JP4797226B2 - Sealing device - Google Patents

Sealing device Download PDF

Info

Publication number
JP4797226B2
JP4797226B2 JP2000167438A JP2000167438A JP4797226B2 JP 4797226 B2 JP4797226 B2 JP 4797226B2 JP 2000167438 A JP2000167438 A JP 2000167438A JP 2000167438 A JP2000167438 A JP 2000167438A JP 4797226 B2 JP4797226 B2 JP 4797226B2
Authority
JP
Japan
Prior art keywords
sealing device
peripheral surface
annular
annular groove
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000167438A
Other languages
Japanese (ja)
Other versions
JP2001349438A (en
Inventor
弘明 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2000167438A priority Critical patent/JP4797226B2/en
Publication of JP2001349438A publication Critical patent/JP2001349438A/en
Application granted granted Critical
Publication of JP4797226B2 publication Critical patent/JP4797226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sealing Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸部材、及びその外周を取り囲む通路部材であって、特に何れか一方の部材が他方の部材に対して往復動を行うように機能する両部材間の間隙を密封する密封装置に関する。
【0002】
【従来の技術】
従来、例えばブルドーザのような建設機械やフォークリフトのような運搬車輌等の油圧シリンダ等に適用され、ピストンとシリンダ型外郭(以下、単にシリンダという)との間隙を密封して作動油の漏れを防止するための密封装置が知られている。
【0003】
通常、このような用途に使用される密封装置には、密封を行う部材間に十分なシール性(密封性)が確保されること、シリンダ(ピストン)に対してピストン(シリンダ)が往復動する際、両部材間に生じる摺動抵抗が十分低く抑えられること、さらに摩擦等に対する十分な耐久性を有することが要求される。
【0004】
図10は、この種の密封装置を取り付けた油圧シリンダの密封構造の一例を示す断面図である。
【0005】
同図10に示すように、密封装置301は全体として環形状の外観をなし、軸方向に沿って往復動するピストン302の外周面と、同ピストン302の外周を取り囲むシリンダ303の内周面との間に形成された間隙を密封すべく、シリンダ303の内周面に形成された環状溝に取り付けられる。同図に示すような密封構造に適用される場合、密封装置301の外周面は環状溝の溝底に密着し、内周面はピストン302の内周面(対向面)に対して摺動自在に当接されることとなる。
【0006】
図11は、このような密封構造に適用される従来の密封装置の一例について、その構造及び機能を概略的に説明する模式図である。
【0007】
同図11に示す密封装置は、いわゆるUパッキンとして知られている。Uパッキン311は、通常ゴム等の弾性材料から形成され、U字形状の断面を有する環状体である。Uパッキン311は、その形状や材質にかかる特性から、相手部材(ピストン312)との間に好適な接触圧力分布を確保することが容易であり密封性には優れる。
【0008】
ところが、このようなタイプの密封装置(Uパッキン)では、シリンダ及びピストン間の相対動作を高速化した場合に潤滑不良が生じ易く、両部材間の摩擦を大きくする傾向がある。そのような潤滑不良は、とくに高圧条件下における潤摺動抵抗の増大を促し、油圧シリンダの作動性を悪化させることとなっていた。
【0009】
そこで、図12(a)及び(b)に示すように、二層の環状構造(二重構造)を有する密封装置311’や密封装置311''も考えられている。すなわち、対向面に摺接する側の部材(摺接部材)を例えば四フッ化エチレン(PTFE)等といった樹脂製材料で形成することによって、密封装置の耐摩耗性を高め、且つ対向面に対する摺動抵抗の低減を図る。その一方、溝底に当接する側の部材を例えばゴム等のように十分な弾性力を有する材料で形成することによって、摺接部材と対向面との間にある程度の接触圧力を確保するのである。
【0010】
【発明が解決しようとする課題】
しかしながら、上記二重構造をなす密封装置(図12(a),(b))によれば、高圧条件下や高速動作時における装置自身の耐摩耗性向上や、対向面に対する摺動抵抗の低減は図られるものの、密封性の低下は避け難いものとなっていた。
【0011】
本発明は、このような実情に鑑みてなされたものであって、その目的とするところは、軸部材とその外周を取り囲む通路部材が相対的に往復動を行うように機能する両部材間の間隙を密封する密封装置にあって、密封性および耐摩耗性の何れにも優れた密封装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、
軸方向に往復動する軸部材の外周面、および該往復動する軸部材の外周を取り囲む通路部材の内周面のうち、何れか一方の周面上に周回形成された環状溝に取り付けられ、
前記軸部材の外周面と前記通路部材の内周面との間隙を密封する密封装置において、
前記環状溝の対向周面に摺接する摺動面を有する環状の樹脂部材と、前記環状溝の溝底に周設され、前記樹脂部材を、該溝底から前記摺動面に向かう方向に付勢する環状の弾性部材と、を備え、且つ前記環状の樹脂部材の摺動面は、前記軸方向に沿って高圧空間側に偏倚するように相異なる傾斜角の斜面によって両裾が形成された凸部を有し、
前記樹脂部材は、前記環状溝の側壁に対向する反圧力側の側面と前記摺動面との境界が面取りされとともに、前記環状溝の側壁に対向する高圧空間側の側面から、前記凸部の両裾のうち傾斜角の大きい斜面で形成される高圧空間側の裾の基端にかけて、前記軸方向とほぼ平行をなす平坦な面とし、前記傾斜角の大きい斜面の軸方向長さは、前記樹脂部材本体の軸方向長さの15〜20%に設定されることを要旨とする。
【0013】
なお、前記軸部材による軸方向への往復動作は、前記通路部材に対する相対的な動作を意味する。すなわち、当該往復動には、前記軸部材の軸方向に沿った前記通路による動作をも含むものとする。
【0014】
上記構成によれば、適度な硬度及び弾性を併せ有する環状の樹脂部材を、密封部位にて相手部材と摺動させる構成を適用することで得られる密封装置自身の耐摩耗性向上や摺動抵抗の軽減といった作用と、密封性能とが高い水準で両立されるようになる。
【0015】
とくにこのとき、相対的に高圧の流体が充填された空間と、低圧の流体が充填された空間との境界を当該密封装置によって仕切る上で、前記凸部を高圧空間側に偏倚させる構成を適用することで、高圧空間に充填された流体は、当該高圧空間に好適に保持(密封)されるようになる。
【0017】
同構成によれば、前記凸部の両裾に形成される両斜面の傾斜角の関係から、当該密封装置に要求される密封性能を容易に得ることができるようになる。また、所望の密封性性能を得るための調節や部材加工も簡易に行うことができる。
【0018】
とくにこのとき、相対的に高圧の流体が充填された空間と、低圧の流体が充填された空間との境界を当該密封装置によって仕切る上で、前記凸部を高圧空間側に対峙する裾に形成される斜面を相対的に大きくする構成を適用することで、高圧空間に充填された流体は、当該高圧空間に好適に保持(密封)されるようになる。
【0020】
同構成によれば、高圧条件下、若しくは前記軸部材の往復運動が高速状態にあっても、前記環状溝からの環状の樹脂部材のはみ出しが好適に抑制されるようになる。
【0022】
同構成によれば、前記より大きな傾斜角の斜面と、前記平坦な面とに挟まれた空間に所定の圧力が付与された場合、その圧力が当該斜面を適度に圧迫することとなるため、前記凸部の形状が好適に保持されることとなる。そして凸部の形状が安定することにより、同凸部にとって、その対向面から受ける面圧分布が一定に保たれ、両者(凸部及びその対向面)間における密封性が向上するようになる。
【0024】
同構成によれば、前記環状溝内(側)における十分な且つ安定した密封性能が確保される一方、前記環状の樹脂部材にとって前記環状溝の対向周面に向かう十分な付勢力が容易に得られるようになる。
【0025】
【発明の実施の形態】
以下、本発明の密封装置を、建設機械の油圧駆動用シリンダに取り付けられるロッドパッキンに適用した一実施の形態について、図面を参照して説明する。
【0026】
図1(a)は、本実施の形態にかかる油圧駆動用シリンダについて、その外観及び内部構造の一部を概略的に示す斜視図であり、図1(b)は、同油圧駆動用ピストンの側断面を作動油の伝搬経路とともに示す略図である。
【0027】
図1(a)及び(b)に併せ示すように、油圧駆動用シリンダ(以下、油圧シリンダという)100は、大きくは、有底円筒形の通路11を形成するシリンダ型外郭(以下、シリンダという)10と、同通路11に沿って往復動するピストン20とを備える。ピストン20の一部としてシリンダ10内の通路11に収容される部分は、円柱形状をなすロッド部20aと、ロッド部20a先端の外周に螺合装着されロッド部20aよりもやや大きな外径を有して且つ、これも円柱形状をなすプランジャ部20bとを形成する。
【0028】
また、図1(b)に詳しく示すように、通路11は、底部11aに隣接しプランジャ部20bの外周とほぼ同径(やや大きな径)の内周面を有するプランジャ摺動部11bと、開口端11dに隣接しロッド部20aの外周とほぼ同径(やや大きな径)の内周面を有するロッド摺動部11cとからなる。
【0029】
シリンダ10には、その内周面を外部と連通させる油孔12,13が設けられており、これら油孔12,13を介し高圧の作動油がシリンダ10外部からシリンダ10内部へ送出入される。また、油孔12に連通するシリンダ10の内部空間αと、油孔13に連通するシリンダ10の内部空間β(シリンダ10の内周面とロッド部20aの外周面との間隙)とは、プランジャ部20bによって仕切られている。
【0030】
すなわち、油孔12及び油孔13を介して送入出される作動油の油圧を適宜調整することにより、ピストン20本体が矢指X方向に往復動し、且つその挙動が自在に制御される。
【0031】
プランジャ部20bの外周面には矩形の断面形状を有する環状溝30,40,50が周回形成されており、各環状溝30,40,50には、それぞれウエアリング31、ピストンパッキン41、及びコンタミシール51が装着されている。ウエアリング31は、ピストン20の偏心を抑制する等、もっぱら軸受けとしての機能を有する。ピストンパッキン41は、内部空間α及び内部空間β間における作動油の伝搬を規制し、両空間α,βの相互間における密封状態を保持する機能を有する。コンタミシール51は、例えば作動油に混入した金属粉等がプランジャ部20bの外周面とシリンダ10の内周面との間隙に侵入するのを防止する。
【0032】
また、ロッド摺動部11cの内周面にはこれも矩形の断面形状を有する環状溝60,70,80が周回形成されており、各環状溝60,70,80には、それぞれダストシール61、ロッドパッキン71、及びバッファリング81が装着されている。ダストシール60は、外部からシリンダ10内へ異物が侵入するのを防止する。ロッドパッキン71は、内部空間βと外部と間における密封状態を保持し、作動油の外部への漏洩を防止する機能を有する。バッファリング81は、内部空間βに充填された作動油の衝撃圧や変動圧、或いは高温となった作動油の熱の伝搬を緩衝し、ロッドパッキン71を保護する。
【0033】
ここで、ロッド摺動部11cの環状溝70に装着されたロッドパッキン71の機能について詳しく説明する。
【0034】
図2には、環形状を有するロッドパッキン71単体をその径方向に沿って切断して得られる切断面の形状を示す。
【0035】
同図2に示すように、ロッドパッキン71は、ゴム製のOリング71aと、Oリング71aの内径とほぼ同等の外径を有する四フッ化エチレン(PTFE)樹脂製の環状体71bとが相互に密着して形成される。Oリング71aの断面形状はほぼ正円をなし、当該正円の外径は、概ねロッドパッキン71が装着される環状溝71(破線にて図示)の溝幅Hに相当する(溝幅Hよりやや小さい)。一方、Oリングの内側(内周)に密着形成される環状体71bの断面形状は、軸方向(ピストン10の往復動作方向)の厚みを溝幅Hとほぼ同等とする(溝幅Hよりやや小さい)基本的には矩形を呈するとともに、その内周面が軸方向に沿って偏倚した凸形状をなす。
【0036】
このような二重構造を有するロッドパッキン71では、シリンダ10への装着にあたっては、図3(a)及び図3(b)において模式的に示すように、環状溝70に組み込まれたロッドパッキン71の一部、すなわち軸方向に沿って偏倚した凸形状をなす環状体71bの内周面の一部が、ロッド摺動部11cの内周面から突出することとなる(図3(a))。シリンダ10内の通路11にピストン20が取り付けられると、ロッド部20aの外周面が環状体71bの内周面に当接し、これを押圧することにより、環状体71bに比して相対的に弾性の大きなOリング71aが撓む。こうしてロッドパッキン71全体が環状溝70に押し込まれ、油圧シリンダ100へのロッドパッキン71の装着が完了する。すなわち、ロッド部20a及びロッド摺動部11c間において内部空間β内に充填される作動油を外部から密封する密封構造が構築されることになる(図3(b))。
【0037】
次に、ロッドパッキン71の一部をなすPTFE樹脂製の環状体71bについて詳細に説明する。
【0038】
図4(a)には、環状体71bをその径方向に沿って切断して得られる切断面の形状を拡大して示す。なお、図中において便宜的に示す矢指Pは、環状体71bの径方向に相当し、矢指Qは、矢指Pと直交する方向に相当する。ちなみに、ロッドパッキン71(環状体71b)が油圧シリンダ100に装着された状態において、矢指Qは、先の図1(b)にて示した矢指Xと同じくピストン10の往復動方向(軸方向)を示すことになる。以下、矢指Q(X)方向を厚み方向といい、矢指P方向を径方向という。
【0039】
同図4(a)に示すように、環状体71bの切断面は、厚み方向長さを寸法H、径方向長さを寸法Tとする矩形形状のうち、ピストン20(ロッド部20a)の外周面に当接する側の面(以下、摺動面という)Sの一部をロッド部20aの外周面に向かって突出させた形状を有する。
【0040】
すなわち、摺動面Sのうち、厚み方向Xに沿って通路11の内部空間β(図1参照)に最も近い面S1はロッド部20aの外周面(軸方向)とほぼ平行をなすように形成し、同面S1に隣接する***(凸部)を斜面S2及び斜面S3によって形成する。言い換えれば、斜面S2及び斜面S3が凸部の両裾をなす一方、面S1は、環状溝70の両側壁のうち、油圧シリンダ100内の内部空間β側にあたる側壁に対峙する環状体71bの側面(油圧側側面)Iから斜面(凸部の裾)S2の基端にかけて、ロッド部29aの軸方向とほぼ平行をなす平坦な面を形成することとなる。
【0041】
ところで、図4(b)は、環状体71bがロッドパッキン71の一部として油圧シリンダ100に装着された場合において、摺動面Sが対向面(ロッド部20aの外周面)から受ける接触圧力の分布を、図4(a)と同一軸線方向(厚み方向)Xに沿って同一スケールで示す分布図である。
【0042】
同図4(b)に示すように、摺動面S上において最も高い接触圧力Pを受けることとなるのは斜面S2及び斜面S3の境界にあたる凸部の頂上であり、当該頂上から離間するにつれ接触圧力Pは減少することとなる。このとき、適度な弾性及び硬度を併せ有する材料(例えばPTFE樹脂)から環状体が形成されていれば、斜面S2の受ける接触圧力勾配の最大値(dP/dX)max,p、及び斜面S3の受ける接触圧力勾配の最大値(dP/dX)max,mは、それぞれ斜面S2及び斜面S3の対向面(ロッド部20a)に対する傾斜角によって概ね決定づけられることが発明者によって確認されている。
【0043】
また、例えば軸部材の周縁で、所定油圧の油が充填された空間(油圧側空間)をいわゆる往復動シールによって外部(大気側空間)から密封する場合、当該往復動シールによる油の密封性能は、油圧側空間においてシール本体が軸部材の外周面から受ける接触圧力勾配(絶対値)と、大気側空間においてシール本体が軸部材の周面から受ける接触圧力勾配(絶対値)との差によって決定づけられることが一般に知られている。
【0044】
すなわち、環状体71bによるような断面形状を適用することで、斜面S2及び斜面S2の対向面に対する傾斜角を調整することにより、所望の密封性能を容易に得ることができるようになる。ちなみに、斜面S2,S3の最適傾斜角は、内部空間β内の作動油に付与される油圧や作動油の特性等にもよるが、本実施の形態において油圧シリンダ100に装着されるロッドパッキン71としては、斜面S2の傾斜角Cを8±2°程度、斜面S3の傾斜角dを45±2°程度に設定することで、摺動面Sとロッド部20aとの間に形成される油膜が十分薄い状態に保持され、作動油の最適な密封状態が確保されることが確認された。
【0045】
同じく、摺動面Sの突出分(凸部の高さ)に相当する寸法bは、環状体71bの径方向長さ(寸法)Tの25〜35%程度に設定するのが好ましいことが確認された。
【0046】
また同じく、斜面S2の厚み方向長さ(寸法)aは、環状体71b本体の厚み方向長さ(寸法)Hの15〜20%程度に設定するのが好ましいことが確認された。
【0047】
また、環状体71bが装着される環状溝70の両側壁のうち、油圧シリンダ100の開口端側にあたる側壁に対峙する環状体71bの側面(大気側側面)Wと摺動面Sとの境界には面取り部(斜面)S4が形成されている。環状体71bの大気側(反圧力側)側面にこのような面取り部が形成されることにより、内部空間βに高圧の油圧が付与されることとなっても、環状溝70からの環状体71bのはみ出しが好適に抑制されるようになる。
【0048】
また、油圧シリンダ100内をロッド部20aが往復動すると、平坦な面S1及び斜面S2に挟まれた空間に充填される作動油の油圧が斜面S2を適度に圧迫することとなるため、斜面S2及び斜面S3によって形成される凸部の形状が好適に保持されることとなる。そして凸部の形状が安定することにより、同凸部がロッド部20aの外周面から受ける面圧の分布も一定に保たれ、両者間における密封性も向上する。
【0049】
なお、環状体71bの径方向長さ(寸法)Tは、図4(c)において模式的に示す環状溝70からロッド部20a外周面までの距離AやOリング71aの特性(弾性)との関係に基づいて設定するのが、ロッドパッキン71を油圧シリンダ100に装着する際に最適なつぶし代を確保し、摺動面Sとロッド部20aとの間に安定した面圧を保持する上では好ましい。ちなみに本実施の形態においては、寸法Tを距離Aの40〜50%程度とするのが最適であることが確認された。
【0050】
また、環状体71bの厚み方向長さ(寸法)Hは、図4(c)において示す環状溝70の溝幅Bの90〜95%程度に(溝幅Bよりやや小さな値)に設定するのが好ましい。すなわち、環状体71bの厚み方向長さHと環状溝70の溝幅との間にこのような関係を確保することで、内部空間βに油圧が付与されても、環状体71bの挙動に十分な安定性を保持することができるようになる。
内部空間βに油圧が付与された状態で環状体71bの挙動が十分に安定していれば、摺動面Sに一定の面圧分布が確保されることとなり、同摺動面S及びロッド部20a間における密封性も安定するようになるからである。
(検証試験)
本実施の形態にかかるロッドパッキン71を油圧駆動用シリンダの密封装置として適用した場合に得られる密封性能を、従来の密封装置によるものと比較するための検証実験を行った。
【0051】
図5は、第1の検証実験に用いた装置及び実験内容を概略的に示す説明図である。同図に示すように、第1の検証実験で用いた試験装置200は、図1において示した油圧シリンダ100と同様、軸部材(ロッド部)220の周縁で、環状溝に収容された往復動シール(密封装置)を用いて、所定油圧の油が充填された空間(油圧側空間)γを外部(大気側空間)から密封するといった構成を有する。
【0052】
第1の検証試験では、ロッド部220を動作速度(摺動速度)0.15m/秒で連続的に往復動させた場合に、当該動作にかかる積算距離に応じた油の漏れ量(積算量)を測定した。
【0053】
図6は、上記第1の検証試験の結果として、本実施の形態にかかるロッドパッキン71を適用した場合にみられた油漏れ量の推移(●)と、先の図12(b)に示した従来の密封装置を適用した場合にみられた油漏れ量の推移(○)とを、同一軸(積算距離)上に併せ示すグラフである。
【0054】
同図6に示すように、従来の密封装置を適用した場合、摺動距離が増すごとに漏れ量も増加しているが、本実施の形態にかかるロッドパッキン71を適用した場合、積算距離にして50km以上ロッド部220を動作させても、ほとんど油漏れの生じていないことが明らかとなった。
【0055】
次に、第2の検証試験について説明する。
【0056】
上述した第1の検証試験では、ロッド部を所定の動作速度(摺動速度)で連続的に往復動させ、当該動作にかかる積算距離に応じた油の漏れ量(積算量)を測定した。これに対し、当該第2の検証試験では、同じくロッド部を所定の動作速度(摺動速度)で往復動させるとともに、油圧側空間γに付与する油圧を変化させ、密封装置とロッド部の外周面との間における摺動抵抗がどのように変化するかを、本実施の形態におけるロッドパッキン(密封装置)71を適用した場合と、先の図11に示した従来の密封装置(Uパッキン)を適用した場合とについて試験し、その結果を相互に比較した。なお、第2の検証試験にも、第1の検証試験と同様の試験装置200(図5)を用いた。
【0057】
図7は、上記第2の検証試験の結果として、本実施の形態にかかるロッドパッキン71を適用した場合にみられた摺動抵抗の変化と、先の図11に示した従来の密封装置を適用した場合にみられた摺動抵抗の変化とを、同一軸(油圧の大きさ)上に併せ示すグラフである。
【0058】
同図7に示すように、従来の密封装置を適用した場合、油圧側空間γに付与する油圧が増すごとに摺動抵抗も増加しているが、本実施の形態にかかるロッドパッキン71を適用した場合、20MPa以上の油圧を油圧側空間γに付与しても、摺動抵抗はほとんど増大しないことが明らかとなった。
【0059】
すなわち、弾性体と樹脂製部材とを組み合わせた従来の密封装置(図12(a),(b)参照)を用いた密封構造では、密封装置自身の耐摩耗性の向上や、密封部位における摺動抵抗の低減といった機能は達成される反面、十分な密封性能を得ることが困難となっていた。
【0060】
また同じく、いわゆるUパッキン(図11参照)を用いた密封構造では、通常の使用条件下において十分な密封性を得ることはできるものの、とくに高圧や高速条件での使用に際し、潤滑不良が発生しやすく密封装置自身の摩耗が顕著となっていた。さらに、高圧条件下で、そのような潤滑不良が摺動抵抗の増大を促し、油圧シリンダの作動性を悪化させることとなっていたことは、先の従来技術において説明した通りである。
【0061】
この点、本実施の形態にかかるロッドパッキン71を採用して、例えば軸部材ロッド部の周縁で、所定油圧の油が充填された空間(油圧側空間)を外部(大気側空間)から密封するための構造を構築するようにすれば、密封装置自身の耐摩耗性向上や密封部位における摺動抵抗の軽減と、密封性の向上といった諸機能を高い水準で両立させることができるようになる。
【0062】
なお、本実施の形態では、ロッド部20a及びロッド摺動部11cの間隙において内部空間βに充填された作動油を外部から密封すべくロッド摺動部11cの内周面に周設された環状溝に装着される密封装置(ロッドパッキン71)に本発明の密封装置を適用することとした(図1等を参照)。これに限らず、図1及び図8に併せ示すように、例えばプランジャ部20b及びシリンダ10の間隙において内部空間αに充填された作動油と内部空間βに充填された作動油とを相互に密封する密封装置として、ピストンパッキン41に本発明を適用してもよい。すなわち、軸方向に往復動する軸部材(例えばピストンやロッド)の外周面、および該往復動する軸部材の外周を取り囲む通路部材(例えばシリンダ)の内周面のうち、何れか一方の周面上に周回形成された環状溝に取り付けられ、同軸部材の外周面と前記通路部材の内周面との間隙を密封する密封装置であれば、各々に油の充填された二空間の境界を密封するものであるか、一方に油、他方にガスを各々充填した二空間の境界を密封するものであるかに関わらず、本発明の密封装置を適用することができる。また、軸部材の外周面に環状溝を周回形成し、その環状溝に密封装置を装着する場合であれ、通路部材の内周面に環状溝を周回形成し、その環状溝に密封装置を装着する場合であれ、本発明の密封装置を適用することによって、本実施の形態と同等、若しくはこれに準ずる効果を奏することはできる。
【0063】
また、例えば図9(a)において断面形状として示すように、環状体71bの摺動面Sに形成される凸部の斜面S2,S3を各々曲面にしてもよい。さらに、図9(b)に示すように、環状体71bの摺動面Sにおいて、ロッド部の外周面とほぼ平行をなす面S1(図4参照)や、面取り部S4を設けなくとも、本実施の形態に準ずる効果を奏することはできる。
【0064】
また、本実施の形態において採用したロッドパッキン71と同等の構造を有する密封装置を、軸部材の外周面(環状溝)若しくは通路部材の内周面に複数並列して取り付けるようにすれば、一層高い密封性を得ることもできる。
【0065】
また、本実施の形態では、環状体71bの材質としてPTFE樹脂を採用することとしたが、適度な弾性及び硬度を併せ有する他の樹脂材料、例えばPFA,ETFE,POM,PBT等を採用してもよい。
【0066】
また、環状体の耐圧性や耐摩耗性を高めるように、PTFE樹脂も含めてこれら樹脂材料には充填材を混入するのが好ましい。
【0067】
また、Oリング71aの断面形状は、正円形状に限らず、例えば楕円、多角形、、X字等といった他の形状であってもよい。さらにその材質にも、例えばニトリルゴム、水素化ニトリルゴム、フッ素ゴム等、(例えばニトリルゴム対比として)十分な弾性、耐熱性、及び耐薬品性(耐油性)を有する様々な(ゴム状)弾性材料を採用して本実施の形態と同等、若しくはこれに準ずる効果を奏することはできる。
【0068】
【発明の効果】
請求項1に記載した発明によれば、適度な硬度及び弾性を併せ有する環状樹脂部材を、密封部位にて相手部材と摺動させる構成を適用することで得られる密封装置自身の耐摩耗性向上や摺動抵抗の軽減といった作用と、密封性能とが高い水準で両立されるようになる。
【0069】
請求項2に記載した発明によれば、前記凸部の両裾に形成される両斜面の傾斜角の関係から、当該密封装置に要求される密封性能を容易に得ることができるようになる。また、所望の密封性性能を得るための調節や部材加工も簡易に行うことができるようになる。
【0070】
請求項3に記載した発明によれば、高圧条件下、若しくは前記軸部材の往復運動が高速状態にあっても、前記環状溝からの環状の樹脂部材のはみ出しが好適に抑制されるようになる。
【0071】
請求項4に記載した発明によれば、凸部の形状が安定することにより、同凸部にとって、その対向面から受ける面圧分布が一定に保たれ、両者(凸部及びその対向面)間における密封性が向上するようになる。
【0072】
請求項5に記載した発明によれば、前記環状溝内における十分な密封性能が確保される一方、環状の樹脂部材にとって前記環状溝の対向周面に向かう十分な付勢力が容易に得られるようになる。
【図面の簡単な説明】
【図1】本発明の密封装置を油圧駆動用シリンダのロッドパッキンに適用した一実施の形態について、その外観及び内部構造を概略的に示す斜視図等。
【図2】同実施の形態のロッドパッキンをその径方向に沿って切断して得られる切断面の形状を示す断面図。
【図3】同実施の形態のロッドパッキンによって形成される密封構造を模式的に示す図。
【図4】同実施の形態のロッドパッキンの一部をなす環状体について、その切断面の形状を拡大して示す断面図等。
【図5】同実施の形態によって得られる密封機能を検証するための第1の検証実験に用いた装置及び実験内容を概略的に示す説明図。
【図6】油圧用シリンダによる連続的な往復動作に応じた油漏れ量の推移を、同実施の形態のロッドパッキンおよび従来の装置の各々について示すグラフ。
【図7】密封される油圧空間に付与される油圧に応じた摺動抵抗の変化を、同実施の形態のロッドパッキンおよび従来の装置の各々について示すグラフ。本実施の形態のロッドパッキンおよび従来の装置の各々について示すグラフ。
【図8】本発明の密封装置を油圧用ピストン等のピストンパッキンに適用した一実施の形態を概略的に示す断面図。
【図9】本発明の密封装置を油圧シリンダのロッドパッキンに適用した一実施の形態の変形例を概略的に示す断面図。
【図10】従来の密封装置および同密封装置によって形成される密封構造を概略的に示す断面図。
【図11】従来の密封装置の一例について、その構造及び機能を概略的に説明する模式図。
【図12】二層の環状構造を有する従来の密封装置の一例を概略的に示す断面図。
【符号の説明】
10 シリンダ型外郭(シリンダ)
11 通路
11a 底部
11b プランジャ摺動部
11c ロッド摺動部
11d 開口端
12,13 油孔
20 ピストン
20a ロッド部
20b プランジャ部
30,40,50,60,70,80 環状溝
31 ウエアリング
41 ピストンパッキン
51 コンタミシール
61 ダストシール
71 ロッドパッキン
71a Oリング
71b (樹脂製の)環状体
81 バッファリング
100 油圧駆動用シリンダ(油圧シリンダ)
200 試験装置
α,β 内部空間
S 摺動面
S(S2,S3) 斜面
S(S4) 面取り部
W 側面(大気側側面)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shaft member and a passage member that surrounds the outer periphery of the shaft member, and in particular, to a sealing device that seals a gap between both members that functions so that either one member reciprocates with respect to the other member. .
[0002]
[Prior art]
Conventionally applied to hydraulic cylinders of construction machines such as bulldozers and transport vehicles such as forklifts, etc., and sealing the gap between the piston and cylinder type outer shell (hereinafter simply referred to as cylinder) prevents hydraulic oil leakage Sealing devices for doing this are known.
[0003]
Usually, in a sealing device used for such an application, sufficient sealing performance (sealing performance) is ensured between the members to be sealed, and the piston (cylinder) reciprocates with respect to the cylinder (piston). At this time, it is required that the sliding resistance generated between the two members is sufficiently low, and that it has sufficient durability against friction and the like.
[0004]
FIG. 10 is a cross-sectional view showing an example of a sealing structure of a hydraulic cylinder to which this type of sealing device is attached.
[0005]
As shown in FIG. 10, the sealing device 301 has an annular appearance as a whole, and includes an outer peripheral surface of a piston 302 that reciprocates along the axial direction, and an inner peripheral surface of a cylinder 303 that surrounds the outer periphery of the piston 302. Is attached to an annular groove formed on the inner peripheral surface of the cylinder 303 in order to seal the gap formed between the two. When applied to a sealing structure as shown in the figure, the outer peripheral surface of the sealing device 301 is in close contact with the groove bottom of the annular groove, and the inner peripheral surface is slidable with respect to the inner peripheral surface (opposing surface) of the piston 302. It will contact | abut.
[0006]
FIG. 11 is a schematic diagram schematically illustrating the structure and function of an example of a conventional sealing device applied to such a sealing structure.
[0007]
The sealing device shown in FIG. 11 is known as a so-called U-packing. The U packing 311 is an annular body that is usually formed of an elastic material such as rubber and has a U-shaped cross section. The U-packing 311 is easy to ensure a suitable contact pressure distribution with the mating member (piston 312) and has excellent sealing properties due to the characteristics of the shape and material.
[0008]
However, in this type of sealing device (U-packing), when the relative operation between the cylinder and the piston is increased in speed, poor lubrication tends to occur, and the friction between both members tends to increase. Such poor lubrication has led to an increase in the wet sliding resistance, particularly under high pressure conditions, and deteriorates the operability of the hydraulic cylinder.
[0009]
Therefore, as shown in FIGS. 12A and 12B, a sealing device 311 ′ and a sealing device 311 ″ having a two-layered annular structure (double structure) are also considered. In other words, by forming a member (sliding contact member) on the side in sliding contact with the facing surface from a resin material such as, for example, ethylene tetrafluoride (PTFE), the wear resistance of the sealing device is increased and sliding on the facing surface is performed. Reduce resistance. On the other hand, by forming the member that contacts the groove bottom with a material having sufficient elastic force such as rubber, a certain contact pressure is secured between the sliding contact member and the opposing surface. .
[0010]
[Problems to be solved by the invention]
However, according to the sealing device having the double structure (FIGS. 12A and 12B), the wear resistance of the device itself is improved under high pressure conditions and at high speed operation, and the sliding resistance with respect to the facing surface is reduced. However, it was difficult to avoid a decrease in sealing performance.
[0011]
The present invention has been made in view of such circumstances, and the object of the present invention is between the two members functioning so that the shaft member and the passage member surrounding the outer periphery thereof relatively reciprocate. An object of the present invention is to provide a sealing device that seals a gap and is excellent in both sealing performance and wear resistance.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1
Of the outer peripheral surface of the shaft member that reciprocates in the axial direction and the inner peripheral surface of the passage member that surrounds the outer periphery of the reciprocating shaft member, it is attached to an annular groove formed on one of the peripheral surfaces,
In a sealing device for sealing a gap between the outer peripheral surface of the shaft member and the inner peripheral surface of the passage member,
An annular resin member having a sliding surface slidably contacting the opposed peripheral surface of the annular groove And an annular elastic member that is provided around the groove bottom of the annular groove and urges the resin member in a direction from the groove bottom toward the sliding surface; And the sliding surface of the annular resin member has a convex part in which both hems are formed by inclined surfaces having different inclination angles so as to be biased toward the high-pressure space along the axial direction,
The resin member has a chamfered boundary between the side surface on the counter pressure side facing the side wall of the annular groove and the sliding surface. Ru In addition, from the side surface on the high-pressure space side facing the side wall of the annular groove to the base end of the skirt on the high-pressure space side formed by the inclined surface having a large inclination angle between both hems of the convex portion, it is substantially parallel to the axial direction. A flat surface The axial length of the slope with the large tilt angle is set to 15 to 20% of the axial length of the resin member body. This is the gist.
[0013]
The reciprocating operation in the axial direction by the shaft member means a relative operation with respect to the passage member. That is, the reciprocating motion includes an operation by the passage along the axial direction of the shaft member.
[0014]
According to the said structure, the abrasion resistance improvement of a sealing device itself obtained by applying the structure which slides the cyclic | annular resin member which has moderate hardness and elasticity together with the other member in a sealing part, and sliding resistance The effect of reducing the pressure and the sealing performance are compatible at a high level.
[0015]
In particular, at this time, the partition between the space filled with the relatively high pressure fluid and the space filled with the low pressure fluid is partitioned by the sealing device, and the configuration in which the convex portion is biased toward the high pressure space is applied. Thus, the fluid filled in the high pressure space is suitably held (sealed) in the high pressure space.
[0017]
According to this configuration, the sealing performance required for the sealing device can be easily obtained from the relationship between the inclination angles of both slopes formed at both hems of the convex portion. Moreover, adjustment and member processing for obtaining desired sealing performance can be easily performed.
[0018]
In particular, at this time, the boundary between the space filled with the relatively high pressure fluid and the space filled with the low pressure fluid is partitioned by the sealing device, and the convex portion is formed on the skirt facing the high pressure space side. By applying the configuration in which the inclined surface is relatively enlarged, the fluid filled in the high pressure space is suitably held (sealed) in the high pressure space.
[0020]
According to this configuration, even if the reciprocating motion of the shaft member is in a high speed state under high pressure conditions, the protrusion of the annular resin member from the annular groove is suitably suppressed.
[0022]
According to the same configuration, when a predetermined pressure is applied to the space sandwiched between the slope with the larger inclination angle and the flat surface, the pressure appropriately presses the slope, The shape of the convex portion is suitably held. And since the shape of a convex part is stabilized, the surface pressure distribution received from the opposing surface is kept constant for the convex part, and the sealing performance between both (the convex part and the opposing surface) is improved.
[0024]
According to this configuration, a sufficient and stable sealing performance in the annular groove (side) is ensured, while a sufficient urging force toward the opposed peripheral surface of the annular groove is easily obtained for the annular resin member. Be able to.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which a sealing device of the present invention is applied to a rod packing attached to a hydraulic drive cylinder of a construction machine will be described with reference to the drawings.
[0026]
FIG. 1 (a) is a perspective view schematically showing a part of the external appearance and internal structure of the hydraulic drive cylinder according to the present embodiment, and FIG. 1 (b) is a view of the hydraulic drive piston. 1 is a schematic diagram showing a side cross section along with a propagation path of hydraulic oil.
[0027]
As shown in FIGS. 1 (a) and 1 (b), a hydraulic drive cylinder (hereinafter referred to as a hydraulic cylinder) 100 is roughly a cylinder type outer shell (hereinafter referred to as a cylinder) that forms a bottomed cylindrical passage 11. ) 10 and a piston 20 that reciprocates along the passage 11. The part accommodated in the passage 11 in the cylinder 10 as a part of the piston 20 has a cylindrical rod portion 20a and an outer diameter slightly larger than the rod portion 20a, which is screwed to the outer periphery of the rod portion 20a. And this also forms the plunger part 20b which makes a cylindrical shape.
[0028]
Further, as shown in detail in FIG. 1B, the passage 11 includes a plunger sliding portion 11b having an inner peripheral surface adjacent to the bottom portion 11a and having substantially the same diameter (a slightly larger diameter) as the outer periphery of the plunger portion 20b, and an opening. It consists of the rod sliding part 11c which adjoins the end 11d, and has an inner peripheral surface of the same diameter (slightly larger diameter) as the outer periphery of the rod part 20a.
[0029]
The cylinder 10 is provided with oil holes 12 and 13 that allow the inner peripheral surface thereof to communicate with the outside, and high-pressure hydraulic oil is sent into and out of the cylinder 10 from the outside through the oil holes 12 and 13. . Also, the internal space α of the cylinder 10 communicating with the oil hole 12 and the internal space β of the cylinder 10 communicating with the oil hole 13 (the gap between the inner peripheral surface of the cylinder 10 and the outer peripheral surface of the rod portion 20a) are the plunger. It is partitioned off by the part 20b.
[0030]
That is, by appropriately adjusting the hydraulic pressure of the hydraulic oil sent and received through the oil hole 12 and the oil hole 13, the piston 20 main body reciprocates in the direction of the arrow X, and its behavior is freely controlled.
[0031]
Annular grooves 30, 40, 50 having a rectangular cross-sectional shape are formed around the outer peripheral surface of the plunger portion 20b. The annular grooves 30, 40, 50 are respectively provided with a wear ring 31, a piston packing 41, and a contamination. A seal 51 is attached. The wear ring 31 has a function as a bearing exclusively, such as suppressing eccentricity of the piston 20. The piston packing 41 has a function of restricting the propagation of hydraulic oil between the internal space α and the internal space β and maintaining a sealed state between the spaces α and β. The contamination seal 51 prevents, for example, metal powder mixed in the working oil from entering the gap between the outer peripheral surface of the plunger portion 20 b and the inner peripheral surface of the cylinder 10.
[0032]
In addition, annular grooves 60, 70, 80 having a rectangular cross-sectional shape are formed around the inner peripheral surface of the rod sliding portion 11c, and each of the annular grooves 60, 70, 80 has a dust seal 61, A rod packing 71 and a buffer ring 81 are attached. The dust seal 60 prevents foreign matter from entering the cylinder 10 from the outside. The rod packing 71 has a function of maintaining a sealed state between the internal space β and the outside and preventing leakage of hydraulic oil to the outside. The buffer ring 81 protects the rod packing 71 by buffering the impact pressure or the fluctuating pressure of the hydraulic oil filled in the internal space β or the propagation of heat of the hydraulic oil at a high temperature.
[0033]
Here, the function of the rod packing 71 mounted in the annular groove 70 of the rod sliding portion 11c will be described in detail.
[0034]
In FIG. 2, the shape of the cut surface obtained by cut | disconnecting the rod packing 71 single-piece | unit which has a ring shape along the radial direction is shown.
[0035]
As shown in FIG. 2, the rod packing 71 includes a rubber O-ring 71a and an annular body 71b made of ethylene tetrafluoride (PTFE) resin having an outer diameter substantially equal to the inner diameter of the O-ring 71a. It is formed in close contact with. The cross-sectional shape of the O-ring 71a is almost a perfect circle, and the outer diameter of the true circle is substantially equivalent to the groove width H of the annular groove 71 (shown by a broken line) in which the rod packing 71 is mounted (from the groove width H). Slightly small). On the other hand, the cross-sectional shape of the annular body 71b formed in close contact with the inner side (inner circumference) of the O-ring has a thickness in the axial direction (reciprocating direction of the piston 10) substantially equal to the groove width H (slightly greater than the groove width H) (Small) Basically, it has a rectangular shape and a convex shape whose inner peripheral surface is biased along the axial direction.
[0036]
In the rod packing 71 having such a double structure, the rod packing 71 incorporated in the annular groove 70 is shown in FIG. 3A and FIG. That is, a part of the inner peripheral surface of the annular body 71b having a convex shape biased along the axial direction protrudes from the inner peripheral surface of the rod sliding portion 11c (FIG. 3A). . When the piston 20 is attached to the passage 11 in the cylinder 10, the outer peripheral surface of the rod portion 20a comes into contact with the inner peripheral surface of the annular body 71b and presses this, thereby being relatively elastic compared to the annular body 71b. Large O-ring 71a bends. Thus, the entire rod packing 71 is pushed into the annular groove 70, and the mounting of the rod packing 71 to the hydraulic cylinder 100 is completed. That is, a sealing structure that seals the hydraulic oil filled in the internal space β from the outside between the rod portion 20a and the rod sliding portion 11c is constructed (FIG. 3B).
[0037]
Next, the PTFE resin-made annular body 71b forming a part of the rod packing 71 will be described in detail.
[0038]
FIG. 4A shows an enlarged view of the shape of the cut surface obtained by cutting the annular body 71b along the radial direction. In addition, the arrow P shown for convenience in the drawing corresponds to the radial direction of the annular body 71b, and the arrow Q corresponds to a direction orthogonal to the arrow P. Incidentally, in the state where the rod packing 71 (annular body 71b) is mounted on the hydraulic cylinder 100, the arrow Q is the reciprocating direction (axial direction) of the piston 10 in the same manner as the arrow X shown in FIG. Will be shown. Hereinafter, the arrow Q (X) direction is referred to as the thickness direction, and the arrow P direction is referred to as the radial direction.
[0039]
As shown in FIG. 4 (a), the cut surface of the annular body 71b has an outer periphery of the piston 20 (rod portion 20a) in a rectangular shape having a length H in the thickness direction and a dimension T in the radial direction. A part of a surface (hereinafter referred to as a sliding surface) S that is in contact with the surface protrudes toward the outer peripheral surface of the rod portion 20a.
[0040]
That is, of the sliding surface S, the surface S1 closest to the internal space β (see FIG. 1) of the passage 11 along the thickness direction X is formed so as to be substantially parallel to the outer peripheral surface (axial direction) of the rod portion 20a. The bumps (convex portions) adjacent to the same surface S1 are formed by the slope S2 and the slope S3. In other words, the inclined surface S2 and the inclined surface S3 form both hems of the convex portion, while the surface S1 is the side surface of the annular body 71b that faces the side wall of the annular groove 70 on the side of the internal space β in the hydraulic cylinder 100. A flat surface that is substantially parallel to the axial direction of the rod portion 29a is formed from the (hydraulic side surface) I to the base end of the slope (the skirt of the convex portion) S2.
[0041]
Incidentally, FIG. 4B shows the contact pressure that the sliding surface S receives from the opposing surface (the outer peripheral surface of the rod portion 20a) when the annular body 71b is mounted on the hydraulic cylinder 100 as a part of the rod packing 71. It is a distribution map which shows distribution on the same scale along the same axial direction (thickness direction) X as Fig.4 (a).
[0042]
As shown in FIG. 4B, the highest contact pressure P on the sliding surface S is at the top of the convex portion corresponding to the boundary between the slope S2 and the slope S3, and as the distance from the top increases. The contact pressure P will decrease. At this time, if the annular body is formed of a material having appropriate elasticity and hardness (for example, PTFE resin), the maximum value (dP / dX) max, p of the contact pressure gradient received by the slope S2 and the slope S3 It has been confirmed by the inventor that the maximum value (dP / dX) max, m of the contact pressure gradient to be received is approximately determined by the inclination angle of the slope S2 and the slope S3 with respect to the opposing surface (rod portion 20a).
[0043]
For example, when a space (hydraulic side space) filled with oil of a predetermined hydraulic pressure is sealed from the outside (atmosphere side space) by a so-called reciprocating seal at the periphery of the shaft member, the oil sealing performance by the reciprocating seal is , Determined by the difference between the contact pressure gradient (absolute value) that the seal body receives from the outer peripheral surface of the shaft member in the hydraulic side space and the contact pressure gradient (absolute value) that the seal body receives from the peripheral surface of the shaft member in the atmosphere side space It is generally known that
[0044]
That is, by applying a cross-sectional shape such as that of the annular body 71b, it is possible to easily obtain a desired sealing performance by adjusting the inclination angle of the inclined surface S2 and the opposed surface of the inclined surface S2. Incidentally, the optimum inclination angle of the slopes S2 and S3 depends on the hydraulic pressure applied to the hydraulic oil in the internal space β, the characteristics of the hydraulic oil, and the like, but the rod packing 71 attached to the hydraulic cylinder 100 in the present embodiment. As described above, by setting the inclination angle C of the slope S2 to about 8 ± 2 ° and the inclination angle d of the slope S3 to about 45 ± 2 °, an oil film formed between the sliding surface S and the rod portion 20a. Was kept in a sufficiently thin state, and it was confirmed that the optimum sealing state of the hydraulic oil was secured.
[0045]
Similarly, it is confirmed that the dimension b corresponding to the protrusion of the sliding surface S (height of the convex portion) is preferably set to about 25 to 35% of the radial length (dimension) T of the annular body 71b. It was done.
[0046]
Similarly, it was confirmed that the thickness direction length (dimension) a of the slope S2 is preferably set to about 15 to 20% of the thickness direction length (dimension) H of the annular body 71b main body.
[0047]
Further, of both side walls of the annular groove 70 to which the annular body 71b is mounted, at the boundary between the side surface (atmosphere side surface) W of the annular body 71b facing the side wall corresponding to the opening end side of the hydraulic cylinder 100 and the sliding surface S. A chamfered portion (slope) S4 is formed. By forming such a chamfered portion on the atmosphere side (reverse pressure side) side surface of the annular body 71b, even if a high pressure hydraulic pressure is applied to the internal space β, the annular body 71b from the annular groove 70 is provided. Protrusion of the ink is suitably suppressed.
[0048]
Further, when the rod portion 20a reciprocates in the hydraulic cylinder 100, the hydraulic pressure of the hydraulic oil filled in the space sandwiched between the flat surface S1 and the inclined surface S2 presses the inclined surface S2 appropriately. And the shape of the convex part formed by slope S3 will be held suitably. And since the shape of a convex part is stabilized, distribution of the surface pressure which the convex part receives from the outer peripheral surface of the rod part 20a is also kept constant, and the sealing performance between both improves.
[0049]
The radial length (dimension) T of the annular body 71b is determined by the distance A from the annular groove 70 schematically shown in FIG. 4C to the outer peripheral surface of the rod portion 20a and the characteristic (elasticity) of the O-ring 71a. Setting based on the relationship secures an optimum crushing amount when the rod packing 71 is mounted on the hydraulic cylinder 100, and maintains a stable surface pressure between the sliding surface S and the rod portion 20a. preferable. Incidentally, in this embodiment, it was confirmed that it is optimal to set the dimension T to about 40 to 50% of the distance A.
[0050]
The length (dimension) H in the thickness direction of the annular body 71b is set to about 90 to 95% (a value slightly smaller than the groove width B) of the groove width B of the annular groove 70 shown in FIG. Is preferred. That is, by ensuring such a relationship between the thickness direction length H of the annular body 71b and the groove width of the annular groove 70, the annular body 71b is sufficiently affected even when hydraulic pressure is applied to the internal space β. Stable stability can be maintained.
If the behavior of the annular body 71b is sufficiently stable in a state where hydraulic pressure is applied to the internal space β, a constant surface pressure distribution is secured on the sliding surface S, and the sliding surface S and the rod portion are secured. This is because the sealing performance between 20a is also stabilized.
(Verification test)
A verification experiment was performed to compare the sealing performance obtained when the rod packing 71 according to the present embodiment was applied as a sealing device for a hydraulic drive cylinder with that of a conventional sealing device.
[0051]
FIG. 5 is an explanatory diagram schematically showing the apparatus used in the first verification experiment and the contents of the experiment. As shown in the figure, the test apparatus 200 used in the first verification experiment is a reciprocating motion housed in an annular groove at the periphery of a shaft member (rod portion) 220, similar to the hydraulic cylinder 100 shown in FIG. A space (hydraulic side space) γ filled with oil of a predetermined hydraulic pressure is sealed from the outside (atmosphere side space) using a seal (sealing device).
[0052]
In the first verification test, when the rod part 220 is continuously reciprocated at an operation speed (sliding speed) of 0.15 m / sec, the amount of oil leakage (accumulation amount) corresponding to the integrated distance for the operation. ) Was measured.
[0053]
FIG. 6 shows, as a result of the first verification test, the transition of oil leakage amount (●) observed when the rod packing 71 according to the present embodiment is applied, and the previous FIG. 12B. It is a graph which shows together the transition ((circle)) of the amount of oil leaks seen when applying the conventional sealing device which was applied on the same axis | shaft (integrated distance).
[0054]
As shown in FIG. 6, when the conventional sealing device is applied, the leakage amount increases as the sliding distance increases. However, when the rod packing 71 according to the present embodiment is applied, the integrated distance is set. Even when the rod part 220 is operated for 50 km or more, it was revealed that almost no oil leakage occurred.
[0055]
Next, the second verification test will be described.
[0056]
In the first verification test described above, the rod portion was continuously reciprocated at a predetermined operation speed (sliding speed), and the amount of oil leakage (integrated amount) corresponding to the integrated distance required for the operation was measured. On the other hand, in the second verification test, the rod portion is similarly reciprocated at a predetermined operating speed (sliding speed), and the hydraulic pressure applied to the hydraulic side space γ is changed, so that the outer periphery of the sealing device and the rod portion is changed. How the sliding resistance with respect to the surface changes varies when the rod packing (sealing device) 71 in the present embodiment is applied and the conventional sealing device (U packing) shown in FIG. And the results were compared with each other. In addition, the test apparatus 200 (FIG. 5) similar to the 1st verification test was used also for the 2nd verification test.
[0057]
FIG. 7 shows the change in sliding resistance observed when the rod packing 71 according to the present embodiment is applied as a result of the second verification test, and the conventional sealing device shown in FIG. It is a graph which shows the change of the sliding resistance seen in the case of applying together on the same axis | shaft (magnitude | size of hydraulic pressure).
[0058]
As shown in FIG. 7, when the conventional sealing device is applied, the sliding resistance increases as the hydraulic pressure applied to the hydraulic side space γ increases. However, the rod packing 71 according to the present embodiment is applied. In this case, it became clear that even when a hydraulic pressure of 20 MPa or more was applied to the hydraulic side space γ, the sliding resistance hardly increased.
[0059]
That is, in a sealing structure using a conventional sealing device (see FIGS. 12 (a) and 12 (b)) in which an elastic body and a resin member are combined, the wear resistance of the sealing device itself is improved, and the sliding at the sealing portion is performed. While the function of reducing dynamic resistance is achieved, it has been difficult to obtain sufficient sealing performance.
[0060]
Similarly, a sealing structure using a so-called U-packing (see FIG. 11) can obtain a sufficient sealing property under normal use conditions. However, poor lubrication occurs particularly when used under high pressure and high speed conditions. It was easy to wear the sealing device itself. Furthermore, as described above in the prior art, such poor lubrication promotes an increase in sliding resistance and deteriorates the operability of the hydraulic cylinder under high pressure conditions.
[0061]
In this regard, the rod packing 71 according to the present embodiment is employed to seal a space (hydraulic side space) filled with oil of a predetermined hydraulic pressure from the outside (atmosphere side space), for example, at the periphery of the shaft member rod portion. If the structure for this is constructed | assembled, various functions, such as improvement of the abrasion resistance of sealing device itself, reduction of the sliding resistance in a seal | sticker site | part, and the improvement of sealing performance, can be made compatible at a high level now.
[0062]
In the present embodiment, an annular ring is provided around the inner peripheral surface of the rod sliding portion 11c to seal the hydraulic oil filled in the internal space β from the outside in the gap between the rod portion 20a and the rod sliding portion 11c. The sealing device of the present invention was applied to the sealing device (rod packing 71) mounted in the groove (see FIG. 1 and the like). Not limited to this, as shown in FIGS. 1 and 8, for example, the hydraulic oil filled in the internal space α and the hydraulic oil filled in the internal space β are sealed from each other in the gap between the plunger portion 20 b and the cylinder 10. The present invention may be applied to the piston packing 41 as a sealing device. That is, one of the outer peripheral surfaces of the outer peripheral surface of a shaft member (for example, a piston or a rod) that reciprocates in the axial direction and the inner peripheral surface of a passage member (for example, a cylinder) that surrounds the outer periphery of the reciprocating shaft member. If it is a sealing device that is attached to an annular groove formed on the circumference and seals the gap between the outer peripheral surface of the coaxial member and the inner peripheral surface of the passage member, the boundary between the two spaces filled with oil is sealed. The sealing device of the present invention can be applied regardless of whether it is to seal the boundary between two spaces filled with oil on one side and gas on the other side. In addition, even when an annular groove is formed around the outer peripheral surface of the shaft member and a sealing device is attached to the annular groove, an annular groove is formed around the inner peripheral surface of the passage member and the sealing device is attached to the annular groove. Even in this case, by applying the sealing device of the present invention, an effect equivalent to or equivalent to the present embodiment can be obtained.
[0063]
For example, as shown in FIG. 9A as a cross-sectional shape, the slopes S2 and S3 of the convex portions formed on the sliding surface S of the annular body 71b may be curved surfaces. Further, as shown in FIG. 9B, the sliding surface S of the annular body 71b is not provided with a surface S1 (see FIG. 4) substantially parallel to the outer peripheral surface of the rod portion or a chamfered portion S4. An effect similar to that of the embodiment can be achieved.
[0064]
Further, if a plurality of sealing devices having the same structure as the rod packing 71 employed in the present embodiment are attached in parallel to the outer peripheral surface (annular groove) of the shaft member or the inner peripheral surface of the passage member, one layer can be obtained. High sealing performance can also be obtained.
[0065]
In this embodiment, the PTFE resin is used as the material of the annular body 71b. However, other resin materials having appropriate elasticity and hardness, such as PFA, ETFE, POM, PBT, etc. are used. Also good.
[0066]
Moreover, it is preferable that a filler is mixed in these resin materials including the PTFE resin so as to enhance the pressure resistance and wear resistance of the annular body.
[0067]
Further, the cross-sectional shape of the O-ring 71a is not limited to a perfect circle shape, and may be another shape such as an ellipse, a polygon, an X shape, or the like. In addition, for example, nitrile rubber, hydrogenated nitrile rubber, fluororubber, etc. (various rubber-like elasticity with sufficient elasticity, heat resistance, and chemical resistance (oil resistance), such as nitrile rubber) By adopting a material, an effect equivalent to or equivalent to the present embodiment can be obtained.
[0068]
【The invention's effect】
According to the first aspect of the present invention, the wear resistance of the sealing device itself obtained by applying a configuration in which an annular resin member having both appropriate hardness and elasticity is slid with the mating member at the sealing portion is improved. The effect of reducing sliding resistance and the sealing performance are compatible at a high level.
[0069]
According to the second aspect of the present invention, the sealing performance required for the sealing device can be easily obtained from the relationship between the inclination angles of the two slopes formed at both hems of the convex portion. In addition, adjustment and member processing for obtaining desired sealing performance can be easily performed.
[0070]
According to the invention described in claim 3, even if the reciprocating motion of the shaft member is in a high speed state or under a high pressure condition, the protrusion of the annular resin member from the annular groove is suitably suppressed. .
[0071]
According to the invention described in claim 4, when the shape of the convex portion is stabilized, the surface pressure distribution received from the opposing surface is kept constant for the convex portion, and between the two (the convex portion and the opposing surface). The sealing performance in the case is improved.
[0072]
According to the fifth aspect of the present invention, sufficient sealing performance in the annular groove is ensured, while a sufficient biasing force toward the opposed peripheral surface of the annular groove can be easily obtained for the annular resin member. become.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing the appearance and internal structure of an embodiment in which a sealing device of the present invention is applied to a rod packing of a hydraulic drive cylinder.
FIG. 2 is a cross-sectional view showing the shape of a cut surface obtained by cutting the rod packing according to the embodiment along the radial direction thereof.
FIG. 3 is a view schematically showing a sealing structure formed by the rod packing according to the embodiment.
FIG. 4 is an enlarged cross-sectional view showing the shape of a cut surface of an annular body that forms part of the rod packing according to the embodiment;
FIG. 5 is an explanatory view schematically showing an apparatus used in a first verification experiment for verifying a sealing function obtained by the embodiment and the content of the experiment.
FIG. 6 is a graph showing changes in the amount of oil leakage according to continuous reciprocation by a hydraulic cylinder for each of the rod packing of the embodiment and the conventional device.
FIG. 7 is a graph showing changes in sliding resistance according to the hydraulic pressure applied to the sealed hydraulic space for each of the rod packing of the embodiment and the conventional apparatus. The graph shown about each of the rod packing of this Embodiment, and the conventional apparatus.
FIG. 8 is a cross-sectional view schematically showing an embodiment in which the sealing device of the present invention is applied to a piston packing such as a hydraulic piston.
FIG. 9 is a sectional view schematically showing a modification of the embodiment in which the sealing device of the present invention is applied to a rod packing of a hydraulic cylinder.
FIG. 10 is a cross-sectional view schematically showing a conventional sealing device and a sealing structure formed by the sealing device.
FIG. 11 is a schematic diagram schematically illustrating the structure and function of an example of a conventional sealing device.
FIG. 12 is a cross-sectional view schematically showing an example of a conventional sealing device having a two-layer annular structure.
[Explanation of symbols]
10 Cylinder type outer shell (cylinder)
11 passage
11a bottom
11b Plunger sliding part
11c Rod sliding part
11d Open end
12,13 Oil hole
20 piston
20a Rod part
20b Plunger part
30, 40, 50, 60, 70, 80 annular groove
31 Wear Ring
41 Piston packing
51 Contamination seal
61 Dust seal
71 Rod packing
71a O-ring
71b Annular (made of resin)
81 Buffering
100 Hydraulic drive cylinder (hydraulic cylinder)
200 test equipment
α, β inner space
S Sliding surface
S (S2, S3) Slope
S (S4) Chamfer
W side (atmosphere side)

Claims (1)

軸方向に往復動する軸部材の外周面、および該往復動する軸部材の外周を取り囲む通路部材の内周面のうち、何れか一方の周面上に周回形成された環状溝に取り付けられ、
前記軸部材の外周面と前記通路部材の内周面との間隙を密封する密封装置において、
前記環状溝の対向周面に摺接する摺動面を有する環状の樹脂部材と、前記環状溝の溝底に周設され、前記樹脂部材を、該溝底から前記摺動面に向かう方向に付勢する環状の弾性部材と、を備え、且つ前記環状の樹脂部材の摺動面は、前記軸方向に沿って高圧空間側に偏倚するように相異なる傾斜角の斜面によって両裾が形成された凸部を有し、
前記樹脂部材は、前記環状溝の側壁に対向する反圧力側の側面と前記摺動面との境界が面取りされとともに、前記環状溝の側壁に対向する高圧空間側の側面から、前記凸部の両裾のうち傾斜角の大きい斜面で形成される高圧空間側の裾の基端にかけて、前記軸方向とほぼ平行をなす平坦な面とし、前記傾斜角の大きい斜面の軸方向長さは、前記樹脂部材本体の軸方向長さの15〜20%に設定されることを特徴とする密封装置。
Of the outer peripheral surface of the shaft member that reciprocates in the axial direction and the inner peripheral surface of the passage member that surrounds the outer periphery of the reciprocating shaft member, it is attached to an annular groove formed on one of the peripheral surfaces,
In a sealing device for sealing a gap between the outer peripheral surface of the shaft member and the inner peripheral surface of the passage member,
An annular resin member having a sliding surface slidably contacting the opposing circumferential surface of the annular groove, and provided around the groove bottom of the annular groove, the resin member being attached in a direction from the groove bottom toward the sliding surface. And the sliding surface of the annular resin member has both hems formed by inclined surfaces having different inclination angles so as to be biased toward the high-pressure space along the axial direction. Has a convex part,
The resin member, said with boundary facing the side wall of the annular groove and the side surface of the counter-pressure side to the sliding surface Ru is chamfered from the side surface of the high-pressure space side facing the side wall of the annular groove, the convex portion A flat surface substantially parallel to the axial direction from the base end of the skirt on the high-pressure space side formed by a slope with a large inclination angle between both hems of the above, the axial length of the slope with a large inclination angle is The sealing device is set to 15 to 20% of the axial length of the resin member main body .
JP2000167438A 2000-06-05 2000-06-05 Sealing device Expired - Lifetime JP4797226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167438A JP4797226B2 (en) 2000-06-05 2000-06-05 Sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167438A JP4797226B2 (en) 2000-06-05 2000-06-05 Sealing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011087762A Division JP2011144934A (en) 2011-04-11 2011-04-11 Sealing structure

Publications (2)

Publication Number Publication Date
JP2001349438A JP2001349438A (en) 2001-12-21
JP4797226B2 true JP4797226B2 (en) 2011-10-19

Family

ID=18670594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167438A Expired - Lifetime JP4797226B2 (en) 2000-06-05 2000-06-05 Sealing device

Country Status (1)

Country Link
JP (1) JP4797226B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040994A1 (en) * 2008-08-05 2010-02-11 Robert Bosch Gmbh sealing arrangement
WO2010128606A1 (en) * 2009-05-08 2010-11-11 Nok株式会社 Water-proof structure for opening of case of appliance
DE102009046975B4 (en) * 2009-11-23 2021-08-19 Robert Bosch Gmbh Sealing ring, especially for a hydraulic piston pump
DK177690B1 (en) * 2011-08-30 2014-03-03 Man Diesel & Turbo Deutschland Scraper ring for scraping off a rod and reciprocating piston engine provided with such a scraper ring
DE102014202796A1 (en) * 2014-02-17 2015-08-20 Robert Bosch Gmbh Piston fuel pump for an internal combustion engine
FR3066312B1 (en) * 2017-05-12 2019-06-28 Valeo Equipements Electriques Moteur STARTER CONTACTOR COMPRISING A SEALING DEVICE, AND STARTER COMPRISING SUCH A CONTACTOR
JP7259479B2 (en) * 2019-03-28 2023-04-18 株式会社アドヴィックス piston pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087174Y2 (en) * 1990-10-23 1996-03-04 カヤバ工業株式会社 Sealing device
JP2523646Y2 (en) * 1990-12-14 1997-01-29 エヌオーケー株式会社 Sealing device
JP3609634B2 (en) * 1998-11-04 2005-01-12 トヨタ自動車株式会社 Cylinder device

Also Published As

Publication number Publication date
JP2001349438A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
US7828300B2 (en) Sealing device for reciprocating shaft
US20120286478A1 (en) Sealing structure
JPWO2006126451A1 (en) Lip type seal
EP1784593A2 (en) Cover seals with latching locking features
JP6987221B2 (en) Pump mechanism for hydraulic units with pump pistons
JP4887718B2 (en) Sealing device
JP4797226B2 (en) Sealing device
US7669516B2 (en) Cylinder-piston arrangement
CN107002880A (en) Sealing device
JP2009257421A (en) Shaft seal structure of fluid machine
JP2011144934A (en) Sealing structure
JP4253924B2 (en) Valve stem seal
JP5447787B2 (en) Reciprocating sealing device
JP5574090B2 (en) Reciprocating seal ring
JP2005201366A (en) Shaft seal device and compressor
JP6779167B2 (en) Arrangement structure of sealing material
JP5531386B2 (en) Sealing system
WO1991010088A1 (en) Spring energized seal assembly
JP2007127148A (en) Piston bearing
JP4143786B2 (en) Sealing device
JP5494329B2 (en) Sealing device
JPH07269733A (en) Ring packing
JP2013185702A (en) Sliding seal and combined sliding seal
JP2005036827A (en) Sealing ring
JP2017166597A (en) Sealing structure and sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4797226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term