JP4810244B2 - Radiation measuring apparatus and measuring method thereof - Google Patents

Radiation measuring apparatus and measuring method thereof Download PDF

Info

Publication number
JP4810244B2
JP4810244B2 JP2006019761A JP2006019761A JP4810244B2 JP 4810244 B2 JP4810244 B2 JP 4810244B2 JP 2006019761 A JP2006019761 A JP 2006019761A JP 2006019761 A JP2006019761 A JP 2006019761A JP 4810244 B2 JP4810244 B2 JP 4810244B2
Authority
JP
Japan
Prior art keywords
ionization
radiation
gas
charging
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006019761A
Other languages
Japanese (ja)
Other versions
JP2007198980A (en
Inventor
明 佐野
晋 内藤
晃生 隅田
幹雄 泉
徹 小野寺
幸雄 吉村
光吉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006019761A priority Critical patent/JP4810244B2/en
Publication of JP2007198980A publication Critical patent/JP2007198980A/en
Application granted granted Critical
Publication of JP4810244B2 publication Critical patent/JP4810244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、測定対象が放出する放射線およびその強度分布を精度よく測定する放射線測定技術に係り、特に被測定機器や被測定物等の測定対象から放出される放射線およびその強度分布を簡便に精度よく測定することができる放射線測定装置およびその測定方法に関する。   The present invention relates to a radiation measurement technique for accurately measuring radiation emitted from a measurement target and its intensity distribution, and in particular, easily and accurately measures radiation emitted from a measurement target such as a device under test or a measured object and its intensity distribution. The present invention relates to a radiation measuring apparatus capable of measuring well and a measuring method thereof.

一般に、環境(外気中)に散在する放射性物質を検出し、放射線の強度分布を測定する装置としてα線やβ線、γ線を対象としたサーベイメータがある。大型で複雑な形状物や建物の床面の被測定物を測定対象とした場合、α線は飛程が数cmと短いので、測定者はサーベイメータを測定対象に密着接近させて走査し、測定する必要がある。 Generally, there is a survey meter for alpha rays, beta rays, and gamma rays as a device that detects radioactive substances scattered in the environment (in the outside air) and measures the intensity distribution of radiation. When measuring a large, complicated shape or an object to be measured on the floor of a building, the α ray has a short range of several centimeters, so the measurer scans the survey meter with the survey meter in close contact with the object being measured. There is a need to.

また、一般に、測定対象から放出される放射線によりその近傍の気体が電離(イオン化)されてイオン対が生成され、生成されたイオンは数秒から数10秒の寿命で測定対象の近傍に存在することが知られている。測定対象近傍に存在するイオンを収集して放射線強度を求める放射線測定技術に特許文献1や非特許文献1に記載された放射線測定装置がある。   Further, generally, the gas in the vicinity is ionized (ionized) by the radiation emitted from the measurement target to generate ion pairs, and the generated ions exist in the vicinity of the measurement target with a lifetime of several seconds to several tens of seconds. It has been known. There are radiation measuring apparatuses described in Patent Document 1 and Non-Patent Document 1 as a radiation measuring technique that collects ions existing in the vicinity of a measurement target and obtains radiation intensity.

特許文献1に記載の放射線測定装置は、測定対象近傍からの空気を吸気通路を介して吸引ポンプで吸引し、吸気通路の途中に設けられた電離電流測定装置により、測定対象近傍から吸引された空気の電離電流(イオン化電流)を測定して測定対象の放射線を測定するものである。   The radiation measuring apparatus described in Patent Document 1 sucks air from the vicinity of the measurement object with a suction pump through the intake passage, and is sucked from the vicinity of the measurement object by an ionization current measurement device provided in the middle of the intake passage. The ionization current (ionization current) of air is measured to measure the radiation to be measured.

また、非特許文献1に記載された放射線測定装置は、図12に示すように、ボックス状の測定チャンバ1内に測定対象2を設置し、この測定チャンバ1内の気体を配管を通してイオン収集手段3に接続し、このイオン収集手段3には内部の電極4に電源5から電圧を印加可能に構成される。   Further, as shown in FIG. 12, the radiation measuring apparatus described in Non-Patent Document 1 has a measuring object 2 installed in a box-shaped measuring chamber 1, and an ion collecting means for passing the gas in the measuring chamber 1 through a pipe. 3, the ion collecting means 3 is configured to be able to apply a voltage from the power source 5 to the internal electrode 4.

放射線測定装置は、測定対象2からの放射線の電離作用(イオン化作用)で生成したイオンを、測定チャンバ1内の気体とともにイオン収集手段3まで輸送し、イオン収集手段3で収集したイオンを電流測定手段6で電流として測定し、測定された電流値からデータ処理手段7で放射線の強度を測定するものである。なお、符号8および9は気体輸送手段および気体浄化手段である。
特開2003−194946号公報 日本原子力学会「2003年春の年会」予稿集 D17
The radiation measuring apparatus transports ions generated by the ionization action (ionization action) of radiation from the measurement object 2 to the ion collecting means 3 together with the gas in the measurement chamber 1, and measures the current collected by the ion collecting means 3. The current is measured by the means 6 and the intensity of the radiation is measured by the data processing means 7 from the measured current value. Reference numerals 8 and 9 denote gas transport means and gas purification means.
JP 2003-194946 A Proceedings of the Atomic Energy Society of Japan "Spring Annual Meeting 2003" D17

非特許文献1に記載された放射線測定装置は、ボックス状測定チャンバ1内に測定対象2を収容し、測定対象1周囲の空気と一括して吸引してイオン収集手段3に収集させ、イオン収集手段3にて全放射能を測定しているので、測定対象1の放射線強度は測定できるが、測定対象の放射線強度分布(放射能分布)を測定することが困難であった。   The radiation measuring apparatus described in Non-Patent Document 1 accommodates a measurement object 2 in a box-shaped measurement chamber 1 and collects the ions collected together with the air around the measurement object 1 and collected by the ion collection means 3. Since the total radioactivity is measured by means 3, the radiation intensity of the measuring object 1 can be measured, but it is difficult to measure the radiation intensity distribution (radioactivity distribution) of the measuring object.

また、特許文献1に記載された放射線測定装置は、測定対象近傍のイオンを収集して測定対象の放射能分布を測定する技術であるが、測定対象と電離電流測定装置に複雑で長い吸引通路が存在するために、途中でイオンの減衰が大きな課題となり、測定対象の放射能分布を正確に測定精度よく測定することが難しかった。   The radiation measurement apparatus described in Patent Document 1 is a technique for collecting ions in the vicinity of a measurement object and measuring the radioactivity distribution of the measurement object. However, the measurement object and the ionization current measurement apparatus are complicated and long suction passages. Therefore, it is difficult to measure the radioactivity distribution of the measurement object accurately and with high measurement accuracy.

本発明は、上述した事情を考慮してなされたもので、建物の床や大型で複雑形状物等の測定対象の放射線およびその強度分布を簡便に測定精度よく正確に測定することができる放射線測定装置およびその測定方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and is a radiation measurement apparatus capable of easily and accurately measuring radiation of a measurement target such as a building floor or a large complex shape object and its intensity distribution with high measurement accuracy. And it aims at providing the measuring method.

本発明に係る放射線測定装置は、上述した課題を解決するために、気体を取り入れる気体取入手段と気体を取り出す気体取出手段と電極を備えたイオン収集手段と、気体を吸引して前記気体取入手段から気体を取り込む気体吸引手段と、前記電極に電圧を印加させる電源と、前記電極で収集された気体中のイオンによる電流を測定する電流測定手段と、前記電流測定手段で測定された電流値から放射線の強度を算出する処理手段とを備え、前記イオン収集手段は気体取入手段側に電離捕捉手段が設けられ、この電離捕捉手段は測定対象に向けて開口する開口部から入射した放射線が電離する電離空間領域が形成され、この電離空間領域で生成されたイオンをイオン収集手段に吸引して収集せしめられ、前記電離捕捉手段は、開口部から入射された放射線が電離される電離空間領域を有する捕捉ボックスと、測定対象上に電離捕捉手段を相対的に移動走査させる移動走査手段と、前記捕捉ボックス内に外気を取り入れる外気取入手段と、捕捉ボックス内に流入する外気中のイオンや塵芥の異物を吸着する外気浄化手段と、測定対象の表面と捕捉ボックスのボックス開口との間隙を減少させて測定対象に面するボックス開口部から流入するイオンを吸着するブラシとを有することを特徴とするものである。 In order to solve the above-described problems, a radiation measuring apparatus according to the present invention includes a gas intake means for taking in a gas, a gas take-out means for taking out the gas, an ion collecting means having an electrode, and a gas take-in by sucking the gas. Gas suction means for taking in gas from the input means; a power source for applying a voltage to the electrode; current measuring means for measuring current due to ions in the gas collected at the electrode; and current measured by the current measuring means Processing means for calculating the intensity of the radiation from the value , the ion collecting means is provided with an ionization capturing means on the gas intake means side, the ionization capturing means is a radiation incident from an opening that opens toward the measurement object An ionization space region is formed in which the ions are ionized, and ions generated in the ionization space region are attracted and collected by the ion collection means, and the ionization capture means is incident from the opening. A capture box having an ionization space area where ionized radiation is ionized, a moving scanning means for relatively moving and scanning the ionization capture means on the measurement object, an outside air intake means for taking outside air into the capture box, and a capture box The outside air purifying means that adsorbs the ions in the outside air that flows into the inside and the foreign matter of the dust, and the ions that flow in from the box opening facing the measuring object by reducing the gap between the surface of the measuring object and the box opening of the capture box It has the brush which adsorb | sucks, It is characterized by the above- mentioned.

また、本発明に係る放射線測定方法は、上述した課題を解決するために、請求項1ないし請求項6のいずれか1項記載の放射線測定装置を用いて、測定対象から放出される放射線およびその強度分布を測定する際、測定対象の電離部からの気体を取り入れる気体取入手段を配置し、気体吸引手段を作動させて気体取入手段から気体を取り込み、取り込んだ気体中のイオンによる電流を測定し、測定された電流値から放射線の強度を算出することを特徴とする方法である。 Moreover, in order to solve the above-described problem, the radiation measurement method according to the present invention uses the radiation measurement apparatus according to any one of claims 1 to 6 and radiation emitted from a measurement target and the radiation When measuring the intensity distribution, a gas intake means for taking in the gas from the ionization part to be measured is arranged, the gas suction means is operated to take in the gas from the gas intake means, and the current due to the ions in the taken-in gas is It is a method characterized by measuring and calculating the intensity of radiation from the measured current value.

本発明の放射線測定装置およびその測定方法によれば、測定対象の放射線の強度および放射線の強度分布を簡便な装置で測定精度よく測定することができる。   According to the radiation measuring apparatus and the measuring method of the present invention, the intensity of radiation to be measured and the intensity distribution of the radiation can be measured with a simple apparatus with high measurement accuracy.

本発明に係る放射線測定装置の実施の形態について添付図面を参照して説明する。   Embodiments of a radiation measuring apparatus according to the present invention will be described with reference to the accompanying drawings.

[第1の実施形態]
図1は、本発明に係る放射線測定装置の第1実施形態を示す全体構成図である。
[First Embodiment]
FIG. 1 is an overall configuration diagram showing a first embodiment of a radiation measuring apparatus according to the present invention.

この放射線測定装置10は、大型で複雑な被測定機器や建物の床等の測定面積が大きな測定対象11から放出される放射線およびその強度分布を測定精度よく測定する装置である。   The radiation measurement apparatus 10 is an apparatus that measures radiation emitted from a measurement object 11 having a large measurement area, such as a large and complex device to be measured or a building floor, and its intensity distribution with high measurement accuracy.

放射線測定装置10は、測定対象11近傍にイオン化空間領域として形成される電離部12に向けて開口し、電極13を内部に備えたイオン収集手段14と、このイオン収集手段14で収集されたイオンによる電流を測定する電流測定手段15と、この電流測定手段15で測定された電流値から放射線の強度を算出するデータ処理手段16と、イオン収集手段14の電極13に電圧を印加させる電源17とを有して構成される。   The radiation measurement apparatus 10 opens toward an ionization portion 12 formed as an ionization space region in the vicinity of a measurement target 11, and includes an ion collection means 14 having an electrode 13 therein, and ions collected by the ion collection means 14. Current measuring means 15 for measuring the current by the current, data processing means 16 for calculating the intensity of the radiation from the current value measured by the current measuring means 15, and a power source 17 for applying a voltage to the electrode 13 of the ion collecting means 14. It is comprised.

電離部12は、測定対象11および測定対象11に付着された放射線源20から放出される放射線により、その近傍の気体が電離(イオン化)される空間領域を指称する。放射線がα線の場合、測定対象11の表面領域から数cm以内の空間領域をいう。   The ionization unit 12 refers to a spatial region in which a gas in the vicinity thereof is ionized (ionized) by radiation emitted from the measurement target 11 and the radiation source 20 attached to the measurement target 11. When the radiation is α rays, it refers to a spatial region within several centimeters from the surface region of the measurement object 11.

また、イオン収集手段14は、例えば一端が開口した金属円筒のような外筒21と、この外筒21内の略中心に軸方向に設置されたバー状あるいはプレート状の電極13と、この電極13の両端部を外筒21内に絶縁状態で保持する電極固定装置22とを有する。電極固定装置22は、電極13の一端を保持する第1の固定保持手段23と、電極13の他端を外筒21の開口側で保持する第2の固定保持手段24とを備える。   The ion collecting means 14 includes, for example, an outer cylinder 21 such as a metal cylinder having an open end, a bar-shaped or plate-shaped electrode 13 installed in the axial direction at a substantially center in the outer cylinder 21, and the electrode. And an electrode fixing device 22 for holding both end portions of 13 in the outer cylinder 21 in an insulated state. The electrode fixing device 22 includes first fixing and holding means 23 that holds one end of the electrode 13, and second fixing and holding means 24 that holds the other end of the electrode 13 on the opening side of the outer cylinder 21.

第1の固定保持手段23は、電極13の一端側を軸支するボス状あるいはスリーブ状の絶縁材26と、この絶縁材26の外周側を覆い、漏洩電流を減少させるガードリング27と、このガードリング27の外周側に装着された筒状絶縁材28と、この絶縁材28を外筒21に固定させる支持手段29から構成される。   The first fixing and holding means 23 includes a boss-like or sleeve-like insulating material 26 that pivotally supports one end of the electrode 13, a guard ring 27 that covers the outer peripheral side of the insulating material 26 and reduces leakage current, A cylindrical insulating material 28 mounted on the outer peripheral side of the guard ring 27 and a supporting means 29 for fixing the insulating material 28 to the outer cylinder 21 are configured.

第2の固定保持手段24は、電極13の他端側を軸支するボス状絶縁材30と、この絶縁材30を外筒21の内周壁に固定させる放射状支持脚としての支持手段31とを有する。電極13は第1および第2の固定保持手段23,24により両端支持される。   The second fixing and holding means 24 includes a boss-like insulating material 30 that pivotally supports the other end side of the electrode 13 and a supporting means 31 as a radial support leg that fixes the insulating material 30 to the inner peripheral wall of the outer cylinder 21. Have. The electrode 13 is supported at both ends by the first and second fixing and holding means 23 and 24.

さらに、外筒21の一端は開口しており、この開口側に気体取入手段33が形成される。電極13の第2の固定保持手段24は、気体取入手段33の近傍で電極13を外筒21に絶縁状態で固定している。   Further, one end of the outer cylinder 21 is opened, and a gas intake means 33 is formed on the opening side. The second fixing and holding means 24 of the electrode 13 fixes the electrode 13 to the outer cylinder 21 in an insulated state in the vicinity of the gas intake means 33.

また、外筒21には第1の固定保持手段23側に気体取出手段34が設けられ、この気体取出手段34が気体取出口として開口しており、この気体取出手段34はフレキシブルチューブのような自在輸送経路35を介して気体吸引手段36に連結される。気体吸引手段36は、例えば吸引ポンプであり、ポンプ作動により、気体取入手段33からイオンを気体とともに吸引し、外筒21内に流通させることができる。イオン収集手段14は電離部12で発生したイオンを電極13に吸着し、収集するように案内している。符号37は整流手段である。   Further, the outer cylinder 21 is provided with a gas extraction means 34 on the first fixed holding means 23 side, and this gas extraction means 34 is opened as a gas outlet, and this gas extraction means 34 is a flexible tube or the like. It is connected to the gas suction means 36 through the universal transport path 35. The gas suction means 36 is, for example, a suction pump, and can draw ions together with the gas from the gas intake means 33 and circulate them in the outer cylinder 21 by pump operation. The ion collecting means 14 guides the ions generated in the ionization section 12 to be adsorbed on the electrode 13 and collected. Reference numeral 37 denotes a rectifying means.

また、電極17は、イオン収集手段14の外筒21と電極13の間に電圧を印加しており、この電圧印加により、外筒21内の電極13に、収集された負イオンがイオン化電流として流れ、このイオン化電流を例えばエレクトロメータのような電流測定手段15で測定するようになっている。   The electrode 17 applies a voltage between the outer cylinder 21 and the electrode 13 of the ion collecting means 14, and by this voltage application, the collected negative ions are applied to the electrode 13 in the outer cylinder 21 as an ionization current. This ionization current is measured by current measuring means 15 such as an electrometer.

次に、放射線測定装置10の作用を説明する。   Next, the operation of the radiation measuring apparatus 10 will be described.

測定対象11に付着して放射線源20から放射された放射線で気体を電離するとイオン対(負イオンと正イオン、あるいは正イオンと電子)が生成され、このイオンは、数秒から数十秒の寿命で測定対象11の近傍領域、すなわち電離部12に存在する。   When the gas is ionized by radiation emitted from the radiation source 20 attached to the measurement object 11, ion pairs (negative ions and positive ions, or positive ions and electrons) are generated, and these ions have a lifetime of several seconds to several tens of seconds. In the vicinity of the measurement object 11, that is, in the ionization part 12.

そこで、気体収集手段14の気体取入口である気体取入手段33を電離部12に近付ける。すなわち、外筒21の気体取入手段33を測定対象11の近傍領域、すなわち電離部12に近付け、気体吸引手段36で気体を吸引すると、気体(外気)取入手段33から気体がイオンとともに外筒21内に取り込まれ、外筒21内部を移動せしめられる。   Therefore, the gas intake means 33 that is the gas intake port of the gas collection means 14 is brought close to the ionization unit 12. That is, when the gas intake means 33 of the outer cylinder 21 is brought close to the region near the measurement object 11, that is, the ionization portion 12, and the gas is sucked by the gas suction means 36, the gas is removed from the gas (outside air) intake means 33 together with the ions. It is taken into the cylinder 21 and moved inside the outer cylinder 21.

外気が外筒21内を移動せしめられる際、電源17から正の電圧が中心の電極13に印加されていると、気体中の負のイオンが電極13に収集される。収集されたイオンは電極13内をイオン化電流として流れ、この電流は電流測定手段15に測定される。測定された電流値から予め求められた電流値の放射能換算定数(既知)を使用し、演算処理することで放射線の強度を求めることができる。   When a positive voltage is applied to the center electrode 13 from the power source 17 when the outside air is moved through the outer cylinder 21, negative ions in the gas are collected at the electrode 13. The collected ions flow as an ionization current in the electrode 13, and this current is measured by the current measuring means 15. Using the radioactivity conversion constant (known) of the current value obtained in advance from the measured current value, the intensity of the radiation can be obtained by arithmetic processing.

この放射線測定装置10は、電極13の両端が絶縁材26,30により外筒21に絶縁して固定されているので、電極13の軸方向長さを長くすることにより、電極表面積が大きくなり、放射線照射により生成されるイオンを高効率で収集することができる。さらに、外筒21内を流れる気体による電極13の振動を両端支持することで有効的に防止でき、イオン化電流を低ノイズで測定することができる。   In this radiation measuring apparatus 10, since both ends of the electrode 13 are insulated and fixed to the outer cylinder 21 by the insulating materials 26, 30, the electrode surface area is increased by increasing the axial length of the electrode 13, Ions generated by irradiation can be collected with high efficiency. Furthermore, the vibration of the electrode 13 due to the gas flowing in the outer cylinder 21 can be effectively prevented by supporting both ends, and the ionization current can be measured with low noise.

また、イオン収集手段14は、気体吸引手段36にフレキシブルな自在輸送経路35にて連結されており、イオン収集手段14を自由に移動させて測定対象11に容易に近付けることができる。イオン収集手段14は、気体吸引手段36、電流測定手段15およびデータ処理手段16を停止させて測定対象11に自由にかつ容易に近付けることができるので、生成されたイオン収集を効率よく行なうことができる。イオンは生成後時間の経過とともに減衰するが、このイオン減衰が少ない状態でイオンを収集することができる。   Further, the ion collecting means 14 is connected to the gas suction means 36 through a flexible free transport path 35, and the ion collecting means 14 can be freely moved to easily approach the measuring object 11. Since the ion collecting means 14 can stop the gas suction means 36, the current measuring means 15 and the data processing means 16 to freely and easily approach the measurement object 11, the generated ion can be collected efficiently. it can. Ions decay with the passage of time after generation, but ions can be collected with little ion decay.

本実施形態の放射線測定装置10によれば、イオン収集手段14を測定対象11に接近させることができるため、イオンを高効率、低ノイズかつ低減衰で収集し、そのイオン化電流を精度よくかつ安定して測定することができ、放射線強度の測定精度を向上させることができる。   According to the radiation measuring apparatus 10 of the present embodiment, the ion collecting means 14 can be brought close to the measurement object 11, so that ions are collected with high efficiency, low noise, and low attenuation, and the ionization current is accurately and stable. The measurement accuracy of radiation intensity can be improved.

また、イオン収集手段14を測定対象11近傍の電離部12に沿って順次あるいは段階的に移動させることで、測定対象11近傍の電離部12の放射線の強度分布を測定することができる。   Further, by moving the ion collecting means 14 sequentially or stepwise along the ionization portion 12 near the measurement object 11, the radiation intensity distribution of the ionization portion 12 near the measurement object 11 can be measured.

特に、イオン収集手段14の気体取入手段33を測定対象11の近傍に近付け、測定対象11の全領域(全ての電離部領域)に沿って走査させ、各走査位置の放射線強度を測定することで、放射線の強度分布(放射能分布)をイオン減衰が少ない条件で測定することができる。   In particular, the gas intake means 33 of the ion collection means 14 is brought close to the vicinity of the measurement object 11 and is scanned along the entire area (all ionization area) of the measurement object 11 to measure the radiation intensity at each scanning position. Thus, the intensity distribution (radioactivity distribution) of the radiation can be measured under the condition that the ion attenuation is small.

なお、この放射線測定装置10の一実施形態では、外筒21の一端に気体取入手段33を、外筒21の他端側外周に気体取出手段34を設けた例を示したが、気体取入手段33と気体取出手段34とを逆に形成し、気体取入手段33に自在輸送経路を連結し、気体取出手段34の近傍に測定対象11を設置し、気体を吸引してイオン収集し、放射線測定を行なってもよい。   In the embodiment of the radiation measuring apparatus 10, an example is shown in which the gas intake means 33 is provided at one end of the outer cylinder 21 and the gas extraction means 34 is provided at the outer periphery of the other end side of the outer cylinder 21. The inlet means 33 and the gas outlet means 34 are formed in reverse, the free transport path is connected to the gas inlet means 33, the measuring object 11 is installed in the vicinity of the gas outlet means 34, and the gas is sucked to collect ions. Radiation measurement may be performed.

[第2の実施形態]
図2は、本発明に係る放射線測定装置の第2の実施形態を示すものである。
[Second Embodiment]
FIG. 2 shows a second embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Aは、イオン収集手段14をリニア状あるいはマトリクス状に複数個配列してイオン収集手段14の群を構成し、イオン収集装置40を構成している。他の構成は、第1実施形態に示された放射線測定装置10と異ならないので、同じ構成には同一符号を付して説明を省略する。   In the radiation measuring apparatus 10A shown in this embodiment, a plurality of ion collecting means 14 are arranged in a linear or matrix form to constitute a group of ion collecting means 14 and constitute an ion collecting apparatus 40. Since other configurations are not different from the radiation measuring apparatus 10 shown in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.

イオン収集装置40を構成する個々のイオン収集手段14も図1に示されたイオン収集手段と異ならないので、同じ符号を付して説明を省略あるいは簡略にする。各イオン収集手段14は、一端が開口した円筒状の外筒21とバー状あるいはプレート状の中心の電極13と、この電極13の両端部を外筒21に絶縁支持する電極固定装置22とから構成される。   Since the individual ion collecting means 14 constituting the ion collecting apparatus 40 is not different from the ion collecting means shown in FIG. 1, the same reference numerals are given and the description will be omitted or simplified. Each ion collecting means 14 includes a cylindrical outer cylinder 21 having one end opened, a bar-shaped or plate-shaped central electrode 13, and an electrode fixing device 22 that insulates and supports both ends of the electrode 13 on the outer cylinder 21. Composed.

電極固定装置22は電極13の外筒21の閉塞側を絶縁固定する第1の固定保持手段と外筒21の開口側を絶縁固定する第2の固定保持手段24から構成される。第2の固定保持手段24は、電極13を開口側で軸支するボス状絶縁部材30とこの絶縁部材30を外筒21の内周壁に固定させる放射状支持脚としての支持手段31とを有する。   The electrode fixing device 22 includes first fixing and holding means for insulatingly fixing the closed side of the outer cylinder 21 of the electrode 13 and second fixing and holding means 24 for insulatingly fixing the opening side of the outer cylinder 21. The second fixing and holding unit 24 includes a boss-like insulating member 30 that pivotally supports the electrode 13 on the opening side, and a supporting unit 31 that serves as a radial support leg that fixes the insulating member 30 to the inner peripheral wall of the outer cylinder 21.

個々のイオン収集手段14は外筒21の開口側に形成される気体取入(吸引)手段33に連絡しており、測定対象の電離部(図1の符号12)に臨んでいる。個々のイオン収集手段14を束ねるイオン収集装置40は測定対象の全領域に沿って走査し、それぞれの走査位置の放射線を測定することで、測定対象が大きな面積を有する床圧であっても、放射線の強度分布をイオン減衰が少ない条件で測定することができる。   Each ion collecting means 14 communicates with a gas intake (suction) means 33 formed on the opening side of the outer cylinder 21 and faces an ionization portion (reference numeral 12 in FIG. 1) to be measured. The ion collection device 40 that bundles the individual ion collection means 14 scans along the entire region of the measurement target, and measures the radiation at each scanning position, so that even if the measurement target is a bed pressure having a large area, The intensity distribution of radiation can be measured under the condition that the ion attenuation is small.

また、個々のイオン収集手段14は、吸引ポンプ等の気体吸引手段(図示せず)に接続され、放射線測定装置10Aは、個々のイオン収集手段14の各電極13に電圧を印加する電源、各電極13で収集したイオンを電流として測定する各電流測定手段および各電流測定手段で測定した電流値を演算処理して放射能分布を求めるデータ処理手段で構成される。   The individual ion collection means 14 is connected to a gas suction means (not shown) such as a suction pump, and the radiation measurement apparatus 10A includes a power source for applying a voltage to each electrode 13 of each ion collection means 14, Each current measuring means that measures ions collected by the electrode 13 as a current, and a data processing means for calculating a radioactivity distribution by calculating the current value measured by each current measuring means.

本実施形態における放射線測定装置10Aは、それぞれのイオン収集手段14に各気体吸引手段36(図1参照)で気体を吸引しつつイオンを電極13に収集し、各電極13に収集されたイオンをそれぞれの電流測定手段15(図1参照)で電流として測定し、この電流値をデータ処理手段16(図1参照)で演算処理すれば、各イオン収集手段14の位置に対応した放射能の分布を精度よく測定することができる。   The radiation measuring apparatus 10 </ b> A in this embodiment collects ions on the electrodes 13 while sucking gas to each ion collecting means 14 with each gas suction means 36 (see FIG. 1), and collects the ions collected on each electrode 13. If each current measuring means 15 (see FIG. 1) measures the current, and the current value is calculated by the data processing means 16 (see FIG. 1), the radioactivity distribution corresponding to the position of each ion collecting means 14 Can be measured with high accuracy.

また、リニア配列あるいはマトリクス配列のイオン収集手段14群からなるイオン収集装置40を測定対象に沿って近接状態で移動走査させ、各イオン収集手段14に電離作用で生成したイオンを空気とともに吸引すれば、測定対象の広い表面積に亘って放射線の強度分布を能率よく測定することができ、測定対象の放射線による表面汚染状態を正確に制度よく、測定することができる。   In addition, if the ion collector 40 composed of a group of ion collectors 14 in a linear array or a matrix array is moved and scanned along the object to be measured, ions generated by the ionization action are attracted to each ion collector 14 together with air. The intensity distribution of radiation can be efficiently measured over a wide surface area of the measurement target, and the surface contamination state due to the radiation of the measurement target can be measured accurately and systematically.

なお、放射線測定装置10Aは、各イオン収集手段14を構成する外筒21が円形の例を示したが、円形に代えて六角形のように多角形で形成することもできる。   In the radiation measuring apparatus 10A, the outer cylinder 21 constituting each ion collecting means 14 is circular. However, the radiation measuring apparatus 10A may be formed in a polygon such as a hexagon instead of a circle.

[第3の実施形態]
図3は、本発明に係る放射線測定装置の第3実施形態を示すものである。
[Third Embodiment]
FIG. 3 shows a third embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Bは、複数個のイオン収集手段14aを格子状あるいはマトリクス状に配設してイオン収集手段14aの群からなるイオン収集装置40aを構成している。他の構成は、第1実施形態に示された放射線測定装置10と異ならないので、同じ構成には同一符号を付して説明を省略する。   The radiation measuring apparatus 10B shown in this embodiment constitutes an ion collector 40a composed of a group of ion collectors 14a by arranging a plurality of ion collectors 14a in a grid or matrix. Since other configurations are not different from the radiation measuring apparatus 10 shown in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.

イオン収集装置40aを構成するイオン収集手段14aも基本的原理は図1に示されたイオン収集手段14と異ならない。各イオン収集手段14aは、一端が開口した角筒状の外筒21と、バー状あるいはプレート状の中心の電極13と、この電極13の両端部を外筒21aに絶縁支持する電極固定装置22とから構成される。   The basic principle of the ion collector 14a constituting the ion collector 40a is not different from that of the ion collector 14 shown in FIG. Each ion collecting means 14a includes a rectangular tube-shaped outer cylinder 21 having one end opened, a bar-shaped or plate-shaped central electrode 13, and an electrode fixing device 22 for insulatingly supporting both ends of the electrode 13 on the outer cylinder 21a. It consists of.

電極固定装置22は、電極13の外筒21の閉塞側を絶縁固定する第1の固定保持手段と、外筒21の開口側を絶縁固定する第2の固定保持手段24から構成される。第2の固定保持手段24は、外筒21の軸線方向に延設された電極13を開口側で軸支するボス状絶縁部材30とこの絶縁部材30を外筒21の内周壁に固定させる放射状支持脚としての支持手段31とを有する。   The electrode fixing device 22 includes first fixing and holding means for insulatingly fixing the closed side of the outer cylinder 21 of the electrode 13 and second fixing and holding means 24 for insulatingly fixing the opening side of the outer cylinder 21. The second fixing and holding means 24 has a boss-like insulating member 30 that supports the electrode 13 extending in the axial direction of the outer cylinder 21 on the opening side, and a radial shape that fixes the insulating member 30 to the inner peripheral wall of the outer cylinder 21. And support means 31 as a support leg.

この放射線測定装置10Bは、格子状あるいはマトリクス状に配置されたイオン収集手段14aの群を有し、各イオン収集手段14aには気体吸引手段(図1の符号33)が接続される。各気体吸引手段を作動させてイオン収集手段14aに気体を吸引しつつイオンを電極13に収集させ、各イオン収集手段14aの電極13に収集されたイオンの電流をそれぞれの電流測定手段(図1の符号15)で測定し、測定された電流からデータ処理手段(図1の符号16)で演算処理することにより、イオン収集手段14aの位置に対応した放射能分布を精度よく測定することができる。   This radiation measuring apparatus 10B has a group of ion collecting means 14a arranged in a grid or matrix, and a gas suction means (reference numeral 33 in FIG. 1) is connected to each ion collecting means 14a. Each gas suction means is operated to cause the ion collection means 14a to suck the gas and collect the ions on the electrode 13, and the current of the ions collected on the electrode 13 of each ion collection means 14a is measured by each current measurement means (FIG. 1). The radioactivity distribution corresponding to the position of the ion collecting means 14a can be measured with high accuracy by measuring with the data processing means (reference numeral 16 in FIG. 1) from the measured current. .

イオン収集装置40aはイオン収集手段14aを格子状あるいはマトリクス状に構成し、各格子寸法を例えば10cm×10cmの矩形形状とすると、1つのイオン収集手段14aで100cmの放射線の強さを測定できる。複数のイオン収集手段14aを格子状あるいはマトリクス状に構成することで放射線の強度分布を測定することができる。 The ion collecting device 40a can measure the intensity of radiation of 100 cm 2 with one ion collecting means 14a when the ion collecting means 14a is configured in a lattice shape or a matrix shape and each lattice size is, for example, a rectangular shape of 10 cm × 10 cm. . The radiation intensity distribution can be measured by configuring the plurality of ion collecting means 14a in a lattice shape or a matrix shape.

また、イオン収集装置40aはイオン収集手段14aが格子状あるいはマトリクス状を保って測定対象(図11の符号11)の表面近傍を相対的に移動走査することで、測定対象の広い表面積あるいは放射線の強度分布を正確に精度良く測定することができる。   In addition, the ion collector 40a allows the ion collector 14a to move and scan in the vicinity of the surface of the measurement target (reference numeral 11 in FIG. 11) while maintaining a lattice shape or a matrix shape. The intensity distribution can be measured accurately and accurately.

[第4の実施形態]
図4は、本発明に係る放射線測定装置の第4実施形態を示す概略的な構成図である。
[Fourth Embodiment]
FIG. 4 is a schematic configuration diagram showing a fourth embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Cは、イオン収集手段14の外筒21の開口側に電離捕捉手段44を設けたものであり、他の構成は図1に示された放射線測定装置10の構成と異ならないので同じ符号を付して説明を省略ないし簡略化する。   The radiation measuring apparatus 10C shown in this embodiment is provided with an ionization capturing means 44 on the opening side of the outer cylinder 21 of the ion collecting means 14, and the other configuration is the radiation measuring apparatus 10 shown in FIG. Therefore, the same reference numerals are used and description thereof is omitted or simplified.

この放射線測定装置10Cは、外筒21の開口側に測定対象11に向けて開口する電離捕捉手段44が設けられる。電離捕捉手段44は外筒21の開口側に設けられた椀状あるいは筒状の捕捉ボックス45を有する。この捕捉ボックス45は測定対象11の放射線源20側にボックス開口部が開口し、ボックス内部が電離空間領域46を形成している。電離捕捉手段44の電離空間領域46は測定対象11の表面上に電離部12を構成している。   The radiation measuring apparatus 10 </ b> C is provided with an ionization capturing unit 44 that opens toward the measurement object 11 on the opening side of the outer cylinder 21. The ionization capturing means 44 has a bowl-shaped or cylindrical capture box 45 provided on the opening side of the outer cylinder 21. The capture box 45 has a box opening at the radiation source 20 side of the measurement object 11, and an ionization space region 46 is formed inside the box. The ionization space region 46 of the ionization capturing means 44 constitutes the ionization portion 12 on the surface of the measurement object 11.

測定対象11は放射線源20を備えた対象表面側に電離部12が形成され、この電離部12は捕捉ボックス45内に形成される電離空間領域46を含めて、測定対象11の放射線源20から放射される放射線領域に形成される。捕捉ボックス45は所要の開口面積、例えば10cm×10cmの開口を有し、測定対象11とする電離部12の測定領域を限定している。   The measurement object 11 is formed with an ionization part 12 on the object surface side provided with the radiation source 20, and the ionization part 12 includes an ionization space region 46 formed in the capture box 45 from the radiation source 20 of the measurement object 11. It is formed in the radiation area to be emitted. The capture box 45 has a required opening area, for example, an opening of 10 cm × 10 cm, and limits the measurement region of the ionization part 12 to be measured 11.

捕捉ボックス45の奥行きは測定対象11の放射線の種類およびエネルギに応じて定められる。放射線を、例えば5MeVのα線を対象とする場合、捕捉ボックス45の奥行きはα線の飛程と同程度、例えば5cm程度に設定される。   The depth of the capture box 45 is determined according to the type and energy of the radiation of the measurement object 11. When the radiation is targeted at, for example, 5 MeV α-rays, the depth of the capture box 45 is set to the same extent as the α-ray range, for example, about 5 cm.

この放射線測定装置10Cにおいては、測定対象11の放射線源20から放射される放射線(α線)により電離部12が測定対象表面近傍に形成され、この電離部12に向けて電離捕捉手段44の捕捉ボックス45が近接状態で開口している。   In this radiation measuring apparatus 10 </ b> C, the ionization part 12 is formed in the vicinity of the surface of the measurement object by radiation (α rays) emitted from the radiation source 20 of the measurement object 11, and the ionization capturing means 44 captures toward the ionization part 12. A box 45 is opened in the proximity state.

捕捉ボックス45の開口を経て電離空間領域46に入射した放射線は、そのエネルギを電離空間領域46の気体(大気)に付与し、気体を電離(イオン化)させる。   The radiation that has entered the ionization space region 46 through the opening of the capture box 45 imparts its energy to the gas (atmosphere) in the ionization space region 46 and ionizes the gas.

電離空間領域46の気体の電離によりイオンが生成され、生成されたイオンは、気体吸引手段36の作動により、気体とともにイオン収集手段14の外筒21内に吸引(輸送)される。イオン収集手段14の電極13に収集されたイオンは、電流測定手段15によりイオン電流として測定される。イオン収集手段14で収集されたイオンからイオン電流を測定し、この電流値から放射能の演算定数を使用してデータ処理手段16により、測定対象11の電離部領域の放射線の強さを高効率で測定することができる。   Ions are generated by ionization of the gas in the ionization space region 46, and the generated ions are sucked (transported) into the outer cylinder 21 of the ion collecting means 14 together with the gas by the operation of the gas suction means 36. The ions collected by the electrode 13 of the ion collecting means 14 are measured as an ion current by the current measuring means 15. The ion current is measured from the ions collected by the ion collecting means 14, and the radiation intensity in the ionization region of the measuring object 11 is highly efficient by the data processing means 16 using the radioactivity calculation constant from the current value. Can be measured.

この放射線測定装置10Cは電離捕捉手段44の電離ボックス45の開口面積に応じた電離部12領域の放射線を測定することができ、この電離捕捉手段44をイオン収集手段14とともに測定対象表面に沿って移動走査させることで、測定対象11の放射線の強度分布も容易に測定することができる。   The radiation measuring apparatus 10C can measure the radiation of the ionization portion 12 region corresponding to the opening area of the ionization box 45 of the ionization capturing means 44, and the ionization capturing means 44 together with the ion collection means 14 along the surface to be measured. By moving and scanning, the intensity distribution of the radiation of the measuring object 11 can also be easily measured.

このように、電離捕捉手段44の電離ボックス45により、ボックス開口部で測定対象の位置を限定(特定)することにより、定められた電離部領域の放射線(放射線の強度)を精度よく測定することができる。   In this way, by measuring (determining) the position of the measurement object at the box opening by the ionization box 45 of the ionization capturing means 44, the radiation (radiation intensity) in the determined ionization region is accurately measured. Can do.

[第5の実施形態]
図5は、本発明に係る放射線測定装置の第5実施形態を示す部分的な構成図である。
[Fifth Embodiment]
FIG. 5 is a partial configuration diagram showing a fifth embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Dは、電離捕捉手段47の構成を図4に示された放射線測定装置10Cと異にし、他の構成は異ならないので同一符号を付して説明を省略ないし簡略化する。図5に示された放射線測定装置10Dは、測定対象50が建物の床面等の放射線測定に適したものである。   The radiation measurement apparatus 10D shown in this embodiment differs from the radiation measurement apparatus 10C shown in FIG. 4 in the configuration of the ionization capturing means 47, and the other configurations are not different, so the same reference numerals are given and the description is omitted. Or simplify. The radiation measurement apparatus 10 </ b> D shown in FIG. 5 is suitable for radiation measurement of a measurement object 50 such as a floor surface of a building.

この放射線測定装置10Dは、イオン収集手段14の外筒21の開口側に電離捕捉手段47が設けられる。電離捕捉手段47は、外筒21の先端開口側に椀状あるいは筒状の捕捉ボックス48を有する。この捕捉ボックス48は測定対象50の表面側にボックス開口が臨んでおり、ボックス内部に電離空間領域49が形成される。測定対象50の表面上には電離空間領域49を含めて電離部12が形成される。   In the radiation measuring apparatus 10 </ b> D, an ionization capturing unit 47 is provided on the opening side of the outer cylinder 21 of the ion collecting unit 14. The ionization capturing means 47 has a trapezoidal or cylindrical capture box 48 on the tip opening side of the outer cylinder 21. The capture box 48 has a box opening facing the surface of the measurement object 50, and an ionization space region 49 is formed inside the box. On the surface of the measurement object 50, the ionization portion 12 including the ionization space region 49 is formed.

電離捕捉手段47は、ボックス開口部が測定対象11の表面側を向くボックス状の捕捉ボックス48と、この捕捉ボックス48のボックス開口部に設けられたイオン吸着ブラシ51と、捕捉ボックス48の側面に設けられた外気取入手段52と、この外気取入手段52の外気取入口からボックス内部に混入される外気を浄化する外気浄化手段53と、捕捉ボックス48を測定対象50の表面上で一定の距離を保って走査できる、例えば走行車輪のような移動走査手段54とから構成される。   The ionization capturing means 47 includes a box-shaped capture box 48 whose box opening faces the surface of the measurement object 11, an ion adsorption brush 51 provided in the box opening of the capture box 48, and a side surface of the capture box 48. The provided outside air intake means 52, the outside air purifying means 53 for purifying outside air mixed into the box from the outside air inlet of the outside air intake means 52, and the trapping box 48 are fixed on the surface of the measurement object 50. For example, the moving scanning means 54 such as a traveling wheel can be scanned while maintaining a distance.

イオン吸着ブラシ51は、樹脂製ブラシで形成され、測定対象50の表面と捕捉ボックス48のボックス開口との間隙を減少させ、測定対象50の表面から混入するイオンを吸着させる一方、外気浄化手段53は、外気取入手段52から混入する外気に含まれるイオンや塵芥等の異物を吸着するようになっている。また、移動走査手段54は、測定対象表面とボックス開口部の距離を一定に保ち、かつ電離捕捉手段47が測定対象50の全域に亘って相対的に移動走査できるように構成された、電離捕捉手段47の移動手段である。   The ion adsorption brush 51 is formed of a resin brush, reduces the gap between the surface of the measurement target 50 and the box opening of the capture box 48, and adsorbs ions mixed from the surface of the measurement target 50, while cleaning the outside air. Is configured to adsorb foreign matter such as ions and dust contained in the outside air mixed from the outside air intake means 52. Further, the moving scanning means 54 is configured to keep the distance between the surface of the measurement object and the box opening constant, and the ionization capturing means 47 is configured to relatively move and scan the entire area of the measurement object 50. It is a moving means of the means 47.

図5に示された放射線測定装置10Dは、電離捕捉手段47を測定対象50の表面上に設置することで、測定対象50の表面領域を限定する。測定対象50の表面領域に付着する放射線源から気体を電離させることで、測定対象表面近傍に電離部12が構成される。   The radiation measurement apparatus 10 </ b> D illustrated in FIG. 5 limits the surface area of the measurement target 50 by installing the ionization capturing unit 47 on the surface of the measurement target 50. By ionizing the gas from the radiation source adhering to the surface region of the measurement target 50, the ionization portion 12 is configured in the vicinity of the measurement target surface.

次に、気体吸引手段(図1の符号36)を作動させて測定対象50の表面領域を限定(特定)し、その表面領域に付着する放射線源が気体を電離して生成したイオンを電離捕捉手段47で捕捉し、イオン収集手段14に収集される。   Next, the gas suction means (symbol 36 in FIG. 1) is activated to limit (specify) the surface area of the measurement object 50, and the ion generated by the radiation source adhering to the surface area ionizing the gas is ionized and captured. It is captured by the means 47 and collected by the ion collecting means 14.

イオン収集手段14の電極(図1の符号13)に収集されたイオンを電流として電流測定手段(図1の符号15)で測定し、この測定された電流値をデータ処理手段(図1の符号16)により、予め定められた電流値から放射能への換算定数を使用して放射能を算出することができる。   The ions collected by the electrodes (reference numeral 13 in FIG. 1) of the ion collecting means 14 are measured by the current measuring means (reference numeral 15 in FIG. 1) as current, and the measured current value is measured by the data processing means (reference numeral in FIG. 1). 16), the radioactivity can be calculated using a conversion constant from a predetermined current value to radioactivity.

この放射線測定装置10Dは、電離捕捉手段47の捕捉ボックス48のボックス開口部に樹脂製ブラシ51を、また、外気取入手段52に外気浄化手段53をそれぞれ備え、このブラシ51や外気浄化手段53で大気中に存在するイオンが電離空間領域49に流入するのを未然に防止し、流入イオンがバックグランドとなって放射線の測定精度を低下させるのを防止している。また、移動走査手段54により電離捕捉手段47を測定対象50の表面に対して正確かつ高精度に位置決めを行なって移動走査させることで、測定対象50表面の放射線の強度分布を測定精度よく測定することができる。   The radiation measuring apparatus 10D includes a resin brush 51 at a box opening of a capture box 48 of an ionization capturing unit 47, and an outside air purifying unit 53 at an outside air intake unit 52. The brush 51 and the outside air purifying unit 53 are provided. Thus, the ions existing in the atmosphere are prevented from flowing into the ionization space region 49, and the inflowing ions are prevented from becoming a background and reducing the measurement accuracy of radiation. Further, the ionization capturing means 47 is positioned accurately and highly accurately with respect to the surface of the measuring object 50 by the moving scanning means 54, and the intensity distribution of the radiation on the surface of the measuring object 50 is measured with high measurement accuracy. be able to.

[第6の実施形態]
図6は、本発明に係る放射線測定装置の第6実施形態を示す部分的な構成図である。
[Sixth Embodiment]
FIG. 6 is a partial configuration diagram showing a sixth embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Eは、イオン収集手段14の外筒21開口側に設けられる電離捕捉手段47aに除電ブラシ57を備えた構成が、図5に示された放射線測定装置10Dと異なり、他の構成は異ならないので、同じ構成には同一符号を付して説明を省略ないし簡略化する。   In the radiation measurement apparatus 10E shown in this embodiment, the configuration in which the ionization capturing means 47a provided on the opening side of the outer cylinder 21 of the ion collection means 14 is provided with the static elimination brush 57 is the radiation measurement apparatus 10D shown in FIG. Unlike the other configurations, the other configurations are not different, and the same configurations are denoted by the same reference numerals and the description thereof is omitted or simplified.

この放射線測定装置10Eは、電離捕捉手段47aを構成する捕捉ボックス48のボックス開口部に除電ブラシ57を設け、この除電ブラシ57で測定対象50との間隙を減少させるとともに、大気中に存在するイオンが捕捉ボックス48の電離空間領域49に流入するのを防止している。除電ブラシ57は、所要値、例えば直径12μmφ程度のステンレスワイヤで構成される。   This radiation measuring apparatus 10E is provided with a static elimination brush 57 at the box opening of a capture box 48 that constitutes an ionization capture means 47a. The static elimination brush 57 reduces the gap between the measurement object 50 and ions existing in the atmosphere. Is prevented from flowing into the ionization space region 49 of the capture box 48. The neutralizing brush 57 is made of a stainless steel wire having a required value, for example, a diameter of about 12 μmφ.

第6実施形態に示された放射線測定装置10Eが電離捕捉手段47aの捕捉ボックス48のボックス開口部を覆うように除電ブラシ57を設け、この除電ブラシ57により、大気中に存在するイオンが捕捉ボックス48内に流入し、流入したイオンがバックグランドとなって測定精度が低下するのを有効的に防止でき、測定対象50の放射線の強度およびその強度分布を精度よく測定することができる。   The radiation measuring apparatus 10E shown in the sixth embodiment is provided with a static elimination brush 57 so as to cover the box opening of the capture box 48 of the ionization capture means 47a. By this static elimination brush 57, ions existing in the atmosphere are captured in the capture box. It is possible to effectively prevent the measurement accuracy from being lowered due to the inflow ions flowing into the background 48, and the intensity of the radiation of the measurement object 50 and its intensity distribution can be accurately measured.

[第7の実施形態]
図7は、本発明に係る放射線測定装置の第7実施形態を示す部分的な構成図である。
[Seventh Embodiment]
FIG. 7 is a partial configuration diagram showing a seventh embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Fは、図5に示された放射線測定装置10Dとは電離捕捉手段47に帯電絶縁手段60を設けた構成を異にし、他の構成は異ならないので同一符号を付してその説明を省略ないし簡略化する。   The radiation measuring apparatus 10F shown in this embodiment is different from the radiation measuring apparatus 10D shown in FIG. 5 in that the configuration in which the charging insulating means 60 is provided in the ionization capturing means 47, and the other structures are not different. The description is omitted or simplified with reference numerals.

図7に示された放射線測定装置10Fは、電離捕捉手段47の捕捉ボックス48の外側に帯電絶縁手段60を間隔をおいて設けたものである。帯電絶縁手段60は、高電圧に帯電可能なプレート状の帯電絶縁体61と、この帯電絶縁体61を外気取入手段52および樹脂製ブラシ等のイオン吸着ブラシ51の近くに設ける絶縁体支持具62により構成される。   In the radiation measuring apparatus 10F shown in FIG. 7, charging insulation means 60 is provided outside the capture box 48 of the ionization capture means 47 at intervals. The charging insulating means 60 includes a plate-shaped charging insulator 61 that can be charged to a high voltage, and an insulator support that provides the charging insulator 61 in the vicinity of the outside air intake means 52 and the ion adsorption brush 51 such as a resin brush. 62.

帯電絶縁体61は、例えばテフロン(登録商標)等の絶縁材で構成され、表面に高電圧を帯電させ、外気取入手段52および樹脂製ブラシ51の近傍に存在する大気中のイオンを電気力で散逸もしくは吸着させるものである。このため、帯電絶縁手段60は、大気中のイオンが捕捉ボックス48内に流入する可能性が大きな外気取入手段52および樹脂製ブラシ51(ボックス開口部)を外側あるいは周辺から覆うように設けられる。   The charging insulator 61 is made of, for example, an insulating material such as Teflon (registered trademark), charges a surface with a high voltage, and converts ions in the atmosphere existing in the vicinity of the outside air intake means 52 and the resin brush 51 into an electric force. It can be dissipated or adsorbed. For this reason, the charging insulation means 60 is provided so as to cover the outside air intake means 52 and the resin brush 51 (box opening) from which the ions in the atmosphere are likely to flow into the capture box 48 from the outside or the periphery. .

この放射線測定装置10Fによると、帯電絶縁手段60に高電圧に帯電した帯電絶縁体61により、外気取入手段52近傍に存在するイオンおよび樹脂製ブラシ51近傍に存在するイオンを電気力(クーロン力)で散逸もしくは吸着させることができ、大気中に存在するイオン濃度を低下させ、外気取入手段52および樹脂製ブラシ51で吸着できず、捕捉ボックス48内の電離空間領域49に流入する外気中のイオンを減少させることができる。   According to the radiation measuring apparatus 10F, the charging insulator 61 charged at a high voltage in the charging insulating means 60 is used to convert ions existing in the vicinity of the outside air intake means 52 and ions existing in the vicinity of the resin brush 51 into electric force (Coulomb force). ) In the outside air that reduces the concentration of ions present in the atmosphere and cannot be adsorbed by the outside air intake means 52 and the resin brush 51 and flows into the ionization space region 49 in the capture box 48. Of ions can be reduced.

このため、電離捕捉手段47の電離ボックス48内に流入する外気中のイオンを有効的に防止し、バックグランドの要因となる流入イオンを低減でき、測定対象50表面からの放射線の強度およびその強度分布を精度よく正確に測定することができる。   For this reason, ions in the outside air flowing into the ionization box 48 of the ionization capturing means 47 can be effectively prevented, and inflow ions that cause a background can be reduced, and the intensity of radiation from the surface of the measurement object 50 and its intensity can be reduced. Distribution can be measured accurately and accurately.

[第8の実施形態]
図8は、本発明に係る放射線測定装置の第8実施形態を示す部分的な構成図である。
[Eighth Embodiment]
FIG. 8 is a partial block diagram showing an eighth embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Gは、イオン収集手段14の外筒21の開口側に設けられる電離捕捉手段47に帯電絶縁手段60を着脱自在に設けるとともに、電離捕捉手段47から取り外された帯電絶縁手段60に帯電させる帯電手段65を設けた構成が、図5に示された放射線測定装置10Dと異なり、他の構成は実質的に異ならないので、同じ符号を付してその説明を省略ないし簡略化する。   In the radiation measuring apparatus 10G shown in this embodiment, a charging insulating means 60 is detachably provided on an ionization capturing means 47 provided on the opening side of the outer cylinder 21 of the ion collecting means 14, and is removed from the ionization capturing means 47. The structure provided with the charging means 65 for charging the charged insulating means 60 is different from the radiation measuring apparatus 10D shown in FIG. 5, and the other structures are not substantially different. Omitted or simplified.

帯電絶縁手段60は電離捕捉手段47の捕捉ボックス48に外側から取り付けられる絶縁体支持具62と、この絶縁体支持具62に着脱自在に固定されるプレート状あるいはメッシュ状の帯電絶縁体61から構成される。帯電絶縁体61は、例えばテフロンのような絶縁材で構成され、表面に高電圧が帯電せしめられるようになっている。帯電絶縁体61は、外気取入手段52の近傍および樹脂製ブラシ51の近傍に設けられ、外気取入手段52で形成される外気取入口および捕捉ボックス48のボックス開口部を外側あるいは外周側から覆うようになっている。   The charging insulation means 60 comprises an insulator support 62 attached from the outside to the capture box 48 of the ionization capture means 47 and a plate-like or mesh-like charge insulation 61 detachably fixed to the insulator support 62. Is done. The charging insulator 61 is made of an insulating material such as Teflon, for example, and a high voltage is charged on the surface. The charging insulator 61 is provided in the vicinity of the outside air intake means 52 and in the vicinity of the resin brush 51, and the outside air inlet formed by the outside air intake means 52 and the box opening of the capturing box 48 are formed from the outside or the outer peripheral side. It comes to cover.

また、帯電手段65は、絶縁体支持具62から取り外された帯電絶縁体61を装着する摩擦ホルダ66と、この摩擦ホルダ66を回転軸67廻りに回動させる回転手段68と、も回転手段68および摩擦ホルダ66をサポートするサポート手段69とを有する。   The charging means 65 includes a friction holder 66 to which the charging insulator 61 removed from the insulator support 62 is mounted, a rotating means 68 for rotating the friction holder 66 around the rotation shaft 67, and a rotating means 68. And support means 69 for supporting the friction holder 66.

摩擦ホルダ66は摩擦係数の大きな摩擦物体で構成され、帯電絶縁体61の材質と帯電剤を考慮し、帯電絶縁体61から電位差が大きな摩擦物質が選択される。   The friction holder 66 is formed of a friction object having a large friction coefficient, and a friction material having a large potential difference is selected from the charging insulator 61 in consideration of the material of the charging insulator 61 and the charging agent.

例えば、帯電絶縁体61がテフロンの場合、摩擦ホルダ66には電位差が大きく入手し易い、例えばナイロン等の摩擦物質が選択される。ナイロンの摩擦物体からなる摩擦ホルダ66を駆動モータ等の回転手段47で回転させつつ、絶縁体支持具62から取り外した帯電絶縁体61を接触させて、帯電絶縁体61表面に高電圧を帯電させる。   For example, when the charging insulator 61 is Teflon, a friction material such as nylon, which has a large potential difference and is easily available, is selected for the friction holder 66. The surface of the charging insulator 61 is charged with a high voltage by contacting the charging insulator 61 removed from the insulator support 62 while rotating the friction holder 66 made of a nylon friction object with a rotating means 47 such as a drive motor. .

高電圧が帯電された帯電絶縁体61を再び絶縁体支持具62に取り付けて電離捕捉手段47に捕捉ボックス48の外側あるいは外周側に帯電絶縁手段60を取り付ける。   The charging insulator 61 charged with a high voltage is attached to the insulator support 62 again, and the charging insulating means 60 is attached to the ionization capturing means 47 outside or on the outer peripheral side of the capturing box 48.

この帯電絶縁手段60の取付により、外気取入手段52の近傍に存在するイオンおよび樹脂製ブラシ51の近傍に存在するイオンを、帯電絶縁手段60の帯電絶縁体61に帯電された電気力で散逸もしくは吸着させ、捕捉ボックス48内に流入する大気中のイオンを減少させることができる。   By attaching the charging insulation means 60, ions existing in the vicinity of the outside air intake means 52 and ions existing in the vicinity of the resin brush 51 are dissipated by the electric force charged in the charging insulator 61 of the charging insulation means 60. Alternatively, it can be adsorbed to reduce atmospheric ions flowing into the capture box 48.

したがって、測定対象50の放射線源から電離捕捉手段47に放射される放射線の電離により生じるイオンに外気中のイオンが流入することが少なく、バックグランドの要因となる流入イオンを低減でき、放射線の強度およびその強度分布を精度よく測定することができる。   Accordingly, ions in the outside air hardly flow into ions generated by ionization of radiation radiated from the radiation source of the measurement object 50 to the ionization capturing means 47, and inflow ions that cause a background can be reduced, and radiation intensity can be reduced. And its intensity distribution can be accurately measured.

[第9の実施形態]
図9は、本発明に係る放射線測定装置の第9実施形態を示す部分的な構成図である。
[Ninth Embodiment]
FIG. 9 is a partial block diagram showing a ninth embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Hは、図7に示された帯電絶縁手段60を帯電させる帯電手段70を移動走査手段54に装着したものであり、その他の構成は図7の放射線測定装置10Fと異ならないので同一符号を付してその説明を省略ないし簡略化する。   In the radiation measuring apparatus 10H shown in this embodiment, a charging means 70 for charging the charging insulating means 60 shown in FIG. 7 is mounted on the moving scanning means 54, and the other configuration is the radiation measurement shown in FIG. Since it is not different from the apparatus 10F, the same reference numerals are given and the description thereof is omitted or simplified.

図9に示された放射線測定装置10Hは、電離捕捉手段47に帯電させる帯電手段70を設けたものである。帯電手段70は移動走査手段54を構成する回転手段に装着されたプレート状の摩擦物体71を備え、この摩擦物体71が帯電絶縁手段60の帯電絶縁体61と摩擦接触し、帯電絶縁体61に高電圧を帯電させるようになっている。   The radiation measuring apparatus 10H shown in FIG. 9 is provided with a charging means 70 for charging the ionization capturing means 47. The charging means 70 includes a plate-like friction object 71 mounted on the rotation means constituting the moving scanning means 54, and the friction object 71 is in frictional contact with the charging insulator 61 of the charging insulating means 60. High voltage is charged.

この放射線測定装置10Hは、図5に示された放射線測定装置10Dに帯電絶縁手段60と帯電手段70とを備えたものであり、帯電絶縁手段60は電離捕捉手段47の捕捉ボックス48に外側あるいは外周側から帯電絶縁体61が取り付けられて構成され、この帯電絶縁体61に帯電手段70の摩擦物体71が摩擦接触し、帯電絶縁体61に電荷を帯電させるようになっている。   This radiation measuring apparatus 10H is provided with a charging insulating means 60 and a charging means 70 in the radiation measuring apparatus 10D shown in FIG. 5, and the charging insulating means 60 is provided outside or on the capturing box 48 of the ionization capturing means 47. The charging insulator 61 is attached from the outer peripheral side, and the friction object 71 of the charging means 70 is brought into frictional contact with the charging insulator 61 so that the charging insulator 61 is charged.

この放射線測定装置10Hによると、測定対象50全体に亘って放射線分布を測定するために、電離捕捉手段47を測定対象50の表面に沿って移動させる移動走査手段54を備え、この移動走査手段54で電離捕捉手段47を移動させると、移動走査手段54の回転とともに帯電手段70の摩擦物体71も回転する。この摩擦物体71の回転により、摩擦物体71に摩擦接触する帯電絶縁体61に電荷が帯電せしめられる.
帯電絶縁手段60の帯電絶縁体61に摩擦物体71の摩擦接触により電荷が帯電せしめられると、帯電した帯電絶縁体61により、外気取入手段(外気取入口)52近傍に存在するイオンおよび樹脂製ブラシ51の近傍に存在するイオンを電気力で散逸あるいは吸着し、電離捕捉手段47の捕捉ボックス48内に流入する外気中のイオンを減少させることができる。
According to the radiation measuring apparatus 10H, in order to measure the radiation distribution over the entire measurement object 50, the ionization capturing means 47 is moved along the surface of the measurement object 50, and the movement scanning means 54 is provided. When the ionization capturing means 47 is moved, the friction object 71 of the charging means 70 is rotated with the rotation of the moving scanning means 54. Due to the rotation of the frictional object 71, the charge insulator 61 that is in frictional contact with the frictional object 71 is charged.
When charge is charged on the charging insulator 61 of the charging insulating means 60 by frictional contact of the friction object 71, ions and resin made in the vicinity of the outside air intake means (outside air inlet) 52 are caused by the charged charging insulator 61. Ions that are present in the vicinity of the brush 51 are dissipated or adsorbed by electric force, and ions in the outside air flowing into the trapping box 48 of the ionization trapping means 47 can be reduced.

したがって、電離捕捉手段47に流入し、バックグランドの要因となる大気中の流入イオンを低減でき、放射線の強度および強度分布を精度よく測定することができる。   Accordingly, inflow ions in the atmosphere that flow into the ionization capturing means 47 and cause background can be reduced, and the intensity and intensity distribution of radiation can be measured with high accuracy.

[第10の実施形態]
図10は、本発明に係る放射線測定装置の第10実施形態を示す部分的な構成図である。
[Tenth embodiment]
FIG. 10 is a partial configuration diagram showing a tenth embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Iは、図7に示された放射線測定装置10Fにイオン発生器74を付設したものである。他の構成は図7の放射線測定装置10Fと異ならないので、同じ構成には同一符号を付してその説明を省略ないし簡略化させる。   The radiation measuring apparatus 10I shown in this embodiment is obtained by adding an ion generator 74 to the radiation measuring apparatus 10F shown in FIG. Since the other configuration is not different from the radiation measurement apparatus 10F of FIG. 7, the same reference numeral is given to the same configuration, and the description thereof is omitted or simplified.

この放射線測定装置10Fは、帯電絶縁手段60の帯電絶縁体61にイオンを付着させるイオン発生器74を設置したものである。イオン発生器74は帯電絶縁体61にイオンを付着させるもので、電離捕捉手段60の近くに設けられる。   This radiation measuring apparatus 10F is provided with an ion generator 74 for attaching ions to the charging insulator 61 of the charging insulating means 60. The ion generator 74 attaches ions to the charging insulator 61 and is provided near the ionization capturing means 60.

図10に示された放射線測定装置10Iは、イオン発生器74により帯電絶縁手段60の帯電絶縁体61にイオンを付着させ、帯電させる。帯電絶縁体61にイオンを帯電させることにより、外気取入手段52の近傍に存在するイオンおよび樹脂製ブラシ51の近傍に存在するイオンを電気力で散逸もしくは吸着させることができ、外気中に混在するイオンが電離捕捉手段47の捕捉ボックス48内に流入するのを効果的に防止できる。   In the radiation measuring apparatus 10I shown in FIG. 10, ions are attached to the charging insulator 61 of the charging insulating means 60 by the ion generator 74 and charged. By charging the charging insulator 61 with ions, ions existing in the vicinity of the outside air intake means 52 and ions existing in the vicinity of the resin brush 51 can be dissipated or adsorbed by electric force and mixed in the outside air. Ions can be effectively prevented from flowing into the capture box 48 of the ionization capture means 47.

電離捕捉手段47の捕捉ボックス48内に大気中のイオンが流入するのを有効的に防止できるので、バックグランドの要因となる大気中のイオン流入を低減でき、測定対象50表面からの放射線の強度およびその強度分布を精度よく測定することができる。   Since it is possible to effectively prevent ions in the atmosphere from flowing into the capture box 48 of the ionization capturing means 47, it is possible to reduce the inflow of ions in the atmosphere, which causes background, and the intensity of radiation from the surface of the measurement target 50. And its intensity distribution can be accurately measured.

[第11の実施形態]
図11は、本発明に係る放射線測定装置の第11実施形態を示す全体構成図である。
[Eleventh embodiment]
FIG. 11 is an overall configuration diagram showing an eleventh embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Jは、イオン収集手段14の外筒24を保持可能な絶縁保持手段75を備えるとともに、図5に示された電離捕捉手段47を両側からあるいは全体的に覆う帯電絶縁手段60を設け、操作台車76上に電源17、気体吸引手段36、電流測定手段15およびデータ処理手段16をまとめて設置したものであり、他の構成は図7に示す放射線測定装置10Dと異ならないので、同じ構成には同一符号を付してその説明を省略ないし簡略化する。   The radiation measuring apparatus 10J shown in this embodiment includes an insulating holding means 75 capable of holding the outer cylinder 24 of the ion collecting means 14, and the ionization capturing means 47 shown in FIG. The charging insulation means 60 is provided, and the power supply 17, the gas suction means 36, the current measurement means 15 and the data processing means 16 are collectively installed on the operation carriage 76, and the other configuration is the radiation measurement apparatus shown in FIG. Since it is not different from 10D, the same components are denoted by the same reference numerals, and the description thereof is omitted or simplified.

この放射線測定装置10は電離捕捉手段47が測定対象50の表面に沿ってスムーズかつ円滑に移動できるように、捕捉ボックス48の両側下部に移動走査手段54が設けられるとともに、イオン収集手段14の外筒21の後部側(閉塞側)を安定的にサポートする補助回転手段77が設けられる。   The radiation measuring apparatus 10 is provided with a moving scanning means 54 at the lower part on both sides of the capturing box 48 so that the ionization capturing means 47 can move smoothly and smoothly along the surface of the measurement object 50, An auxiliary rotation means 77 that stably supports the rear side (closed side) of the cylinder 21 is provided.

電離捕捉手段47は移動走査手段54と補助回転手段77に案内されて測定対象50の表面上を円滑に安定的に移動できるようになっている。移動走査手段54は電離捕捉手段47の捕捉ボックス48の両側下部に一対ずつ設けられた例えば走行車輪で構成される。移動走査手段54は、電離捕捉手段47と測定対象50の間隔を一定に保ち、かつ電離空間の容積を一定に保って電離捕捉手段47を移動自在に支持している。   The ionization capturing means 47 is guided by the moving scanning means 54 and the auxiliary rotating means 77 so that it can move smoothly and stably on the surface of the measuring object 50. The moving scanning means 54 is composed of, for example, traveling wheels provided in pairs at the lower portions on both sides of the capturing box 48 of the ionization capturing means 47. The moving scanning unit 54 supports the ionization capturing unit 47 movably while maintaining a constant interval between the ionization capturing unit 47 and the measurement object 50 and maintaining a constant volume of the ionization space.

また、図11に示された外気取入口(外気取入手段)52に、流入する外気のイオンを除去する外気浄化装置53が設けられる一方、電離捕捉手段47の捕捉ボックス48内に外気中のイオンが流入するのを防ぐために、外気浄化手段53の外側あるいは外周側、また樹脂製ブラシ51の外周側に、帯電絶縁手段60が設けられる。   In addition, an outside air purifying device 53 that removes ions of the inflowing outside air is provided at the outside air inlet (outside air inlet means) 52 shown in FIG. 11, while the outside air in the trapping box 48 of the ionization trapping means 47 is provided. In order to prevent the inflow of ions, a charging insulating means 60 is provided on the outer side or outer peripheral side of the outside air purifying means 53 and on the outer peripheral side of the resin brush 51.

第11実施形態に示された放射線測定装置10Jでは、電離捕捉手段54内に流入する外気中のイオンは、帯電絶縁手段60で捕獲させる一方、樹脂製ブラシ51および外気浄化手段53で捕捉される。樹脂製ブラシ51および外気浄化手段53の近傍外側に高圧に帯電したボックス状あるいはプレート状の帯電絶縁体61を設けると、この帯電絶縁体61により外気浄化手段53および樹脂製ブラシ51近傍のイオンは積極的に吸着もしくは離散させて低イオン濃度状態となる。   In the radiation measuring apparatus 10 </ b> J shown in the eleventh embodiment, ions in the outside air flowing into the ionization capturing unit 54 are captured by the charging insulating unit 60, while being captured by the resin brush 51 and the outside air purification unit 53. . If a box-shaped or plate-shaped charging insulator 61 charged at a high voltage is provided outside the vicinity of the resin brush 51 and the outside air purifying means 53, the ions near the outside air purifying means 53 and the resin brush 51 are caused by the charging insulator 61. Actively adsorb or disperse to a low ion concentration state.

低濃度イオン状態のイオンは樹脂製ブラシ51や外気浄化手段53でさらに減少せしめられるので、電離捕捉手段47内の電離空間領域49に流入する外気イオンを大きく低減させることができる。   Since ions in a low concentration ion state are further reduced by the resin brush 51 and the outside air purification means 53, outside air ions flowing into the ionization space region 49 in the ionization capturing means 47 can be greatly reduced.

この放射線測定装置10Jは、測定対象50の放射線により電離部を構成する電離捕捉手段47の電離空間領域49内で電離したイオンをS/N比よく測定することができる。   The radiation measuring apparatus 10J can measure ions ionized in the ionization space region 49 of the ionization capturing means 47 constituting the ionization portion by the radiation of the measurement object 50 with a high S / N ratio.

その際、イオン収集手段14に設けられる絶縁保持手段75を測定者が保持して、例えば車輪のような移動走査手段574および補助移動手段77で電離捕捉手段47を移動させれば、イオン収集手段14と測定者が保持することによるノイズの増加を低減させることができる。   At that time, if the measurer holds the insulating holding means 75 provided in the ion collecting means 14 and moves the ionization capturing means 47 by the moving scanning means 574 and the auxiliary moving means 77 such as wheels, the ion collecting means 47 14 and the measurer can reduce the increase in noise.

また、補助移動手段77を設けたので、測定者がイオン収集手段14を保持しない場合でも、イオン収集手段14を転倒させることなく、一定の位置関係に保つことができ、位置決めに起因する誤差を低減させることができる。   Further, since the auxiliary moving means 77 is provided, even if the measurer does not hold the ion collecting means 14, the ion collecting means 14 can be kept in a fixed positional relationship without being overturned, and errors caused by positioning can be avoided. Can be reduced.

この放射線測定装置10Jは、イオン収集手段14で測定対象50表面から放射される放射線により発生するイオンを収集し、電流測定手段15でイオン電流を測定し、データ処理手段16で演算処理すれば、測定対象50の放射線の強度およびその強度分布を正確にかつ精度よく測定することができる。   The radiation measuring apparatus 10J collects ions generated by radiation emitted from the surface of the measurement target 50 by the ion collecting means 14, measures the ion current by the current measuring means 15, and performs arithmetic processing by the data processing means 16. The intensity of radiation of the measurement object 50 and its intensity distribution can be measured accurately and accurately.

本発明に係る放射線測定装置の第1実施形態を示す全体構成図。1 is an overall configuration diagram showing a first embodiment of a radiation measuring apparatus according to the present invention. 本発明に係る放射線測定装置の第2実施形態を示す部分的な構成図。The partial block diagram which shows 2nd Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第3実施形態を示す部分的な構成図。The partial block diagram which shows 3rd Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第4実施形態を示す全体構成図。The whole block diagram which shows 4th Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第5実施形態を示す部分的な構成図。The partial block diagram which shows 5th Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第6実施形態を示す部分的な構成図。The partial block diagram which shows 6th Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第7実施形態を示す部分的な構成図。The partial block diagram which shows 7th Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第8実施形態を示す部分的な構成図。The partial block diagram which shows 8th Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第9実施形態を示す部分的な構成図。The partial block diagram which shows 9th Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第10実施形態を示す部分的な構成図。The partial block diagram which shows 10th Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第11実施形態を示す全体構成図。The whole block diagram which shows 11th Embodiment of the radiation measuring device which concerns on this invention. 従来の放射線測定装置を示す図。The figure which shows the conventional radiation measuring device.

符号の説明Explanation of symbols

10,10A〜10J 放射線測定装置
11 測定対象
12 電離部
13 電極
14,14a イオン収集手段
15 電流測定手段
16 データ処理手段
17 電源
20 放射線源
21 外筒
22 電極固定装置
23 第1の固定保持手段
24 第2の固定保持手段
26 絶縁材
27 ガードリング
28 絶縁材
29 支持手段
30 絶縁材
31 支持手段
33 気体取入手段
34 気体取出手段
35 自在輸送経路
36 気体吸引手段
37 整流板
40,40a イオン収集装置
44,47 電離捕捉手段
45,48 捕捉ボックス
46,49 電離空間領域
50 測定対象
51 イオン吸着ブラシ(樹脂製ブラシ)
52 外気取入手段
53 外気浄化手段
54 移動走査手段
57 除電ブラシ
60 帯電絶縁手段
61 帯電絶縁体
62 絶縁体支持具
65 帯電手段
66 摩擦ホルダ(摩擦物体)
67 回転軸
68 回転手段
69 サポート手段
70 帯電手段
71 摩擦物体
74 イオン発生器
75 絶縁保持手段
76 操作台車
77 補助回転手段
10, 10A to 10J Radiation measurement device 11 Measurement object 12 Ionization unit 13 Electrodes 14, 14a Ion collection means 15 Current measurement means 16 Data processing means 17 Power source 20 Radiation source 21 Outer cylinder 22 Electrode fixing device 23 First fixing and holding means 24 Second fixing and holding means 26 Insulating material 27 Guard ring 28 Insulating material 29 Supporting means 30 Insulating material 31 Supporting means 33 Gas intake means 34 Gas extraction means 35 Free transport path 36 Gas suction means 37 Rectifying plates 40 and 40a Ion collector 44, 47 Ionization capture means 45, 48 Capture box 46, 49 Ionization space region 50 Measurement object 51 Ion adsorption brush (resin brush)
52 Outside air intake means 53 Outside air purification means 54 Moving scanning means 57 Static elimination brush 60 Charging insulation means 61 Charging insulator 62 Insulator support 65 Charging means 66 Friction holder (friction object)
67 Rotating shaft 68 Rotating means 69 Support means 70 Charging means 71 Friction object 74 Ion generator 75 Insulation holding means 76 Operation carriage 77 Auxiliary rotating means

Claims (7)

気体を取り入れる気体取入手段と気体を取り出す気体取出手段と電極を備えたイオン収集手段と、気体を吸引して前記気体取入手段から気体を取り込む気体吸引手段と、前記電極に電圧を印加させる電源と、前記電極で収集された気体中のイオンによる電流を測定する電流測定手段と、前記電流測定手段で測定された電流値から放射線の強度を算出する処理手段とを備え、
前記イオン収集手段は気体取入手段側に電離捕捉手段が設けられ、この電離捕捉手段は測定対象に向けて開口する開口部から入射した放射線が電離する電離空間領域が形成され、この電離空間領域で生成されたイオンをイオン収集手段に吸引して収集せしめられ、
前記電離捕捉手段は、開口部から入射された放射線が電離される電離空間領域を有する捕捉ボックスと、測定対象上に電離捕捉手段を相対的に移動走査させる移動走査手段と、前記捕捉ボックス内に外気を取り入れる外気取入手段と、捕捉ボックス内に流入する外気中のイオンや塵芥の異物を吸着する外気浄化手段と、測定対象の表面と捕捉ボックスのボックス開口との間隙を減少させて測定対象に面するボックス開口部から流入するイオンを吸着するブラシとを有することを特徴とする放射線測定装置。
A gas intake means for taking in gas, a gas take-out means for taking out the gas, an ion collecting means having an electrode, a gas suction means for sucking the gas and taking in the gas from the gas intake means, and applying a voltage to the electrode A power source, current measuring means for measuring current due to ions in the gas collected by the electrode, and processing means for calculating the intensity of radiation from the current value measured by the current measuring means ,
The ion collecting means is provided with an ionization capturing means on the gas intake means side, and this ionization capturing means is formed with an ionization space region in which radiation incident from an opening opening toward the measurement object is formed, and this ionization space region The ions generated in step 1 are collected by being sucked into the ion collecting means,
The ionization capture means includes a capture box having an ionization space region in which radiation incident from an opening is ionized, a moving scanning means for relatively moving and scanning the ionization capture means on a measurement target, and the capture box The measurement target by reducing the gap between the surface of the measurement target and the box opening of the capture box, the external air intake means for taking in the external air, the external air purification means that adsorbs ions and dust in the external air flowing into the capture box And a brush for adsorbing ions flowing from a box opening facing the surface.
前記電離捕捉手段には、捕捉ボックスの外側あるいは外周側から外気取入手段および開口部のブラシを覆う帯電絶縁手段を設け、この帯電絶縁手段は帯電される帯電絶縁体を前記捕捉ボックスに絶縁支持具で保持させたことを特徴とする請求項1記載の放射線測定装置。 The ionization capturing means is provided with charging insulation means for covering the outside air intake means and the brush of the opening from the outside or the outer peripheral side of the capture box, and this charging insulation means insulates and supports the charged insulator to the capture box. The radiation measuring apparatus according to claim 1 , wherein the radiation measuring apparatus is held by a tool. 前記帯電絶縁手段はプレート状あるいはボックス状帯電絶縁体が前記電離捕捉手段の捕捉ボックスに着脱自在に設けられるとともに、前記帯電絶縁体に帯電させる帯電手段を設けたことを特徴とする請求項2記載の放射線測定装置。 The charging insulating means together with the plate-like or box-like charging insulator detachably mounted to the capture box of the ionization capturing means, according to claim 2, wherein in that a charging means for charging to the charging insulator Radiation measurement equipment. 前記帯電手段は、前記電離捕捉手段から取り外される帯電絶縁体と摩擦接触し帯電させる摩擦物体あるいは電離捕捉手段の移動走査手段に装着されて前記帯電絶縁体に摩擦接触する摩擦物体を有することを特徴とする請求項3記載の放射線測定装置。 The charging means includes a friction object that frictionally contacts and charges the charging insulator removed from the ionization capturing means or a friction object that is attached to the moving scanning means of the ionization capturing means and frictionally contacts the charging insulator. The radiation measuring apparatus according to claim 3 . 前記帯電絶縁手段の帯電絶縁体にイオンを付着させるイオン発生器を備えたことを特徴とする請求項4記載の放射線測定装置。 5. The radiation measuring apparatus according to claim 4, further comprising an ion generator for attaching ions to a charging insulator of the charging insulating means. 前記電離捕捉手段には、この電離捕捉手段を測定対象の表面に沿って相対的に移動走査させる移動走査手段を備えるとともに、前記イオン収集手段を電離捕捉手段とともに移動案内させる補助回転手段を備えたことを特徴とする請求項1記載の放射線測定装置。 The ionization capturing unit includes a moving scanning unit that relatively moves and scans the ionization capturing unit along the surface of the measurement target, and an auxiliary rotation unit that moves and guides the ion collecting unit together with the ionization capturing unit. The radiation measuring apparatus according to claim 1 . 請求項1ないし請求項6のいずれか1項記載の放射線測定装置を用いて、測定対象から放出される放射線およびその強度分布を測定する際、
測定対象の電離部からの気体を取り入れる気体取入手段を配置し、
気体吸引手段を作動させて気体取入手段から気体を取り込み、
取り込んだ気体中のイオンによる電流を測定し、
測定された電流値から放射線の強度を算出することを特徴とする放射線測定方法。
When measuring the radiation emitted from the measurement object and its intensity distribution using the radiation measurement apparatus according to any one of claims 1 to 6,
Arranging gas intake means to take in gas from the ionization part to be measured,
Actuate the gas suction means to take in the gas from the gas intake means,
Measure the current due to ions in the gas
A radiation measurement method comprising calculating the intensity of radiation from a measured current value.
JP2006019761A 2006-01-27 2006-01-27 Radiation measuring apparatus and measuring method thereof Expired - Fee Related JP4810244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019761A JP4810244B2 (en) 2006-01-27 2006-01-27 Radiation measuring apparatus and measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019761A JP4810244B2 (en) 2006-01-27 2006-01-27 Radiation measuring apparatus and measuring method thereof

Publications (2)

Publication Number Publication Date
JP2007198980A JP2007198980A (en) 2007-08-09
JP4810244B2 true JP4810244B2 (en) 2011-11-09

Family

ID=38453722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019761A Expired - Fee Related JP4810244B2 (en) 2006-01-27 2006-01-27 Radiation measuring apparatus and measuring method thereof

Country Status (1)

Country Link
JP (1) JP4810244B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136661A (en) * 1994-11-08 1996-05-31 Aloka Co Ltd Radioactive ray measuring instrument
JP2001337402A (en) * 2000-03-24 2001-12-07 Fuji Photo Film Co Ltd Sheet body cleaning device and radiograph information reader, incorporating the same
JP2002040187A (en) * 2000-07-21 2002-02-06 Toshiba Corp Dust radiation monitor and radiation survey meter
JP4427175B2 (en) * 2000-09-18 2010-03-03 株式会社東芝 β radioactivity analyzer
JP4155493B2 (en) * 2001-12-25 2008-09-24 株式会社東芝 Radioactive waste treatment system
JP4181012B2 (en) * 2003-10-30 2008-11-12 株式会社東芝 Radiation measurement equipment
JP4051628B2 (en) * 2004-04-27 2008-02-27 東洋紡績株式会社 Radioactive material monitoring material

Also Published As

Publication number Publication date
JP2007198980A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
KR101112002B1 (en) Dust collection system
JP4155493B2 (en) Radioactive waste treatment system
JP3408543B2 (en) High gas flow alpha detector
JP4679245B2 (en) Dust monitor
JP4365245B2 (en) Dust monitor
JP2001311776A (en) Dust radiation monitor
JP4810244B2 (en) Radiation measuring apparatus and measuring method thereof
JPH10288670A (en) Non-contact surface contamination inspection method and surface treatment method and device
JP4131824B2 (en) Radiation measurement equipment
JP5134130B1 (en) Particle detector
JP4592614B2 (en) Tritium inspection apparatus and tritium inspection method
JP2002323568A (en) Radioactive dust monitor
KR20190125152A (en) Radiation monitoring apparatus using ination chamber
KR101979712B1 (en) Appartus for measuring air pollutant and radiation around of life environmnet
JP2007263804A (en) Radiation measuring device and method
CN101046514A (en) Device and method for measuring radioactive pollution on inner surface of pipeline
JP4434909B2 (en) Radiation measurement apparatus and radiation measurement method
JP4127780B2 (en) Radiation measurement equipment
JP2006329853A (en) Dust collecting body and dust monitor
JP5999473B2 (en) Collection unit, detector for radioactive gas monitor, and radioactive gas monitor
JP4220015B2 (en) Ionizing radiation detector
KR102180970B1 (en) Tritium detector using scintillator
JP5121739B2 (en) Sodium leak detection system
JP3881355B2 (en) Radioactive dust monitor
GB2301222A (en) Surface radioactivity monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4810244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees