JP4804514B2 - Non-grounded circuit insulation detector - Google Patents

Non-grounded circuit insulation detector Download PDF

Info

Publication number
JP4804514B2
JP4804514B2 JP2008207345A JP2008207345A JP4804514B2 JP 4804514 B2 JP4804514 B2 JP 4804514B2 JP 2008207345 A JP2008207345 A JP 2008207345A JP 2008207345 A JP2008207345 A JP 2008207345A JP 4804514 B2 JP4804514 B2 JP 4804514B2
Authority
JP
Japan
Prior art keywords
capacitor
resistor
ground
circuit
ground potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008207345A
Other languages
Japanese (ja)
Other versions
JP2010043916A (en
Inventor
慎治 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008207345A priority Critical patent/JP4804514B2/en
Publication of JP2010043916A publication Critical patent/JP2010043916A/en
Application granted granted Critical
Publication of JP4804514B2 publication Critical patent/JP4804514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

本発明は、接地電位部から絶縁して配置された非接地回路と、該接地電位部との間の絶縁レベルを検出する非接地回路の絶縁性検出装置に関する。   The present invention relates to a non-grounded circuit that is insulated from a ground potential portion and an insulation detection device for a non-ground circuit that detects an insulation level between the ground potential portion.

高電圧を出力する直流電源を備えたバッテリ駆動車両、ハイブリッド車両、燃料電池車両等の車両においては、該直流電源及び該直流電源と接続される回路を車体の接地電位部から絶縁して非接地回路とするのが一般的である。   In vehicles such as battery-powered vehicles, hybrid vehicles, and fuel cell vehicles equipped with a DC power source that outputs high voltage, the DC power source and a circuit connected to the DC power source are insulated from the ground potential portion of the vehicle body and are not grounded Generally, it is a circuit.

そして、このようにして、車両の接地電位部から絶縁して配置された非接地回路と、車両の接地電位部との間の絶縁性の劣化や地絡(非接地回路と車両の接地電位部間が短絡して、非接地回路と車両の接地電位部間の抵抗が0Ω近くまで低下した状態)を検出するための構成として、図11に示した構成が提案されている(例えば、特許文献1参照)。   In this way, insulation deterioration between the non-ground circuit arranged insulated from the ground potential portion of the vehicle and the ground potential portion of the vehicle and a ground fault (non-ground circuit and ground potential portion of the vehicle) A configuration shown in FIG. 11 has been proposed as a configuration for detecting a short circuit between the non-ground circuit and the resistance between the ground potential portion of the vehicle and the ground potential portion of the vehicle. 1).

図11に示した構成では、車両に搭載された高圧の直流電源100の正側の配線が、スイッチング素子111と抵抗112とコンデンサ113からなる直列回路110を介して車両の接地電位部BEと接続されている。そして、スイッチング素子111を導通状態としたときのコンデンサ113の正側の測定点120の電位の変化に基いて、直流電源100を含む非接地回路と接地電位部BE間の絶縁性を検出している。   In the configuration shown in FIG. 11, the positive-side wiring of the high-voltage DC power supply 100 mounted on the vehicle is connected to the vehicle's ground potential unit BE via the series circuit 110 including the switching element 111, the resistor 112, and the capacitor 113. Has been. Then, based on the change in potential at the measurement point 120 on the positive side of the capacitor 113 when the switching element 111 is turned on, the insulation between the non-ground circuit including the DC power supply 100 and the ground potential portion BE is detected. Yes.

ここで、非接地回路と接地電位部BE間の抵抗130の抵抗値が高く、非接地回路と接地電位部BE間の絶縁性が保たれているときは、スイッチング素子111を導通状態としても、直流電源100からコンデンサ113への電流I50がほとんど流れないため、測定点120の電位の上昇は微小なものとなる。 Here, when the resistance value of the resistor 130 between the non-ground circuit and the ground potential portion BE is high and the insulation between the non-ground circuit and the ground potential portion BE is maintained, the switching element 111 is turned on, Since the current I 50 from the DC power supply 100 to the capacitor 113 hardly flows, the rise in the potential at the measurement point 120 is minute.

それに対して、非接地回路と接地電位部BE間の絶縁性の劣化や、非接地回路と接地電位部BE間の地絡が生じて、非接地回路と接地電位部BE間の抵抗130が低くなったときには、直流電流100からコンデンサ113に供給される電流I50が大きくなって、コンデンサ113が急速に充電される。そのため、測定点120の電位が急激に上昇する。そこで、スイッチング素子111を遮断状態から導通状態に切換えたときの測定点120の電位の上昇度合いから、非接地回路と接地電位部BE間の絶縁性を検知することができる。 On the other hand, the insulation between the non-ground circuit and the ground potential portion BE is deteriorated and a ground fault occurs between the non-ground circuit and the ground potential portion BE, so that the resistance 130 between the non-ground circuit and the ground potential portion BE is low. When this happens, the current I 50 supplied from the direct current 100 to the capacitor 113 increases and the capacitor 113 is rapidly charged. Therefore, the potential at the measurement point 120 increases rapidly. Therefore, the insulation between the non-ground circuit and the ground potential portion BE can be detected from the degree of increase in the potential at the measurement point 120 when the switching element 111 is switched from the cutoff state to the conductive state.

しかし、直流高圧電源100の出力端子と接地電位部BE間には、一般に、ノイズ対策のために、いわゆるYコンデンサ101,102が設けられている。そして、スイッチング素子111を遮断状態から導通状態に切換えたときに、Yコンデンサ101に充電されていた電荷による電流I51がコンデンサ113に供給されて、コンデンサ113の端子間電圧が上昇する。 However, generally, so-called Y capacitors 101 and 102 are provided between the output terminal of the DC high-voltage power supply 100 and the ground potential portion BE for noise countermeasures. When the switching element 111 is switched from the cut-off state to the conduction state, the current I 51 due to the charge charged in the Y capacitor 101 is supplied to the capacitor 113, and the voltage across the terminals of the capacitor 113 increases.

このように、図11に示した構成による場合には、Yコンデンサ101からコンデンサ113に供給される電流によっても測定点120の電位が上昇するため、非接地回路と接地電位部BE間の絶縁性を精度良く検知することができないという不都合があった。
特開平8−226950号公報
As described above, in the case of the configuration shown in FIG. 11, the potential at the measurement point 120 rises due to the current supplied from the Y capacitor 101 to the capacitor 113, so that the insulation between the non-ground circuit and the ground potential portion BE is achieved. There is a disadvantage that it cannot be detected with high accuracy.
JP-A-8-226950

本願発明者らは、上記不都合を解消するべく、先の出願(特願2007−329187)において、Yコンデンサ等の他の要素の影響を受けることない簡易な構成によって、非接地回路と車両の接地電位部間の絶縁レベルを精度良く検出することができる絶縁性検出装置を提案した。   In order to solve the above inconveniences, the inventors of the present application disclosed in the previous application (Japanese Patent Application No. 2007-329187) with a simple configuration that is not affected by other elements such as a Y capacitor, We have proposed an insulation detector that can accurately detect the insulation level between potential parts.

そして、本願発明者らは、上記先の出願による非接地回路の絶縁性検出装置についてさらに検討を行った結果、スイッチング素子を介して、直流電源の正極と負極を切替えて電気負荷に導通させるインバータを備えた非接地回路においては、接地電位部との絶縁レベルを検出精度を向上させる必要があることを知見した。   The inventors of the present invention have further studied the insulation detection device for the non-grounded circuit according to the above-mentioned previous application. As a result, an inverter that switches the positive electrode and the negative electrode of the DC power source through the switching element to conduct to the electric load. It has been found that in the non-grounded circuit having the above, it is necessary to improve the detection accuracy of the insulation level from the ground potential portion.

そこで、本発明は、スイッチング素子を介して、直流電源の正極と負極を切替えて電気負荷に導通させるインバータを備えた非接地回路と、接地電位部間の絶縁レベルの検出精度を向上させることができる非接地回路の絶縁性検出装置を提供することを目的とする。   Therefore, the present invention can improve the detection accuracy of the insulation level between the non-ground circuit including the inverter that switches the positive electrode and the negative electrode of the DC power source through the switching element to conduct to the electric load, and the ground potential portion. An object of the present invention is to provide an insulation detecting device for a non-grounded circuit.

本発明は上記目的を達成するためになされたものであり、直流電源と、該直流電源の正極と接続された正側配線と、該直流電源の負極と接続された負側配線と、該正側配線及び該負側配線と電気負荷との間に接続されて、該正側配線が該電気負荷との接続箇所に導通した正極導通状態と、該負側配線が該電気負荷との接続箇所に導通した負極導通状態とを切替えるスイッチング素子を有するインバータとを備えて、接地電位部から絶縁して配置された非接地回路と、該接地電位部との間の絶縁レベルを検出する非接地回路の絶縁性検出装置に関する。   The present invention has been made to achieve the above object, and includes a DC power supply, a positive wiring connected to the positive electrode of the DC power supply, a negative wiring connected to the negative electrode of the DC power supply, and the positive power supply. A positive conduction state in which the positive wiring is connected to the connection with the electrical load, and the negative wiring is connected to the electrical load. And an inverter having a switching element that switches between a negative conducting state and a non-grounding circuit that is insulated from the ground potential portion and a non-ground circuit that detects an insulation level between the ground potential portion The present invention relates to an insulation detection device.

そして、一端が前記正側配線に接続されて、前記非接地回路と前記接地電位部間の絶縁性を維持するための絶縁基準値よりも高い抵抗を有する第1の抵抗と、一端が前記負側配線に接続されて、前記絶縁基準値よりも高い抵抗を有する第2の抵抗と、前記第1の抵抗の他端と前記第2の抵抗の他端間に接続された第3の抵抗と、前記第1の抵抗と前記第3の抵抗との接続部である第1抵抗接続部と、前記第2の抵抗と前記第3の抵抗との接続部である第2抵抗接続部とのうちのいずれか一方を、前記接地電位部に接続する接地配線と、一端が前記接地電位部と接続されたコンデンサと、該コンデンサの他端と、前記第1抵抗接続部と前記第2抵抗接続部とのうちの前記接地配線と接続されていない方の接続部である非接地抵抗接続部との間に接続されて、該非接地抵抗接続部から該コンデンサへの充電電流と、該コンデンサから該非接地接続部への放電電流とを異なるレベルに設定する充放電設定回路と、前記インバータのスイッチング素子により、前記正極導通状態と前記負極導通状態とが切替えられているときに、前記コンデンサの端子間電圧に基づいて、前記非接地回路と前記接地電位部との間の絶縁レベルを検出する絶縁レベル検出手段とを備えたことを特徴とする。   A first resistor having one end connected to the positive side wiring and having a resistance higher than an insulation reference value for maintaining insulation between the non-grounded circuit and the ground potential portion; A second resistor connected to a side wiring and having a resistance higher than the insulation reference value; a third resistor connected between the other end of the first resistor and the other end of the second resistor; A first resistance connection portion that is a connection portion between the first resistance and the third resistance, and a second resistance connection portion that is a connection portion between the second resistance and the third resistance. Any one of the following: a ground wiring for connecting to the ground potential portion; a capacitor having one end connected to the ground potential portion; the other end of the capacitor; the first resistance connecting portion and the second resistance connecting portion And the non-ground resistance connection portion which is the connection portion which is not connected to the ground wiring. Subsequently, a charging / discharging setting circuit for setting the charging current from the non-grounded resistor connection to the capacitor and the discharging current from the capacitor to the non-grounded connection at different levels, and the switching element of the inverter, An insulation level detecting means for detecting an insulation level between the non-ground circuit and the ground potential portion based on a voltage between terminals of the capacitor when the positive electrode conductive state and the negative electrode conductive state are switched; It is provided with.

かかる本発明によれば、前記インバータと電気負荷との接続部が前記接地電位部に短絡した状態になると、前記スイッチング素子により前記正極導通状態とされたときは、前記負側配線が前記充放電設定回路を介して前記コンデンサに導通した状態となるため、前記コンデンサから前記非接地抵抗接続部に向かって放電電流が流れる。一方、前記スイッチング回路により前記負極導通状態とされたときには、前記正側配線が前記充放電回路を介して前記コンデンサに導通した状態となるため、前記非接地抵抗接続部から前記コンデンサに向かって充電電流が流れる。   According to the present invention, when the connection portion between the inverter and the electric load is short-circuited to the ground potential portion, the negative-side wiring is connected to the charge / discharge when the positive electrode is connected by the switching element. Since the capacitor is brought into conduction through the setting circuit, a discharge current flows from the capacitor toward the non-ground resistance connection portion. On the other hand, when the negative polarity conduction state is established by the switching circuit, the positive side wiring is in a state of conduction to the capacitor via the charge / discharge circuit, so that charging is performed from the non-ground resistance connection portion toward the capacitor. Current flows.

そのため、前記インバータと電気負荷との接続部が前記接地電位部に短絡した状態となったときに、前記前記スイッチング素子により前記正極導通状態と前記負極導通状態とが交互に切替えられたときには、それに応じて、前記コンデンサが放電状態と充電状態とに交互に切り換わる。   Therefore, when the connection portion between the inverter and the electric load is short-circuited to the ground potential portion, when the positive electrode conduction state and the negative electrode conduction state are alternately switched by the switching element, Accordingly, the capacitor is alternately switched between a discharged state and a charged state.

そして、前記充放電設定回路により、前記非接地抵抗接続部から前記コンデンサへの充電電流と、前記コンデンサから前記非接地抵抗接続部への放電電流が異なるレベルに設定されている。そのため、前記コンデンサの充電電流が放電電流よりも大きいときは、前記コンデンサの端子間電圧が前記正側配線が前記接地電位部に短絡したときの電圧まで次第に上昇する。また、前記コンデンサの充電電流が放電電流よりも小さいときには、前記コンデンサの端子間電圧が前記負側配線が前記接地電位部に短絡したときの電圧まで次第に低下する。   The charging / discharging setting circuit sets the charging current from the non-grounded resistor connection to the capacitor and the discharging current from the capacitor to the non-grounded resistance connection at different levels. Therefore, when the charging current of the capacitor is larger than the discharging current, the voltage between the terminals of the capacitor gradually increases to the voltage when the positive wiring is short-circuited to the ground potential portion. Further, when the charging current of the capacitor is smaller than the discharging current, the voltage between the terminals of the capacitor gradually decreases to the voltage when the negative wiring is short-circuited to the ground potential portion.

そして、これらの場合には、詳細は後述するが、前記インバータと電気負荷との接続部が前記接地電位部と短絡したことを、前記正側配線が前記接地電位部と短絡したとき、又は前記負側配線が前記接地電位部に短絡したときと同じ判定条件で検出することができる。そのため、前記第3の抵抗の端子間電圧に基づいて、前記インバータ及び電気負荷の接続部が前記接地電位部に短絡したときの判定条件によって、前記非接地回路と前記接地電位部との間の短絡を検出するときよりも、前記非接地回路と前記接地電位部との間の短絡を検出精度を高めることができる。   In these cases, as will be described in detail later, the connection between the inverter and the electric load is short-circuited to the ground potential portion, the positive wiring is short-circuited to the ground potential portion, or the Detection can be performed under the same determination conditions as when the negative wiring is short-circuited to the ground potential portion. Therefore, based on the voltage between the terminals of the third resistor, depending on the determination condition when the connection portion of the inverter and the electric load is short-circuited to the ground potential portion, between the non-ground circuit and the ground potential portion The detection accuracy of the short circuit between the non-ground circuit and the ground potential unit can be improved as compared with the case of detecting the short circuit.

また、前記充放電設定回路は、前記コンデンサと前記非接地抵抗接続部との間に接続された第5の抵抗と、第4の抵抗とダイオードとを直列に接続して構成され、前記第5の抵抗と並列に接続された直列回路とを備えたことを特徴とする。   The charge / discharge setting circuit is configured by connecting a fifth resistor, a fourth resistor, and a diode connected in series between the capacitor and the non-grounded resistor connection portion, and the fifth resistor. And a series circuit connected in parallel.

かかる本発明によれば、前記ダイオードの順方向に電圧が印加されたときは、前記充放電設定回路を介して通電するときの抵抗は、前記第4の抵抗と前記第5の抵抗との並列合成抵抗となる。一方、前記ダイオードの逆方向に電圧が印加されたときには、前記直列回路側には電流は流れないため、前記充放電設定回路を介して通電するときの抵抗は、前記第5の抵抗分のみとなる。そのため、前記非接地抵抗接続部から前記コンデンサへの充電電流と、前記コンデンサから前記非接地抵抗接続部への放電電流の大きさとを、異なるレベルに設定することができる。   According to the present invention, when a voltage is applied in the forward direction of the diode, a resistance when energizing through the charge / discharge setting circuit is a parallel of the fourth resistance and the fifth resistance. Combined resistance. On the other hand, when a voltage is applied in the reverse direction of the diode, no current flows through the series circuit side. Therefore, the resistance when energizing through the charge / discharge setting circuit is only the fifth resistance. Become. For this reason, the charging current from the non-ground resistance connection portion to the capacitor and the magnitude of the discharge current from the capacitor to the non-ground resistance connection portion can be set to different levels.

また、アノード側が前記第2抵抗接続部に接続されると共に、カソード側が前記第1抵抗接続部に接続されて、前記第3の抵抗の端子間電圧を前記絶縁レベル検出手段の許容入力電圧範囲内に維持するツェナーダイオードを備えたことを特徴とする。   The anode side is connected to the second resistance connection portion, and the cathode side is connected to the first resistance connection portion, so that the voltage across the terminals of the third resistance is within the allowable input voltage range of the insulation level detection means. It is characterized by comprising a Zener diode to be maintained at

かかる本発明によれば、前記絶縁レベル検出手段による検出精度を向上させるためには、前記非接地回路と前記接地電位部との間の絶縁レベルの判定閾値付近での前記コンデンサの端子間電圧の変動幅を大きくする必要がある。そこで、詳細は後述するが、前記ツェナーダイオードを備えることによって、絶縁レベルの判定閾値付近での変化に対する前記コンデンサの端子間電圧の変動幅を大きくしつつ、前記絶縁レベル検出手段への入力電圧を前記絶縁レベル検出手段の許容入力電圧範囲内に維持することができる。   According to the present invention, in order to improve the detection accuracy by the insulation level detection means, the voltage between the terminals of the capacitor near the insulation level determination threshold value between the non-ground circuit and the ground potential portion is determined. It is necessary to increase the fluctuation range. Therefore, as will be described in detail later, by providing the Zener diode, the input voltage to the insulation level detection means is increased while increasing the fluctuation range of the voltage across the capacitor with respect to the change in the vicinity of the determination threshold value of the insulation level. It can be maintained within the allowable input voltage range of the insulation level detection means.

また、前記充放電設定回路は、前記コンデンサの前記非接地抵抗接続部側の端子と前記非接地抵抗接続部との間に、前記非接地抵抗接続部から前記コンデンサへの向きを順方向として接続された第1のダイオードと、第6の抵抗と第2のダイオードとを直列に接続して構成され、該第2のダイオードの順方向を前記非接地抵抗接続部から前記接地電位部への向きとして、前記コンデンサと並列に接続された直列回路とを備えたことを特徴とする。   Further, the charge / discharge setting circuit is connected between the terminal on the non-ground resistance connection portion side of the capacitor and the non-ground resistance connection portion with the direction from the non-ground resistance connection portion to the capacitor as a forward direction. The first diode, the sixth resistor, and the second diode are connected in series, and the forward direction of the second diode is directed from the non-ground resistance connection portion to the ground potential portion. And a series circuit connected in parallel with the capacitor.

かかる本発明によれば、前記第1のダイオードの順方向に電圧が印加されたときは、前記非接地抵抗接続部から前記第1のダイオードを介して供給される電流により、前記コンデンサが充電され、このときの充電電流は前記第1の抵抗及び前記第3の抵抗の抵抗値により大きさが変化する。一方、前記第1のダイオードの逆方向に電圧が印加されたときには、前記コンデンサから前記非接地抵抗接続部への電流の流通が前記第1のダイオードにより遮断されるため、前記コンデンサから前記第2のダイオード及び前記第6の抵抗を介して、前記非接地抵抗接続部の電位まで放電電流が流れる。そのため、前記第1の抵抗及び前記第2の抵抗と前記第6の抵抗の抵抗値の設定により、前記コンデンサの充電電流と放電電流を異なるレベルに設定することができる。   According to the present invention, when a voltage is applied in the forward direction of the first diode, the capacitor is charged by the current supplied through the first diode from the non-grounded resistance connection portion. The magnitude of the charging current at this time varies depending on the resistance values of the first resistor and the third resistor. On the other hand, when a voltage is applied in the reverse direction of the first diode, the flow of current from the capacitor to the non-grounded resistance connection portion is interrupted by the first diode, so that the second from the capacitor. A discharge current flows through the diode and the sixth resistor to the potential of the non-ground resistance connection portion. Therefore, the charging current and discharging current of the capacitor can be set to different levels by setting the resistance values of the first resistor, the second resistor, and the sixth resistor.

また、アノード側を前記接地電位部側として前記コンデンサと並列に接続され、前記コンデンサの端子間電圧を前記絶縁レベル検出手段の許容入力範囲内に維持するツェナーダイオードを備えたことを特徴とする。   In addition, a Zener diode is provided which is connected in parallel with the capacitor with the anode side as the ground potential portion side, and maintains a voltage between terminals of the capacitor within an allowable input range of the insulation level detection means.

かかる本発明によれば、前記絶縁レベル検出手段による検出精度を向上させるためには、前記非接地回路と前記接地電位部との間の絶縁レベルの判定閾値付近での前記コンデンサの端子間電圧の変動幅を大きくする必要がある。そこで、詳細は後述するが、前記ツェナーダイオードを備えることによって、絶縁レベルの判定閾値付近での変化に対する前記コンデンサの端子間電圧の変動幅を大きくしつつ、前記絶縁レベル検出手段への入力電圧を前記絶縁レベル検出手段の許容入力電圧範囲内に維持することができる。   According to the present invention, in order to improve the detection accuracy by the insulation level detection means, the voltage between the terminals of the capacitor near the insulation level determination threshold value between the non-ground circuit and the ground potential portion is determined. It is necessary to increase the fluctuation range. Therefore, as will be described in detail later, by providing the Zener diode, the input voltage to the insulation level detection means is increased while increasing the fluctuation range of the voltage across the capacitor with respect to the change in the vicinity of the determination threshold value of the insulation level. It can be maintained within the allowable input voltage range of the insulation level detection means.

また、前記充放電設定回路は、前記非接地抵抗接続部から前記コンデンサへの充電電流を、前記コンデンサから前記非接地抵抗接続部への放電電流よりも大きく設定し、前記絶縁レベル検出手段は、前記コンデンサの端子間電圧が、第1の所定電圧以上になったときに、前記負側配線と前記接地電位部間、又は前記インバータと電気負荷との接続部と前記接地電位部間が短絡状態にあると判断することを特徴とする。   Further, the charge / discharge setting circuit sets a charging current from the non-ground resistance connection portion to the capacitor to be larger than a discharge current from the capacitor to the non-ground resistance connection portion, and the insulation level detection means includes: When the voltage between the terminals of the capacitor becomes equal to or higher than a first predetermined voltage, a short circuit is established between the negative wiring and the ground potential portion or between the connection portion of the inverter and the electric load and the ground potential portion. It is characterized by judging that it exists in.

かかる本発明において、前記負側配線と前記接地電位部とが短絡した状態になると、前記非接地抵抗接続部から前記充放電設定回路を介して前記コンデンサに充電電流が流れ、前記コンデンサの端子間電圧が上昇する。また、前記インバータと電気負荷との接続部が前記接地電位部に短絡した状態になったときにも、前記コンデンサの充電電流が放電電流よりも大きく設定されているため、前記コンデンサの端子間電圧が、前記負側配線と前記接地電位部とが短絡した状態と同じレベルまで上昇する。そのため、前記絶縁レベル検出手段は、前記コンデンサの端子間電圧が前記第1の所定電圧以上となったときに、前記負側配線と前記接地電位部間又は前記インバータと電気負荷との接続部と前記接地電位部間が短絡状態にあると判断することができる。   In the present invention, when the negative wiring and the ground potential portion are short-circuited, a charging current flows from the non-ground resistance connection portion to the capacitor via the charge / discharge setting circuit, and between the terminals of the capacitor. The voltage rises. Further, even when the connection portion between the inverter and the electric load is short-circuited to the ground potential portion, the charging current of the capacitor is set to be larger than the discharging current. However, it rises to the same level as the state where the negative wiring and the ground potential portion are short-circuited. Therefore, when the voltage between the terminals of the capacitor becomes equal to or higher than the first predetermined voltage, the insulation level detection means is connected between the negative wiring and the ground potential part or a connection part between the inverter and the electric load. It can be determined that the ground potential portions are short-circuited.

また、前記充放電設定回路は、前記コンデンサから前記非接地抵抗接続部への放電電流を、前記非接地抵抗接続部から前記コンデンサへの充電電流よりも大きく設定し、前記絶縁レベル検出手段は、前記コンデンサの端子間電圧が、第2の所定電圧以下になったときに、前記正側配線と前記接地電位部間、又は前記インバータと電気負荷との接続部と前記接地電位部間が短絡状態にあると判断することを特徴とする。   Further, the charge / discharge setting circuit sets a discharge current from the capacitor to the non-ground resistance connection portion larger than a charge current from the non-ground resistance connection portion to the capacitor, and the insulation level detection means includes: When the voltage between the terminals of the capacitor becomes equal to or lower than a second predetermined voltage, a short circuit is established between the positive wiring and the ground potential portion or between the connection portion of the inverter and the electric load and the ground potential portion. It is characterized by judging that it exists in.

かかる本発明において、前記正側配線と前記接地電位部とが短絡した状態になると、前記コンデンサから前記充放電設定回路を介して前記非接地抵抗接続部の電位まで放電電流が流れ、前記コンデンサの端子間電圧が低下する。また、前記インバータと電気負荷との接続部が前記接地電位部に短絡した状態になったときにも、前記コンデンサの放電電流が充電電流よりも大きく設定されているため、前記コンデンサの端子間電圧が、前記正側配線と前記接地電位部とが短絡した状態と同じレベルまで低下する。そのため、前記絶縁レベル検出手段は、前記コンデンサの端子間電圧が前記第2の所定電圧以下となったときに、前記正側配線と前記接地電位部間又は前記インバータと電気負荷との接続部と前記接地電位部間が短絡状態にあると判断することができる。   In the present invention, when the positive-side wiring and the ground potential portion are short-circuited, a discharge current flows from the capacitor to the potential of the non-ground resistance connection portion via the charge / discharge setting circuit. Voltage between terminals decreases. In addition, even when the connection portion of the inverter and the electric load is short-circuited to the ground potential portion, the discharge current of the capacitor is set to be larger than the charging current. However, it drops to the same level as in the state where the positive wiring and the ground potential portion are short-circuited. Therefore, when the voltage between the terminals of the capacitor becomes equal to or lower than the second predetermined voltage, the insulation level detection means is connected between the positive wiring and the ground potential portion or a connection portion between the inverter and the electric load. It can be determined that the ground potential portions are short-circuited.

本発明の実施形態について、図1〜図10を参照して説明する。   An embodiment of the present invention will be described with reference to FIGS.

先ず、本発明の前提となる非接地回路の絶縁性検出装置の基本的な構成について、図1〜図5を参照して説明する。   First, a basic configuration of an insulation detecting device for a non-grounded circuit which is a premise of the present invention will be described with reference to FIGS.

図1に示した非接地回路の絶縁性検出装置20(以下、単に絶縁性検出装置20という)は、非接地回路10と車両の接地電位部BEとの間の絶縁レベルを検出するものである。非接地回路10は、燃料電池スタック等の高電圧VM(例えば数百V)を出力する直流電源12と、直流電源12とモータ40間に接続されて直流電源12から出力される電圧VMを正側のトランジスタQ11,Q21,Q31(本発明のスイッチング素子に相当する)及び負側のトランジスタQ12,Q22,Q32(本発明のスイッチング素子に相当する)をスイッチングすることにより、モータ40に3相(U相,V相,W相)の駆動電圧を出力するインバータ11とを有して、接地電位部BEから絶縁して配置されている。なお、絶縁性検出装置20は、車両のECU(Electronic Control Unit)の一部として構成されている。 The non-grounded circuit insulation detection device 20 shown in FIG. 1 (hereinafter simply referred to as insulation detection device 20) detects the insulation level between the non-ground circuit 10 and the vehicle ground potential portion BE. . The non-ground circuit 10 is connected between the DC power source 12 that outputs a high voltage VM (for example, several hundreds V) such as a fuel cell stack, and the voltage VM that is connected between the DC power source 12 and the motor 40 and output from the DC power source 12. By switching the side transistors Q 11 , Q 21 , Q 31 (corresponding to the switching element of the present invention) and the negative side transistors Q 12 , Q 22 , Q 32 (corresponding to the switching element of the present invention), The motor 40 includes an inverter 11 that outputs three-phase (U-phase, V-phase, and W-phase) drive voltages, and is arranged insulated from the ground potential portion BE. The insulation detection device 20 is configured as a part of an ECU (Electronic Control Unit) of the vehicle.

そして、絶縁性検出装置20は、オペアンプ26と、直流電源12の正極と接続された正側配線(図中POGと接続された配線)とオペアンプ26との間に接続された第1の抵抗21と、直流電源12の負極と接続された負側配線(図中NEGと接続された配線)とオペアンプ26との間に接続された第2の抵抗22と、第1の抵抗21と第2の抵抗22との間に接続された第3の抵抗23、第2の抵抗22と第3の抵抗23の接続部(本発明の第2抵抗接続部に相当する)を接地電位部BEと接続する接地配線と、第3の抵抗23と並列に接続された平滑用コンデンサ25と、オペアンプ26の出力端子と接続されたマイクロコンピュータ30とにより構成されている。   The insulation detection device 20 includes an operational amplifier 26, a first resistor 21 connected between the operational amplifier 26 and a positive-side wiring (wiring connected to POG in the drawing) connected to the positive electrode of the DC power supply 12. The second resistor 22 connected between the negative line connected to the negative electrode of the DC power supply 12 (the line connected to NEG in the figure) and the operational amplifier 26, the first resistor 21 and the second resistor The third resistor 23 connected between the resistor 22 and the connecting portion of the second resistor 22 and the third resistor 23 (corresponding to the second resistor connecting portion of the present invention) is connected to the ground potential portion BE. It is composed of a ground wiring, a smoothing capacitor 25 connected in parallel with the third resistor 23, and a microcomputer 30 connected to the output terminal of the operational amplifier 26.

マイクロコンピュータ30は、所定の制御用プログラムを実行することにより、非接地回路10と接地電位部BE間の絶縁レベルを検出する絶縁レベル検出手段31として機能する。なお、マイクロコンピュータ30とオペアンプ26は、直流電源12とは別に設けられた出力電圧がVMよりも低いVccである直流電源(図示しない)からの出力電力によって作動する。 The microcomputer 30 functions as an insulation level detection means 31 that detects an insulation level between the non-ground circuit 10 and the ground potential portion BE by executing a predetermined control program. Incidentally, the microcomputer 30 and the operational amplifier 26 is operated by the output power from the DC power supply output voltage is provided separately from the DC power source 12 is lower V cc than VM (not shown).

ここで、第1の抵抗21の抵抗値R1と、第2の抵抗22の抵抗値R2は、非接地回路10の接地電位部BEに対する絶縁抵抗の基準値(例えば、500Ω/V以上)以上の絶縁レベルを確保するために、MΩレベルに設定されている。ここで、非接地回路10と接地電位部BE間の地絡(非接地回路と車両の接地電位部間が短絡して、非接地回路と車両の接地電位部間の抵抗が0Ω近くまで低下した状態)が生じていないときは、第3の抵抗23の端子間電圧Voutは、以下の式(1)により近似される。 Here, the resistance value R1 of the first resistor 21 and the resistance value R2 of the second resistor 22 are not less than a reference value (for example, 500 Ω / V or more) of the insulation resistance with respect to the ground potential portion BE of the non-ground circuit 10. In order to ensure the insulation level, the MΩ level is set. Here, the ground fault between the non-ground circuit 10 and the ground potential portion BE (the short circuit between the non-ground circuit and the vehicle ground potential portion causes the resistance between the non-ground circuit and the vehicle ground potential portion to drop to near 0Ω. When the state does not occur, the inter-terminal voltage Vout of the third resistor 23 is approximated by the following equation (1).

但し、Vout:第3の抵抗23の端子間電圧、R1:第1の抵抗21の抵抗値、R2:第2の抵抗22の抵抗値、R3:第3の抵抗23の抵抗値、VM:直流電源12の出力電圧。 Where V out is the voltage across the third resistor 23, R 1 is the resistance value of the first resistor 21, R 2 is the resistance value of the second resistor 22, R 3 is the resistance value of the third resistor 23, and VM is The output voltage of the DC power supply 12.

そして、オペアンプ26への入力電圧Voutは、後述する負側配線の地絡を生じたときに最大となり、このときのVoutは、以下の式(2)により近似される。 The input voltage Vout to the operational amplifier 26 becomes maximum when a ground fault in a negative side wiring described later occurs, and Vout at this time is approximated by the following equation (2).

そのため、上記式(2)によるVoutが、オペアンプ26の許容入力電圧範囲の上限であるVccを超えないように、第1の抵抗21の抵抗値R1と第3の抵抗23の抵抗値R3が設定されている。そして、絶縁レベル検出手段31は、オペアンプ26から出力されるVoutの増幅出力Vrefを入力して、Voutのレベルを認識する。 Therefore, the resistance value R1 of the first resistor 21 and the resistance value R3 of the third resistor 23 are set so that Vout according to the above equation (2) does not exceed Vcc which is the upper limit of the allowable input voltage range of the operational amplifier 26. Is set. The insulation level detection means 31 receives the amplified output V ref of V out output from the operational amplifier 26 and recognizes the level of V out .

次に、図2を参照して、非接地回路10の負側配線と接地電位部BE間の地絡(以下、負側地絡という)の検出について説明する。図2(a)を参照して、非接地回路10の負側配線と接地電位部BE間が抵抗40により地絡(抵抗40の抵抗値Rt1≪第2の抵抗22の抵抗値R2)した場合、オペアンプ26への入力電圧Voutは、以下の式(3)により近似される。 Next, detection of a ground fault between the negative side wiring of the non-ground circuit 10 and the ground potential part BE (hereinafter referred to as a negative side ground fault) will be described with reference to FIG. Referring to FIG. 2A, a ground fault occurs between the negative wiring of the non-ground circuit 10 and the ground potential portion BE due to the resistor 40 (the resistance value Rt1 of the resistor 40 << the resistance value R2 of the second resistor 22). The input voltage Vout to the operational amplifier 26 is approximated by the following equation (3).

但し、Rt1:非接地回路10の負側配線と接地電位部BE間の抵抗値。   Rt1: A resistance value between the negative side wiring of the non-ground circuit 10 and the ground potential portion BE.

上記式(3)から、非接地回路10の負側配線と接地電位部BE間の抵抗40の抵抗値Rt1が小さくなるに従って、オペアンプ26への入力電圧Voutが高くなることがわかる。そして、Rt1≒0ΩのときはVoutは上記式(2)で示した電圧となる。 From the above equation (3), it can be seen that the input voltage Vout to the operational amplifier 26 increases as the resistance value Rt1 of the resistor 40 between the negative side wiring of the non-ground circuit 10 and the ground potential portion BE decreases. When Rt1≈0Ω, Vout is the voltage expressed by the above equation (2).

図2(b)は、非接地回路10の負側配線と接地電位部BE間の抵抗40の抵抗値Rt1と、オペアンプ26への入力電圧Voutとの関係を、抵抗値Rt1を横軸とし、入力電圧Voutを縦軸として示した近似グラフである。絶縁レベル検出手段31は、図2(b)に示したように、オペアンプ26への入力電圧Voutが、非接地回路10と接地電位部BE間の絶縁抵抗の基準値Rth_1に対応した電圧Vth_1(本発明の第1の所定電圧に相当する)以上になったときに、非接地回路10の負側配線と接地電位部BE間の地絡が生じていると判断する。なお、図2(b)のVtypは、非接地回路10と接地電位部BE間の地絡が生じていない場合における非接地回路10と接地電位部BE間の抵抗値の典型値である。 FIG. 2B shows the relationship between the resistance value Rt1 of the resistor 40 between the negative side wiring of the non-ground circuit 10 and the ground potential portion BE and the input voltage Vout to the operational amplifier 26, with the resistance value Rt1 as the horizontal axis. FIG. 6 is an approximate graph showing the input voltage V out as a vertical axis. As shown in FIG. 2B, the insulation level detection means 31 is such that the input voltage Vout to the operational amplifier 26 is a voltage Vth_1 corresponding to the reference value Rth_1 of the insulation resistance between the non-ground circuit 10 and the ground potential portion BE. When the voltage becomes equal to or higher (corresponding to the first predetermined voltage of the present invention), it is determined that a ground fault has occurred between the negative wiring of the non-ground circuit 10 and the ground potential portion BE. Note that V typ in FIG. 2B is a typical value of the resistance value between the non-ground circuit 10 and the ground potential portion BE when no ground fault occurs between the non-ground circuit 10 and the ground potential portion BE.

次に、図3を参照して、非接地回路10の正側配線と接地電位部BE間の地絡(以下、正側地絡という)の検出について説明する。図3(a)を参照して、非接地回路10の正側配線と接地電位部BE間が抵抗41により地絡(抵抗41の抵抗値Rt2≪第1の抵抗21の抵抗値R1)した場合、第3の抵抗23の端子間電圧入力電圧Voutは、以下の式(4)により表される。 Next, detection of a ground fault between the positive wiring of the non-ground circuit 10 and the ground potential part BE (hereinafter referred to as a positive ground fault) will be described with reference to FIG. Referring to FIG. 3A, a ground fault occurs between the positive wiring of the non-ground circuit 10 and the ground potential portion BE due to the resistor 41 (resistance value Rt2 of the resistor 41 << resistance value R1 of the first resistor 21). The inter-terminal voltage input voltage V out of the third resistor 23 is expressed by the following equation (4).

但し、Rt2:非接地回路10の正側配線と接地電位部BE間の抵抗値。   Rt2: resistance value between the positive side wiring of the non-ground circuit 10 and the ground potential portion BE.

上記式(4)から、非接地回路10の正側配線と接地電位部BE間の抵抗41の抵抗値Rt2が小さくなるに従って、オペアンプ26への入力電圧Voutが低くなることがわかる。そして、抵抗値Rt2≒0Ωのときに、Voutは0Vとなる。 From the above equation (4), it can be seen that the input voltage Vout to the operational amplifier 26 decreases as the resistance value Rt2 of the resistor 41 between the positive side wiring of the non-ground circuit 10 and the ground potential portion BE decreases. When the resistance value Rt2≈0Ω, Vout becomes 0V.

図3(b)は、非接地回路10の正側配線と接地電位部BE間の抵抗41の抵抗値Rt2と、第3の抵抗23の端子間電圧Voutとの関係を、Rt2を横軸とし、Voutを縦軸として示した近似グラフである。絶縁レベル検出手段31は、図3(b)に示したように、第3の抵抗23の端子間電圧Voutが、非接地回路10と接地電位部BE間の絶縁抵抗の基準値Rth_2に対応した電圧Vth_2(本発明の第2の所定電圧に相当する)以下になったときに、非接地回路10の正側配線と接地電位部BE間の地絡が生じていると判断する。 FIG. 3B shows the relationship between the resistance value Rt2 of the resistor 41 between the positive wiring of the non-ground circuit 10 and the ground potential portion BE and the voltage Vout between the terminals of the third resistor 23, and Rt2 is plotted on the horizontal axis. And V out is an approximate graph showing the vertical axis. As shown in FIG. 3B, the insulation level detection means 31 is such that the inter-terminal voltage Vout of the third resistor 23 corresponds to the reference value Rth_2 of the insulation resistance between the non-ground circuit 10 and the ground potential portion BE. It is determined that a ground fault has occurred between the positive wiring of the non-ground circuit 10 and the ground potential portion BE when the voltage becomes equal to or less than the voltage Vth_2 (corresponding to the second predetermined voltage of the present invention).

次に、図4及び図5を参照して、非接地回路10のインバータ11とモータ40間の接続部と接地電位部BEと間の地絡(以下、3相地絡という)の検出について説明する。図4は、インバータ11とモータ40のU相間の配線が抵抗42を介して接地電位部BEに地絡した状態を示している。   Next, with reference to FIGS. 4 and 5, detection of a ground fault (hereinafter referred to as a three-phase ground fault) between the connection part between the inverter 11 and the motor 40 of the non-ground circuit 10 and the ground potential part BE will be described. To do. FIG. 4 shows a state in which the wiring between the U phase of the inverter 11 and the motor 40 is grounded to the ground potential portion BE through the resistor 42.

図4において、U相については、インバータ11のトランジスタQ11がON(導通状態)であってトランジスタQ12がOFF(遮断状態)である正極導通状態のときに、非接地回路10の正側配線がトランジスタQ11を介して接地電位部BEに地絡する。また、インバータ11のトランジスタQ12がONであってトランジスタQ11がOFFである負極導通状態のときに、非接地回路10の負側配線がトランジスタQ12を介して接地電位部BEに地絡する。同様にして、V相についてはトランジスタQ21,Q22により、また、W相についてはトランジスタQ31,Q32により、正極導通状態と負極導通状態とが切替えられて、負側配線又は正側配線が接地電位部BEに地絡する。 In FIG. 4, for the U phase, when the transistor Q 11 of the inverter 11 is ON (conducting state) and the transistor Q 12 is OFF (cut-off state) and is in the positive conducting state, the positive side wiring of the non-ground circuit 10 There is ground to ground potential portion bE through the transistor Q 11. The transistor Q 11 transistors Q 12 is a ON of the inverter 11 is at the negative electrode conductive state is OFF, the negative side wiring ungrounded circuit 10 is a ground fault to the ground potential portion BE through the transistor Q 12 . Similarly, the positive phase conduction state and the negative polarity conduction state are switched by the transistors Q 21 and Q 22 for the V phase and by the transistors Q 31 and Q 32 for the W phase, so that the negative side wiring or the positive side wiring is switched. Is grounded to the ground potential portion BE.

ここで、図5は、横軸を共通の時間軸(t)として、インバータ11とモータ40のU相間の配線が抵抗42を介して接地電位部BEに地絡した状態で、トランジスタQ11,Q12をスイッチングして正極導通状態と負極導通状態とを切替えたときの、第3の抵抗42の端子間電圧Voutの変化を示したものである。 Here, FIG. 5, the horizontal axis common time axis as (t), in a state where the wiring between the U-phase of the inverter 11 and the motor 40 is grounded to the ground potential portion BE via a resistor 42, a transistor Q 11, the Q 12 and switching when switching the positive electrode conducting state and the negative conducting state, shows the change in the terminal voltage V out of the third resistor 42.

図5の(a)はトランジスタQ11の状態(ON/OFF)を示し、図5の(b)はトランジスタQ12の状態(ON/OFF)を示している。図5では、t10〜t11,t12〜t13,t14〜t15,t16〜t17,t18〜t19,t20〜t21,t22〜t23の各期間が正極導通状態(トランジスタQ11がON,トランジスタQ12がOFF)となっている。また、t11〜t12,t13〜t14,t15〜t16,t17〜t18,t19〜t20,t21〜t22の各期間が負極導通状態(トランジスタQ12がON,トランジスタQ22がOFF)となっている。 (A) of FIG. 5 shows the state of the transistor Q 11 (ON / OFF), (b) in FIG. 5 shows the state of the transistor Q 12 (ON / OFF). In Figure 5, the period of t 10 ~t 11, t 12 ~t 13, t 14 ~t 15, t 16 ~t 17, t 18 ~t 19, t 20 ~t 21, t 22 ~t 23 is positive It is in a conducting state (transistor Q 11 is ON and transistor Q 12 is OFF). In addition, each period of t 11 to t 12 , t 13 to t 14 , t 15 to t 16 , t 17 to t 18 , t 19 to t 20 , t 21 to t 22 is in a negative polarity conducting state (transistor Q 12 is ON) , has become the transistor Q 22 is OFF) a.

また、図5の(c)は、R1=R2(≫R3)、抵抗43の抵抗値Rt3≒0Ωであって、平滑用コンデンサ25の容量C1が0pFであるときの第3の抵抗23の端子間電圧Voutの変化を示したものである。さらに、図5(d)は、R1=R2(≫R3)、抵抗4の抵抗値Rt3≒0Ωであって、平滑用コンデンサ25の容量C1が大(モータ40に対する駆動電圧を平滑化するために、該駆動電圧の周波数に応じて設定される)であるときの第3の抵抗23の端子間電圧Voutの変化を示したものである。 5C shows the terminal of the third resistor 23 when R1 = R2 (>> R3), the resistance value Rt3≈0Ω of the resistor 43, and the capacitance C1 of the smoothing capacitor 25 is 0 pF. It shows the change in the inter-voltage Vout . Further, FIG. 5 (d) is, R1 = R2 (»R3), resistor 4 a second resistance value Rt3 ≒ 0 .OMEGA, since the capacitance C1 of the smoothing capacitor 25 is for smoothing the driving voltage for large (motor 40 The change in the voltage Vout between the terminals of the third resistor 23 when the frequency is set in accordance with the frequency of the drive voltage is shown.

この場合、平滑用コンデンサ25の容量C1が0pFであるときは、正極導通状態であるときに非接地回路10の正側配線がトランジスタQ11を介して接地電位部BEに地絡し、第3の抵抗23の端子間電圧Voutが0Vとなる。また、負極導通状態であるときに、非接地回路10の負側配線がトランジスタQ12を介して接地電位部BEに地絡し、第3の抵抗23の端子間電圧Voutが、地絡が生じていないときの電圧Vtypの2倍(Vtpy×2)となる。 In this case, when the capacitance C1 of the smoothing capacitor 25 is 0pF is to positive-side wiring is a ground fault to the ground potential portion BE through the transistor Q 11 of the non-grounding circuit 10 when a positive conductive, third The voltage V out between the terminals of the resistor 23 becomes 0V. Further, when a negative electrode conductive state, the negative side wiring ungrounded circuit 10 is grounded to the ground potential portion BE through the transistor Q 12, the terminal voltage V out of the third resistor 23, a ground fault It becomes twice the voltage V typ when it does not occur (V tpy × 2).

そして、平滑用コンデンサ25の容量C1を増大させると、第3の抵抗23の端子間電圧VoutがVtyp付近に平滑化されて、インバータ11とモータ40間の配線と接地電位部BEとの間で地絡が生じていない場合と同じ状況となる。そのため、絶縁レベル検出手段31は、インバータ11とモータ40間の配線と接地電位部BEとの間で地絡が生じていることを検知することができない。 When the capacitance C1 of the smoothing capacitor 25 is increased, the inter-terminal voltage Vout of the third resistor 23 is smoothed near V typ , and the wiring between the inverter 11 and the motor 40 and the ground potential portion BE are reduced. The situation is the same as when no ground fault has occurred. Therefore, the insulation level detection means 31 cannot detect that a ground fault has occurred between the wiring between the inverter 11 and the motor 40 and the ground potential portion BE.

そこで、第1の抵抗21の抵抗値R1と第2の抵抗22の抵抗値R2を異なる値に設定することにより、インバータ11とモータ40間の配線と接地電位部BEとの間で地絡が生じていることを、該地絡が生じていないときと区別して検出することができる。   Therefore, by setting the resistance value R1 of the first resistor 21 and the resistance value R2 of the second resistor 22 to different values, a ground fault occurs between the wiring between the inverter 11 and the motor 40 and the ground potential portion BE. The occurrence can be detected separately from the case where the ground fault does not occur.

図5(e)は、第2の抵抗22の抵抗値R2が第1の抵抗21の抵抗値R1の3倍(R2=3×R1)、抵抗43の抵抗値Rt3≒0Ωであって、平滑用コンデンサ25の容量C1が0pFであるときの第3の抵抗23の端子間電圧Voutの変化を示したものである。また、図5(f)は、第2の抵抗22の抵抗値R2が第1の抵抗21の抵抗値R1の3倍(R2=3×R1)、抵抗43の抵抗値Rt3≒0Ωであって、平滑用コンデンサ25の容量C1が大であるときの第3の抵抗23の端子間電圧Voutの変化を示したものである。 FIG. 5E shows that the resistance value R2 of the second resistor 22 is three times the resistance value R1 of the first resistor 21 (R2 = 3 × R1), the resistance value Rt3≈0Ω of the resistor 43, and is smooth. The change of the voltage Vout between the terminals of the 3rd resistance 23 when the capacity | capacitance C1 of the capacitor | condenser 25 is 0pF is shown. FIG. 5F shows that the resistance value R2 of the second resistor 22 is three times the resistance value R1 of the first resistor 21 (R2 = 3 × R1), and the resistance value Rt3≈0Ω of the resistor 43. The change of the inter-terminal voltage Vout of the third resistor 23 when the capacitance C1 of the smoothing capacitor 25 is large is shown.

図5(e)のコンデンサ25の容量が0pFであるときは、正極導通状態であるときに、非接地回路10の正側配線がトランジスタQ11を介して接地電位部BEに地絡し、第3の抵抗23の端子間電圧Voutが0Vとなる。一方、負極導通状態であるときに、非接地回路10の負側配線がトランジスタQ12を介して接地電位部BEに地絡し、第3の抵抗23の端子間電圧Voutが、地絡が生じていない定常時の電圧(Vtyp=R3/(R3+4R1)≒R3/4R1)の4倍(4×Vtyp)となる。 When the capacitance of the capacitor 25 shown in FIG. 5 (e) is 0pF, when a positive electrode conductive state, the positive-side wiring ungrounded circuit 10 is grounded to the ground potential portion BE through the transistor Q 11, the 3, the voltage V out between the terminals of the resistor 23 becomes 0V. On the other hand, when it is negative conductive state, the negative side wiring ungrounded circuit 10 is grounded to the ground potential portion BE through the transistor Q 12, the terminal voltage V out of the third resistor 23, a ground fault It is four times (4 × V typ ) of the steady-state voltage (V typ = R3 / (R3 + 4R1) ≈R3 / 4R1) that has not occurred.

そして、平滑用コンデンサ25の容量C1を増大させると、第3の抵抗23の端子間電圧Voutが定常時の電圧Vtypの2倍(2×Vtyp)となる。そのため、絶縁レベル検出手段31は、第3の抵抗23の端子間電圧Voutが、定常時の電圧Vtypの2倍程度まで上昇したときに、3相地絡が生じたと判断することができる。 When the capacitance C1 of the smoothing capacitor 25 is increased, the inter-terminal voltage V out of the third resistor 23 becomes twice the steady-state voltage V typ (2 × V typ ). Therefore, the insulation level detection means 31 can determine that a three-phase ground fault has occurred when the inter-terminal voltage V out of the third resistor 23 has increased to about twice the steady-state voltage V typ. .

次に、図6(a)は、図1に示した非接地回路10と接地電位部BE間の抵抗値(絶縁レベル)Rtと、第3の抵抗23の端子間電圧Voutの変化を示したものであり、縦軸がVout(V)に設定され、横軸が絶縁レベルRt(kΩ)に設定されている。 Next, FIG. 6A shows changes in the resistance value (insulation level) Rt between the non-ground circuit 10 and the ground potential portion BE shown in FIG. 1 and the voltage V out between the terminals of the third resistor 23. The vertical axis is set to V out (V), and the horizontal axis is set to the insulation level Rt (kΩ).

図6(a)において、a1は負側配線と接地電位部BE間の抵抗値が低下(負側地絡)したときの第3の抵抗23の端子間電圧Voutの変化を示している。また、b1は正側配線と接地電位部BE間の抵抗値が低下したとき(正側地絡)の第3の抵抗23の端子間電圧Voutの変化を示している。また、c1はインバータ11とモータ40との接続部と接地電位部BE間の抵抗値が低下したとき(3相地絡)の第3の抵抗23の端子間電圧Voutの変化を示している。 In FIG. 6A, a1 indicates a change in the voltage Vout between the terminals of the third resistor 23 when the resistance value between the negative side wiring and the ground potential portion BE decreases (negative side ground fault). Further, b1 represents a change in the voltage Vout between the terminals of the third resistor 23 when the resistance value between the positive wiring and the ground potential portion BE is lowered (positive ground fault). Further, c1 indicates a change in the voltage Vout between the terminals of the third resistor 23 when the resistance value between the connection portion of the inverter 11 and the motor 40 and the ground potential portion BE is lowered (three-phase ground fault). .

そして、絶縁レベル検出手段31は、非接地回路10と接地電位部BE間の抵抗値Rtが500kΩ以上であるときは非接地回路10と接地電位部BE間の地絡が生じていない(正常状態)にあると判定し、該抵抗値Rtが150kΩ以下となったときに地絡が生じていると判定する。   The insulation level detecting means 31 does not cause a ground fault between the non-ground circuit 10 and the ground potential portion BE when the resistance value Rt between the non-ground circuit 10 and the ground potential portion BE is 500 kΩ or more (normal state) ), And it is determined that a ground fault has occurred when the resistance value Rt is 150 kΩ or less.

そして、図6(a)においては、a1(負側地絡)とc1(3相地絡)では共にRtが低下するに従ってVoutが高くなっている。そのため、a1とc1については、c1の3相地絡を基準として、非接地回路10の短絡を判定する必要がある。しかし、このように3相短絡用の判定閾値Thp1(≒2V)を基準として短絡を判定したときには、負側配線と接地電位部BE間の抵抗値が1000kΩ以下になったときに、短絡が生じていると判定される。そのため、実際には非接地回路10の短絡が生じていないにも拘わらず、非接地回路10の短絡が生じていると判定されることになり、非接地回路10の短絡を精度良く検出することができないという不都合がある。 In FIG. 6A, Vout increases as Rt decreases in both a1 (negative ground fault) and c1 (three-phase ground fault). Therefore, for a1 and c1, it is necessary to determine a short circuit of the non-grounded circuit 10 with reference to the three-phase ground fault of c1. However, when the short-circuit is determined based on the determination threshold Thp1 (≈2V) for the three-phase short circuit as described above, the short-circuit occurs when the resistance value between the negative wiring and the ground potential portion BE is 1000 kΩ or less. It is determined that Therefore, it is determined that the short circuit of the non-ground circuit 10 has occurred even though the short circuit of the non-ground circuit 10 has not actually occurred, and the short circuit of the non-ground circuit 10 is detected with high accuracy. There is an inconvenience that cannot be done.

そこで、図7を参照して、本実施の形態の非接地回路の絶縁性検出装置50(以下、単に絶縁性検出装置50という。本発明の非接地回路の絶縁性検出装置に相当する)は、上記不都合を解消して非接地回路10の地絡を精度良く検出するための構成を備えている。以下、絶縁性検出装置50について説明する。なお、上述した図1の非接地回路10及び絶縁性検出装置20と同様の構成については、同一の符号を付して説明を省略する。   Therefore, referring to FIG. 7, the non-grounded circuit insulation detection device 50 of the present embodiment (hereinafter simply referred to as insulation detection device 50. This corresponds to the non-grounded circuit insulation detection device of the present invention). The above-described inconvenience is eliminated, and the ground fault of the non-ground circuit 10 is accurately detected. Hereinafter, the insulation detection device 50 will be described. In addition, about the structure similar to the non-grounding circuit 10 and the insulation detection apparatus 20 of FIG. 1 mentioned above, the same code | symbol is attached | subjected and description is abbreviate | omitted.

絶縁性検出装置50は、第1の抵抗21と第3の抵抗23との接続部P1(本発明の第1抵抗接続部、及び非接地抵抗接続部に相当する)に入力部が接続されたオペアンプ52と、オペアンプ52の出力部と接続された充放電設定回路60と、充放電設定回路60と接地電位部BEとの間に接続されたコンデンサ53と、コンデンサ53の端子間電圧Vcを検出する電圧検出回路54と、電圧検出回路54と接続されて電圧検出信号が入力されるマイクロコンピュータ70とを備えている。   The insulation detecting device 50 has an input portion connected to a connecting portion P1 (corresponding to the first resistance connecting portion and the non-grounded resistance connecting portion of the present invention) between the first resistor 21 and the third resistor 23. The operational amplifier 52, the charge / discharge setting circuit 60 connected to the output part of the operational amplifier 52, the capacitor 53 connected between the charge / discharge setting circuit 60 and the ground potential part BE, and the inter-terminal voltage Vc of the capacitor 53 are detected. And a microcomputer 70 that is connected to the voltage detection circuit 54 and receives a voltage detection signal.

オペアンプ52はボルテージフォロワアンプを構成し、第3の抵抗23の端子間電圧Vr3(P1と接地電位部BEとの間の電圧)を充放電設定回路60に出力する。充放電設定回路60は、第4の抵抗61及びダイオード62からなる直列回路と、第5の抵抗63とを並列に接続して構成されている。 The operational amplifier 52 constitutes a voltage follower amplifier, and outputs the voltage V r3 between the terminals of the third resistor 23 (voltage between P1 and the ground potential portion BE) to the charge / discharge setting circuit 60. The charge / discharge setting circuit 60 is configured by connecting a series circuit including a fourth resistor 61 and a diode 62 and a fifth resistor 63 in parallel.

ここで、非接地回路10が3相地絡状態となると、トランジスタQ11,Q12,Q21,Q22,Q31,Q32をスイッチングしてインバータ11からモータ40に駆動電圧を出力するときに、上述したように正極導通状態(トランジスタQ11がONでトランジスタQ12がOFF等)と、負極導通状態(トランジスタQ12がONでトランジスタQ11がOFF等)とが交互に切り換わる。 Here, when the non-grounded circuit 10 is in a three-phase ground fault state, the transistors Q 11 , Q 12 , Q 21 , Q 22 , Q 31 , Q 32 are switched to output a drive voltage from the inverter 11 to the motor 40. In addition, as described above, the positive electrode conductive state (transistor Q 11 is ON and the transistor Q 12 is OFF, etc.) and the negative electrode conductive state (transistor Q 12 is ON and the transistor Q 11 is OFF, etc.) are alternately switched.

そして、負極導通状態においては、P1と接地電位部BE間の電圧がVns(≒VM×R3/(R1+R3))となり、第4の抵抗61と第5の抵抗63を経由して、P1からコンデンサ53に向かって充電電流が流れる。一方、正極導通状態においては、P1と接地電位部BE間の電圧がVps(≒0)となり、第5の抵抗63を経由して、コンデンサ53からP1に向かって放電電流が流れる。 In the negative conducting state, the voltage between P1 and the ground potential portion BE becomes V ns (≈VM × R3 / (R1 + R3)), and from P1 via the fourth resistor 61 and the fifth resistor 63 A charging current flows toward the capacitor 53. On the other hand, in the positive conducting state, the voltage between P1 and the ground potential portion BE becomes V ps (≈0), and a discharge current flows from the capacitor 53 toward P1 via the fifth resistor 63.

そして、充放電設定回路60においては、負極導通状態におけるP1からコンデンサ53への充電電流が、正極導通状態におけるコンデンサ53からP1への放電電流よりも大きくなるように、第5の抵抗63の抵抗値R5が第4の抵抗61の抵抗値R4よりも高く設定されている。   In the charge / discharge setting circuit 60, the resistance of the fifth resistor 63 is set so that the charging current from P1 to the capacitor 53 in the negative conducting state is larger than the discharging current from the capacitor 53 to P1 in the positive conducting state. The value R5 is set higher than the resistance value R4 of the fourth resistor 61.

ここで、図8(a)は、充放電設定回路60により、負極導通状態におけるP1からコンデンサ53への充電電流が、正極導通状態におけるコンデンサ53からP1への放電電流よりも大きくなるように設定したときの、第3の抵抗23の端子間電圧Vr3と、コンデンサ53の端子間電圧Vcの変化を、共通の時間軸(t)により示したものである。 8A is set by the charge / discharge setting circuit 60 so that the charging current from P1 to the capacitor 53 in the negative conducting state is larger than the discharging current from the capacitor 53 to P1 in the positive conducting state. The change of the inter-terminal voltage V r3 of the third resistor 23 and the inter-terminal voltage V c of the capacitor 53 at this time is shown by a common time axis (t).

図8(a)においては、t50〜t51,t52〜t53,t54〜t55,t56〜t57,t58〜t59の各期間で負極導通状態となって、VoutがVnsとなっている。また、t51〜t52,t53〜t54,t55〜t56,t57〜t58の各期間で正極導通状態となって、VoutがVpsとなっている。 In FIG. 8 (a), a negative electrode conductive state in each period of t 50 ~t 51, t 52 ~t 53, t 54 ~t 55, t 56 ~t 57, t 58 ~t 59, V out Is V ns . In addition, the positive electrode is in a conductive state in each period of t 51 to t 52 , t 53 to t 54 , t 55 to t 56 , and t 57 to t 58 , and V out becomes V ps .

そして、負極導通状態では、P1からコンデンサ53に充電電流が流れるため、Vcが上昇する。一方、正極導通状態では、コンデンサ53からP1に放電電流が流れるため、Vcが低下する。そして、上述したように、充放電設定回路60により、コンデンサ53の充電電流が放電電流よりも大きくなるように設定されているため、VcがVnsに向かって次第に上昇する。 In the negative electrode conducting state, charging current flows from P1 to the capacitor 53, so that Vc increases. On the other hand, in the positive conducting state, a discharge current flows from the capacitor 53 to P1, so that V c decreases. Then, as described above, the charge and discharge setting circuit 60, since the charging current of the capacitor 53 is set to be larger than the discharge current, V c is increased gradually toward the V ns.

そのため、絶縁レベル検出手段71は、図6(a)を参照して、負側短絡の判定閾値Thp2により3相地絡を検出することができる。そして、これにより、非接地回路10の地絡検出の精度を向上させることができる。   Therefore, the insulation level detection means 71 can detect a three-phase ground fault with the negative side short-circuit determination threshold Thp2 with reference to FIG. And thereby, the precision of the ground fault detection of the non-grounding circuit 10 can be improved.

また、図7に示した構成では、充放電設定回路60により、負極導通状態におけるP1からコンデンサ53への充電電流が、正極導通状態におけるコンデンサ53からP1への放電電流よりも大きくなるように構成したが、逆に、正極導通状態におけるコンデンサ53からP1への放電電流が、負極導通状態におけるP1からコンデンサ53への充電電流よりも大きくなるように構成してもよい。   In the configuration shown in FIG. 7, the charging / discharging setting circuit 60 is configured so that the charging current from P1 to the capacitor 53 in the negative conducting state is larger than the discharging current from the capacitor 53 to P1 in the positive conducting state. However, conversely, the discharge current from the capacitor 53 to P1 in the positive electrode conducting state may be configured to be larger than the charging current from P1 to the capacitor 53 in the negative electrode conducting state.

この場合には、図7のダイオード62の向きを逆(アノードを第4の抵抗61に接続し、カソードをオペアンプ52に接続する)にし、第5の抵抗63の抵抗値R5を第4の抵抗61の抵抗値R4よりも大きくして、正極導通状態におけるコンデンサ53からP1への放電電流が、負極導通状態におけるP1からコンデンサ53への充電電流よりも大きくなるように設定する。   In this case, the direction of the diode 62 in FIG. 7 is reversed (the anode is connected to the fourth resistor 61 and the cathode is connected to the operational amplifier 52), and the resistance value R5 of the fifth resistor 63 is set to the fourth resistor. The discharge current from the capacitor 53 to P1 in the positive conducting state is set to be larger than the charging current from P1 to the capacitor 53 in the negative conducting state.

図8(b)は、このように、正極導通状態におけるコンデンサ53からP1への放電電流が、負極導通状態におけるP1からコンデンサ53への充電電流よりも大きくなるように設定したときの、第3の抵抗23の端子間電圧Voutと、コンデンサ53の端子間電圧Vcを、図8(a)と同様に、共通の時間軸(t)により示したものである。 FIG. 8B shows a third example when the discharge current from the capacitor 53 to P1 in the positive electrode conducting state is set to be larger than the charging current from P1 to the capacitor 53 in the negative electrode conducting state. The terminal voltage Vout of the resistor 23 and the terminal voltage Vc of the capacitor 53 are shown by a common time axis (t) as in FIG. 8A.

図8(b)においては、t60〜t61,t62〜t63,t64〜t65,t66〜t67,t68〜t69の各期間で負極導通状態となって、Vr3がVnsとなっている。また、t61〜t62,t63〜t64,t65〜t66,t67〜t68の各期間で正極導通状態となって、Vr3がVpsとなっている。 In FIG. 8B, the negative electrode conductive state is established in each period of t 60 to t 61 , t 62 to t 63 , t 64 to t 65 , t 66 to t 67 , t 68 to t 69 , and V r3 Is V ns . Further, the positive electrode conduction state is obtained in each period of t 61 to t 62 , t 63 to t 64 , t 65 to t 66 , t 67 to t 68 , and V r3 is V ps .

そして、負極導通状態では、P1からコンデンサ53に充電電流が流れるため、Vcが上昇する。一方、正極導通状態では、コンデンサ53からP1に放電電流が流れるため、Vcが低下する。そして、上述したように、充放電設定回路により、コンデンサ53の放電電流が充電電流よりも大きくなるように設定されているため、VcがV ps に向かって次第に下降する。 In the negative electrode conducting state, charging current flows from P1 to the capacitor 53, so that Vc increases. On the other hand, in the positive conducting state, a discharge current flows from the capacitor 53 to P1, so that V c decreases. As described above, since the discharging current of the capacitor 53 is set to be larger than the charging current by the charging / discharging setting circuit, V c gradually decreases toward V ps .

そのため、絶縁レベル検出手段71は、図6(a)を参照して、正側短絡の判定閾値Thn1により3相地絡を検出することができる。そして、これにより、非接地回路10の地絡検出の精度を向上させることができる。   Therefore, the insulation level detection means 71 can detect a three-phase ground fault by the positive side short-circuit determination threshold Thn1 with reference to FIG. And thereby, the precision of the ground fault detection of the non-grounding circuit 10 can be improved.

また、図7を参照して、第3の抵抗23と並列にツェナーダイオード51を接続することにより、オペアンプ52に許容範囲(BE〜Vcc)を超えた電圧が入力されることを防止しつつ、非接地回路10の地絡の検出精度を向上させることができる。 Further, referring to FIG. 7, by connecting a Zener diode 51 in parallel with the third resistor 23, it is possible to prevent a voltage exceeding the allowable range (BE to V cc ) from being input to the operational amplifier 52. The ground fault detection accuracy of the non-ground circuit 10 can be improved.

図6(b)は、ツェナーダイオード51を接続したことによる効果を示した説明図であり、図6(a)と同様に、縦軸が第3の抵抗23の端子間電圧Voutに設定され、横軸が非接地回路10と接地電位部BE間の抵抗Rtに設定されている。図6(b)において、a2は負側配線と接地電位部BE間の絶縁レベルが低下(負側地絡)したときの第3の抵抗23の端子間電圧Voutの変化を示している。また、b2は正側配線と接地電位部BE間の絶縁レベルが低下したとき(正側地絡)の第3の抵抗23の端子間電圧Voutの変化を示している。 FIG. 6B is an explanatory diagram showing the effect obtained by connecting the Zener diode 51. As in FIG. 6A, the vertical axis is set to the inter-terminal voltage V out of the third resistor 23. The horizontal axis is set to the resistance Rt between the non-ground circuit 10 and the ground potential portion BE. In FIG. 6B, a2 shows a change in the voltage Vout between the terminals of the third resistor 23 when the insulation level between the negative side wiring and the ground potential portion BE is lowered (negative side ground fault). Further, b2 shows a change in the voltage Vout between the terminals of the third resistor 23 when the insulation level between the positive side wiring and the ground potential portion BE is lowered (positive side ground fault).

図6(b)のa2では、ツェナーダイオード51により、正側配線と接地電位部BE間の抵抗Rtが低下して正側地絡の判定閾値(150kΩ)以下になったときの第3の抵抗23の端子間電圧Voutが、ツェナーダイオード51がない場合のdからVcc(≒5V)に抑えられている。そのため、Rtが地絡判定閾値付近にある150kΩ〜500kΩの範囲でのa2の傾きを大きくして、非絶縁回路10の地絡検出の精度を高めることができる。 In a2 of FIG. 6B, the third resistance when the resistance Rt between the positive-side wiring and the ground potential portion BE is lowered by the Zener diode 51 and becomes equal to or less than the determination threshold (150 kΩ) of the positive-side ground fault. The voltage V out between the terminals 23 is suppressed from d to V cc (≈5 V) when the Zener diode 51 is not provided. Therefore, the slope of a2 in the range of 150 kΩ to 500 kΩ where Rt is near the ground fault determination threshold value can be increased, and the accuracy of ground fault detection of the non-insulated circuit 10 can be improved.

次に、図9を参照して、絶縁性検出装置50による正側地絡と負側地絡の検出について説明する。負側配線と接地電位部BE間の抵抗Rt2が低くなると、上述した式(4)により、第3の抵抗23の端子間電圧Voutが上昇する。そして、充放電設定回路60を介してコンデンサ53に充電電流が流れ、コンデンサ53の端子間電圧VcがVoutの上昇分だけ上昇する。そのため、絶縁レベル検出手段71は、Vcが正側地絡の判定閾値以上となったときに、非接地回路10と接地電位部BE間の地絡が生じていると判定することができる。 Next, with reference to FIG. 9, the detection of the positive side ground fault and the negative side ground fault by the insulation detection apparatus 50 is demonstrated. When the resistance Rt2 between the negative side wiring and the ground potential portion BE is lowered, the voltage Vout between the terminals of the third resistor 23 is increased by the above-described equation (4). Then, the charge and discharge setting circuit 60 to the charging current flows into the capacitor 53 through the inter-terminal voltage V c of the capacitor 53 increases by increase in the V out. Therefore, the insulation level detection means 71 can determine that a ground fault has occurred between the non-ground circuit 10 and the ground potential portion BE when V c becomes equal to or greater than the positive-side ground fault determination threshold.

また、正側配線と接地電位部BE間の抵抗Rt1が低くなると、上述した式(4)に示したように、第3の抵抗23の端子間電圧Voutが低下する。そして、コンデンサ53に充電されていた電荷が、充放電設定回路60を介して放電され、コンデンサ53の端子間電圧VcがVoutの低下分だけ低下する。そのため、絶縁レベル検出手段71は、Vcが負側地絡の判定閾値以下となったときに、非接地回路10と接地電位部BE間の地絡が生じていると判定することができる。 Further, when the resistance Rt1 between the positive-side wiring and the ground potential portion BE becomes low, the inter-terminal voltage Vout of the third resistor 23 decreases as shown in the above-described equation (4). Then, electric charge stored in the capacitor 53 is discharged through the discharge setting circuit 60, the inter-terminal voltage V c of the capacitor 53 is lowered by lowering content of V out. Therefore, the insulation level detecting means 71 can determine that a ground fault has occurred between the non-ground circuit 10 and the ground potential portion BE when V c becomes equal to or less than the negative ground fault determination threshold.

なお、本発明の充放電設定回路の構成は、図7に示した充放電回路60に限るものではなく、3相地絡が生じたときの負極導通状態におけるコンデンサ53への充電電流の大きさと、正側導通状態におけるコンデンサ53からの放電電流の大きさと異なるレベルに設定するものであればよく、例えば、図10示した充放電設定回路80を用いてもよい。   The configuration of the charging / discharging setting circuit of the present invention is not limited to the charging / discharging circuit 60 shown in FIG. 7, and the magnitude of the charging current to the capacitor 53 in the negative electrode conducting state when a three-phase ground fault occurs. As long as it is set to a level different from the magnitude of the discharge current from the capacitor 53 in the positive conduction state, for example, the charge / discharge setting circuit 80 shown in FIG. 10 may be used.

図10に示した絶縁性検出装置90は、図7に示した絶縁性検出装置50の充放電設定回路60を充放電設定回路90に置き換えたものである。充放電設定回路90は、第2のダイオード93及び第6の抵抗92からなる直列回路を、コンデンサ53と並列に接続し、第1の抵抗21及び第3の抵抗23の接続箇所P1とコンデンサ53との間に第1のダイオード91を接続して構成されている。   The insulation detection device 90 shown in FIG. 10 is obtained by replacing the charge / discharge setting circuit 60 of the insulation detection device 50 shown in FIG. The charge / discharge setting circuit 90 connects a series circuit including a second diode 93 and a sixth resistor 92 in parallel with the capacitor 53, and connects the connection point P 1 between the first resistor 21 and the third resistor 23 and the capacitor 53. The first diode 91 is connected between the two.

この場合、第1のダイオード91は、P1からコンデンサ53への向きを順方向として接続されており、第2のダイオード93は、コンデンサ53と第1のダイオード91との接続部から接地電位部BEへの向きを順方向として接続されている。また、コンデンサ53と並列にツェナーダイオード85が接続されている。ツェナーダイオード85は、アノードが接地電位部BEに接続されると共に、カソードが第1のダイオード91とコンデンサ53の接続部に接続されており、電圧検出回路54に許容範囲(BE〜Vcc)を越えた電圧が入力されることを防止している。また、ツェナーダイオード85を設けることにより、上述した図9の絶縁性検出装置50と同様に、非接地回路10の地絡の検出精度を向上させることができる。 In this case, the first diode 91 is connected with the direction from P1 to the capacitor 53 as the forward direction, and the second diode 93 is connected to the ground potential portion BE from the connection portion between the capacitor 53 and the first diode 91. Connected as the forward direction. A zener diode 85 is connected in parallel with the capacitor 53. The Zener diode 85 has an anode connected to the ground potential portion BE and a cathode connected to the connection portion of the first diode 91 and the capacitor 53, and allows the voltage detection circuit 54 to provide an allowable range (BE to V cc ). It prevents the voltage exceeding the input. Further, by providing the Zener diode 85, the ground fault detection accuracy of the non-grounded circuit 10 can be improved in the same manner as the insulating detection device 50 of FIG. 9 described above.

充放電設定回路90においては、3相地絡が生じたときの負極導通状態では、P1からダイオード91を介してコンデンサ53に充電電流が流れ、この充電電流の大きさは第1の抵抗21及び第3の抵抗23の抵抗値により変化する。また、3相地絡が生じたときの正極導通状態では、コンデンサ53から第2のダイオード93及び第6の抵抗92を介して放電電流が流れる。そのため、第1の抵抗21及び第3の抵抗23と第6の抵抗92の抵抗値の設定により、負極導通状態におけるP1からコンデンサ53への充電電流と、正極導通状態におけるコンデンサ53からP1への放電電流を、異なるレベルに設定することができる。   In the charge / discharge setting circuit 90, in the negative conduction state when a three-phase ground fault occurs, a charging current flows from P1 to the capacitor 53 via the diode 91, and the magnitude of this charging current is the first resistor 21 and It changes depending on the resistance value of the third resistor 23. Further, in the positive electrode conduction state when the three-phase ground fault occurs, a discharge current flows from the capacitor 53 via the second diode 93 and the sixth resistor 92. Therefore, by setting the resistance values of the first resistor 21, the third resistor 23, and the sixth resistor 92, the charging current from the P1 to the capacitor 53 in the negative conducting state and the current from the capacitor 53 to the P1 in the positive conducting state are set. The discharge current can be set to different levels.

なお、図7に示した絶縁性検出装置50においては、ツェナーダイオード51を備えたが、第1の抵抗21と第2の抵抗22と第3の抵抗23とを、第3の抵抗23の端子間電圧VoutがVccを超えないように設定する場合には、ツェナーダイオード51を備える必要はない。 7 includes the Zener diode 51, the first resistor 21, the second resistor 22, and the third resistor 23 are connected to the terminal of the third resistor 23. When setting so that the inter-voltage V out does not exceed V cc , it is not necessary to provide the Zener diode 51.

また、図10に示した絶縁性検出装置80においては、ツェナーダイオード85を備えたが、第1の抵抗21と第2の抵抗22と第3の抵抗23とを、第3の抵抗23の端子間電圧がVccと第1のダイオード91の順方向電圧との合計電圧を超えないように設定する場合には、ツェナーダイオード85を備える必要はない。 10 includes the Zener diode 85. However, the first resistor 21, the second resistor 22, and the third resistor 23 are connected to the terminal of the third resistor 23. If the interphase voltage is set so as not to exceed the total voltage of the forward voltage of V cc and the first diode 91 need not comprise a Zener diode 85.

また、本実施の形態では、図7に示したように、第2の抵抗22と第3の抵抗23との接続部を接地電位部BEに接続したが、第1の抵抗21と第3の抵抗23との接続部を車両の接地電位部BEに接続し、第3の抵抗23の端子間電圧に基いて、非接地回路10と接地電位部BE間の絶縁レベルを検出するようにしてもよい。   Further, in the present embodiment, as shown in FIG. 7, the connection portion between the second resistor 22 and the third resistor 23 is connected to the ground potential portion BE, but the first resistor 21 and the third resistor 23 are connected to the ground potential portion BE. The connection portion with the resistor 23 is connected to the ground potential portion BE of the vehicle, and the insulation level between the non-ground circuit 10 and the ground potential portion BE is detected based on the voltage between the terminals of the third resistor 23. Good.

また、本実施の形態では、車両の接地電位部から絶縁して車両に搭載された非接地回路10と、接地電位部との絶縁レベルを検出する絶縁性検出装置を示したが、非接地回路は車両に搭載されるものには限られず、接地電位部から絶縁して配置される非接地回路であれば、本発明の適用が可能である。   In the present embodiment, the non-grounding circuit 10 that is insulated from the ground potential portion of the vehicle and mounted on the vehicle and the insulation detection device that detects the insulation level between the ground potential portion are shown. Is not limited to the one mounted on the vehicle, and the present invention can be applied to any non-grounded circuit that is insulated from the ground potential portion.

また、本実施の形態では、本発明のインバータと接続される電気負荷として電気モータ40を示したが、スイッチング素子によるスイッチングによりインバータから供給される電力により作動する電気負荷であればよい。   In the present embodiment, the electric motor 40 is shown as an electric load connected to the inverter of the present invention.

非接地回路の絶縁性検出装置の基本的な構成図。The basic block diagram of the insulation detection apparatus of a non-grounding circuit. 図1に示した絶縁性検出装置による負側地絡検出の説明図。Explanatory drawing of the negative side ground fault detection by the insulation detection apparatus shown in FIG. 図1に示した絶縁性検出装置による正側地絡検出の説明図。Explanatory drawing of the positive side ground fault detection by the insulation detection apparatus shown in FIG. 図1に示した絶縁性検出装置による3相地絡検出の説明図。Explanatory drawing of the three-phase ground fault detection by the insulation detection apparatus shown in FIG. 3相地絡が生じたときのコンデンサの端子間電圧のタイミングチャート。The timing chart of the voltage between the terminals of a capacitor when a three-phase ground fault occurs. 地絡検出の判定閾値の説明図。Explanatory drawing of the determination threshold value of a ground fault detection. 本発明の非接地回路の絶縁性検出装置の構成図。The block diagram of the insulation detection apparatus of the non-grounding circuit of this invention. 3相地絡が生じたときのコンデンサの端子間電圧のタイミングチャート。The timing chart of the voltage between the terminals of a capacitor when a three-phase ground fault occurs. 図6に示した絶縁性検出装置における正側地絡検出及び負側地絡検出の説明図。Explanatory drawing of the positive side ground fault detection and negative side ground fault detection in the insulation detection apparatus shown in FIG. 充放電設定回路の他の構成例の説明図。Explanatory drawing of the other structural example of a charging / discharging setting circuit. 従来の絶縁性検出装置の構成図。The block diagram of the conventional insulation detection apparatus.

符号の説明Explanation of symbols

10…非接地回路、11…インバータ、12…直流電源、20…絶縁性検出装置、21…第1の抵抗、22…第2の抵抗、23…第3の抵抗、25…平滑用コンデンサ、26…オペアンプ、30…マイクロコンピュータ、31…絶縁レベル検出手段、40…モータ(電気負荷)、50…(本発明の)絶縁性検出装置、51…ツェナーダイオード、52…オペアンプ、60…充放電設定回路、53…コンデンサ、54…電圧検出回路、70…マイクロコンピュータ、71…絶縁性検出手段、Q11,Q12,Q21,Q22,Q31,Q32…トランジスタ(スイッチング素子)、80…(本発明の)絶縁性検出装置、90…充放電設定回路 DESCRIPTION OF SYMBOLS 10 ... Non-grounding circuit, 11 ... Inverter, 12 ... DC power supply, 20 ... Insulating detection device, 21 ... First resistor, 22 ... Second resistor, 23 ... Third resistor, 25 ... Smoothing capacitor, 26 DESCRIPTION OF SYMBOLS ... Operational amplifier, 30 ... Microcomputer, 31 ... Insulation level detection means, 40 ... Motor (electric load), 50 ... (Insulation detection device), 51 ... Zener diode, 52 ... Operational amplifier, 60 ... Charge / discharge setting circuit , 53 ... capacitor, 54 ... voltage detection circuit, 70 ... microcomputer, 71 ... insulation detection means, Q 11 , Q 12 , Q 21 , Q 22 , Q 31 , Q 32 ... transistor (switching element), 80 ... ( Insulating detector of the present invention, 90 ... charge / discharge setting circuit

Claims (7)

直流電源と、該直流電源の正極と接続された正側配線と、該直流電源の負極と接続された負側配線と、該正側配線及び該負側配線と電気負荷との間に接続されて、該正側配線が該電気負荷との接続箇所に導通した正極導通状態と、該負側配線が該電気負荷との接続箇所に導通した負極導通状態とを切替えるスイッチング素子を有するインバータとを備えて、接地電位部から絶縁して配置された非接地回路と、該接地電位部との間の絶縁レベルを検出する非接地回路の絶縁性検出装置であって、
一端が前記正側配線に接続されて、前記非接地回路と前記接地電位部間の絶縁性を維持するための絶縁基準値よりも高い抵抗を有する第1の抵抗と、
一端が前記負側配線に接続されて、前記絶縁基準値よりも高い抵抗を有する第2の抵抗と、
前記第1の抵抗の他端と前記第2の抵抗の他端間に接続された第3の抵抗と、
前記第1の抵抗と前記第3の抵抗との接続部である第1抵抗接続部と、前記第2の抵抗と前記第3の抵抗との接続部である第2抵抗接続部とのうちのいずれか一方を、前記接地電位部に接続する接地配線と、
一端が前記接地電位部と接続されたコンデンサと、
該コンデンサの他端と、前記第1抵抗接続部と前記第2抵抗接続部とのうちの前記接地配線と接続されていない方の接続部である非接地抵抗接続部との間に接続されて、該非接地抵抗接続部から該コンデンサへの充電電流と、該コンデンサから該非接地接続部への放電電流とを異なるレベルに設定する充放電設定回路と、
前記インバータのスイッチング素子により、前記正極導通状態と前記負極導通状態とが切替えられているときに、前記コンデンサの端子間電圧に基づいて、前記非接地回路と前記接地電位部との間の絶縁レベルを検出する絶縁レベル検出手段とを備えたことを特徴とする非接地回路の絶縁性検出装置。
Connected between the DC power supply, the positive wiring connected to the positive electrode of the DC power supply, the negative wiring connected to the negative electrode of the DC power supply, and the positive wiring and the negative wiring to the electrical load. An inverter having a switching element for switching between a positive conducting state in which the positive side wiring is conducted to the connection point with the electric load and a negative conducting state in which the negative side wiring is conducted to the connection point to the electric load. An insulation detection device for a non-ground circuit for detecting an insulation level between the non-ground circuit arranged insulated from the ground potential part and the ground potential part,
A first resistor having one end connected to the positive wiring and having a resistance higher than an insulation reference value for maintaining insulation between the non-grounded circuit and the ground potential portion;
A second resistor having one end connected to the negative wiring and having a resistance higher than the insulation reference value;
A third resistor connected between the other end of the first resistor and the other end of the second resistor;
Of the first resistance connection portion that is a connection portion between the first resistor and the third resistor, and the second resistance connection portion that is a connection portion between the second resistor and the third resistor. Either one of the ground wiring connecting to the ground potential portion,
A capacitor having one end connected to the ground potential portion;
The capacitor is connected between the other end of the capacitor and a non-ground resistance connection portion which is a connection portion of the first resistance connection portion and the second resistance connection portion which is not connected to the ground wiring. A charge / discharge setting circuit for setting a charging current from the non-grounded resistor connection to the capacitor and a discharge current from the capacitor to the non-grounded connection at different levels;
An insulation level between the non-grounded circuit and the ground potential portion based on a voltage between terminals of the capacitor when the positive electrode conducting state and the negative electrode conducting state are switched by the switching element of the inverter. An insulation detection device for a non-ground circuit, comprising: an insulation level detection means for detecting
前記充放電設定回路は、前記コンデンサと前記非接地抵抗接続部との間に接続された第5の抵抗と、
第4の抵抗とダイオードとを直列に接続して構成され、前記第5の抵抗と並列に接続された直列回路とを備えたことを特徴とする請求項1記載の非接地回路の絶縁性検出装置。
The charge / discharge setting circuit includes a fifth resistor connected between the capacitor and the non-grounded resistance connection portion,
2. The insulation detection of a non-grounded circuit according to claim 1, further comprising a series circuit configured by connecting a fourth resistor and a diode in series, and connected in parallel with the fifth resistor. apparatus.
アノード側が前記第2抵抗接続部に接続されると共に、カソード側が前記第1抵抗接続部に接続されて、前記第3の抵抗の端子間電圧を前記絶縁レベル検出手段の許容入力電圧範囲内に維持するツェナーダイオードを備えたことを特徴とする請求項1又は請求項2記載の非接地回路の絶縁性検出装置。   The anode side is connected to the second resistance connection portion, and the cathode side is connected to the first resistance connection portion, so that the voltage across the third resistor is maintained within the allowable input voltage range of the insulation level detecting means. The non-grounded circuit insulation detecting device according to claim 1, further comprising a Zener diode that performs the above operation. 前記充放電設定回路は、
前記コンデンサの前記非接地抵抗接続部側の端子と前記非接地抵抗接続部との間に、前記非接地抵抗接続部から前記コンデンサへの向きを順方向として接続された第1のダイオードと、
第6の抵抗と第2のダイオードとを直列に接続して構成され、該第2のダイオードの順方向を前記非接地抵抗接続部から前記接地電位部への向きとして、前記コンデンサと並列に接続された直列回路とを備えたことを特徴とする請求項1記載の非接地回路の絶縁性検出装置。
The charge / discharge setting circuit includes:
A first diode connected between a terminal of the capacitor on the non-ground resistance connection portion side and the non-ground resistance connection portion with a direction from the non-ground resistance connection portion to the capacitor as a forward direction;
A sixth resistor and a second diode are connected in series, and the forward direction of the second diode is connected in parallel with the capacitor with the direction from the non-ground resistance connection portion to the ground potential portion. The insulation detection device for a non-grounded circuit according to claim 1, further comprising: a series circuit configured as described above.
アノード側を前記接地電位部側として前記コンデンサと並列に接続され、前記コンデンサの端子間電圧を前記絶縁レベル検出手段の許容入力範囲内に維持するツェナーダイオードを備えたことを特徴とする請求項4記載の非接地回路の絶縁性検出装置。   5. A Zener diode connected in parallel with the capacitor with the anode side as the ground potential portion side and maintaining a voltage between terminals of the capacitor within an allowable input range of the insulation level detecting means. The insulation detection apparatus of the non-grounding circuit of description. 前記充放電設定回路は、前記非接地抵抗接続部から前記コンデンサへの充電電流を、前記コンデンサから前記非接地抵抗接続部への放電電流よりも大きく設定し、
前記絶縁レベル検出手段は、前記コンデンサの端子間電圧が、第1の所定電圧以上になったときに、前記負側配線と前記接地電位部間、又は前記インバータと電気負荷との接続部と前記接地電位部間が短絡状態にあると判断することを特徴とする請求項1から請求項5のうちいずれか1項記載の非接地回路の絶縁性検出装置。
The charging / discharging setting circuit sets a charging current from the non-ground resistance connection portion to the capacitor to be larger than a discharging current from the capacitor to the non-ground resistance connection portion,
When the voltage between the terminals of the capacitor becomes equal to or higher than a first predetermined voltage, the insulation level detection means is connected between the negative wiring and the ground potential part, or a connection part between the inverter and the electric load, and the 6. The insulation detecting device for a non-grounded circuit according to claim 1, wherein it is determined that a ground potential portion is in a short-circuited state.
前記充放電設定回路は、前記コンデンサから前記非接地抵抗接続部への放電電流を、前記非接地抵抗接続部から前記コンデンサへの充電電流よりも大きく設定し、
前記絶縁レベル検出手段は、前記コンデンサの端子間電圧が、第2の所定電圧以下になったときに、前記正側配線と前記接地電位部間、又は前記インバータと電気負荷との接続部と前記接地電位部間が短絡状態にあると判断することを特徴とする請求項1から請求項5のうちいずれか1項記載の非接地回路の絶縁性検出装置。
The charge / discharge setting circuit sets a discharge current from the capacitor to the non-grounded resistance connection portion to be larger than a charge current from the non-grounded resistance connection portion to the capacitor,
When the voltage between the terminals of the capacitor becomes equal to or lower than a second predetermined voltage, the insulation level detecting means is connected between the positive wiring and the ground potential portion, or a connection portion between the inverter and an electric load, and the 6. The insulation detecting device for a non-grounded circuit according to claim 1, wherein it is determined that a ground potential portion is in a short-circuited state.
JP2008207345A 2008-08-11 2008-08-11 Non-grounded circuit insulation detector Expired - Fee Related JP4804514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207345A JP4804514B2 (en) 2008-08-11 2008-08-11 Non-grounded circuit insulation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207345A JP4804514B2 (en) 2008-08-11 2008-08-11 Non-grounded circuit insulation detector

Publications (2)

Publication Number Publication Date
JP2010043916A JP2010043916A (en) 2010-02-25
JP4804514B2 true JP4804514B2 (en) 2011-11-02

Family

ID=42015414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207345A Expired - Fee Related JP4804514B2 (en) 2008-08-11 2008-08-11 Non-grounded circuit insulation detector

Country Status (1)

Country Link
JP (1) JP4804514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111352005A (en) * 2020-02-28 2020-06-30 江西五十铃汽车有限公司 Efficient processing method for insulation alarm fault problem of electric vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8618809B2 (en) * 2010-06-15 2013-12-31 Deere & Company Electrical isolation detection with enhanced dynamic range
JP5414777B2 (en) * 2011-12-22 2014-02-12 株式会社正興電機製作所 DC circuit ground fault detection apparatus and method
DE102018221479A1 (en) * 2018-12-12 2020-06-18 Robert Bosch Gmbh Circuit arrangement for fault detection in an unearthed high-voltage system
JP7445894B2 (en) 2020-12-28 2024-03-08 Anp株式会社 Earth leakage detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856137B2 (en) * 2002-02-19 2005-02-15 Bae Systems Controls Inc. Ground fault detection system and method
JP2004289903A (en) * 2003-03-20 2004-10-14 Toyota Motor Corp Inverter device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111352005A (en) * 2020-02-28 2020-06-30 江西五十铃汽车有限公司 Efficient processing method for insulation alarm fault problem of electric vehicle

Also Published As

Publication number Publication date
JP2010043916A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
US6992490B2 (en) Ground fault detection device
US9255957B2 (en) Earth fault detection circuit and power source device
JP5113741B2 (en) Battery pack and disconnection detection method thereof
US10222423B2 (en) Electrical storage system
US9709631B2 (en) Diagnosis apparatus for field winding type rotating electric machine and diagnosis method for field winding type rotating electric machine
US8929113B2 (en) Capacitor discharger for power conversion system
WO2013190733A1 (en) Leak detection device
US11329474B2 (en) Switching controller with adaptive overheating protection
US9825555B2 (en) Semiconductor control device, switching device, inverter, and control system
JP4978970B2 (en) Non-grounded circuit insulation detector
JP4804514B2 (en) Non-grounded circuit insulation detector
JP6710621B2 (en) Ground fault detection circuit Reverse voltage protection circuit
CN103023010A (en) Control unit for automobile
US10744963B2 (en) Charge/discharge device
CN113841059A (en) Electric leakage detection device and power supply system for vehicle
WO2021106285A1 (en) Earth leakage detecting device, and vehicular power supply system
JP2010035284A (en) Overcurrent protection circuit
US11843096B2 (en) Internal resistance detection device and power source device
JP6836411B2 (en) Ground fault detector, power supply system
JP5202119B2 (en) Multi-output judgment circuit
JP4123441B2 (en) Inrush current limiting power switch circuit for vehicles
JP6955951B2 (en) Discharge device
JP4983527B2 (en) Leakage detection method
JP5195518B2 (en) Short-circuit detection device
WO2024116752A1 (en) On-vehicle power supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees