下の範囲で用いられる。   Polypropylene is used as the core component constituting the core-sheath composite fiber, but polyolefin such as high-density polyethylene and polymethylpentene can be mixed as necessary in order to adjust fiber properties. The mixing ratio of the polyolefin is preferably 10% by mass or less of the core component. Moreover, the resin additive used for normal polyolefin can be added as needed. Examples of the resin additive include various antioxidants, neutralizers, light stabilizers, ultraviolet absorbers, nucleating agents, lubricants, antistatic agents, and the like. It is used in the range of 0.01% by mass or more and 1.0% by mass or less.

次に、前記芯鞘型複合繊維を構成する鞘成分としては、高密度ポリエチレンを使用するが、繊維物性を調節するため、必要に応じてポリプロピレンやエチレン−プロピレン共重合体等のポリオレフィンを混合することができる。前記ポリオレフィンの混合比率としては、鞘成分の10質量%以下であることが好ましい。また、必要に応じて、通常のポリオレフィンに用いられる樹脂添加剤を添加することができる。樹脂添加剤としては、各種酸化防止剤、中和剤、光安定剤、紫外線吸収剤、造核剤、滑剤、帯電防止剤等が挙げられ、添加する場合の添加量としては、樹脂に対して0.01質量%以上1.0質量%以下の範囲で用いられる。   Next, as the sheath component constituting the core-sheath type composite fiber, high-density polyethylene is used, but in order to adjust the fiber physical properties, polyolefin such as polypropylene or ethylene-propylene copolymer is mixed as necessary. be able to. The mixing ratio of the polyolefin is preferably 10% by mass or less of the sheath component. Moreover, the resin additive used for normal polyolefin can be added as needed. Examples of the resin additive include various antioxidants, neutralizers, light stabilizers, ultraviolet absorbers, nucleating agents, lubricants, antistatic agents, and the like. It is used in the range of 0.01% by mass or more and 1.0% by mass or less.

本発明に使用されるポリオレフィン系不織布は、ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を少なくとも含有する。前記芯鞘型複合繊維と併用して使用することのできるポリオレフィン系繊維としては、ポリエチレン繊維、ポリプロピレン繊維等の単一成分からなる繊維、2種類以上の異なるポリオレフィンの混合物からなる混合ポリオレフィン繊維、2種類以上の異なるオレフィンの共重合体からなる共重合ポリオレフィン繊維、ポリエチレン、ポリプロピレン、共重合ポリオレフィン等の樹脂を適宜組み合わせた、芯鞘型、サイドバイサイド型、偏芯型あるいは分割性複合繊維等が挙げられる。これらのポリオレフィン系繊維の繊維長、繊維径は特に限定されないが、不織布強度と製造性等から、繊維径は1μm以上20μm以下が好ましく、繊維長は1mm以上20mm以下が好ましい。また、分割性複合繊維を水流交絡やリファイナーにより細分化して使用することもできる。繊維長が1mm未満の場合には、不織布の十分な機械的強度が得られない場合がある。繊維長が20mmを超えた場合には、地合不良となり、良好な不織布が形成できなくなる場合がある。特に、湿式不織布では、分散時の繊維同士の異常な絡みが発生し、均一な分散状態にならず、地合不良となる場合がある。   The polyolefin-based nonwoven fabric used in the present invention contains at least a core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component. Examples of polyolefin fibers that can be used in combination with the core-sheath type composite fibers include fibers composed of a single component such as polyethylene fibers and polypropylene fibers, mixed polyolefin fibers composed of a mixture of two or more different polyolefins, 2 Examples thereof include a core-sheath type, a side-by-side type, an eccentric type, and a splittable composite fiber, which are appropriately combined with a copolymer polyolefin fiber composed of copolymers of different types of olefins, polyethylene, polypropylene, copolymer polyolefin, and the like. . The fiber length and fiber diameter of these polyolefin fibers are not particularly limited, but the fiber diameter is preferably 1 μm or more and 20 μm or less, and the fiber length is preferably 1 mm or more and 20 mm or less from the strength of the nonwoven fabric and manufacturability. Further, the splittable composite fiber can be used after being subdivided by hydroentanglement or refiner. When the fiber length is less than 1 mm, sufficient mechanical strength of the nonwoven fabric may not be obtained. If the fiber length exceeds 20 mm, formation may be poor and a good nonwoven fabric may not be formed. In particular, in a wet nonwoven fabric, abnormal entanglement between fibers at the time of dispersion may occur, and a uniform dispersion state may not occur, resulting in poor formation.

本発明においてポリオレフィン系繊維とは、1つ以上の二重結合を分子内に有し、炭素と水素を構成元素とする一種類以上の単量体を重合した単一樹脂又は共重合樹脂を溶融紡糸して繊維化したものであり、ポリビニルアルコール繊維やエチレン−ビニルアルコール共重合体繊維等のように、炭素と水素以外の構成元素を含有する単量体を重合した単一樹脂又は共重合樹脂を溶融紡糸した繊維は含まない。   In the present invention, a polyolefin-based fiber is a single resin or copolymer resin obtained by polymerizing one or more monomers having one or more double bonds in the molecule and carbon and hydrogen as constituent elements. A single resin or copolymer resin obtained by polymerizing monomers containing constituent elements other than carbon and hydrogen, such as polyvinyl alcohol fiber and ethylene-vinyl alcohol copolymer fiber This does not include fibers that have been melt-spun.

本発明の電池用セパレータに使用されるポリオレフィン系不織布において、ポリオレフィン系繊維と好適に併用することのできる繊維としては、半芳香族ポリアミド繊維、全芳香族ポリアミド繊維が挙げられ、特に半芳香族ポリアミド繊維がより好ましい。半芳香族ポリアミド繊維は、主成分として芳香族ジカルボン酸と脂肪族ジアミンを縮合して得られる半芳香族ポリアミドからなる繊維であり、ジカルボン酸成分の60モル%以上が芳香族カルボン酸であり、ジアミン成分の60モル%以上が炭素数6から12の脂肪族アルキレンジアミンである。芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,4−フェニレンジオキシジ酢酸、1,3−フェニレンジオキシ酢酸、2,2′−ビフェニルジカルボン酸、2,4′−ビフェニルジカルボン酸、4,4′−ビフェニルジカルボン酸、4,4′−オキシジ安息香酸、ジフェニルメタン−4,4′−ジカルボン酸、ジフェニルスルホン−4,4′−ジカルボン酸が用いられる。脂肪族ジアミンとしては、1,6−ヘキサンジアミン、1,8−オクタンジアミン、1,9−ノナンジアミン、1,10−デカンジアミン、1,11−ウンデカンジアミン、1,12−ドデカンジアミン、2−メチル−1,5−ペンタンジアミン、3−メチル−1,5−ペンタンジアミン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミン、2−メチル−1,8−オクタンジアミン、5−メチル−1,9−ノナンジアミン等が挙げられる。   In the polyolefin-based nonwoven fabric used for the battery separator of the present invention, examples of the fibers that can be suitably used in combination with the polyolefin-based fibers include semi-aromatic polyamide fibers and wholly aromatic polyamide fibers, particularly semi-aromatic polyamides. Fiber is more preferred. The semi-aromatic polyamide fiber is a fiber made of a semi-aromatic polyamide obtained by condensing an aromatic dicarboxylic acid and an aliphatic diamine as a main component, and 60 mol% or more of the dicarboxylic acid component is an aromatic carboxylic acid, 60 mol% or more of the diamine component is an aliphatic alkylenediamine having 6 to 12 carbon atoms. Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3 -Phenylenedioxyacetic acid, 2,2'-biphenyldicarboxylic acid, 2,4'-biphenyldicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic Acid, diphenylsulfone-4,4'-dicarboxylic acid is used. Examples of the aliphatic diamine include 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, and 2-methyl. -1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2 -Methyl-1,8-octanediamine, 5-methyl-1,9-nonanediamine and the like.

本発明の電池用セパレータに含有されるポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維の含有量は、全繊維に対して、40質量%以上100質量%以下の範囲が好ましく、より好ましくは、60質量%以上100質量%以下、更に好ましくは、80質量%以上100質量%以下の範囲である。   The content of the core-sheath type composite fiber having polypropylene as the core component and high-density polyethylene as the sheath component in the battery separator of the present invention is in the range of 40% by mass to 100% by mass with respect to the total fibers. More preferably, it is 60 mass% or more and 100 mass% or less, More preferably, it is the range of 80 mass% or more and 100 mass% or less.

本発明の電池用セパレータに用いる不織布の製造方法としては、一般的な不織布の製造方法が何れも使用でき、繊維ウェブを形成し、繊維ウェブ内の繊維を接着・融着・絡合させることにより製造することができる。繊維ウェブの製造方法としては、例えば、湿式抄造法や、カード法、エアレイド法等の乾式法等が挙げられる。しかしながら、カード法、エアレイド法等の乾式法は、繊維長の長い繊維を用いることができるが、均一な繊維ウェブの形成が困難で、湿式抄造法に比べ、一般的に地合が劣るという問題がある。   As a manufacturing method of the nonwoven fabric used for the battery separator of the present invention, any general nonwoven fabric manufacturing method can be used. By forming a fiber web and adhering, fusing, and intertwining the fibers in the fiber web Can be manufactured. Examples of the method for producing the fiber web include a wet papermaking method, a dry method such as a card method and an airlaid method. However, dry methods such as the card method and the airlaid method can use fibers having a long fiber length, but it is difficult to form a uniform fiber web, and the formation is generally inferior to the wet papermaking method. There is.

一方、湿式抄造法は、生産速度が乾式法に比べて速く、同一装置で繊維径の異なる繊維や複数の種類の繊維を任意の割合で均一に混合できる利点がある。即ち、繊維の形態もステープル状、パルプ状等と選択の幅は広く、使用可能な繊維径も極細繊維から太い繊維まで使用可能で、他の方法に比べ、良好な地合の繊維ウェブが得られる。これらのことから、本発明の電池用セパレータに用いる不織布は湿式抄造法によって得られた湿式不織布が好ましい。   On the other hand, the wet papermaking method has an advantage that the production rate is higher than that of the dry method, and fibers having different fiber diameters or a plurality of types of fibers can be uniformly mixed at an arbitrary ratio in the same apparatus. In other words, there are a wide selection of fiber forms such as staple and pulp, and the usable fiber diameter can be used from ultrafine fibers to thick fibers. It is done. For these reasons, the nonwoven fabric used for the battery separator of the present invention is preferably a wet nonwoven fabric obtained by a wet papermaking method.

繊維ウェブから不織布を製造する方法としては、水流交絡法、ニードルパンチ法、バインダー接着法等を使用することができる。特に、均一性を重視して前記湿式抄造法を用いる場合、熱融着繊維を不織布に含有させて、バインダー接着法により接着することが好ましく、これにより均一な不織布が形成される。   As a method for producing a nonwoven fabric from a fibrous web, a hydroentanglement method, a needle punch method, a binder adhesion method, or the like can be used. In particular, when the wet papermaking method is used with an emphasis on uniformity, it is preferable to add heat-bonded fibers to the nonwoven fabric and bond them by a binder bonding method, whereby a uniform nonwoven fabric is formed.

また、湿式抄造法において、熱融着繊維の熱融着によるバインダー接着法により不織布を形成する場合、ウェット状態の繊維ウェブの加熱乾燥と同時に熱融着を生じさせる工程が用いられ、加熱乾燥方式としては、ヤンキードライヤーに代表される熱板圧着方式、バンド式スルードライヤー、エアスルードライヤーに代表される熱風通気方式等が挙げられるが、本発明においては熱板圧着方式による加熱乾燥がより好ましい。熱板圧着方式では、ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維の熱融着効率が高く、地合の均一性が高く、強度が向上した不織布を得ることができる。   In addition, in the wet papermaking method, when forming a non-woven fabric by a binder bonding method by heat fusing of heat fusing fibers, a process of causing heat fusing at the same time as heat drying of the wet fiber web is used. Examples thereof include a hot plate pressure bonding method typified by a Yankee dryer, a band-type through dryer, and a hot air ventilation method typified by an air through dryer. In the present invention, heat drying by a hot plate pressure bonding method is more preferable. In the hot plate compression method, a core-sheath composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component has a high heat fusion efficiency, a high uniformity of formation, and a nonwoven fabric with improved strength can be obtained. it can.

本発明の電池用セパレータは、ポリオレフィン系不織布にスルホン化処理を施し、繊維の表面から内部にスルホン酸基を導入する。スルホン化処理としては、二酸化硫黄ガス、三酸化硫黄ガス等による気相処理法や熱濃硫酸、発煙硫酸、又はクロロ硫酸等による液相処理法等を使用することができる。本発明の電池用セパレータにおいては、気相処理法によるスルホン化処理が好ましい。液相処理法によるスルホン化処理は、反応条件の設定が難しく、反応時間を長くし過ぎた場合や温度を高くし過ぎた場合に、不織布が炭化、収縮、フィルム化しやすいという問題がある。また、多量の強酸性廃液が出るという問題がある。   In the battery separator of the present invention, a polyolefin nonwoven fabric is subjected to sulfonation treatment, and sulfonic acid groups are introduced into the inside from the surface of the fiber. As the sulfonation treatment, a gas phase treatment method using sulfur dioxide gas, sulfur trioxide gas, or the like, a liquid phase treatment method using hot concentrated sulfuric acid, fuming sulfuric acid, chlorosulfuric acid, or the like can be used. In the battery separator of the present invention, sulfonation treatment by a gas phase treatment method is preferable. The sulfonation treatment by the liquid phase treatment method has a problem that it is difficult to set reaction conditions, and when the reaction time is excessively long or the temperature is excessively high, the nonwoven fabric is easily carbonized, contracted, and formed into a film. There is also a problem that a large amount of strongly acidic waste liquid is produced.

本発明の電池用セパレータにおいては、電解液との親和性を更に向上させるために、スルホン化処理後の不織布に界面活性剤を付与することが好ましい。用いられる界面活性剤としては、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルカンスルホン酸塩、長鎖脂肪酸塩、β−ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩、特殊芳香族スルホン酸ホルマリン縮合物のナトリウム塩、特殊ポリカルボン酸型高分子界面活性剤等の陰イオン界面活性剤、ポリオキシエチレンアルキルエーテル類、ポリオキシアルキレン誘導体類、ポリオキシアルキレンアルケニルエーテル類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、ポリオキシエチレンソルビトール脂肪酸エステル類、グリセリン脂肪酸エステル類、ポリオキシエチレン脂肪酸エステル類、ポリオキシエチレン硬化ヒマシ油類等の非イオン性界面活性剤が挙げられる。これらの界面活性剤は、含浸、塗布、スプレーした後、乾燥することにより不織布に付与することができ、界面活性剤の付与量は、スルホン化処理後の不織布に対して、0.1質量%以上1.0質量%以下が好ましい。   In the battery separator of the present invention, it is preferable to add a surfactant to the nonwoven fabric after the sulfonation treatment in order to further improve the affinity with the electrolytic solution. As the surfactant used, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, alkylbenzene sulfonate, dialkyl sulfosuccinate, alkyl diphenyl ether disulfonate, alkane sulfonate, long chain fatty acid salt, β- Sodium salt of naphthalenesulfonic acid formalin condensate, sodium salt of special aromatic sulfonic acid formalin condensate, anionic surfactant such as special polycarboxylic acid type polymer surfactant, polyoxyethylene alkyl ethers, polyoxyalkylene Derivatives, polyoxyalkylene alkenyl ethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters Polyoxyethylene fatty acid esters, nonionic surfactants of polyoxyethylene hardened castor oils and the like. These surfactants can be applied to the nonwoven fabric by impregnation, coating, spraying and drying, and the amount of the surfactant applied is 0.1% by mass relative to the nonwoven fabric after the sulfonation treatment. The content is preferably 1.0% by mass or less.

本発明の電池用セパレータにおいては、必要に応じて、スーパーカレンダーや熱カレンダー処理により、厚みを調整して用いられる。本発明の電池用セパレータの目付は、30g/m以上100g/m以下の範囲が好ましく、厚みは、60μm以上250μm以下の範囲が好ましい。電池用セパレータの目付及び厚みは、適用する電池の特性に応じて、適宜選択できる。ここで目付は、JIS P 8124に規定されている坪量を表し、厚みはJIS P 8118に規定される厚さを表す。また、本発明の電池用セパレータの最大細孔径は1μm以上50μm以下の範囲が好ましく、より好ましくは、5μm以上40μm以下、更に好ましくは、10μm以上35μm以下の範囲である。最大細孔径が50μmを超えて大きくなると、短絡しやすくなり、電池製造時の不良率が大きくなる場合がある。また、最大細孔径が1μm未満では、酸素ガス透過性やイオン導電性が低下する場合がある。ここで、最大細孔径はJIS K 3832に規定されるバブルポイント法による最大細孔径を表す。 In the battery separator of the present invention, the thickness is adjusted by super calendering or thermal calendering as necessary. The basis weight of the battery separator of the present invention is preferably in the range of 30 g / m 2 to 100 g / m 2 , and the thickness is preferably in the range of 60 μm to 250 μm. The basis weight and thickness of the battery separator can be appropriately selected according to the characteristics of the applied battery. Here, the basis weight represents the basis weight defined in JIS P 8124, and the thickness represents the thickness defined in JIS P 8118. The maximum pore diameter of the battery separator of the present invention is preferably in the range of 1 μm to 50 μm, more preferably 5 μm to 40 μm, and still more preferably 10 μm to 35 μm. When the maximum pore diameter is larger than 50 μm, short-circuiting is likely to occur, and the defect rate during battery manufacture may increase. If the maximum pore diameter is less than 1 μm, oxygen gas permeability and ionic conductivity may be reduced. Here, the maximum pore diameter represents the maximum pore diameter according to the bubble point method defined in JIS K3832.

以下、本発明を実施例により更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example.

(実施例1)
示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.03であり、熱収縮率が6.5%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)100質量部を、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定された熱板圧着方式であるヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mmの不織布を作製した。三酸化硫黄ガスを含む75℃の乾燥空気中で、この不織布に25秒間スルホン化処理を行い、2.5質量%の水酸化ナトリウム水溶液で中和し、イオン交換水で十分洗浄し、次いで、界面活性剤として、アルキルジフェニルエーテルジスルホン酸ナトリウムを、スルホン化処理後の不織布に対して0.3質量%となるようにスプレー塗布し、乾燥後、スーパーカレンダーにて、120μmに厚み調整して、目付53.6g/mの電池用セパレータを得た。
Example 1
The ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 1.03, and the heat shrinkage rate is 6.5. %, 100 parts by mass of a core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) whose core component is polypropylene and whose sheath component is high-density polyethylene Then, the mixture was disaggregated and dispersed, and gently stirred with an agitator to prepare a uniform papermaking slurry. This slurry for paper making is made by a wet paper making method using a circular paper machine, and dried by a hot air hood attached to a Yankee dryer that is a hot plate pressure bonding method set at 135 ° C. A non-woven fabric having a width of 500 mm was produced by hot-melt bonding the sheath portion of the above. This non-woven fabric was sulfonated for 25 seconds in 75 ° C. dry air containing sulfur trioxide gas, neutralized with a 2.5 mass% sodium hydroxide aqueous solution, thoroughly washed with ion-exchanged water, As a surfactant, sodium alkyldiphenyl ether disulfonate is applied by spraying to 0.3% by mass with respect to the non-woven fabric after the sulfonation treatment, and after drying, the thickness is adjusted to 120 μm with a super calendar, and the basis weight is obtained. A battery separator of 53.6 g / m 2 was obtained.

(実施例2)
実施例1において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.23であり、熱収縮率が6.2%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、目付53.8g/mの電池用セパレータを得た。
(Example 2)
In Example 1, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 1.23, and the heat shrinkage A core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) in which the rate is 6.2%, the core component is polypropylene, and the sheath component is high-density polyethylene was used. Except for the above, a battery separator having a basis weight of 53.8 g / m 2 was obtained in the same manner as in Example 1.

(実施例3)
実施例1において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.52であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、目付54.0g/mの電池用セパレータを得た。
(Example 3)
In Example 1, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 1.52, and the heat shrinkage A core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) having a rate of 5.8%, a core component of polypropylene, and a sheath component of high-density polyethylene was used. Except for the above, a battery separator having a basis weight of 54.0 g / m 2 was obtained in the same manner as in Example 1.

(実施例4)
実施例1において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.68であり、熱収縮率が4.7%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、目付53.8g/mの電池用セパレータを得た。
Example 4
In Example 1, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 1.68, and the heat shrinkage A core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) having a rate of 4.7%, a core component of polypropylene, and a sheath component of high-density polyethylene was used. Except for the above, a battery separator having a basis weight of 53.8 g / m 2 was obtained in the same manner as in Example 1.

(実施例5)
実施例1において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.95であり、熱収縮率が6.2%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、目付54.2g/mの電池用セパレータを得た。
(Example 5)
In Example 1, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 1.95, and heat shrinkage A core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) in which the rate is 6.2%, the core component is polypropylene, and the sheath component is high-density polyethylene was used. Except for the above, a battery separator having a basis weight of 54.2 g / m 2 was obtained in the same manner as in Example 1.

(実施例6)
実施例1において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.17であり、熱収縮率が7.6%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、目付53.6g/mの電池用セパレータを得た。
(Example 6)
In Example 1, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 2.17, and the heat shrinkage A core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) having a rate of 7.6%, a core component of polypropylene, and a sheath component of high-density polyethylene was used. Except for the above, a battery separator having a basis weight of 53.6 g / m 2 was obtained in the same manner as in Example 1.

(実施例7)
実施例1において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.45であり、熱収縮率が7.9%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)を使用した以外は、実施例1と同様にして、目付53.4g/mの電池用セパレータを得た。
(Example 7)
In Example 1, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 2.45, and the heat shrinkage A core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) having a rate of 7.9%, a core component of polypropylene, and a sheath component of high-density polyethylene was used. Except for the above, a battery separator having a basis weight of 53.4 g / m 2 was obtained in the same manner as in Example 1.

(実施例8)
実施例3において、抄造時の乾燥方式を熱板圧着方式であるヤンキードライヤーと併設された熱風フードの代わりに、135℃設定のエアスルードライヤーを使用した以外は、実施例3と同様にして、目付53.7g/mの電池用セパレータを得た。
(Example 8)
In Example 3, the drying method at the time of paper making is the same as in Example 3 except that an air-through dryer set at 135 ° C. is used instead of the hot air hood attached to the Yankee dryer that is a hot plate pressure bonding method. A battery separator of 53.7 g / m 2 was obtained.

(実施例9)
実施例3において、抄造時の乾燥方式を熱板圧着方式であるヤンキードライヤーと併設された熱風フードの代わりに、135℃設定のバンド式スルードライヤーを使用した以外は、実施例3と同様にして、目付54.1g/mの電池用セパレータを得た。
Example 9
In Example 3, the drying method at the time of papermaking was the same as in Example 3 except that a band-type through dryer set at 135 ° C. was used instead of the hot air hood attached to the Yankee dryer that is a hot plate pressure bonding method. A battery separator having a basis weight of 54.1 g / m 2 was obtained.

(実施例10)
示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.65であり、熱収縮率が5.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)70質量部とポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)30質量部とを混合し、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定された熱板圧着方式であるヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mmの不織布を作製した。三酸化硫黄ガスを含む75℃の乾燥空気中で、この不織布に25秒間スルホン化処理を行い、2.5質量%水酸化ナトリウム水溶液で中和し、イオン交換水で十分洗浄し、次いで、界面活性剤として、ポリオキシエチレンラウリルエーテル硫酸ナトリウムを、スルホン化処理後の不織布に対して0.3質量%となるようにスプレー塗布し、乾燥後、スーパーカレンダーにて、120μmに厚み調整して、目付53.9g/mの電池用セパレータを得た。
(Example 10)
The ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 1.65, and the thermal contraction rate is 5.8. %, A core component is polypropylene, and a sheath component is a high density polyethylene, a core-sheath composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) 70 parts by mass and polypropylene 30 parts by mass of one fiber (fineness 0.8 dtex, fiber length 5 mm) was mixed, disaggregated and dispersed in water of a pulper, and gently stirred with an agitator to prepare a uniform papermaking slurry. This slurry for paper making is made by a wet paper making method using a circular paper machine, and dried by a hot air hood attached to a Yankee dryer that is a hot plate pressure bonding method set at 135 ° C. A non-woven fabric having a width of 500 mm was produced by hot-melt bonding the sheath portion of the above. This non-woven fabric is sulfonated for 25 seconds in 75 ° C. dry air containing sulfur trioxide gas, neutralized with a 2.5 mass% sodium hydroxide aqueous solution, thoroughly washed with ion-exchanged water, and then interfaced. As an activator, polyoxyethylene lauryl ether sodium sulfate is spray-applied so as to be 0.3% by mass with respect to the non-woven fabric after sulfonation treatment, and after drying, the thickness is adjusted to 120 μm with a super calendar, A battery separator having a basis weight of 53.9 g / m 2 was obtained.

(実施例11)
実施例10において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.70であり、熱収縮率が6.5%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)70質量部とポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)30質量部とした以外は、実施例10と同様にして、目付54.2g/mの電池用セパレータを得た。
(Example 11)
In Example 10, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry was 1.70, and the heat shrinkage The core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) whose ratio is 6.5%, the core component is polypropylene, and the sheath component is high-density polyethylene is 70 parts by mass. A battery separator having a basis weight of 54.2 g / m 2 was obtained in the same manner as in Example 10 except that 30 parts by mass of a single fiber (fineness 0.8 dtex, fiber length 5 mm) made of polypropylene was used.

(実施例12)
実施例10において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.85であり、熱収縮率が7.5%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)70質量部とポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)30質量部とした以外は、実施例10と同様にして、目付53.6g/mの電池用セパレータを得た。
(Example 12)
In Example 10, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry was 1.85, and the heat shrinkage The core-sheath composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) 70% by mass with a ratio of 7.5%, the core component being polypropylene, and the sheath component being high-density polyethylene A battery separator having a basis weight of 53.6 g / m 2 was obtained in the same manner as in Example 10, except that 30 parts by mass of single fiber (fineness 0.8 dtex, fiber length 5 mm) made of polypropylene was used.

(実施例13)
示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.06であり、熱収縮率が7.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比52/48、繊度1.7dtex、繊維長10mm)60質量部とポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)20質量部とポリプロピレンとエチレン−プロピレン共重合体の混合体からなる極細繊維(繊度0.08dtex、繊維長5mm)20質量部を混合し、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いて抄造し、135℃に設定された熱板圧着方式であるヤンキードライヤーと併設されている熱風フードにより乾燥させると共に、芯鞘型複合繊維の鞘部分を熱溶融接着させて、幅500mmの不織布を作製した。三酸化硫黄ガスを含む75℃の乾燥空気中で、この不織布に25秒間スルホン化処理を行い、2.5質量%の水酸化ナトリウム水溶液で中和し、イオン交換水で十分洗浄し、次いで、界面活性剤として、ポリオキシエチレンドデシルフェニルエーテルを、スルホン化処理後の不織布に対して0.3質量%となるようにスプレー塗布し、乾燥後、スーパーカレンダーにて、120μmに厚み調整して、目付54.1g/mの電池用セパレータを得た。
(Example 13)
The ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 2.06, and the thermal contraction rate is 7.8. A core-sheath type composite fiber (core / sheath mass ratio 52/48, fineness 1.7 dtex, fiber length 10 mm) having a core component of polypropylene and a sheath component of high-density polyethylene, and a single unit comprising polypropylene. 20 parts by mass of one fiber (fineness 0.8 dtex, fiber length 5 mm) and 20 parts by mass of ultrafine fiber (fineness 0.08 dtex, fiber length 5 mm) made of a mixture of polypropylene and ethylene-propylene copolymer were mixed, Dispersed and dispersed in water, and gently stirred with an agitator to prepare a uniform papermaking slurry. This slurry for paper making is made by a wet paper making method using a circular paper machine, and dried by a hot air hood attached to a Yankee dryer that is a hot plate pressure bonding method set at 135 ° C. A non-woven fabric having a width of 500 mm was produced by hot-melt bonding the sheath portion of the above. This non-woven fabric was sulfonated for 25 seconds in 75 ° C. dry air containing sulfur trioxide gas, neutralized with a 2.5 mass% sodium hydroxide aqueous solution, thoroughly washed with ion-exchanged water, As a surfactant, polyoxyethylene dodecyl phenyl ether is applied by spraying to 0.3% by mass with respect to the non-woven fabric after the sulfonation treatment, and after drying, the thickness is adjusted to 120 μm with a super calender, A battery separator having a basis weight of 54.1 g / m 2 was obtained.

(実施例14)
実施例13において、抄造時の乾燥方式を熱板圧着方式であるヤンキードライヤーと併設された熱風フードの代わりに、135℃設定のエアスルードライヤーを使用した以外は、実施例13と同様にして、目付53.8g/mの電池用セパレータを得た。
(Example 14)
In Example 13, the basis weight is the same as in Example 13 except that an air-through dryer set at 135 ° C. is used in place of the hot air hood attached to the Yankee dryer that is a hot plate crimping method as the drying method during paper making. A battery separator of 53.8 g / m 2 was obtained.

(実施例15)
実施例13において、抄造時の乾燥方式を熱板圧着方式であるヤンキードライヤーと併設された熱風フードの代わりに、135℃設定のバンド式スルードライヤーを使用した以外は、実施例13と同様にして、目付53.6g/mの電池用セパレータを得た。
(Example 15)
In Example 13, the drying method at the time of papermaking was the same as in Example 13 except that a band-type through dryer set at 135 ° C. was used instead of the hot air hood attached to the Yankee dryer that is a hot plate pressure bonding method. A battery separator having a basis weight of 53.6 g / m 2 was obtained.

(実施例16)
実施例13において、湿式抄造法の代わりに、エアレイド法にてウェブを作製し、135℃設定のバンド式スルードライヤーを使用し、芯鞘型複合繊維の鞘成分を熱溶融接着させて、幅500mmの不織布を作製した以外は、実施例13と同様にして、目付54.3g/mの電池用セパレータを得た。
(Example 16)
In Example 13, instead of the wet papermaking method, a web was prepared by an airlaid method, and a band-type through dryer set at 135 ° C. was used to heat-melt and bond the sheath component of the core-sheath type composite fiber, and the width was 500 mm. A battery separator having a weight per unit area of 54.3 g / m 2 was obtained in the same manner as in Example 13 except that a non-woven fabric was prepared.

(実施例17)
実施例16において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.36であり、熱収縮率が8.3%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比52/48、繊度1.7dtex、繊維長10mm)60質量部とポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)20質量部とポリプロピレンとエチレン−プロピレン共重合体の混合体からなる極細繊維(繊度0.08dtex、繊維長5mm)20質量部を用いた以外は、実施例16と同様にして、目付54.5g/mの電池用セパレータを得た。
(Example 17)
In Example 16, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry was 2.36, and the heat shrinkage The core-sheath type composite fiber (core / sheath mass ratio 52/48, fineness 1.7 dtex, fiber length 10 mm) whose ratio is 8.3%, the core component is polypropylene, and the sheath component is high-density polyethylene 60 parts by mass 20 parts by mass of a single fiber (fineness 0.8 dtex, fiber length 5 mm) made of polypropylene and 20 parts by mass of an ultrafine fiber (fineness 0.08 dtex, fiber length 5 mm) made of a mixture of polypropylene and ethylene-propylene copolymer A battery separator having a basis weight of 54.5 g / m 2 was obtained in the same manner as in Example 16 except that it was used.

(実施例18)
実施例10において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.75であり、熱収縮率が6.2%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度1.7dtex、繊維長10mm)85質量部と1,9−ノナンジアミンとテレフタル酸をモノマーとする半芳香族ポリアミド繊維(繊度0.7dtex、繊維長5mm)15質量部とした以外は、実施例10と同様にして、目付53.8g/mの電池用セパレータを得た。
(Example 18)
In Example 10, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry was 1.75, and the heat shrinkage The core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 1.7 dtex, fiber length 10 mm) 85% by mass is 6.2%, the core component is polypropylene, and the sheath component is high-density polyethylene In addition, the basis weight was 53.8 g / m in the same manner as in Example 10 except that the amount was 15 parts by mass of semi-aromatic polyamide fiber (fineness 0.7 dtex, fiber length 5 mm) using 1,9-nonanediamine and terephthalic acid as monomers. 2 battery separators were obtained.

(実施例19)
実施例10において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が1.35であり、熱収縮率が7.3%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比40/60、繊度1.7dtex、繊維長10mm)85質量部と1,9−ノナンジアミンとテレフタル酸をモノマーとする半芳香族ポリアミド繊維(繊度0.7dtex、繊維長5mm)15質量部とした以外は、実施例10と同様にして、目付53.7g/mの電池用セパレータを得た。
(Example 19)
In Example 10, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 1.35, and the heat shrinkage The core-sheath type composite fiber (core / sheath mass ratio 40/60, fineness 1.7 dtex, fiber length 10 mm) whose ratio is 7.3%, the core component is polypropylene, and the sheath component is high-density polyethylene 85 parts by mass In addition, the basis weight was 53.7 g / m in the same manner as in Example 10 except that 15 parts by mass of semi-aromatic polyamide fiber having a monomer of 1,9-nonanediamine and terephthalic acid (fineness 0.7 dtex, fiber length 5 mm) was used. 2 battery separators were obtained.

(実施例20)
実施例10において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.12であり、熱収縮率が6.8%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比60/40、繊度1.7dtex、繊維長10mm)85質量部と1,9−ノナンジアミンとテレフタル酸をモノマーとする半芳香族ポリアミド繊維(繊度0.7dtex、繊維長5mm)15質量部とした以外は、実施例10と同様にして、目付53.9g/mの電池用セパレータを得た。
(Example 20)
In Example 10, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 2.12, and the heat shrinkage The core-sheath type composite fiber (core / sheath mass ratio 60/40, fineness 1.7 dtex, fiber length 10 mm) having a rate of 6.8%, the core component being polypropylene, and the sheath component being high-density polyethylene 85 parts by mass In addition, the basis weight was 53.9 g / m in the same manner as in Example 10, except that the amount was 15 parts by mass of semi-aromatic polyamide fiber (fineness 0.7 dtex, fiber length 5 mm) using 1,9-nonanediamine and terephthalic acid as monomers. 2 battery separators were obtained.

(比較例1)
実施例1において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.55であり、熱収縮率が8.5%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)100質量部を用いた以外は、実施例1と同様にして、目付53.7g/mの電池用セパレータを得た。
(Comparative Example 1)
In Example 1, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry is 2.55, and the heat shrinkage 100% by mass of a core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) whose ratio is 8.5%, the core component is polypropylene, and the sheath component is high-density polyethylene A battery separator having a basis weight of 53.7 g / m 2 was obtained in the same manner as in Example 1 except that was used.

(比較例2)
実施例10において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.65であり、熱収縮率が9.5%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)70質量部とポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)30質量部とした以外は、実施例10と同様にして、目付54.6g/mの電池用セパレータを得た。
(Comparative Example 2)
In Example 10, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry was 2.65, and the heat shrinkage The core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) whose ratio is 9.5%, the core component is polypropylene, and the sheath component is high-density polyethylene 70 parts by mass A battery separator having a basis weight of 54.6 g / m 2 was obtained in the same manner as in Example 10 except that 30 parts by mass of a single fiber (fineness 0.8 dtex, fiber length 5 mm) made of polypropylene was used.

(比較例3)
実施例10において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が2.55であり、熱収縮率が8.5%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比50/50、繊度0.8dtex、繊維長5mm)70質量部とエチレン−ビニルアルコール共重合体繊維(繊度0.8dtex、繊維長5mm)30質量部とした以外は、実施例10と同様にして、目付54.2g/mの電池用セパレータを得た。
(Comparative Example 3)
In Example 10, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry was 2.55, and the heat shrinkage The core-sheath type composite fiber (core / sheath mass ratio 50/50, fineness 0.8 dtex, fiber length 5 mm) 70% by mass with a ratio of 8.5%, the core component being polypropylene, and the sheath component being high-density polyethylene A battery separator having a basis weight of 54.2 g / m 2 was obtained in the same manner as in Example 10 except that 30 parts by mass of ethylene-vinyl alcohol copolymer fiber (fineness 0.8 dtex, fiber length 5 mm) was used.

(比較例4)
実施例16において、示差走査熱量分析のDSC曲線における低融点側の融解ピーク面積(A)と高融点側の融解ピーク面積(B)の比(A/B)が0.94であり、熱収縮率が7.2%であり、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンである芯鞘型複合繊維(芯/鞘質量比52/48、繊度1.7dtex、繊維長10mm)60質量部とポリプロピレンからなる単一繊維(繊度0.8dtex、繊維長5mm)20質量部とポリプロピレンからなる極細単一繊維(繊度0.08dtex、繊維長5mm)20質量部とした以外は、実施例16と同様にして、目付53.9g/mの電池用セパレータを得た。
(Comparative Example 4)
In Example 16, the ratio (A / B) of the melting peak area (A) on the low melting point side to the melting peak area (B) on the high melting point side in the DSC curve of differential scanning calorimetry was 0.94, and the heat shrinkage 60% by mass of a core-sheath type composite fiber (core / sheath mass ratio 52/48, fineness 1.7 dtex, fiber length 10 mm) in which the rate is 7.2%, the core component is polypropylene, and the sheath component is high-density polyethylene And Example 16 except that 20 parts by mass of single fiber (fineness 0.8 dtex, fiber length 5 mm) made of polypropylene and 20 parts by mass of ultrafine single fiber (fineness 0.08 dtex, fiber length 5 mm) made of polypropylene were used. Similarly, a battery separator having a basis weight of 53.9 g / m 2 was obtained.

<評価>
実施例及び比較例で得られた電池用セパレータについて、下記の評価を行い、結果を表1に示した。
<Evaluation>
The battery separators obtained in Examples and Comparative Examples were evaluated as follows, and the results are shown in Table 1.

[ピーク面積比(A/B)の評価]
ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維をエタノールで洗浄し、80℃で30分間乾燥した後、温度23℃、湿度50%で24時間状態調節した試料10mgをAl製試料容器に封入し、JIS K 7121に規定される示差走査熱量分析を行い、DSC曲線を求め、JIS K 7122に規定される方法により、高密度ポリエチレンに由来する低融点側の融解ピーク面積(A)とポリプロピレンに由来する高融点側の融解ピーク面積(B)を算出し、次の式(1)からピーク面積比(A/B)を得た。
ピーク面積比(A/B)=融解ピーク面積(A)/融解ピーク面積(B) (1)
[Evaluation of peak area ratio (A / B)]
A core-sheath composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component was washed with ethanol, dried at 80 ° C. for 30 minutes, and then 10 mg of a sample conditioned at 23 ° C. and 50% humidity for 24 hours. The sample is sealed in an Al sample container, subjected to differential scanning calorimetry specified in JIS K 7121, a DSC curve is obtained, and the melting peak area on the low melting point side derived from high-density polyethylene is obtained by the method specified in JIS K 7122. The melting peak area (B) on the high melting point side derived from (A) and polypropylene was calculated, and the peak area ratio (A / B) was obtained from the following formula (1).
Peak area ratio (A / B) = melting peak area (A) / melting peak area (B) (1)

[熱収縮率の評価]
ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を、温度23℃、湿度50%で24時間状態調節した試料をガラス製キャピラリーチューブに入れ、加熱前の繊維の長さ(L)をデジタルマイクロスコープ(製品名:VHX−900、(株)キーエンス製)で撮影し、距離計測モードで測定した。次に、130℃で30分間加熱し、温度23℃、湿度50%で1時間放冷した後、加熱後の繊維の長さ(L)を加熱前と同様にして測定した。熱収縮率は、次の式(2)で求めた。
熱収縮率(%)=(L−L)/L×100 (2)
[Evaluation of heat shrinkage]
A sample prepared by conditioning a core-sheath type composite fiber having a core component of polypropylene and a sheath component of high-density polyethylene at a temperature of 23 ° C. and a humidity of 50% for 24 hours is placed in a glass capillary tube, and the length of the fiber before heating. (L 1 ) was photographed with a digital microscope (product name: VHX-900, manufactured by Keyence Corporation) and measured in a distance measurement mode. Next, after heating at 130 ° C. for 30 minutes and allowing to cool at 23 ° C. and 50% humidity for 1 hour, the length (L 2 ) of the fiber after heating was measured in the same manner as before heating. The thermal contraction rate was calculated | required by following Formula (2).
Thermal contraction rate (%) = (L 1 −L 2 ) / L 1 × 100 (2)

[不織布製造安定性の評価]
不織布製造における製造安定性を以下の基準で評価した。不織布を5000m製造する間に、シート切れ、割れ地合、シボ、濃淡ムラ、巻き皺等の不具合が全く生じずに作製できた場合を◎、濃度ムラ、巻き皺等の軽微な不具合が少し生じた場合を○、前記の軽微な不具合が頻繁に生じた場合を△、シート切れ、割れ地合等の大きな不具合が頻繁に生じた場合を×とする。
[Evaluation of nonwoven fabric production stability]
The production stability in the production of nonwoven fabric was evaluated according to the following criteria. When manufacturing a non-woven fabric 5000m, it can be produced without causing any problems such as sheet breakage, cracking, grain, shading unevenness, curly wrinkles, etc. The case where the above-mentioned minor trouble frequently occurs is indicated by △, and the case where a large trouble such as sheet breakage or crack formation frequently occurs is indicated by “X”.

[セパレータ均一性の評価]
厚み調整済の電池用セパレータから縦横500mm角のシートを切り取り、ここから50mm角の通気度測定用試料100枚を作製し、JIS L 1096に規定される通気性A法(フラジール形法)に準じて、通気性試験機(装置名:KES−F8−AP1、カトーテック(株)製)で通気度を測定し、試料100枚の通気度の平均値(Q)と標準偏差(Q)を算出し、次の式(3)から変動係数を求めた。変動係数が小さいほど、セパレータの地合の均一性が高いことを示す。
変動係数(%)=通気度の標準偏差(Q)/通気度の平均値(Q)×100 (3)
[Evaluation of separator uniformity]
A 500 mm square sheet is cut out from the battery separator whose thickness has been adjusted, and 100 sheets of 50 mm square air permeability measurement samples are produced from the sheet, and conform to the air permeability A method (Fragile method) prescribed in JIS L 1096. Then, the air permeability was measured with a breathability tester (device name: KES-F8-AP1, manufactured by Kato Tech Co., Ltd.), and the average value (Q 1 ) and standard deviation (Q 2 ) of the air permeability of 100 samples. And the coefficient of variation was determined from the following equation (3). The smaller the coefficient of variation, the higher the uniformity of the separator formation.
Coefficient of variation (%) = standard deviation of air permeability (Q 2 ) / average value of air permeability (Q 1 ) × 100 (3)

[引張強度の評価]
厚み調整済の電池用セパレータから、巻き取りの流れ方向250mm、幅方向50mmの試料を10枚切り取り、JIS P 8113に準じて、卓上型材料試験機(装置名:STA−1150、(株)オリエンテック製)を用いて、引張強度を測定し、10枚の平均値をセパレータの引張強度とした。
[Evaluation of tensile strength]
Ten samples having a winding direction of 250 mm and a width direction of 50 mm were cut from the battery-adjusted separator, and a desktop material testing machine (apparatus name: STA-1150, Oriente Co., Ltd.) according to JIS P8113. The tensile strength of the separator was measured, and the average value of 10 sheets was taken as the tensile strength of the separator.

[最大細孔径の評価]
電池用セパレータについて、JIS K 3832に規定されるバブルポイント法により最大細孔径を求めた。
[Evaluation of maximum pore size]
For the battery separator, the maximum pore diameter was determined by the bubble point method specified in JIS K3832.

[硫黄含有率の評価]
スルホン化処理された電池用セパレータから直径35mmの試料を採取し、イオン交換水200mL中で10分間、2回洗浄し、60℃で10分間乾燥して測定用試料を作製した。この試料をホルダーにセットして、蛍光X線装置(装置名:ZSX Primus II、Rhターゲット、50kV−50mA、(株)リガク製)で全元素測定を行った。硫黄含有率は、測定値を半定量分析法であるSQX計算することで算出し、スルホン化処理量を質量%で見積もった。
[Evaluation of sulfur content]
A sample having a diameter of 35 mm was collected from the battery separator subjected to the sulfonation treatment, washed twice in 200 mL of ion-exchanged water for 10 minutes, and dried at 60 ° C. for 10 minutes to prepare a measurement sample. This sample was set in a holder, and all elemental measurements were performed with a fluorescent X-ray apparatus (device name: ZSX Primus II, Rh target, 50 kV-50 mA, manufactured by Rigaku Corporation). The sulfur content was calculated by calculating the measured value by SQX, which is a semi-quantitative analysis method, and the sulfonation treatment amount was estimated by mass%.

[電池の作製]
電極の集電体として、発泡ニッケル基材を用いたペースト式水酸化ニッケル正極(40mm幅)と、ニッケルメッキパンチングメタル基材を用いた水素吸蔵合金負極(40mm幅)を1枚ずつ用い、これらの電極の間に、43mm幅の実施例及び比較例で得られた電池用セパレータを介在させて、電池構成機を用いて巻き取り、渦巻状極板群を作製した。該渦巻状極板群を円筒形の金属ケースに収納した後、1N水酸化リチウムを含む7N水酸化カリウム水溶液を主体とするアルカリ電解液を一定量注入した後、安全弁付きの封印蓋を取り付けて、公称容量が1.7Ahの単3形密閉式ニッケル水素電池を作製した。その後、正極と負極との間に240Vの電圧を印加し、電気抵抗が1kΩを超えるものを正常とした。
[Production of battery]
As the electrode current collector, a paste type nickel hydroxide positive electrode (40 mm width) using a foamed nickel base material and a hydrogen storage alloy negative electrode (40 mm width) using a nickel-plated punching metal base material are used one by one. A battery separator obtained in the 43 mm-wide Example and Comparative Example was interposed between the electrodes, and wound up using a battery construction machine to produce a spiral electrode group. After the spiral electrode plate group is stored in a cylindrical metal case, a certain amount of alkaline electrolyte mainly composed of 7N potassium hydroxide aqueous solution containing 1N lithium hydroxide is injected, and then a sealing lid with a safety valve is attached. AA type sealed nickel metal hydride batteries having a nominal capacity of 1.7 Ah were produced. Thereafter, a voltage of 240 V was applied between the positive electrode and the negative electrode, and those having an electric resistance exceeding 1 kΩ were regarded as normal.

[容量維持率の評価]
上記のようにして製造した電池のうち、正常な電池を各電池用セパレータについて10個選別した。電池の化成のため、25℃において、170mA(0.1C)の電流で15時間充電し、1.7A(1C)の電流で端子電圧が0.8Vになるまで放電するという充放電を4回繰り返した。得られた化成済みの電池10個を用い、25℃で、1.7A(1C)の電流で充電し、満充電に達した後、電池電圧が10mV低下した時点で充電を1時間休止させ、次に340mA(0.2C)の電流で終止電圧が1.0Vになるまで放電させたときの放電容量を測定し、Cとする。そして、同様に1.7A(1C)の電流で充電してから、60℃の恒温槽中にて7日間保存し、その後25℃で6時間放冷し、同様に340mA(0.2C)の電流で放電させたときの放電容量を測定してCとし、次の式(4)から容量維持率を算出した。容量維持率の値が大きいほど、自己放電特性が優れることを示す。
容量維持率(%)=C/C×100 (4)
[Evaluation of capacity maintenance rate]
Of the batteries produced as described above, 10 normal batteries were selected for each battery separator. Charge and discharge 4 times at 25 ° C for 15 hours at a current of 170 mA (0.1 C) and discharge at 1.7 A (1 C) until the terminal voltage reaches 0.8 V for battery formation. Repeated. Using the obtained 10 formed batteries, charging at 25 ° C. with a current of 1.7 A (1 C), reaching full charge, and when the battery voltage drops by 10 mV, charging is suspended for 1 hour, then to measure the discharge capacity when end voltage was discharged until 1.0V with a current of 340 mA (0.2 C), and C 1. Similarly, the battery was charged with a current of 1.7 A (1 C), then stored in a thermostatic bath at 60 ° C. for 7 days, then allowed to cool at 25 ° C. for 6 hours, and similarly 340 mA (0.2 C) of a C 2 to measure the discharge capacity when discharged at a current was calculated capacity retention rate from the following equation (4). It shows that self-discharge characteristic is excellent, so that the value of a capacity | capacitance maintenance factor is large.
Capacity maintenance rate (%) = C 2 / C 1 × 100 (4)

Figure 0004814399
Figure 0004814399

実施例1〜20で示した電池用セパレータは、示差走査熱量分析により得られるDSC曲線において、低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下であり、ポリプロピレンを芯成分、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を含有するポリオレフィン系不織布にスルホン化処理を施したものであり、不織布の製造安定性が良好で、セパレータ均一性並びに自己放電抑制効果に優れている。   In the DSC curves obtained by differential scanning calorimetry, the battery separators shown in Examples 1 to 20 have melting peak areas (A) derived from low-melting-side high-density polyethylene and melting derived from high-melting-side polypropylene. The ratio of peak area (B) (A / B) is 1.00 or more and 2.50 or less, and sulfone is added to a polyolefin-based nonwoven fabric containing core-sheath composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component. The non-woven fabric has good production stability and is excellent in separator uniformity and self-discharge suppression effect.

実施例1〜7を比較すると、実施例2〜6は、融解ピーク面積の比(A/B)が1.20以上2.20以下の範囲内であり、良好な特性を示し、中でも実施例3〜5は、融解ピーク面積の比が1.40以上2.00以下の範囲内であり、不織布の製造安定性、セパレータ均一性、並びに容量維持率が更に優れている。また、実施例3及び実施例4は、芯鞘繊維の熱収縮率が6.0%以下であり、最大細孔径も小さく特に優れている。   When Examples 1 to 7 are compared, Examples 2 to 6 have a melting peak area ratio (A / B) in the range of 1.20 or more and 2.20 or less and exhibit good characteristics. In Nos. 3 to 5, the melting peak area ratio is in the range of 1.40 or more and 2.00 or less, and the manufacturing stability of the nonwoven fabric, the separator uniformity, and the capacity retention rate are further excellent. In Examples 3 and 4, the heat shrinkage of the core-sheath fiber is 6.0% or less, and the maximum pore diameter is small and particularly excellent.

実施例3と実施例8及び実施例9、実施例13と実施例14及び実施例15とを比較すると、実施例3及び実施例13は熱板圧着方式で加熱乾燥した湿式不織布であり、同じ湿式不織布であっても、エアスルードライヤーを使用した実施例8及び実施例14やバンド式スルードライヤーを使用した実施例9及び実施例15より、セパレータ均一性に優れ、引張強度が強く、最大細孔径も小さく優れている。   When Example 3 and Example 8 and Example 9, Example 13 and Example 14 and Example 15 are compared, Example 3 and Example 13 are the wet nonwoven fabrics heat-dried by the hot-plate press bonding system, and the same Even if it is a wet nonwoven fabric, it is superior in separator uniformity, strong tensile strength, and maximum pore diameter from Examples 8 and 14 using an air-through dryer and Examples 9 and 15 using a band-type through dryer. Also small and excellent.

実施例13〜17を比較すると、乾式不織布を用いた実施例16及び実施例17は、湿式不織布を用いた実施例13〜15に比べると、セパレータ均一性、引張強度、最大細孔径、容量維持率がやや劣る結果である。また、実施例17は芯鞘型複合繊維の熱収縮率が8.0%を超えており、実施例16と比較して、セパレータ均一性、引張強度、最大細孔径がやや劣る結果であった。   Comparing Examples 13 to 17, Example 16 and Example 17 using a dry nonwoven fabric compared to Examples 13 to 15 using a wet nonwoven fabric, separator uniformity, tensile strength, maximum pore diameter, capacity maintenance. The result is somewhat inferior. In addition, in Example 17, the heat-shrinkage rate of the core-sheath composite fiber exceeded 8.0%, and the separator uniformity, tensile strength, and maximum pore diameter were slightly inferior to those in Example 16. .

一方、比較例で得られた電池用セパレータは、本発明の条件を満足しておらず、例えば比較例1及び比較例2は、不織布の製造安定性やセパレータ均一性が大きく劣る。比較例3は、エチレン−ビニルアルコール共重合体を併用しており、電池の容量維持率の低下が著しい。比較例4は、実施例16及び実施例17と比べて、セパレータ均一性が劣り、特に引張強度の低下が大きい結果となった。   On the other hand, the battery separator obtained in the comparative example does not satisfy the conditions of the present invention. For example, Comparative Example 1 and Comparative Example 2 are significantly inferior in manufacturing stability and separator uniformity of the nonwoven fabric. In Comparative Example 3, an ethylene-vinyl alcohol copolymer is used in combination, and the capacity retention rate of the battery is significantly reduced. In Comparative Example 4, compared with Examples 16 and 17, the separator uniformity was inferior, and in particular, the tensile strength was greatly reduced.

本発明の活用例としては、不織布の製造安定性が良好であり、セパレータとしての地合の均一性が良好で、電池の自己放電を抑制して、長期にわたって電池容量を維持することができるアルカリ二次電池用セパレータとして、好適に用いることができる。   As an application example of the present invention, an alkali capable of maintaining the battery capacity over a long period of time with good manufacturing stability of the nonwoven fabric, good uniformity of formation as a separator, suppressing self-discharge of the battery It can be suitably used as a separator for a secondary battery.

Claims (3)

ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を含有するポリオレフィン系不織布をスルホン化処理した電池用セパレータにおいて、該芯鞘型複合繊維の示差走査熱量分析により得られるDSC曲線で低融点側の高密度ポリエチレンに由来する融解ピーク面積(A)と高融点側のポリプロピレンに由来する融解ピーク面積(B)の比(A/B)が1.00以上2.50以下であることを特徴とする電池用セパレータ。   A DSC obtained by differential scanning calorimetry of a core-sheath composite fiber in a battery separator obtained by sulfonating a polyolefin-based nonwoven fabric containing a core-sheath composite fiber containing polypropylene as a core component and high-density polyethylene as a sheath component The ratio (A / B) of the melting peak area (A) derived from the high-density polyethylene on the low melting point side to the melting peak area (B) derived from the polypropylene on the high melting point side in the curve is from 1.00 to 2.50. There is a battery separator characterized by that. ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維の130℃加熱処理後における熱収縮率が8.0%以下である請求項1記載の電池用セパレータ。   The battery separator according to claim 1, wherein the heat-shrinkage ratio of the core-sheath composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component after heat treatment at 130 ° C is 8.0% or less. ポリプロピレンを芯成分とし、高密度ポリエチレンを鞘成分とする芯鞘型複合繊維を含有するポリオレフィン系不織布が熱板圧着方式で乾燥処理した湿式不織布である請求項1又は2記載の電池用セパレータ。   The battery separator according to claim 1 or 2, wherein the polyolefin-based nonwoven fabric containing a core-sheath type composite fiber having polypropylene as a core component and high-density polyethylene as a sheath component is a wet nonwoven fabric dried by a hot plate compression method.
JP2011002058A 2010-02-05 2011-01-07 Battery separator Expired - Fee Related JP4814399B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011002058A JP4814399B2 (en) 2010-03-12 2011-01-07 Battery separator
PCT/JP2011/052301 WO2011096502A1 (en) 2010-02-05 2011-01-26 Separator for battery
CN201180008419.6A CN102725882B (en) 2010-02-05 2011-01-26 Separator for battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010055627 2010-03-12
JP2010055627 2010-03-12
JP2011002058A JP4814399B2 (en) 2010-03-12 2011-01-07 Battery separator

Publications (2)

Publication Number Publication Date
JP2011210701A JP2011210701A (en) 2011-10-20
JP4814399B2 true JP4814399B2 (en) 2011-11-16

Family

ID=44941517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002058A Expired - Fee Related JP4814399B2 (en) 2010-02-05 2011-01-07 Battery separator

Country Status (1)

Country Link
JP (1) JP4814399B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641490B (en) 2012-09-19 2017-12-01 旭化成株式会社 Separator and its manufacture method and lithium rechargeable battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4377774B2 (en) * 2004-08-12 2009-12-02 ダイワボウホールディングス株式会社 Battery separator, manufacturing method thereof, and battery
JP4377773B2 (en) * 2004-08-12 2009-12-02 ダイワボウホールディングス株式会社 Battery separator and battery
JP2006269384A (en) * 2005-03-25 2006-10-05 Mitsubishi Paper Mills Ltd Separator for alkaline battery

Also Published As

Publication number Publication date
JP2011210701A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP4203262B2 (en) Nonwoven fabric for separators for alkaline batteries
JP6068444B2 (en) Separator
JP4387951B2 (en) Separator for organic electrolyte battery, manufacturing method thereof, and organic electrolyte battery incorporating the same
JP4577920B2 (en) Battery separator and battery using the same
JP4814392B1 (en) Battery separator
JP2006269384A (en) Separator for alkaline battery
JP2012199203A (en) Separator for battery
JP4814399B2 (en) Battery separator
JP2013048081A (en) Separator for battery
JP3678081B2 (en) Battery separator and battery using the same
WO2011096502A1 (en) Separator for battery
JP4372393B2 (en) Separator material, manufacturing method thereof, and battery
JP2015041579A (en) Method for manufacturing battery separator
JP2014071994A (en) Separator for battery use
JP2005228544A (en) Separator for battery
JP5128035B2 (en) Battery separator and battery using the same
JP2014197470A (en) Separator for alkali battery use
KR100533124B1 (en) Battery separator and method for manufacturing the same, and battery
JP2014102891A (en) Battery separator
JP2014173200A (en) Method for manufacturing nonwoven fabric, nonwoven fabric and separator for battery
JP6748422B2 (en) Alkaline battery separator and method of manufacturing the same
JP2014156662A (en) Method for producing nonwoven fabric, nonwoven fabric and separator for battery
JP2011198522A (en) Battery separator
JP4122007B2 (en) Composite fiber and non-woven fabric for battery separator comprising the same
JP2005276842A (en) Separator for battery and battery using it

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4814399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees