JP4814017B2 - Modulation method identification device - Google Patents

Modulation method identification device Download PDF

Info

Publication number
JP4814017B2
JP4814017B2 JP2006230460A JP2006230460A JP4814017B2 JP 4814017 B2 JP4814017 B2 JP 4814017B2 JP 2006230460 A JP2006230460 A JP 2006230460A JP 2006230460 A JP2006230460 A JP 2006230460A JP 4814017 B2 JP4814017 B2 JP 4814017B2
Authority
JP
Japan
Prior art keywords
phase difference
distribution
symbol
phase
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006230460A
Other languages
Japanese (ja)
Other versions
JP2008054186A (en
Inventor
晴彦 細谷
理江子 東久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2006230460A priority Critical patent/JP4814017B2/en
Publication of JP2008054186A publication Critical patent/JP2008054186A/en
Application granted granted Critical
Publication of JP4814017B2 publication Critical patent/JP4814017B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

本発明は、デジタル変調信号の変調方式を識別するための技術に関し、特に、位相変調(PSK)方式について、周波数ずれがある場合や信号のS/Nが低い場合でも、簡易な構成で高精度な識別が行えるようにするための技術に関する。   The present invention relates to a technique for identifying a modulation scheme of a digital modulation signal, and in particular, with respect to a phase modulation (PSK) scheme, even when there is a frequency shift or when the signal S / N is low, high accuracy with a simple configuration. The present invention relates to a technique for enabling easy identification.

信号の変調方式のうち近年多く用いられている主なデジタル変調方式として、位相変調方式(PSK)、位相振幅変調方式(QAM)があり、それぞれの変調方式についても多くの方式が存在している。   Of the signal modulation methods, the main digital modulation methods that are widely used in recent years are the phase modulation method (PSK) and the phase amplitude modulation method (QAM), and there are many methods for each modulation method. .

したがって、このようなデジタル変調方式で変調された信号を扱う受信装置や解析装置等では、複数の変調方式にそれぞれ対応した復調機能を有しているが、予め信号の変調方式が分かっていないとデータを正しく復調することはできない。   Therefore, a receiving device or an analysis device that handles a signal modulated by such a digital modulation method has a demodulation function corresponding to each of a plurality of modulation methods, but the signal modulation method is not known in advance. Data cannot be demodulated correctly.

特に、電波監視業務等では、監視対象の信号の変調方式が未知であり、その業務の性質上、速やかに変調方式を特定してデータの復調を行う必要があり、そのために、信号の変調方式を自動的に識別する変調方式識別装置が必須となる。   In particular, in the radio wave monitoring business, the modulation method of the signal to be monitored is unknown, and due to the nature of the business, it is necessary to quickly identify the modulation method and demodulate the data. A modulation scheme identifying device that automatically identifies

デジタル変調された信号の変調方式を識別する技術として、特許文献1には、解析対象の信号を直交検波してベースバンドの2相の信号I、Qに分け、その信号I、Qで決まるIQ直交座標面上の点(シンボル点という)が集合する領域数を求め、その領域数と各変調方式で決まる領域数とを比較することで、解析対象の信号の変調方式を特定する技術が開示されている。   As a technique for identifying a modulation method of a digitally modulated signal, Patent Document 1 discloses that an analysis target signal is orthogonally detected and divided into baseband two-phase signals I and Q, and IQ determined by the signals I and Q is determined. Disclosed is a technique for identifying the modulation method of a signal to be analyzed by calculating the number of regions where points (called symbol points) on the Cartesian coordinate plane are gathered and comparing the number of regions with the number of regions determined by each modulation method. Has been.

また、特許文献2には、解析対象の信号の包絡線の分布を求めるとともに、前記したIQ直交座標の原点からシンボル点までの距離(ベクトル半径)についての分布を求め、これらの分布のパターンと各変調方式について予め設定した基準の分布パターンとを比較することで、解析対象の信号の変調方式を特定する技術が開示されている。   Further, in Patent Document 2, the distribution of the envelope of the signal to be analyzed is obtained, and the distribution of the distance (vector radius) from the origin of the IQ orthogonal coordinates to the symbol point is obtained. A technique for specifying a modulation method of a signal to be analyzed by comparing a reference distribution pattern set in advance for each modulation method is disclosed.

特開平05−218914号公報JP 05-218914 A 特開2000−286908号公報JP 2000-286908 A

しかしながら、上記の特許文献1のように、シンボル点が集合する領域数に基づいて変調方式を特定する方法は、解析対象の信号と識別装置側の周波数同期が完全にとれていることが前提となり、周波数ずれが僅かでもあると、その周波数ずれに応じた速度でシンボル点の座標が原点を中心にして回転してしまい、領域の特定が困難となる。   However, the method of specifying the modulation method based on the number of regions in which the symbol points are gathered as in Patent Document 1 described above is based on the premise that the signal to be analyzed and the frequency synchronization on the identification device side are completely synchronized. If there is a slight frequency shift, the coordinates of the symbol point rotate around the origin at a speed corresponding to the frequency shift, making it difficult to specify the region.

一方、特許文献2のように、包絡線の分布を比較することで変調方式を特定する技術は、原理的に周波数ずれによるシンボル点の回転の影響を受けないが、信号自体のS/N等の影響を大きく受けて包絡線分布が変動し、その区別が困難になる場合がある。   On the other hand, as in Patent Document 2, a technique for specifying a modulation method by comparing envelope distributions is not affected by the rotation of symbol points due to frequency shift in principle, but the S / N of the signal itself, etc. There is a case where the envelope distribution fluctuates greatly due to the influence of, and it is difficult to distinguish them.

本発明は、多少の周波数ずれや低S/Nの状況でも、簡単な構成で変調方式を正確に識別できる変調方式識別装置を提供することを目的としている。   An object of the present invention is to provide a modulation scheme identifying apparatus that can accurately identify a modulation scheme with a simple configuration even in the case of a slight frequency shift or low S / N.

前記目的を達成するために、本発明の請求項1の変調方式識別装置は、
識別対象信号を直交検波してベースバンド信号を出力する直交検波部(21)と、
前記直交検波部から出力されたベースバンド信号に基づいてIQ直交座標上のシンボル点を検出するシンボル点検出手段(22)と、
前記シンボル点検出手段によって順次検出されたシンボル点の位相を算出するシンボル位相算出手段(23)と、
前記シンボル位相算出手段によって順次算出されるシンボル点間の位相差を算出する位相差算出手段(24)と、
前記位相差算出手段によって算出された位相差についての度数分布を作成する位相差分布作成手段(25)と、
複数の変調方式における理想シンボル点間の位相差の分布の特徴情報を予め記憶している分布特徴情報記憶手段(27)と、
前記位相差分布作成手段によって作成された度数分布と、前記分布特徴情報記憶手段に記憶されている特徴情報とに基づいて、前記識別対象信号の変調方式を特定する判定手段(26)とを有する変調方式識別装置であって、
前記判定手段は、位相差の全角度範囲のうちの特定領域における前記各変調方式の理想シンボル点の位相差の出現確率と、前記識別対象信号について得られた位相差の分布のうち前記特定領域の出現確率とを比較して、前記識別対象信号の変調方式を特定することを特徴としている。
In order to achieve the above object, a modulation system identification device according to claim 1 of the present invention comprises:
A quadrature detection unit (21) that performs quadrature detection of the identification target signal and outputs a baseband signal;
Symbol point detection means (22) for detecting a symbol point on IQ orthogonal coordinates based on a baseband signal output from the orthogonal detection unit;
Symbol phase calculating means (23) for calculating the phase of the symbol points sequentially detected by the symbol point detecting means;
A phase difference calculating means (24) for calculating a phase difference between the symbol points sequentially calculated by the symbol phase calculating means;
A phase difference distribution creating means (25) for creating a frequency distribution for the phase difference calculated by the phase difference calculating means;
Distribution feature information storage means (27) for storing in advance characteristic information of a phase difference distribution between ideal symbol points in a plurality of modulation schemes;
Determination means (26) for specifying the modulation scheme of the identification target signal based on the frequency distribution created by the phase difference distribution creating means and the feature information stored in the distribution feature information storage means; A modulation method identification device,
The determination unit includes the specific region of the phase difference appearance probability of the ideal symbol point of each modulation method in the specific region in the entire angle range of the phase difference and the phase difference distribution obtained for the identification target signal. And the modulation method of the identification target signal is specified .

また、本発明の請求項の変調方式識別装置は、
識別対象信号を直交検波してベースバンド信号を出力する直交検波部(21)と、
前記直交検波部から出力されたベースバンド信号に基づいてIQ直交座標上のシンボル点を検出するシンボル点検出手段(22)と、
前記シンボル点検出手段によって順次検出されたシンボル点の位相を算出するシンボル位相算出手段(23)と、
前記シンボル位相算出手段によって順次算出されるシンボル点間の位相差を算出する位相差算出手段(24)と、
前記位相差算出手段によって算出された位相差についての度数分布を作成する位相差分布作成手段(25)と、
複数の変調方式における理想シンボル点間の位相差の分布の特徴情報を予め記憶している分布特徴情報記憶手段(27)と、
前記位相差分布作成手段によって作成された度数分布と、前記分布特徴情報記憶手段に記憶されている特徴情報とに基づいて、前記識別対象信号の変調方式を特定する判定手段(26)とを有する変調方式識別装置であって、
前記判定手段は、位相差の全角度範囲を複数の領域に分け、前記各変調方式の理想シンボル点の位相差が前記複数の領域のいずれに出現するかを表す分布パターンと、前記識別対象信号について得られた位相差の分布が前記複数の領域のいずれに出現するかを表す分布パターンとを比較して、前記識別対象信号の変調方式を特定することを特徴としている。
Moreover, the modulation system identification device according to claim 2 of the present invention comprises:
A quadrature detection unit (21) that performs quadrature detection of the identification target signal and outputs a baseband signal;
Symbol point detection means (22) for detecting a symbol point on IQ orthogonal coordinates based on a baseband signal output from the orthogonal detection unit;
Symbol phase calculating means (23) for calculating the phase of the symbol points sequentially detected by the symbol point detecting means;
A phase difference calculating means (24) for calculating a phase difference between the symbol points sequentially calculated by the symbol phase calculating means;
A phase difference distribution creating means (25) for creating a frequency distribution for the phase difference calculated by the phase difference calculating means;
Distribution feature information storage means (27) for storing in advance characteristic information of a phase difference distribution between ideal symbol points in a plurality of modulation schemes;
Determination means (26) for specifying a modulation scheme of the identification target signal based on the frequency distribution created by the phase difference distribution creation means and the feature information stored in the distribution feature information storage means; A modulation type identification device,
The determination means divides the entire angle range of the phase difference into a plurality of areas, a distribution pattern indicating in which of the plurality of areas the phase difference of the ideal symbol point of each modulation method, and the identification target signal The phase difference distribution obtained with respect to is compared with a distribution pattern indicating in which of the plurality of regions the modulation scheme of the identification target signal is specified.

このように本発明の変調方式識別装置は、識別対象信号について得られたシンボル点間の位相差を求め、その位相差の度数分布と各変調方式における理想シンボル点間の位相差の分布の特徴、即ち、位相差の出現確率あるいは分布パターンを比較することで識別対象信号の変調方式を特定している。 As described above, the modulation system identification apparatus of the present invention obtains the phase difference between the symbol points obtained for the signal to be identified, and features of the frequency distribution of the phase difference and the distribution of the phase difference between the ideal symbol points in each modulation system. That is, the modulation scheme of the identification target signal is specified by comparing the appearance probability or the distribution pattern of the phase difference .

ここで、識別対象信号と直交検波処理との周波数ずれによる位相変動成分が各シンボル点に含まれていても、シンボル点間の位相差にはその位相変動成分が除去されており、位相差の分布が周波数ずれによって移動することはなく、しかも、信号のS/Nが低い場合であっても、位相差の分布の広がりが大きくなるだけで全体的な特徴は維持される。   Here, even if a phase fluctuation component due to a frequency shift between the identification target signal and the quadrature detection process is included in each symbol point, the phase fluctuation component is removed from the phase difference between the symbol points. The distribution does not move due to the frequency shift, and even if the signal S / N is low, the overall characteristics are maintained only by the spread of the phase difference distribution being increased.

したがって、シンボル点間の位相差の分布は、識別対象信号の変調方式の特徴を正確に表しており、変調方式毎の理想シンボル点の位相差の分布の特徴と比較することで識別対象信号の変調方式を正確に特定できる。   Therefore, the distribution of the phase difference between the symbol points accurately represents the characteristics of the modulation scheme of the identification target signal, and is compared with the characteristics of the distribution of the phase differences of the ideal symbol points for each modulation scheme. The modulation method can be specified accurately.

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した変調方式識別装置20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a modulation scheme identification device 20 to which the present invention is applied.

図1において、デジタル変調方式のうちの位相変調方式(PSK)で変調されている識別対象信号s(t)は、直交検波部21に入力される。   In FIG. 1, an identification target signal s (t) modulated by the phase modulation method (PSK) of the digital modulation methods is input to the quadrature detection unit 21.

直交検波部21は、識別対象信号s(t)を2相のベースバンド信号に変換するためのものであり、図2に示すように、識別対象信号s(t)を2つのミキサ21a、21bに入力し、ローカル信号発生器21cから出力される周波数fcのローカル信号Lを移相器21dに入力して、互いに位相が90°異なるローカル信号La、Lbを生成し、それぞれミキサ21a、21bに入力し、識別対象信号s(t)と各ローカル信号La、Lbの差の周波数成分をLPF21e、21fで抽出する。   The quadrature detection unit 21 is for converting the identification target signal s (t) into a two-phase baseband signal. As shown in FIG. 2, the identification target signal s (t) is converted into two mixers 21a and 21b. The local signal L having the frequency fc output from the local signal generator 21c is input to the phase shifter 21d to generate local signals La and Lb whose phases are different from each other by 90 °, and are respectively supplied to the mixers 21a and 21b. The frequency components of the difference between the identification target signal s (t) and the local signals La and Lb are extracted by the LPFs 21e and 21f.

ここで、ローカル信号L、La、Lbの周波数fcは、信号s(t)のキャリア周波数にほぼ一致しているため、LPF21e、21fからは、識別対象信号s(t)の2相のベースバンド信号i(t)、q(t)が出力されることになる。   Here, since the frequency fc of the local signals L, La, and Lb substantially matches the carrier frequency of the signal s (t), the LPFs 21e and 21f receive the two-phase baseband of the identification target signal s (t). Signals i (t) and q (t) are output.

なお、ここでは、識別対象信号s(t)を直交検波部21でベースバンド信号に直接変換するダイレクトコンバージョン方式の例を示しているが、識別対象信号s(t)を周波数変換部で中間周波数帯に一旦変換してから、直交検波部21に入力する方式であってもよい。   Here, an example of a direct conversion method in which the identification target signal s (t) is directly converted into a baseband signal by the quadrature detection unit 21 is shown, but the identification target signal s (t) is converted to an intermediate frequency by the frequency conversion unit. A method of once converting into a band and then inputting to the quadrature detection unit 21 may be used.

このようにして得られたベースバンド信号i(t)、q(t)は、シンボル点検出手段22に入力される。シンボル点検出手段22は、入力されるベースバンド信号i(t)、q(t)に基づいてIQ直交座標平面上のシンボル点X(k)の座標[I(k)、Q(k)]を検出する。   The baseband signals i (t) and q (t) obtained in this way are input to the symbol point detection means 22. The symbol point detection means 22 coordinates [I (k), Q (k)] of the symbol point X (k) on the IQ orthogonal coordinate plane based on the input baseband signals i (t) and q (t). Is detected.

このシンボル点X(k)の検出は、ベースバンド信号i、qから識別対象信号s(t)の位相変化周期Ts(シンボルタイミング)を求め、その周期Tsでベースバンド信号i(t)、q(t)に対するサンプリングを行うことで得られる。   The symbol point X (k) is detected by obtaining the phase change period Ts (symbol timing) of the identification target signal s (t) from the baseband signals i and q, and the baseband signals i (t) and q at the period Ts. It is obtained by sampling for (t).

このシンボル点検出手段22により周期Tsで順次得られるシンボル点X(k)の座標情報は、シンボル点位相算出手段23に入力される。   The coordinate information of the symbol points X (k) obtained sequentially by the symbol point detection means 22 at the cycle Ts is input to the symbol point phase calculation means 23.

シンボル点位相算出手段23は、シンボル点X(k)の位相を次の演算で求めて、位相差算出手段24に順次出力する。   The symbol point phase calculating unit 23 obtains the phase of the symbol point X (k) by the following calculation and sequentially outputs it to the phase difference calculating unit 24.

θ(k)=tan−1[Q(k)/I(k)] θ (k) = tan −1 [Q (k) / I (k)]

位相差算出手段24は、シンボル点の間の差Δθ(k)を次の演算によって順次算出し、位相差分布作成手段25に出力する。   The phase difference calculating unit 24 sequentially calculates the difference Δθ (k) between the symbol points by the following calculation and outputs it to the phase difference distribution creating unit 25.

Δθ(k)=θ(k)−θ(k−1)   Δθ (k) = θ (k) −θ (k−1)

ここで、前記したように、直交検波部21のローカル信号周波数fcと識別対象信号s(t)のキャリア周波数との間に僅かでも差があると、検出されるシンボル点の位相は、その周波数差に相当する位相Δφ分だけ変化することになる。   Here, as described above, if there is even a slight difference between the local signal frequency fc of the quadrature detection unit 21 and the carrier frequency of the identification target signal s (t), the phase of the detected symbol point is determined by the frequency. It changes by the phase Δφ corresponding to the difference.

つまり、θ(k)を理想状態における位相とすれば、実際に検出されるシンボル点の位相はθ(k)+Δφとなり、次のタイミングで検出される位相は、θ(k+1)+2Δφとなって、IQ平面上で定義されるシンボル点がサンプリング時間毎に真の位置からΔφずつ変化してしまい、シンボル点の集合する角度領域は決まらない。換言すれば、IQ直交軸が一定時間毎にΔφずつ回転してしまうことになる。   That is, if θ (k) is the phase in the ideal state, the phase of the symbol point that is actually detected is θ (k) + Δφ, and the phase detected at the next timing is θ (k + 1) + 2Δφ. The symbol points defined on the IQ plane change by Δφ from the true position every sampling time, and the angle region where the symbol points are collected is not determined. In other words, the IQ orthogonal axis rotates by Δφ every fixed time.

しかし、上記したように、位相差算出手段24により、シンボル点の間の差Δθ(k)を求めているので、たとえ周波数差による位相差Δφがあっても、
Δθ(k)=[θ(k)+Δφ]−[θ(k−1)+Δφ]
=θ(k)−θ(k−1)
となり、シンボル点の位相差Δθは周波数差によって生じる位相差Δφの影響を受けない。
However, as described above, since the difference Δθ (k) between the symbol points is obtained by the phase difference calculation means 24, even if there is a phase difference Δφ due to the frequency difference,
Δθ (k) = [θ (k) + Δφ] − [θ (k−1) + Δφ]
= Θ (k) −θ (k−1)
Thus, the symbol point phase difference Δθ is not affected by the phase difference Δφ caused by the frequency difference.

位相差分布作成手段25は、上記のように周波数誤差の影響が除去されたシンボル点の位相差Δθ(k)についての度数分布を作成する。   The phase difference distribution creating means 25 creates a frequency distribution for the phase difference Δθ (k) of the symbol points from which the influence of the frequency error has been removed as described above.

判定手段26は、位相差分布作成手段25によって作成された度数分布と、分布特徴情報記憶手段27に予め記憶されている各変調方式毎の位相差の分布特徴情報とを比較して、識別対象信号s(t)の変調方式を特定する。   The determination unit 26 compares the frequency distribution created by the phase difference distribution creation unit 25 with the phase difference distribution feature information stored in advance in the distribution feature information storage unit 27 for each modulation method, The modulation method of the signal s (t) is specified.

例えば、識別可能な変調方式を、BPSK、QPSK、π/4シフトQPSK、8PSKの位相変調(PSK)方式に限定した場合、各変調方式における理想のシンボル点は、それぞれ図3の(a)〜(d)に示す位置に存在する。   For example, when the identifiable modulation method is limited to the phase modulation (PSK) method of BPSK, QPSK, π / 4 shift QPSK, and 8PSK, the ideal symbol points in each modulation method are shown in FIGS. It exists in the position shown in (d).

即ち、BPSK方式の場合、図3の(a)のようにIQ直交座標面の半径rの円とI軸との交点S0、S1が理想のシンボル点となり、これを原点からの距離rと位相角度を用いて極座標表示すれば、
S0=(r,0°)
S1=(r,180°)または(r,−180°)
と表すことができる。
That is, in the case of the BPSK system, as shown in FIG. 3A, the intersections S0 and S1 between the circle with the radius r of the IQ orthogonal coordinate plane and the I axis are ideal symbol points, and this is the distance r from the origin and the phase If polar coordinates are displayed using angles,
S0 = (r, 0 °)
S1 = (r, 180 °) or (r, −180 °)
It can be expressed as.

このBPSK方式の場合、2つの理想シンボル点S0、S1が、伝達しようとする1ビットデータ[0]、[1]にそれぞれ対応しており、例えばデータが[0]から[1]に変化する場合には、シンボル点の位置がS0からS1の位置に移動し、逆にデータが[1]から[0]に変化する場合には、シンボル点の位置がS1からS0の位置に移動し、同一データが続く場合には、シンボル点の位置は変化しない。   In the case of this BPSK system, two ideal symbol points S0 and S1 correspond to 1-bit data [0] and [1] to be transmitted, for example, the data changes from [0] to [1]. In this case, when the position of the symbol point moves from S0 to S1, and the data changes from [1] to [0], the position of the symbol point moves from S1 to S0. When the same data continues, the position of the symbol point does not change.

つまり、理想状態におけるシンボル点の位相変化量は、0°か180°(または−180°)となるが、識別対象信号s(t)には必ず雑音成分があり、その影響で実際のシンボル点の位置は理想位置に対してばらつく。   That is, the phase change amount of the symbol point in the ideal state is 0 ° or 180 ° (or −180 °), but the identification target signal s (t) always has a noise component, and the actual symbol point is affected by the noise component. The position of varies from the ideal position.

このため、BPSK方式のシンボル点の位相変化は、図4の(a)のように、位相角0°および180°を中心とする領域に分布する。   For this reason, the phase change of the symbol points of the BPSK system is distributed in a region centered on the phase angles of 0 ° and 180 ° as shown in FIG.

また、QPSK方式の場合、図3の(b)に示しているように、半径rの円とI軸、Q軸との交点S0〜S3が理想のシンボル点となり、その4つの理想シンボル点S0〜S3の極座標は、以下のように表される。   In the case of the QPSK system, as shown in FIG. 3B, intersections S0 to S3 of the circle having the radius r and the I and Q axes become ideal symbol points, and the four ideal symbol points S0. The polar coordinates of .about.S3 are expressed as follows.

S0=(r,0°)
S1=(r,90°)
S2=(r,180°)
S3=(r,−90°)
S0 = (r, 0 °)
S1 = (r, 90 °)
S2 = (r, 180 °)
S3 = (r, −90 °)

QPSKの場合、4つのシンボル点S0〜S3が、2ビットデータ[00]、[01]、[10]、[11]にそれぞれ対応しており、理想状態におけるシンボル点の位相変化量は、0°、±90°、180°(または−180°)のいずれかとなるが、前記同様に、雑音の影響により、実際のQPSK方式のシンボル点の位相変化は、図4の(b)のように、位相角0°、±90°、180°を中心とする領域に分布する。   In the case of QPSK, the four symbol points S0 to S3 correspond to 2-bit data [00], [01], [10], and [11], respectively, and the phase change amount of the symbol point in the ideal state is 0. As shown in FIG. 4B, the phase change of the symbol point of the actual QPSK system is caused by the influence of noise. , And distributed in a region centered at a phase angle of 0 °, ± 90 °, and 180 °.

また、π/4シフトQPSK方式の場合、図3の(c)に示しているように、QPSKの場合と同様に半径rの円とI軸、Q軸の交点S0〜S3と、それらをπ/4回転移動した位置の点S4〜S7が理想のシンボル点となり、その理想シンボル点S4〜S7の極座標は、以下のように表される。   In the case of the π / 4 shift QPSK system, as shown in FIG. 3C, as in the case of QPSK, the circles having the radius r and the intersections S0 to S3 of the I axis and the Q axis are represented by π. Points S4 to S7 at a position moved by / 4 rotation are ideal symbol points, and polar coordinates of the ideal symbol points S4 to S7 are expressed as follows.

S4=(r,45°)
S5=(r,135°)
S6=(r,225°)
S7=(r,−45°)
S4 = (r, 45 °)
S5 = (r, 135 °)
S6 = (r, 225 °)
S7 = (r, −45 °)

これらの8つのシンボル点S0〜S7は、シンボル点S0〜S3の第1グループと、シンボル点S4〜S7の第2グループに分けられており、1サンプル毎にグループが必ず切り替わるように変調されている。   These eight symbol points S0 to S7 are divided into a first group of symbol points S0 to S3 and a second group of symbol points S4 to S7, and are modulated so that the group is always switched every sample. Yes.

例えば、各シンボル点と2ビットデータとの関係が次のように設定されているとする。
S0=S4=[00]
S1=S5=[01]
S2=S6=[01]
S3=S7=[11]
For example, it is assumed that the relationship between each symbol point and 2-bit data is set as follows.
S0 = S4 = [00]
S1 = S5 = [01]
S2 = S6 = [01]
S3 = S7 = [11]

そして、例えば、現在のシンボル点がS0のとき、次のデータが[00]であれば、シンボル点はS4に移動し、現在のシンボル点がS0のとき、次のデータが[01]であれば、シンボル点はS5に移動し、現在のシンボル点がS0のとき、次のデータが[10]であれば、シンボル点はS6に移動し、現在のシンボル点がS0のとき、次のデータが[11]であれば、シンボル点はS7に移動する。   For example, when the current symbol point is S0 and the next data is [00], the symbol point moves to S4, and when the current symbol point is S0, the next data is [01]. For example, the symbol point moves to S5, and when the current symbol point is S0, if the next data is [10], the symbol point moves to S6, and when the current symbol point is S0, the next data If [11], the symbol point moves to S7.

現在のシンボル点が第1グループでS0以外の場合も同様に次のデータに対するシンボル点は第2グループの位置に移動し、逆に、現在のシンボル点が第2グループのいずれかにある場合、次のシンボル点は第1グループのシンボル点に移動する。   Similarly, when the current symbol point is other than S0 in the first group, the symbol point for the next data is moved to the position of the second group, and conversely, if the current symbol point is in any of the second group, The next symbol point moves to the first group of symbol points.

つまり、π/4シフトQPSK方式の場合の理想状態におけるシンボル点の位相変化量は、±45°、±135°のいずれかとなるが、前記同様に、雑音の影響により、実際のπ/4シフトQPSK方式のシンボル点の位相変化は、図4の(c)のように、位相角±45°、±135°を中心とする領域に分布する。   That is, the phase change amount of the symbol point in the ideal state in the case of the π / 4 shift QPSK system is either ± 45 ° or ± 135 °, but, as described above, due to the influence of noise, the actual π / 4 shift The phase change of the symbol points of the QPSK method is distributed in a region centered on the phase angles ± 45 ° and ± 135 ° as shown in FIG.

また、8PSK方式の場合、図3の(d)に示しているように、前記したπ/4シフトQPSKの場合と同様に8つのシンボル点S0〜S7が存在し、各シンボル点は3ビットデータ[000]〜[111]にそれぞれ対応しており、理想状態におけるシンボル点の位相変化量は、0°、±45°、±90°、±135°、180(または−180°)のいずれかとなるが、前記同様に、雑音の影響により、実際の8PSK方式のシンボル点の位相変化は、図4の(d)のように、位相角0°、±45°、±90°、±135°、180°を中心とする領域に分布する。   In the case of the 8PSK system, as shown in FIG. 3 (d), there are 8 symbol points S0 to S7 as in the case of the above-mentioned π / 4 shift QPSK, and each symbol point is 3 bit data. [000] to [111] respectively, and the phase change amount of the symbol point in the ideal state is 0 °, ± 45 °, ± 90 °, ± 135 °, 180 (or −180 °). However, similarly to the above, due to the influence of noise, the phase change of the symbol point of the actual 8PSK system is as shown in FIG. 4 (d), where the phase angle is 0 °, ± 45 °, ± 90 °, ± 135 °. , Distributed in a region centered at 180 °.

そこで、例えば分布特徴情報記憶手段27には、図5に示しているように、識別可能な変調方式のうち理想シンボル点の数が最大の変調方式(この場合8PSK)のシンボル数8で位相差の全角度範囲0°±180°の範囲を等分して得られる各領域A〜Hの理論上の出現確率(またはその一部の特定領域の出現確率でもよい)を分布特徴情報として記憶しておく。   Therefore, for example, as shown in FIG. 5, the distribution feature information storage means 27 stores the phase difference with 8 symbols of the modulation system having the maximum number of ideal symbol points (in this case, 8PSK) among the identifiable modulation systems. The theoretical appearance probability of each of the regions A to H obtained by equally dividing the entire angle range of 0 ° ± 180 ° (or the appearance probability of a part of the specific region) is stored as distribution feature information. Keep it.

そして、この分布特徴情報と、識別対象信号s(t)について算出された位相差の分布とを比較することで、識別対象信号s(t)の変調方式を特定する。   Then, by comparing this distribution feature information with the phase difference distribution calculated for the identification target signal s (t), the modulation scheme of the identification target signal s (t) is specified.

この位相差の分布から変調方式を特定する方法としては種々考えられる。
例えば、上記した4つのPSK変調方式のみを識別対象とする場合で、最も単純な識別の方法は、4つの変調方式で出現確率が全て異なる特定の領域(AまたはE)を用いる方法である。
Various methods for specifying the modulation method from the distribution of the phase differences are conceivable.
For example, when only the above four PSK modulation schemes are to be identified, the simplest identification method is a method using specific regions (A or E) having different appearance probabilities in the four modulation schemes.

この場合、識別対象信号s(t)の位相差分布の領域Aにおける出現確率Paを求め、この確率Paと、例えば次のように領域Aにおける理論上の出現確率の中間値を用いて設定した3つのしきい値p1〜p3と比較する。   In this case, the appearance probability Pa in the region A of the phase difference distribution of the identification target signal s (t) is obtained and set using this probability Pa and an intermediate value of the theoretical appearance probability in the region A as follows, for example. Compare with three thresholds p1-p3.

p1=(0+0.125)/2=0.0625
p2=(0.125+0.25)/2=0.1875
p3=(0.25+0.5)/2=0.375
p1 = (0 + 0.125) /2=0.0625
p2 = (0.125 + 0.25) /2=0.1875
p3 = (0.25 + 0.5) /2=0.375

そして、確率Paがしきい値p3以上であれば、信号s(t)の変調方式はBPSKと判定し、確率Paがしきい値p2以上p3未満の場合、信号s(t)の変調方式はQPSKと判定することができる。   If the probability Pa is greater than or equal to the threshold value p3, the modulation scheme of the signal s (t) is determined to be BPSK. If the probability Pa is greater than or equal to the threshold value p2 and less than p3, the modulation scheme of the signal s (t) is It can be determined as QPSK.

また、確率Paがしきい値p1未満の場合、信号s(t)の変調方式はπ/4シフトQPSKと判定することができ、さらに、確率Paが、しきい値p1以上p2未満の場合、信号s(t)の変調方式は8PSKと判定することができる。   When the probability Pa is less than the threshold value p1, the modulation method of the signal s (t) can be determined as π / 4 shift QPSK. Further, when the probability Pa is equal to or more than the threshold value p1 and less than p2, The modulation method of the signal s (t) can be determined as 8PSK.

また、2つ以上の複数の領域を用いてより確実に変調方式を特定することもできる。例えば、信号s(t)の位相分布の2つの領域A、Bにおける出現確率Pa、Pbを求め、3つのしきい値p1〜p3と比較する。   In addition, the modulation scheme can be specified more reliably using two or more regions. For example, the appearance probabilities Pa and Pb in the two regions A and B of the phase distribution of the signal s (t) are obtained and compared with the three threshold values p1 to p3.

そして、確率Paがしきい値p3以上で、且つ確率Pbがしきい値p1未満の場合、信号s(t)の変調方式はBPSKと判定することができる。   When the probability Pa is equal to or greater than the threshold value p3 and the probability Pb is less than the threshold value p1, the modulation method of the signal s (t) can be determined to be BPSK.

また、確率Paがしきい値p2以上p3未満で、且つ確率Pbがしきい値p1未満の場合、信号s(t)の変調方式はQPSKと判定することができる。   Further, when the probability Pa is not less than the threshold value p2 and less than p3 and the probability Pb is less than the threshold value p1, the modulation method of the signal s (t) can be determined as QPSK.

また、確率Paがしきい値p1未満で、且つ確率Pbがしきい値p1以上p2未満の場合、信号s(t)の変調方式はπ/4シフトQPSKと判定することができる。   When the probability Pa is less than the threshold value p1 and the probability Pb is not less than the threshold value p1 and less than p2, the modulation method of the signal s (t) can be determined to be π / 4 shift QPSK.

さらに、確率Pa、Pbがともに、しきい値p1以上p2未満の場合、信号s(t)の変調方式は8PSKと判定することができる。   Further, when the probabilities Pa and Pb are both greater than or equal to the threshold value p1 and less than p2, the modulation scheme of the signal s (t) can be determined to be 8PSK.

なお、上記した出現確率についてのしきい値p1〜p3の値は、理論上の出現確率の中間値としていたが、これは本発明を限定するものではなく、任意に設定することができる。   In addition, although the value of threshold value p1-p3 about the above-mentioned appearance probability was made into the intermediate value of theoretical appearance probability, this does not limit this invention and can be set arbitrarily.

上記判定方法は、各領域の理論上の出現確率に基づいて設定したしきい値と信号s(t)ついて得られた出現確率とを比較して変調方式を特定していたが、どの領域に分布があるかを示す分布パターンを比較して変調方式を特定することもできる。   In the above determination method, the modulation scheme is specified by comparing the threshold set based on the theoretical appearance probability of each region with the appearance probability obtained for the signal s (t). It is also possible to specify a modulation method by comparing distribution patterns indicating whether there is a distribution.

例えば、識別対象信号s(t)について得られた位相差の分布に対して、各領域A〜Hの出現確率Pa〜Phを求め、各出現確率Pa〜Phを例えばしきい値p0=0.125/2と比較し、しきい値p0以下の出現確率には0を割り当て、しきい値p0より大きい出現確率には1を割り当てて、8ビットの分布パターンDxを求める。   For example, the appearance probabilities Pa to Ph of the regions A to H are obtained for the phase difference distribution obtained for the identification target signal s (t), and the appearance probabilities Pa to Ph are set to, for example, a threshold value p0 = 0. Compared with 125/2, 0 is assigned to the appearance probability less than or equal to the threshold value p0, and 1 is assigned to the appearance probability greater than the threshold value p0 to obtain an 8-bit distribution pattern Dx.

また、各変調方式における領域毎の出現確率についても同様にしきい値p0との比較で0または1を割り当てる。この割り当てによって得られる8ビットの分布パターンは、次のようになる。   Similarly, 0 or 1 is assigned to the appearance probability for each region in each modulation method in comparison with the threshold value p0. The 8-bit distribution pattern obtained by this assignment is as follows.

Da=[10001000] (BPSK)
Db=[10101010] (QPSK)
Dc=[01010101] (π/4シフトQPSK)
Dd=[11111111] (8PSK)
Da = [10001000] (BPSK)
Db = [10101010] (QPSK)
Dc = [01010101] (π / 4 shift QPSK)
Dd = [11111111] (8PSK)

そして、識別対象信号s(t)について得られた分布パターンDxが4つの分布パターンDa〜Ddのいずれに一致するかを調べて、Dxに一致した分布パターンに対応する変調方式を信号s(t)の変調方式と判定する。   Then, it is checked which of the four distribution patterns Da to Dd the distribution pattern Dx obtained for the identification target signal s (t) matches, and the modulation scheme corresponding to the distribution pattern that matches Dx is determined as the signal s (t ).

この分布パターンの比較処理については、8ビット全体の一致不一致を調べる方法の他に、上位(または下位)の4ビットについての一致不一致を調べる方法、あるいは、最下位側(領域H側)2ビットの一致不一致を調べる方法であってもよい。   For this distribution pattern comparison process, in addition to the method of checking the match / mismatch of the entire 8 bits, the method of checking the match / mismatch of the upper (or lower) 4 bits, or the least significant (region H side) 2 bits It may be a method of checking whether or not there is a match.

また、ここでは、識別可能な変調方式を、相変調方式(PSK)で且つBPSK、QSPK、π/4シフトQPSK、8PSKの4方式に限定していたが、1シンボル当たりのデータ量(情報量)がより多い16PSK等の変調方式を加えて識別することも可能であり、M−PSK方式までの識別を行う場合には、幅が360°/MのM個の領域について上記同様の処理を行えばよい。   In addition, here, the identifiable modulation method is the phase modulation method (PSK) and is limited to the four methods of BPSK, QPSP, π / 4 shift QPSK, and 8PSK, but the data amount per symbol (information amount) It is also possible to identify by adding a modulation method such as 16PSK with a larger number of), and when performing identification up to the M-PSK method, the same processing as described above is performed for M regions having a width of 360 ° / M. Just do it.

このように実施形態の変調方式識別装置20は、識別対象信号s(t)について得られたシンボル点間の位相差を求め、その位相差の度数分布と各変調方式における理想シンボル点間の位相差の分布の特徴とを比較することで識別対象信号の変調方式を特定しているので、識別対象信号s(t)と直交検波処理との周波数ずれによる位相変動成分の影響を受けずに、識別対象信号s(t)の変調方式を正確に特定することができる。   As described above, the modulation scheme identifying device 20 of the embodiment obtains the phase difference between the symbol points obtained for the identification target signal s (t), and the frequency distribution of the phase difference and the position between the ideal symbol points in each modulation scheme. Since the modulation scheme of the identification target signal is specified by comparing the characteristics of the distribution of the phase difference, it is not affected by the phase fluctuation component due to the frequency shift between the identification target signal s (t) and the quadrature detection processing. It is possible to accurately specify the modulation method of the identification target signal s (t).

なお、識別対象信号s(t)のS/Nが低い場合、各シンボル点の位置がばらつくため、位相差の分布が図6に示すように広がるが、各変調方式についての位相差の分布全体の特徴は維持されている。したがって、このような場合でも、前記同様の方法あるいはしきい値p0〜p3の微調整等で、識別対象信号s(t)の変調方式を正確に特定することができる。   Note that when the S / N of the identification target signal s (t) is low, the position of each symbol point varies, so the phase difference distribution spreads as shown in FIG. 6, but the entire phase difference distribution for each modulation method The characteristics of are maintained. Therefore, even in such a case, the modulation method of the identification target signal s (t) can be accurately specified by the same method as described above or the fine adjustment of the threshold values p0 to p3.

本発明の実施形態の構成を示す図The figure which shows the structure of embodiment of this invention 実施形態の要部の構成図Configuration diagram of the main part of the embodiment 各変調方式についての理想シンボル点の位置を示す図The figure which shows the position of the ideal symbol point about each modulation system 各変調方式についての位相差分布を示す図Diagram showing phase difference distribution for each modulation method 各変調方式についての位相差分布の領域毎の出現確率を示す図The figure which shows the appearance probability for every area | region of phase difference distribution about each modulation system 低S/N時の信号の各変調方式についての位相差分布を示す図The figure which shows phase difference distribution about each modulation system of the signal at the time of low S / N

符号の説明Explanation of symbols

20……変調方式識別装置、21……直交検波部、22……シンボル点検出手段、23……シンボル位相算出手段、24……位相差算出手段、25……位相差分布作成手段、26……判定手段、27……分布特徴情報記憶手段   DESCRIPTION OF SYMBOLS 20 ... Modulation system identification device, 21 ... Quadrature detection part, 22 ... Symbol point detection means, 23 ... Symbol phase calculation means, 24 ... Phase difference calculation means, 25 ... Phase difference distribution creation means, 26 ... ... Determination means, 27 ... Distribution feature information storage means

Claims (2)

識別対象信号を直交検波してベースバンド信号を出力する直交検波部(21)と、
前記直交検波部から出力されたベースバンド信号に基づいてIQ直交座標上のシンボル点を検出するシンボル点検出手段(22)と、
前記シンボル点検出手段によって順次検出されたシンボル点の位相を算出するシンボル位相算出手段(23)と、
前記シンボル位相算出手段によって順次算出されるシンボル点間の位相差を算出する位相差算出手段(24)と、
前記位相差算出手段によって算出された位相差についての度数分布を作成する位相差分布作成手段(25)と、
複数の変調方式における理想シンボル点間の位相差の分布の特徴情報を予め記憶している分布特徴情報記憶手段(27)と、
前記位相差分布作成手段によって作成された度数分布と、前記分布特徴情報記憶手段に記憶されている特徴情報とに基づいて、前記識別対象信号の変調方式を特定する判定手段(26)とを有する変調方式識別装置であって、
前記判定手段は、位相差の全角度範囲のうちの特定領域における前記各変調方式の理想シンボル点の位相差の出現確率と、前記識別対象信号について得られた位相差の分布のうち前記特定領域の出現確率とを比較して、前記識別対象信号の変調方式を特定することを特徴とする変調方式識別装置。
A quadrature detection unit (21) that performs quadrature detection of the identification target signal and outputs a baseband signal;
Symbol point detection means (22) for detecting a symbol point on IQ orthogonal coordinates based on a baseband signal output from the orthogonal detection unit;
Symbol phase calculating means (23) for calculating the phase of the symbol points sequentially detected by the symbol point detecting means;
A phase difference calculating means (24) for calculating a phase difference between the symbol points sequentially calculated by the symbol phase calculating means;
A phase difference distribution creating means (25) for creating a frequency distribution for the phase difference calculated by the phase difference calculating means;
Distribution feature information storage means (27) for storing in advance characteristic information of a phase difference distribution between ideal symbol points in a plurality of modulation schemes;
Determination means (26) for specifying a modulation scheme of the identification target signal based on the frequency distribution created by the phase difference distribution creation means and the feature information stored in the distribution feature information storage means; A modulation type identification device,
The determination means includes the specific region of the phase difference appearance probability of the ideal symbol point of each modulation method in the specific region in the entire angle range of the phase difference and the phase difference distribution obtained for the identification target signal. The modulation scheme identification device characterized by comparing the appearance probability of the identification target signal to identify the modulation scheme of the identification target signal .
識別対象信号を直交検波してベースバンド信号を出力する直交検波部(21)と、
前記直交検波部から出力されたベースバンド信号に基づいてIQ直交座標上のシンボル点を検出するシンボル点検出手段(22)と、
前記シンボル点検出手段によって順次検出されたシンボル点の位相を算出するシンボル位相算出手段(23)と、
前記シンボル位相算出手段によって順次算出されるシンボル点間の位相差を算出する位相差算出手段(24)と、
前記位相差算出手段によって算出された位相差についての度数分布を作成する位相差分布作成手段(25)と、
複数の変調方式における理想シンボル点間の位相差の分布の特徴情報を予め記憶している分布特徴情報記憶手段(27)と、
前記位相差分布作成手段によって作成された度数分布と、前記分布特徴情報記憶手段に記憶されている特徴情報とに基づいて、前記識別対象信号の変調方式を特定する判定手段(26)とを有する変調方式識別装置であって、
前記判定手段は、位相差の全角度範囲を複数の領域に分け、前記各変調方式の理想シンボル点の位相差が前記複数の領域のいずれに出現するかを表す分布パターンと、前記識別対象信号について得られた位相差の分布が前記複数の領域のいずれに出現するかを表す分布パターンとを比較して、前記識別対象信号の変調方式を特定することを特徴とする変調方式識別装置。
A quadrature detection unit (21) that performs quadrature detection of the identification target signal and outputs a baseband signal;
Symbol point detection means (22) for detecting a symbol point on IQ orthogonal coordinates based on a baseband signal output from the orthogonal detection unit;
Symbol phase calculating means (23) for calculating the phase of the symbol points sequentially detected by the symbol point detecting means;
A phase difference calculating means (24) for calculating a phase difference between the symbol points sequentially calculated by the symbol phase calculating means;
A phase difference distribution creating means (25) for creating a frequency distribution for the phase difference calculated by the phase difference calculating means;
Distribution feature information storage means (27) for storing in advance characteristic information of a phase difference distribution between ideal symbol points in a plurality of modulation schemes;
Determination means (26) for specifying a modulation scheme of the identification target signal based on the frequency distribution created by the phase difference distribution creation means and the feature information stored in the distribution feature information storage means; A modulation type identification device,
The determination means divides the entire angle range of the phase difference into a plurality of areas, a distribution pattern indicating in which of the plurality of areas the phase difference of the ideal symbol point of each modulation method, and the identification target signal distribution of the phase difference obtained for the by comparing the distribution pattern indicating whether appearing in any of the plurality of regions, the identification identifying the modulation scheme of the target signal you wherein modulation type discrimination apparatus .
JP2006230460A 2006-08-28 2006-08-28 Modulation method identification device Expired - Fee Related JP4814017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230460A JP4814017B2 (en) 2006-08-28 2006-08-28 Modulation method identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230460A JP4814017B2 (en) 2006-08-28 2006-08-28 Modulation method identification device

Publications (2)

Publication Number Publication Date
JP2008054186A JP2008054186A (en) 2008-03-06
JP4814017B2 true JP4814017B2 (en) 2011-11-09

Family

ID=39237767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230460A Expired - Fee Related JP4814017B2 (en) 2006-08-28 2006-08-28 Modulation method identification device

Country Status (1)

Country Link
JP (1) JP4814017B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742310B2 (en) * 2011-03-09 2015-07-01 富士通株式会社 Method determining apparatus and method determining method
JP5743745B2 (en) * 2011-06-27 2015-07-01 三菱電機株式会社 Receiver
JP5917879B2 (en) * 2011-10-18 2016-05-18 日本無線株式会社 Modulation method identification device
KR101235059B1 (en) 2011-12-05 2013-02-19 국방과학연구소 Apparatus and method for recognizing radar intra-pulse modulation type
JP6060668B2 (en) * 2012-12-18 2017-01-18 日本電気株式会社 Signal detection apparatus, signal detection method, and program
KR101317887B1 (en) 2013-06-05 2013-10-16 국방과학연구소 Radar modulation identification method using gini's coefficient
JP6437848B2 (en) * 2015-02-26 2018-12-12 株式会社日立国際電気 Reception analyzer
JP6449944B1 (en) * 2017-07-03 2019-01-09 アンリツ株式会社 MODULATION METHOD DETECTING DEVICE, MEASURING DEVICE INCLUDING THE SAME, MODULATION METHOD DETECTING METHOD AND MEASURING METHOD

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111644A (en) * 1999-08-04 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> Modulation system automatic identification receiver
JP3576880B2 (en) * 1999-09-09 2004-10-13 日本電気株式会社 Automatic modulation system identification device and automatic modulation system identification method
JP2002325108A (en) * 2001-02-20 2002-11-08 Nippon Telegr & Teleph Corp <Ntt> Modulation system automatic identification receiver
JP3851143B2 (en) * 2001-11-05 2006-11-29 三菱電機株式会社 MODULATION SYSTEM IDENTIFICATION CIRCUIT, RECEPTION DEVICE EQUIPPED WITH SAME, WIRELESS STATION, AND MODULATION SYSTEM IDENTIFICATION METHOD

Also Published As

Publication number Publication date
JP2008054186A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4814017B2 (en) Modulation method identification device
CN103547344A (en) Method, device and receiver for cycle slip
JP4768790B2 (en) Modulation method estimation apparatus and method
JP2773562B2 (en) Signal sequence detection method
US6519303B1 (en) Clock reproduction circuit
JPH09186730A (en) Absolute phase detector and digital modulation wave demodulator
US5113415A (en) Detection of a particular signal sequence with no adverse influence of multipath transmission
JP4657223B2 (en) Modulation error calculation device and method, digital broadcast receiver, and digital broadcast wave measurement device
US20080069195A1 (en) Systems and Methods for Producing Constellation Patterns Including Average Error Values
JP2001111644A (en) Modulation system automatic identification receiver
US11283658B2 (en) Phase-based pre-carrier detection
JP5742310B2 (en) Method determining apparatus and method determining method
JP2003244263A (en) Signal processor
WO2019229813A1 (en) Wireless device identification device
JP2004248219A5 (en)
US6957381B2 (en) System and method for determining branch metrics using a polar indexed branch metric look-up table
JP4361514B2 (en) Modulation type identification method, modulation type identification circuit, and demodulator
JP3577301B2 (en) Burst wave detector
JP3605229B2 (en) Digital phase modulation method display method
JP6449944B1 (en) MODULATION METHOD DETECTING DEVICE, MEASURING DEVICE INCLUDING THE SAME, MODULATION METHOD DETECTING METHOD AND MEASURING METHOD
US8040977B2 (en) Reception synchronization control device, reception synchronization control method, and program therefor
JPH08331195A (en) Frequency comparison method
EP3624412B1 (en) Likelihood generation device
JP4060823B2 (en) Reception system and modulation rate measuring device
CN116243348A (en) Carrier loop tracking method, device, medium and equipment for satellite navigation signals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4814017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees