JP4795109B2 - Carbon nanotube manufacturing apparatus and carbon nanotube manufacturing method - Google Patents

Carbon nanotube manufacturing apparatus and carbon nanotube manufacturing method Download PDF

Info

Publication number
JP4795109B2
JP4795109B2 JP2006134810A JP2006134810A JP4795109B2 JP 4795109 B2 JP4795109 B2 JP 4795109B2 JP 2006134810 A JP2006134810 A JP 2006134810A JP 2006134810 A JP2006134810 A JP 2006134810A JP 4795109 B2 JP4795109 B2 JP 4795109B2
Authority
JP
Japan
Prior art keywords
carbon
vacuum chamber
anode electrode
carbon nanotube
cathode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006134810A
Other languages
Japanese (ja)
Other versions
JP2007302536A (en
Inventor
阿川  義昭
晴邦 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006134810A priority Critical patent/JP4795109B2/en
Publication of JP2007302536A publication Critical patent/JP2007302536A/en
Application granted granted Critical
Publication of JP4795109B2 publication Critical patent/JP4795109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はカーボンナノチューブ製造装置にかかり、特に、捕集効率の高いカーボンナノチューブ製造装置に関する。   The present invention relates to a carbon nanotube production apparatus, and more particularly to a carbon nanotube production apparatus with high collection efficiency.

従来のカーボンナノチューブ製造装置を図3に示す。
このカーボンナノチューブ製造装置101は真空槽111を有しており、該真空槽111の内部には、アノード電極121とカソード電極122とが配置されている。
A conventional carbon nanotube production apparatus is shown in FIG.
The carbon nanotube production apparatus 101 has a vacuum chamber 111, and an anode electrode 121 and a cathode electrode 122 are arranged inside the vacuum chamber 111.

真空槽111には真空排気系115とガス導入系116とが接続されており、真空排気系115によって真空槽111内部を真空排気した後、ガス導入系116から水素ガスとアルゴンガスの混合ガスを真空槽111内に導入する。   An evacuation system 115 and a gas introduction system 116 are connected to the vacuum chamber 111, and after the inside of the vacuum chamber 111 is evacuated by the evacuation system 115, a mixed gas of hydrogen gas and argon gas is supplied from the gas introduction system 116. It introduces into the vacuum chamber 111.

アノード電極121とカソード電極122にはアーク電源123が接続されている。アノード電極121と、カソード電極122とは、所定間隔を開けられており、アーク電源123によってアノード電極121とカソード電極122の間に電圧を印加すると、その間にアーク放電が発生する。   An arc power source 123 is connected to the anode electrode 121 and the cathode electrode 122. The anode electrode 121 and the cathode electrode 122 are spaced apart from each other. When a voltage is applied between the anode electrode 121 and the cathode electrode 122 by the arc power source 123, an arc discharge is generated therebetween.

アノード電極121とカソード電極122はグラファイトで構成されており、アノード電極121には鉄粉等の触媒体が含有されている。
アーク放電によってアノード電極121から炭素蒸気と触媒体蒸気が放出され、蜘蛛の巣状の炭素生成物が生成され、上方に舞い上がる。
The anode electrode 121 and the cathode electrode 122 are made of graphite, and the anode electrode 121 contains a catalyst body such as iron powder.
By the arc discharge, the carbon vapor and the catalyst body vapor are released from the anode electrode 121, and a cobweb-like carbon product is generated and soars upward.

アノード電極121とカソード電極122の上方には捕集部材113が配置されており、舞い上がった炭素生成物は捕集部材113に付着し、捕集される。炭素生成物中にはカーボンナノチューブが含有されており、捕集部材113から炭素生成物を回収することでカーボンナノチューブを得ることができる。
捕集部材113には冷却水の循環路126が接続されており、一定温度に維持される。
特開2000−203821号公報 特開2002−234713号公報 特開2002−234715号公報 特開2003−277032号公報 特開2004−2103号公報 特開2004−331277号公報
A collection member 113 is disposed above the anode electrode 121 and the cathode electrode 122, and the soared carbon product adheres to the collection member 113 and is collected. The carbon product contains carbon nanotubes, and the carbon nanotubes can be obtained by collecting the carbon products from the collecting member 113.
A cooling water circulation path 126 is connected to the collecting member 113 and is maintained at a constant temperature.
JP 2000-203821 A JP 2002-234713 A JP 2002-234715 A JP 2003-277032 A Japanese Patent Laid-Open No. 2004-2103 JP 2004-331277 A

上記のカーボンナノチューブ製造装置101では、捕集部材113の表面のうち、アノード電極121の先端及びカソード電極122の先端に面した領域が炭素生成物で覆われると、それ以上炭素生成物は付着しなくなり、炭素生成物は、真空槽111の内壁等、捕集部材113の表面以外の部分に付着してしまう。それらの炭素生成物は回収が困難であり、その結果、カーボンナノチューブの回収率が低下し、また、真空槽111の内部の清掃作業も必要になる等問題が多い。   In the carbon nanotube manufacturing apparatus 101 described above, when the region facing the tip of the anode electrode 121 and the tip of the cathode electrode 122 on the surface of the collection member 113 is covered with the carbon product, the carbon product adheres further. The carbon product adheres to portions other than the surface of the collecting member 113 such as the inner wall of the vacuum chamber 111. These carbon products are difficult to recover, and as a result, the recovery rate of carbon nanotubes decreases, and there are many problems such as the need to clean the inside of the vacuum chamber 111.

上記課題を解決するため、本発明は、真空槽と、前記真空槽内に互いに離間して配置されたアノード電極とカソード電極と、前記アノード電極と前記カソード電極間に電圧を印加するアーク電源とを有し、前記アノード電極と前記カソード電極はそれぞれ炭素を含有し、前記真空槽内を真空排気して所望種類のガスを導入し、前記アノード電極と前記カソード電極の間にアーク放電を生じさせると、前記アノード電極側でカーボンナノチューブを含む炭素生成物が生成されるカーボンナノチューブ製造装置であって、前記真空槽の内部に、回転可能な円筒状の捕集部材が配置され、前記捕集部材の円筒の側面は、前記アノード電極の前記アーク放電が生じた部分に向けられ、前記捕集部材は、前記炭素生成物を前記円筒状の側面で回転しながら捕集可能に構成されたカーボンナノチューブ製造装置である。
また、本発明は、前記捕集部材には冷却装置が接続され、前記捕集部材の側面を冷却できるように構成されたカーボンナノチューブ製造装置である。
また、本発明は、真空槽内に一対の電極を配置し、前記真空槽内を真空排気して所望種類のガスを導入し、前記一対の電極間にアーク放電を生じさせ、カーボンナノチューブを含む炭素生成物を発生させるカーボンナノチューブの製造方法であって、前記真空槽内に円筒形状の捕集部材を配置し、前記捕集部材を回転させ、前記炭素生成物を前記捕集部材の円筒側面に付着させて捕集するカーボンナノチューブの製造方法である。
また、本発明は、前記捕集部材を冷却しながら前記炭素生成物を捕集するカーボンナノチューブの製造方法である。
In order to solve the above problems, the present invention provides a vacuum chamber, an anode electrode and a cathode electrode that are spaced apart from each other in the vacuum chamber, and an arc power source that applies a voltage between the anode electrode and the cathode electrode. The anode electrode and the cathode electrode each contain carbon, and the vacuum chamber is evacuated to introduce a desired type of gas, and an arc discharge is generated between the anode electrode and the cathode electrode. A carbon nanotube production apparatus in which a carbon product containing carbon nanotubes is produced on the anode electrode side, wherein a rotatable cylindrical collection member is disposed inside the vacuum chamber, and the collection member The side surface of the cylinder is directed to the portion of the anode electrode where the arc discharge has occurred, and the collecting member rotates the carbon product on the cylindrical side surface. A collection can configured carbon nanotube production apparatus.
In addition, the present invention is the carbon nanotube manufacturing apparatus configured such that a cooling device is connected to the collecting member and a side surface of the collecting member can be cooled.
The present invention also includes a pair of electrodes in a vacuum chamber, evacuating the vacuum chamber to introduce a desired type of gas, causing an arc discharge between the pair of electrodes, and including a carbon nanotube. A carbon nanotube production method for generating a carbon product, wherein a cylindrical collection member is disposed in the vacuum chamber, the collection member is rotated, and the carbon product is disposed on a cylindrical side surface of the collection member. It is the manufacturing method of the carbon nanotube which adheres and collects.
Moreover, this invention is a manufacturing method of the carbon nanotube which collects the said carbon product, cooling the said collection member.

本発明は上記のように構成されており、円筒形状の捕集部材が回転されているので、その側面には、全周に亘って炭素生成物が付着できる。従って、回転しない場合に比べ、炭素生成物を捕集可能な表面積が広くなっており、捕集されずに浮遊し、他の部材の表面に付着する炭素生成物を減少させることができる。   Since the present invention is configured as described above and the cylindrical collecting member is rotated, a carbon product can be attached to the side surface over the entire circumference. Therefore, compared with the case where it does not rotate, the surface area which can collect a carbon product becomes large, it can float without being collected, and the carbon product adhering to the surface of another member can be reduced.

カーボンナノチューブの捕集効率が高い。捕集部材の側面以外の部分に炭素生成物が付着しない。   The collection efficiency of carbon nanotubes is high. A carbon product does not adhere to parts other than the side of a collection member.

図1の符号10は、本発明の一例のカーボンナノチューブ製造装置を示している。
このカーボンナノチューブ製造装置10は真空槽11を有している。
真空槽11の内部にはカーボンナノチューブ発生装置12と捕集部材13とが配置されている。
Reference numeral 10 in FIG. 1 indicates a carbon nanotube manufacturing apparatus according to an example of the present invention.
The carbon nanotube production apparatus 10 has a vacuum chamber 11.
A carbon nanotube generator 12 and a collection member 13 are disposed inside the vacuum chamber 11.

カーボンナノチューブ発生装置12は、アノード電極21とカソード電極22を有している。真空槽11の外部にはアーク電源23が配置されており、アノード電極21とカソード電極22はアーク電源23に接続され、アノード電極21には正電圧、カソード電極22には負電圧が印加されるように構成されている。   The carbon nanotube generator 12 has an anode electrode 21 and a cathode electrode 22. An arc power source 23 is disposed outside the vacuum chamber 11, and the anode electrode 21 and the cathode electrode 22 are connected to the arc power source 23, and a positive voltage is applied to the anode electrode 21 and a negative voltage is applied to the cathode electrode 22. It is configured as follows.

アノード電極21とカソード電極22は棒状であり、その先端が互いに向けられている。
アノード電極21とカソード電極22とは同じ高さに配置され、水平方向に互いに離間されている。
アノード電極21とカソード電極22には不図示の水平方向移動機構が接続されており、アノード電極21とカソード電極22の間の距離Wの大きさを変えることができるように構成されている。
The anode electrode 21 and the cathode electrode 22 are rod-shaped and their tips are directed toward each other.
The anode electrode 21 and the cathode electrode 22 are disposed at the same height and are separated from each other in the horizontal direction.
A horizontal movement mechanism (not shown) is connected to the anode electrode 21 and the cathode electrode 22, and the distance W between the anode electrode 21 and the cathode electrode 22 can be changed.

真空槽11には真空排気系15とガス導入系16とが接続されており、前記真空排気系15によって真空槽11の内部を真空排気し、前記ガス導入系16から所望種類のガスを導入し、真空槽11の内部を導入ガス雰囲気にし、アーク電源23によって、アノード電極21とカソード電極22の間に電圧を印加すると、導入したガスの雰囲気中でアノード電極21とカソード電極22の間にアーク放電が発生するように構成されている。   An evacuation system 15 and a gas introduction system 16 are connected to the vacuum chamber 11. The inside of the vacuum chamber 11 is evacuated by the vacuum evacuation system 15, and a desired kind of gas is introduced from the gas introduction system 16. When the inside of the vacuum chamber 11 is set to an introduction gas atmosphere and a voltage is applied between the anode electrode 21 and the cathode electrode 22 by the arc power source 23, an arc is generated between the anode electrode 21 and the cathode electrode 22 in the atmosphere of the introduced gas. It is comprised so that discharge may generate | occur | produce.

捕集部材13は、アノード電極21の先端とカソード電極22の先端の上方に配置されている。
捕集部材13は円筒形であり、符号18は捕集部材13の二底面の中心を通る中心軸線である。
捕集部材13は、中心軸線18が水平になるように横倒しの姿勢で配置されており、その円筒形側面が、隙間Wに向けられている。
捕集部材13には、不図示の回転機構が取りつけられており、中心軸線18を中心に回転できるように構成されている。
The collection member 13 is disposed above the tip of the anode electrode 21 and the tip of the cathode electrode 22.
The collecting member 13 has a cylindrical shape, and reference numeral 18 denotes a central axis passing through the center of the two bottom surfaces of the collecting member 13.
The collection member 13 is disposed in a laid-down posture so that the central axis 18 is horizontal, and the cylindrical side surface is directed to the gap W.
A rotation mechanism (not shown) is attached to the collection member 13 and is configured to be rotatable about the central axis 18.

捕集部材13には、熱媒体循環路26が接続されている。熱媒体循環路26は熱交換器に接続されており、熱交換器を通った液体の熱媒体(水やオイル等)が熱媒体循環路26から捕集部材13の内部に供給され、捕集部材13の内部を通った熱媒体が熱循環路26に戻り、更に熱交換器に戻るように構成されている。   A heat medium circulation path 26 is connected to the collection member 13. The heat medium circulation path 26 is connected to a heat exchanger, and a liquid heat medium (water, oil, etc.) that has passed through the heat exchanger is supplied from the heat medium circulation path 26 to the inside of the collecting member 13 and collected. The heat medium passing through the inside of the member 13 returns to the heat circulation path 26 and further returns to the heat exchanger.

上記カーボンナノチューブ製造装置10を用いてカーボンナノチューブを製造する工程について説明する。
真空排気系15により、真空槽11の内部を真空排気し、10-5Torrの圧力に達したところで、ガス導入系16によって真空槽11内に水素ガスとアルゴンガスの混合ガスを導入する。
A process for producing carbon nanotubes using the carbon nanotube production apparatus 10 will be described.
The inside of the vacuum chamber 11 is evacuated by the evacuation system 15, and when the pressure reaches 10 −5 Torr, a mixed gas of hydrogen gas and argon gas is introduced into the vacuum chamber 11 by the gas introduction system 16.

水素ガスとアルゴンガスの混合ガスの導入により、真空槽11内部が水素−アルゴンガス雰囲気となり、圧力が60Torrで安定したところで、アノード電極21とカソード電極22の間にアーク放電を発生させる。   By introducing a mixed gas of hydrogen gas and argon gas, the inside of the vacuum chamber 11 becomes a hydrogen-argon gas atmosphere, and when the pressure is stabilized at 60 Torr, arc discharge is generated between the anode electrode 21 and the cathode electrode 22.

アノード電極21とカソード電極22には不図示の移動機構が接続されており、先端間の距離Wの大きさを変更できるように構成されている。
自動制御により、距離Wの大きさは、アノード電極21とカソード電極22の間の電圧が一定になるように調節される。
A moving mechanism (not shown) is connected to the anode electrode 21 and the cathode electrode 22 so that the distance W between the tips can be changed.
By the automatic control, the magnitude of the distance W is adjusted so that the voltage between the anode electrode 21 and the cathode electrode 22 becomes constant.

アノード電極21とカソード電極22はグラファイトで構成されており、特にアノード電極21には鉄粉等の触媒体が含有されている。触媒体は含浸によってアノード電極21に含有させることができる。   The anode electrode 21 and the cathode electrode 22 are made of graphite. In particular, the anode electrode 21 contains a catalyst body such as iron powder. The catalyst body can be contained in the anode electrode 21 by impregnation.

アーク放電によってアノード電極21が徐々に蒸発し、それによって炭素蒸気が放出される。その蒸気はカソード電極22に到達するとカソード電極22上に炭素生成物が成長する。   The anode electrode 21 is gradually evaporated by the arc discharge, and thereby carbon vapor is released. When the vapor reaches the cathode electrode 22, a carbon product grows on the cathode electrode 22.

アノード電極21からは触媒体の蒸気も放出されており、触媒体の蒸気が炭素蒸気に作用し、カーボンナノチューブが生成される。従って、炭素生成物中にはカーボンナノチューブが含まれている。   The catalyst body vapor is also released from the anode electrode 21, and the catalyst body vapor acts on the carbon vapor to produce carbon nanotubes. Therefore, carbon nanotubes are contained in the carbon product.

カーボンナノチューブのうち、特に、単層のカーボンナノチューブは、カソード電極22の表面から離れ、上方に舞い上がり、捕集部材13の円筒側面に到達し、接触するとそこに付着する。   Among the carbon nanotubes, in particular, single-walled carbon nanotubes move away from the surface of the cathode electrode 22, rise upward, reach the cylindrical side surface of the collecting member 13, and attach to the cylindrical side surface when contacting.

捕集部材13は上下移動機構に接続され、上下動が可能に構成されている。捕集部材13とアノード電極21及びカソード電極22の間は、アーク放電が生じているときは近づけられ、カーボンナノチューブを回収する時は離されるように構成されている。   The collection member 13 is connected to a vertical movement mechanism and is configured to be movable up and down. The collection member 13 and the anode electrode 21 and the cathode electrode 22 are configured to approach each other when arc discharge is generated, and to be separated when collecting the carbon nanotubes.

アーク放電が生じている間、捕集部材13は図2に示すように中心軸線18を中心に回転されており、単層のカーボンナノチューブが捕集部材13の側面に付着すると回転によって巻き取られる。従って、捕集部材13の一部表面にカーボンナノチューブが集中して付着することがなく、単層のカーボンナノチューブを高効率で捕集することができる。図2の符号Sは、捕集部材13の側面を示している。
アーク放電を10分間程度継続させると、純度50〜60%の単層カーボンナノチューブが200mg得られる。
While the arc discharge is occurring, the collecting member 13 is rotated about the central axis 18 as shown in FIG. 2, and when the single-walled carbon nanotubes adhere to the side surface of the collecting member 13, the collecting member 13 is wound by rotation. . Therefore, carbon nanotubes do not concentrate and adhere to a part of the surface of the collecting member 13, and single-walled carbon nanotubes can be collected with high efficiency. A symbol S in FIG. 2 indicates a side surface of the collecting member 13.
When arc discharge is continued for about 10 minutes, 200 mg of single-walled carbon nanotubes having a purity of 50 to 60% are obtained.

捕集部材13は、アーク放電によって加熱されるが、捕集部材13の内部には低温の熱媒体が流れることで冷却され、一定温度を維持するようになっている。
他方、多層のカーボンナノチューブはカソード電極22上に付着しており、カソード電極22からは多層のカーボンナノチューブを捕集することができる。
Although the collection member 13 is heated by arc discharge, the collection member 13 is cooled by flowing a low-temperature heat medium in the collection member 13 to maintain a constant temperature.
On the other hand, the multi-walled carbon nanotubes are attached on the cathode electrode 22, and the multi-walled carbon nanotubes can be collected from the cathode electrode 22.

アノード電極21とカソード電極22は、その一端が回転軸31、32の先端に取りつけられており、回転軸31、32が回転すると、アノード電極21とカソード電極22は、図2に示すように、それぞれ、水平な中心軸線を中心に回転するように構成されており、アーク放電を発生させながら回転させることでアノード電極21の先端が均一に蒸発し、カソード電極22の先端又は側面に均一に炭素生成物が成長するようになっている。図2の符号33、34は、アノード電極21とカソード電極22の回転軸線をそれぞれ示している。   One end of each of the anode electrode 21 and the cathode electrode 22 is attached to the tip of the rotary shafts 31 and 32. When the rotary shafts 31 and 32 are rotated, the anode electrode 21 and the cathode electrode 22 are, as shown in FIG. Each is configured to rotate about a horizontal central axis, and by rotating while generating arc discharge, the tip of the anode electrode 21 is uniformly evaporated, and the tip or side surface of the cathode electrode 22 is uniformly carbonized. The product is supposed to grow. Reference numerals 33 and 34 in FIG. 2 indicate rotation axes of the anode electrode 21 and the cathode electrode 22, respectively.

また、図1の符号51〜53は真空排気系のバルブ、符号56は油拡散ポンプなどの高真空ポンプ、符号57は油回転ポンプなどの低真空ポンプである。符号61、62はガス導入系のバルブであり、符号63はマスフローコントローラである。   Further, reference numerals 51 to 53 in FIG. 1 denote vacuum exhaust system valves, reference numeral 56 denotes a high vacuum pump such as an oil diffusion pump, and reference numeral 57 denotes a low vacuum pump such as an oil rotary pump. Reference numerals 61 and 62 are gas introduction valves, and reference numeral 63 is a mass flow controller.

なお,上記触媒体はFeであったが,他に,Co ,Ni ,Sc ,V ,Cr ,Mn ,Fe ,Cu ,Y ,Zr ,Nb ,Mo ,Pd ,Ta ,W ,Au ,Th ,U ,La ,Ce ,Pr ,Nd ,Gd ,Tb ,Dy ,Ho ,Er ,Tm ,Lu等の一種、又は二種以上の金属を用いることができる。   In addition, although the said catalyst body was Fe, besides, Co, Ni, Sc, V, Cr, Mn, Fe, Cu, Y, Zr, Nb, Mo, Pd, Ta, W, Au, Th, U, U , La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, etc., or two or more metals can be used.

本発明は、単層のカーボンナノチューブや多層のカーボンナノチューブを生産することができる   The present invention can produce single-walled carbon nanotubes and multi-walled carbon nanotubes.

本発明のカーボンナノチューブ製造装置Carbon nanotube production apparatus of the present invention 捕集部材の回転を説明するための図The figure for demonstrating rotation of a collection member 従来技術のカーボンナノチューブ製造装置Conventional carbon nanotube production equipment

符号の説明Explanation of symbols

1……カーボンナノチューブ製造装置
11……真空槽
13……捕集部材
21……アノード電極
22……カソード電極
23……アーク電源
S……前記捕集部材の側面
DESCRIPTION OF SYMBOLS 1 ... Carbon nanotube manufacturing apparatus 11 ... Vacuum chamber 13 ... Collection member 21 ... Anode electrode 22 ... Cathode electrode 23 ... Arc power supply S ... Side surface of the collection member

Claims (4)

真空槽と、
前記真空槽内に互いに離間して配置されたアノード電極とカソード電極と、
前記アノード電極と前記カソード電極間に電圧を印加するアーク電源とを有し、
前記アノード電極と前記カソード電極はそれぞれ炭素を含有し、前記真空槽内を真空排気して所望種類のガスを導入し、前記アノード電極と前記カソード電極の間にアーク放電を生じさせると、前記アノード電極側でカーボンナノチューブを含む炭素生成物が生成されるカーボンナノチューブ製造装置であって、
前記真空槽の内部に、回転可能な円筒状の捕集部材が配置され、
前記捕集部材の円筒の側面は、前記アノード電極の前記アーク放電が生じた部分に向けられ、
前記捕集部材は、前記炭素生成物を前記円筒状の側面で回転しながら捕集可能に構成されたカーボンナノチューブ製造装置。
A vacuum chamber;
An anode electrode and a cathode electrode that are spaced apart from each other in the vacuum chamber;
An arc power source for applying a voltage between the anode electrode and the cathode electrode;
The anode electrode and the cathode electrode each contain carbon, and when the inside of the vacuum chamber is evacuated to introduce a desired type of gas and an arc discharge is generated between the anode electrode and the cathode electrode, the anode electrode A carbon nanotube production apparatus in which a carbon product containing carbon nanotubes is produced on the electrode side,
Inside the vacuum chamber, a rotatable cylindrical collection member is disposed,
The cylindrical side surface of the collecting member is directed to the portion of the anode electrode where the arc discharge has occurred,
The carbon nanotube production apparatus is configured such that the collection member is capable of collecting the carbon product while rotating on the cylindrical side surface.
前記捕集部材には冷却装置が接続され、前記捕集部材の側面を冷却できるように構成された請求項1記載のカーボンナノチューブ製造装置。   The carbon nanotube manufacturing apparatus according to claim 1, wherein a cooling device is connected to the collecting member so that a side surface of the collecting member can be cooled. 真空槽内に一対の電極を配置し、前記真空槽内を真空排気して所望種類のガスを導入し、前記一対の電極間にアーク放電を生じさせ、カーボンナノチューブを含む炭素生成物を発生させるカーボンナノチューブの製造方法であって、
前記真空槽内に円筒形状の捕集部材を配置し、前記捕集部材を回転させ、前記炭素生成物を前記捕集部材の円筒側面に付着させて捕集するカーボンナノチューブの製造方法。
A pair of electrodes are arranged in a vacuum chamber, the inside of the vacuum chamber is evacuated, a desired type of gas is introduced, an arc discharge is generated between the pair of electrodes, and a carbon product including carbon nanotubes is generated. A method of manufacturing a carbon nanotube,
A method for producing carbon nanotubes, wherein a cylindrical collecting member is disposed in the vacuum chamber, the collecting member is rotated, and the carbon product is attached to a cylindrical side surface of the collecting member and collected.
前記捕集部材を冷却しながら前記炭素生成物を捕集する請求項3記載のカーボンナノチューブの製造方法。   The method for producing a carbon nanotube according to claim 3, wherein the carbon product is collected while cooling the collecting member.
JP2006134810A 2006-05-15 2006-05-15 Carbon nanotube manufacturing apparatus and carbon nanotube manufacturing method Active JP4795109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134810A JP4795109B2 (en) 2006-05-15 2006-05-15 Carbon nanotube manufacturing apparatus and carbon nanotube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134810A JP4795109B2 (en) 2006-05-15 2006-05-15 Carbon nanotube manufacturing apparatus and carbon nanotube manufacturing method

Publications (2)

Publication Number Publication Date
JP2007302536A JP2007302536A (en) 2007-11-22
JP4795109B2 true JP4795109B2 (en) 2011-10-19

Family

ID=38836801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134810A Active JP4795109B2 (en) 2006-05-15 2006-05-15 Carbon nanotube manufacturing apparatus and carbon nanotube manufacturing method

Country Status (1)

Country Link
JP (1) JP4795109B2 (en)

Also Published As

Publication number Publication date
JP2007302536A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP3017161B2 (en) Method for producing single-walled carbon nanotube
JP3825336B2 (en) Nanocarbon production method and nanocarbon production apparatus
KR100562975B1 (en) Method for manufacturing nano-tube, nano-tube manufactured thereby, apparatus for manufacturing nano-tube, method for patterning nano-tube, nano-tube material patterned thereby, and electron emission source
JP2006508008A (en) Method for producing carbon nanotubes using DC non-transfer thermal plasma torch
US6989083B2 (en) Method for preparing carbon nano-fine particle, apparatus for preparing the same and mono-layer carbon nanotube
JP4724930B2 (en) Method and apparatus for producing carbonaceous material
JP5647827B2 (en) Carbon nanomaterials and their use
KR100468845B1 (en) Method of fabricating carbon nano tube
JP2007186363A (en) Method and apparatus for producing carbon nanotube
JPWO2004103902A1 (en) Carbon nanohorn manufacturing apparatus and carbon nanohorn manufacturing method
JP4795109B2 (en) Carbon nanotube manufacturing apparatus and carbon nanotube manufacturing method
JP2006281168A (en) Catalyst for manufacturing double-layer carbon nanotube, and manufacturing method of double-layer carbon nanotube using the same
JP2002179417A (en) Arc electrode for synthesis of carbon nano-structure
Li et al. Emission spectra analysis of arc plasma for synthesis of carbon nanostructures in various magnetic conditions
KR101537216B1 (en) A making process of silicon powder Using Plasma Arc Discharge
KR20120089905A (en) Synthetic method for molybdenum metal nanopowder using rf plasma
RU2447019C2 (en) Method of producing carbon-containing nanotubes
JP4339870B2 (en) Nanocarbon production method and nanocarbon production apparatus
JP3016275B2 (en) Fullerene synthesis equipment
JP2005263523A (en) Meso-size fine particles and method for manufacturing the same
JP2005060116A (en) Method for manufacturing fine particle and manufacturing apparatus for fine particle
JP2005035841A (en) Metallic wire or capillary equipped with carbon nanotube and method of depositing carbon nanotube
JP3956230B2 (en) Carbon nanotube manufacturing apparatus and manufacturing method thereof
JP3885715B2 (en) Method for producing carbon nanotubes by arc discharge
Aikawa et al. Carbon nanomaterial synthesis from sucrose solution without using graphite electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4795109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250