JP4791720B2 - 水を含有する物質を迅速に凝固させる方法および装置 - Google Patents

水を含有する物質を迅速に凝固させる方法および装置 Download PDF

Info

Publication number
JP4791720B2
JP4791720B2 JP2004260240A JP2004260240A JP4791720B2 JP 4791720 B2 JP4791720 B2 JP 4791720B2 JP 2004260240 A JP2004260240 A JP 2004260240A JP 2004260240 A JP2004260240 A JP 2004260240A JP 4791720 B2 JP4791720 B2 JP 4791720B2
Authority
JP
Japan
Prior art keywords
water
sorbent
coagulation
vacuum
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004260240A
Other languages
English (en)
Other versions
JP2005095888A (ja
Inventor
マイアー−ラクスフーバー ペーター
ベッキー アンドレアス
ヴェルツ ライナー
リヒター ゲルト
ヴァインツィエル ノルベルト
シュミット ラルフ
トーチュニッヒ レオ
グルップ クリストフ
ビネン マンフレート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeo Tech Zeolith Technologie GmbH
Original Assignee
Zeo Tech Zeolith Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeo Tech Zeolith Technologie GmbH filed Critical Zeo Tech Zeolith Technologie GmbH
Publication of JP2005095888A publication Critical patent/JP2005095888A/ja
Application granted granted Critical
Publication of JP4791720B2 publication Critical patent/JP4791720B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/16Producing ice by partially evaporating water in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、真空系の内側で直接的に水を含有する物質から水を蒸発させて収着剤に水蒸気を収着させることによって、水を含有する物質を凝固させる方法および装置に関する。
気化原理に基づいて水を含有する液体を冷却する方法および装置は公知である。この場合水蒸気を吸い出すことによって水を含有する液体は蒸発されて、これによって冷却される。水を含有する液体を凝固点近くの温度に冷却するために、極めて大量の水蒸気を吸い出す必要がある。直接的な蒸発は、極めて迅速で穏和な冷却を実現するにもかかわらず、従来では経済的な観念から僅かな使用例にしか用いられることはなかった。
吸着装置は、固体の収着剤が、低温で沸騰する別の材料、つまり作業剤を蒸気状に熱放出下で収着する(収着段階)装置である。この場合作業剤は気化器において熱吸収下で蒸発する。収着剤は飽和したあとで、熱供給により高温で再び脱着することができる(脱着段階)。この場合作業剤は吸着剤から蒸発する。作業剤蒸気は再び液化して、引き続き新たに蒸発させることができる。
固体の収着剤を用いて冷却を行う吸着装置は、欧州特許公開第0368111号明細書およびドイツ連邦共和国特許公開第3425419号明細書から公知である。ここでは収着剤の充填された収着剤容器が、気化器で生成された作業剤蒸気を吸い出して、この作業剤蒸気を放熱下で収着する。この場合収着熱は、収着剤充填物から導出しなければならない。冷却装置は、熱絶縁性のボックス内で食品を保冷しかつ保温するために使用することができる。
ドイツ連邦共和国特許第4003107号明細書には、流出する水蒸気を収着剤に収着しつつ、同時に真空下で製氷する方法が記載されている。ここではフランジ結合可能で耐真空性の凍結容器内で水を含有する液体が凝固する。
欧州特許公開第0368111号明細書 ドイツ連邦共和国特許公開第3425419号明細書 ドイツ連邦共和国特許第4003107号明細書
したがって本発明の課題は、真空下で水を含有する物質を簡単かつ迅速に凝固させる経済的な方法および装置を提供することである。
この課題を解決するための本発明の方法によれば、真空ポンプを用いて、水を含有する物質と収着剤とを、周辺圧力レベルから5mbar(絶対値)を下回るシステム圧に排気し、真空ポンプによって吸い出される非収着性のガスを、収着剤を通過するように吸い出し、使用される収着剤の質量が、水を含有する物質の水成分の質量の少なくとも半分に達し、2分を下回る、特に20秒を下回る凝固過程を達成し、水を含有する物質を、真空系から取出可能な凝固容器内で凝固させ、次いで真空系を通気し、凝固物質を凝固容器と共に真空系から取り出す。
またこの課題を解決するための本発明の装置によれば、絶対値で5mbarを下回る最終真空を有する機械的な真空ポンプが設けられており、収着剤が設けられており、凝固容器と凝固しようとする水を含有する物質とを収容するための真空室が設けられており、凝固した水を含有する物質を取り出すための開口が設けられており、真空室を通気するための通気装置が設けられている。
本発明の方法によって、短時間のうちに水を含有する物質を冷却して凝固させることができる。凝固した物質の量は、技術的な手間をかけることなく、また準備に時間をかけることなく、1分あたり数キログラムに達する。収着剤から同時に面倒な熱導出を行う必要はない。なぜならば収着剤の量が適当に設定されていて、収着剤の相当の熱容量で十分であり、この熱容量で、収着反応がまだ十分に熱力学的な平衡点から離れているように、収着に際して放出される熱を緩衝するからである。水蒸気の流動条件に応じて、凝固は数秒のうちに行われる。本発明によれば、収着剤の量は、所定量の水を含有する物質が一度だけ凝固できる量でも、複数回凝固できる量でもよい。後者の場合収着剤は途中で熱を放出できるようにするのが望ましい。
収着剤の温度は収着過程に際して100度を超える温度に到達する。この温度は食品および/またはドリンクを加熱するかもしくは保温するのに十分な高さである。
本発明によれば、収着剤量は、流入する水蒸気に関して、収着剤の内部で単に最小圧力降下を克服すればよいように設定かつ配量されている。この場合圧力降下は5mbarを超えてはならない。さらに収着剤は通流する水蒸気に、十分な接触面を提供している。また考慮すべき水蒸気が充填物(Schuettung)を通って真空ポンプに流れることがないように、挿入される収着剤のかさ密度は小さすぎてはならない。したがって収着剤の種類に応じて、個々の収着剤−顆粒のかさ密度および直径はこのような要求に適合させる必要がある。ゼオライトを含有する顆粒では、かさ密度は、3〜5mmの典型的な顆粒直径では、2〜5cmである。
本発明によれば、真空系は、真空ポンプによって吸い込まれる空気流および蒸気流が収着剤を通流し、かつ収着剤を迂回しないように形成する必要がある。追加的に、収着剤充填物の内部に非収着性のガスが残留しないように注意する必要があり、この非収着性のガスは水蒸気が収着剤に進入するのを妨害する。
凝固容器は、任意の形状を有することができ、また任意の材料から成形することができる。技術的に、凝固過程の間、水蒸気を収着剤に流入させるために十分に大きな開口が必要不可欠である。本発明によれば、凝固容器は凝固物質と共に真空系から取出可能にする必要がある。
有利には、水を含有する物質が真空系に吸い込めるようになっているか、または水を含有する物質が既に真空系に進入する際に凝固容器内で保持されている。さらに有利には、凝固容器は透明で食用可能である。透明な容器によって、真空系の周辺部分が凝固容器に対する視界を実現している場合、凝固過程を観察することができる。食用氷を生産する場合、凝固容器は、たとえばコーンとして形成することができる。
特に有利には、凝固容器は凝固プロセスのあとで依然として真空下で気密に閉鎖することができる。有利には、たとえば凝固物質は凍結した水または海水であり、このような凍結した水または海水は、保冷剤として使用するのが望ましい。気密包装によって、冷却しようとする製品は濡れず、また通気の自由な包装によって、製品に対する最適な熱伝達が得られる。この場合有利には、凝固容器がフレキシブルで、バッグ状のフィルム材料から形成されている。排気状態で、凝固容器は、凝固物質の形状と、場合によっては内在する収着剤の形状に最適の形式で密着する。比較的長い真空時間のために、多層のフィルム材料を使用することが推奨される。このような多層フィルムは、たとえば粉コーヒー用の真空パック材料として使用される。本発明によるフィルムを真空下で気密に溶接する方法について、真空包装機械を用いた公知の包装技術を参照することができる。真空下でフィルムバッグを溶接することは、従来技術において多くの使用例で、特に食品分野で公知である。
本発明によれば、真空包装された凝固物質は、冷却しようとする製品の形状または利用形式を模造することができる。有利にはこのために真空室の形状も調和されている。たとえばドリンク容器または搬送容器の形状が挙げられる。液体の入った容器を(排気された)凝固容器内にセットすることも、また凝固容器自体を成形し、液体もしくは食品を直接的に収容することもできる。
追加的に、凝固物質の他に高温の収着剤が気密の凝固容器の内側において真空下で閉鎖される場合、真空下の溶接は特に有利である。この場合収着装置は真空系から取り出したあとでも引き続き機能する。水蒸気は引き続き凝固物質から収着剤に通流し、凝固物質における冷却作用および収着剤からの放熱は維持される。もちろん水蒸気が凝固物質の内部でも収着剤に向かって通流できることが前提条件として挙げられる。本発明によれば、このために凝固物質および凝固容器は、真空室の、流れを助成する所定の幾何学形状によって、水蒸気の通流経路が凝固物質自体によって形成されるように、エンボス加工することができる。この場合水を含有する物質の吸着された、流出する水蒸気の蒸発時に膨脹する繊維材料が挙げられる。凝固のあとで、膨脹した中空構造を通って、蒸気は収着剤に通流し、外側の正圧によって強く押し付けられたフィルムバッグが流れを遮断することはない。この場合凝固物質と収着剤との間に断熱層が存在する。
技術的かつ経済的観念から、相並んで位置する保温面と保冷面とを備えた、食品を搬送するためのトレーの構成をした凝固容器が有利である。この場合このような凝固容器は、食品を直接的に充填することのできるシェルに成形すると有利である。さらにまた、保温面と保冷面とがそれぞれ反対側に位置している保温/保冷剤が有利である。このような保温/保冷剤は、冷却ボックスおよび搬送包装物における高温領域と冷却領域とを最適な形式で分離するために使用することができる。この場合高温域と低温域との間に絶縁性のスペーサが挿入されており、このスペーサは、凝固容器が外側の空気圧によって押し付けられる場合でも、収着剤に向かう蒸気流動を保証する。
真空系の内側に低圧が存在することによって、まだ凝固していない水を含有する物質は、真空系の外側に存在する容器から吸い込むことができる。これによって供給路に設けられる機械的な搬送装置は不要となっている。特に有利には、供給路の端部にノズルが装着されており、このノズルは真空室に進入する際に水を含有する物質を強制的に回転運動させ、かつ/または細かい滴で噴霧する。
特に有利には、供給路がフレキシブルな管として形成されている。このような供給路は市販の貯蔵容器に簡単に差し込むことができる。水を含有する物質の貯蔵容器として、たとえばミネラルウォータ瓶、樽、牛乳瓶および果汁ジュース容器が挙げられる。
また有利には、真空室に向かって複数の供給路が設けられている。これによって排気過程で複数の物質を相前後して(または同時に)凝固することができる。食用氷となる水を含有する物質を用いる場合、それぞれ異なる種類の氷を上下に、もしくは混合して凍結することができる。しかも真空室はそれぞれ異なる種類の氷のために迅速に準備状態となる。所望の種類の氷が要求されると、このために設けられた供給路を解放するだけでよい。
真空室に流入する際に、多くの、特に脂肪を含有する物質は泡立ち、発泡状態で凍結する。体積増加は、液体状態の優に20倍に達する。既知のものとは異なる新たな製品形態が生成される。
別の水を含有する物質では、撹拌工具で凝固物質を転がして混合するのが有利である。この場合でも新たな製品状態が形成される。泡立て器状の装置によって、水を含有する物質の所望しない発泡を抑えることもできる。
また凍結した物質を回転式のナイフでペースト状にして、泡状の構築物に泡立てることも公知である。この処理技術もまた、既に凝固した物質を利用して排気装置の内側で用いることができる。有利には、このことは適当なガス、たとえば一酸化二窒素(笑気)を導入して行われる。したがって凍結した構造物は、外側形状だけでなく内側成分でも公知の商品形態とは異なっている。
本発明によれば水を含有する物質は凝固前に吸収性のマトリックスに吸収することができる。この場合潜在的な発泡もしくは噴射は抑制されている。吸収性のマトリックスとして繊維状の材料たとえば綿、または通路を形成する構造物、たとえば段ボールまたは食用の焼き菓子、パン類が有利である。
また有利には、水を含有する物質は凝固前に個別的な貯蔵包装物および搬送包装物に保管されている。このような包装物は排気装置に導入される前に開放され、次いで適当に取り出された、水を含有する物質は凍結される。特に有利には、搬送包装物が、真空下で所定の箇所において自動的に開放し、水を含有する物質を解放して分配するように形成されている。さらに有利には、搬送包装物が凝固容器の一部である。この場合収着剤は既に凝固容器に充填することができる。なぜならば水を含有する物質の水は、貯蔵の間、収着剤に到達し得ないからである。このような包装ユニットは、水を含有する物質と、使用者にとって容易に取り扱い可能で適正なサイズの、水を含有する物質にとって必要な収着剤とを有している。
吸収性の繊維材料を使用する場合、さらに有利には、凝固容器の載設される領域における真空室の適当な形状付与によって、依然として成形可能な繊維材料を成形し、水を含有する物質が凝固したあとで、凝固しようとする物質から収着剤に向かう水蒸気のための通流経路が維持される。気流通路および突出する構造物は、専ら凍結によって追加的な補助手段なしに形成することができる。
真空ポンプは、できるだけ迅速にシステム圧を、凝固しようとする物質の水蒸気圧を下回るように降下させる役割を有している。高い吸込能力を有するポンプは、排気時間をできるだけ短く維持しようとする場合に有利である。しかしながら別の見解として、凝固過程の間、解放された非収着性のガスを収着剤から吸い出すためには小さなポンプ出力で十分である。油潤滑式のベーン−真空ポンプが用いられる場合、油逆流防止装置を設けて、吹出開口からの油霧の吹出を抑制するように考慮する必要がある。産業上の真空包装では、約20m/h以上の吸込能力を有する適当な真空ポンプが使用される。そのようなポンプが少なくとも6mbarを下回る必要最終圧を達成する限り、このポンプは本発明で使用するのに適したものとなっている。
真空が無通電式に形成できると特に有利である。これに関して欧州特許公開第611888号明細書には、たとえば十分に低い最終圧を達成する手動式のポンプが記載されている。
真空系は、有利には、水蒸気が、充填された収着剤に均等に到達できるように形成されている。収着剤で充填されない中空スペースおよび供給路部分は、必要な作業圧を迅速に達成できるようにするために、できるだけ小さくするのが望ましい。
収着反応に際して、収着剤を加熱する収着熱が放出される。水の吸収能力は、高温時には大幅に低下する。高い冷却能力を長時間にわたって維持するために、有利には、収着剤が適当な冷却装置によって冷却される。このために有利には、空気式の熱交換器または特別な冷却水循環回路が設けられている。さらにまた有利には、水浴に収着剤が設置されている。冷却プロセスの間に加熱された水は、次いで冷却装置を洗浄するために利用することができる。
収着剤は、水蒸気を収着する、つまり水蒸気を結晶−構造の内部で凝縮して結合する役割を有している。収着剤は、制限された水分子の吸収能力しか有していない。真空ポンプが作動しているにもかかわらず、凝固出力が低下するかまたはもはや全く凝固温度に到達できないようになることによって、収着剤の限界使用を認識することができる。この場合収着剤は新しいのもと交換するか、または熱供給によって再生する必要がある。前者の場合、真空系は開口を有しており、この開口を介して飽和した量の収着剤を取り出して、再生された収着剤と交換することができる。
収着剤を再生するために、収着剤は、含有物質にかかわらず、150〜300度の間の温度に加熱する必要がある。このことが真空系の内側で行われる場合、放出された水蒸気は安全に流出できるようにしなければならない。有利には真空系の内側における脱着は、加熱空気によって行われる。流出空気は、脱着された水蒸気と共に真空室から排出される。全ての収着剤充填物が交換される場合、有利には、収着剤充填物は、ケーシングと一緒に交換できるように蒸気透過性のケーシングに包装される。蒸気透過性のケーシングとして、エキスパンドメタル、網状ワイヤ、格子状ワイヤおよび温度安定性の網状材料から成る構造物が有利である。
収着剤として有利にはゼオライトが使用される。ゼオライトは規則的な結晶構造で36質量百分率までの水を可逆的に収着することができる。ゼオライトは、比較的高温(80度を超える)でも依然として大きな水蒸気−収着能力を有していて、したがって特に本発明で使用するのに適している。
ゼオライトは、ケイ素と酸化アルミニウムとから成る規則的な骨格構造から成る結晶質の鉱物である。このような骨格構造は空孔を有しており、この空孔に水分子を放熱下で収着することができる。骨格構造の内部で水分子は強い場の力(Feldkraft)にさらされており、その強さは既に骨格構造に含まれている水量とゼオライトの温度とに依存している。実際の使用のために、100グラムのゼオライトごとに25グラムの水が収着できる。ゼオライトは収着もしくは脱着反応に際して障害となる体積増加を行わない固体の物質である。骨格構造はあらゆる側から水蒸気分子のために自由にアプローチ可能である。これに伴う迅速な収着反応に基づいて、ゼオライトは本発明で使用するのに特に適している。
経済的な運転形式のために、ゼオライト温度は、再生時に250〜350度、また収着時に50〜120度であるのが望ましい。特に有利には、再生は300度を超える空気温度を有する熱気流で行われる。ゼオライト充填物が薄い層状に配置されている場合、再生は数分間で終了することができる。
収着剤充填物の内部で均等な収着を保証し、かつ僅かな圧力降下を保証するために、特別な収着剤顆粒が挙げられる。3〜5mmの間の顆粒直径で最適な結果が得られる。凝固した物質以外に収着剤を真空下で有している、特にフレキシブルな凝固容器では、微小の気流通路を備えたプレート状のゼオライト成形体が良好である。プレート状のゼオライト成形体は取扱が簡単で、高い耐圧性を有していて、かつルーズな顆粒充填物とは違って高圧下で形状が安定している。
「水を含有する物質」とは、水が完全に蒸発する際に、残存する物質が所望の温度レベルに降下できる量の水を含有する物質である。たとえば本発明で用いられる液体、ならびに食用氷混合物として、水、塩水、ジュース、ソフトドリンク、コーヒー、ティー、ミルクおよび乳製品が挙げられる。また揮発性の添加物が並行して蒸発するので直接的な冷却には不向きであるが、揮発性の物質たとえば炭酸、アルコールまたは香料の添加された液体も挙げられる。吸込能力の高いシンクポンプを使用することによって、このような揮発性の物質は収着剤を通って吸い出すことができる。
最大冷却量を達成するために、収着剤は、複数の凝固プロセスの間に収着熱をたとえば周辺に導出できるようにする必要がある。収着剤−容器が、これを包囲する空気流のために十分に大きな熱交換面を有している場合、特に集中的な冷却効果が得られる。有利には、できるだけ大量の水蒸気を収着するために、収着剤は周辺温度に冷却することができる。もちろん固体の収着剤は、僅かな熱伝導と不良の熱伝達とを有している。収着剤−熱交換器に対する空気流の熱伝達も同じ大きさで位置しているので、原則としてリブ形成されていない熱交換器、たとえばシリンダ形状、プレート形状または管形状の熱交換器が推奨される。特にゼオライト顆粒が僅かな熱伝導を有しているので、収着剤容器は、変換される熱量のための平均的な熱伝導経路が5cmを超えないように設定されている。本発明によってその都度の凝固プロセスのために新たな収着剤充填物が使用される場合、別個の熱交換器は不要である。なぜならば収着剤において解放される熱が、真空系の外側で容器壁に沿って放出されるからである。
水蒸気を収着して収着反応時に固体のまま維持される別の収着剤を使用することもできる。たとえば分子ふるいのような幾つかの固体の収着剤は十分に頑丈であり、体積変化なしに外側の正圧を薄い容器壁で支持することができる。したがって追加的な補強または厚い壁の熱交換面は不要である。このような特性は、本発明による真空密の凝固容器において有利な形式で利用することができる。
収着剤を含む容器に断熱手段を設けて、脱着プロセスの間に周囲に対する熱損失を最小限に抑えることができる。
次に本発明の実施の形態を図示の実施例を用いて詳しく説明する。
図1に示した排気装置は、真空ポンプ1から成っており、この真空ポンプ1は収着剤容器2と真空室3とを排気することができる。収着剤容器2内に収着剤4が設けられており、この収着剤4は水蒸気を抵抗なく吸収するための金属製の孔付金属薄板−ケーシング16に内設されている。シールストリップ19に沿って収着剤容器2から取外可能で透明な真空室3内に、同様に透明な凝固容器6が設けられており、この凝固容器6に水を含有する物質7がノズル8から噴出される。水を含有する物質7から水が瞬間的に蒸発することによって、泡状の凝固された物質5が生成される。管路9および電磁弁10,11を介して、ノズル8は水を含有する物質7のための貯蔵タンク12,13と接続されている。通気弁14を介して排気装置は通気することができる。結合箇所20で収着剤容器2は残りの真空系から分離することができ、図2に示したように、収着剤容器2は再生ユニット21に載置することができる。この再生ユニット21は収着剤容器2を載置するための接続管片22と電気的な加熱装置23とファン24とを備えており、このファン24は、矢印25に沿って収着剤4を貫流するように、加熱された空気を送り出す。
図1aには、円筒形の収着剤容器2を図1のA−A線に沿った横断面図で示した。円筒形の外側スリーブ26に沿って13本の気流通路17が配置されており、これらの気流通路17を介して空気および非収着性のガスが真空系から吸い出され、それも同時に水蒸気が一緒に吸い出されることはない。円筒形の配置構造によって、水蒸気(および非収着性のガス)は内側通路18に沿って収着剤4に流入することができる。内側通路18に沿って、大きな体積の水蒸気を迅速に収着するための大きな通流面が形成される。外側スリーブ26に沿った、気流通路17の均等な分配によって、水蒸気のための通流経路が収着剤4の内側で同じ長さになるように保証される。こうすることによって、最初の水蒸気分子が気流通路17に到達して、真空ポンプによって吸い込まれる前に、全ての範囲の収着剤が十分に水蒸気を収着できるように保証されている。気流通路17の間に、収着剤容器2の外側スリーブ26に対する、収着剤4の十分に大きな接触面が形成され、これによって収着熱は周辺に導出することができる。
図1に示した真空装置では、本発明に基づいて水を含有する物質7を凝固させるために、凝固容器6が真空室3の内側に設けられており、真空室3は真空密に収着剤容器2に載設される。真空ポンプ1は通気弁14の閉鎖状態で運転される。真空ポンプ1は、収着剤4を通って真空系からガスを吸い出す。6mbar(絶対値)を下回る内圧で、一方(または両方の)電磁弁10,11が開放される。水を含有する物質7、たとえばアイスクリームやシャーベットなどの食用氷を提供するための完成混合物は、ノズル8から吸い込まれる。管路9を介して完成混合物は貯蔵タンク12,13から補充することができる。真空系における急激な気化によって、水を含有する物質7は凝固して泡状のアイス構築物5が形成される。水蒸気は、内側通路18を介して蒸気矢印17に沿って収着剤4に流れる。ここで蒸気は瞬間的に収着されて、収着剤4の中空構造に付着する。非収着性のガスは、収着剤4を通って矢印15に沿って真空ポンプ1によって吸い込まれる。収着剤4の量は、温度上昇にもかかわらず十分な量の水蒸気が、凝固される物質からて蒸発して、収着剤によって吸収できるように設定されている。十分な量の凝固物質5が形成されると、電磁弁10,11は閉鎖され、真空ポンプ1は停止され、通気弁14は開放される。通気弁14の開放状態で、管路9にまだ存在する水を含有する物質7は吹き出され、管路9はノズル8と共に洗浄される。排気装置の迅速な通気のあとで、真空室3を持ち上げて、凝固容器6を凝固物質5と共に取り出すことができる。次いで満足できる程度に設定された収着剤充填状態で、待機時間なしに、次の凝固過程を行うことができる。
収着剤容器2内に設けられた使用済みの収着剤4を再生するために、収着剤容器2は残りの真空系から分離され、再生ユニット21の接続管片22に載置される(図2)。ファン24と電気式の加熱装置23とによって、少なくとも200度の加熱空気が逆流方向25で収着剤24を通って押し出される。加熱空気は収着剤4を加熱し、この場合脱着された水蒸気を収着剤容器2から搬出する。再生は、収着剤からの水蒸気流が停止し、かつ/または収着剤4が加熱空気の温度と同様の温度に到達すると、終了したとみなされる。収着剤4の冷却後に、収着剤容器2は再び残りの排気装置に組み込むことができる。
図3には、本発明による排気装置の別の1実施例を示した。真空ポンプ1は、真空室30に接続されており、この真空室30は透明の蓋31とシール32とによって真空密に閉鎖することができる。真空室30内にフレキシブルな袋状の凝固容器34が設けられており、この凝固容器34内に板状の収着剤35および水を含有する物質36が設けられている。水を含有する物質36は吸収性の材料43に付着されており、吸収性の材料43はその上面で、蒸気透過性かつ撥水性で絶縁性のスペーサ37によって覆われている。スペーサ37は、一方では収着反応の間に水を含有する物質36から流出する水蒸気を所望の形式で収着剤35に案内し、また他方では水を液相で収着剤35に到達できないように作用する。
凝固容器34の開口38は、2つの溶接ビーム39の間に位置しており、この開口38は、上位の溶接ビーム39が両矢44の方向で降下する際に、凝固容器34を、真空下で溶接することによって真空密に閉鎖する。
図3に基づいて水を含有する物質36を凝固させるために、先ず、既に収着剤35、スペーサ37および無水で吸収性の材料43の内在する、多層フィルムバッグの構成をしたフレキシブルな凝固容器34が所定位置で開放される。そのあとで水皿に浸すことによって吸収性の材料に水が供給される。そのように準備されたユニットは、凝固容器34に挿入されて、この凝固容器34と共に開口38で真空室30の両方の溶接舌片39の間に置かれる。挿入に際して、特に領域40においてスペーサおよび凝固容器34が、水蒸気にとって非透過性のバリヤを形成するように注意する必要がある。水蒸気が収着剤35を迂回して真空ポンプによって吸い込まれるようにしてはならない。続いて蓋31および通気弁14が閉鎖され、真空ポンプ1が作動される。降下する圧力レベルが水を含有する物質36の蒸気圧に到達すると、直ちに一部の水が蒸発する。水蒸気はスペーサ37を通って収着剤35に向かって流れ、この収着剤35は水蒸気を瞬時に収着する。さらに圧力レベルが降下すると、迅速に凝固点が達成され、この場合水を含有する物質36は凍結し始める。遅くともこの時点で、凝固容器34の開口38は旋回ビーム39の作動によって真空密に閉鎖することができる。次いで真空ポンプ1は停止され、真空室30は通気弁14を介して通気される。蓋31の開放後に、凝固容器34は真空系から取り出して、使用目的位置に搬送することができる。真空密の凝固容器34の内側で、収着反応が引き続き進行するので、収着剤35で熱気が、凝固した物質36で冷気が解放される。
図4には、真空密の凝固容器34の1使用例を示した。紙包装物42内で、下位に冷却しようとする食品40、たとえばドリンク容器およびサラダカップが置かれる。食品40の上側に、排気された凝固容器34を、凝固物質36で下向きになるように示した。放熱性の収着剤35は、その上側に位置する暖かい食品41、たとえばハンバーガーおよびフライドポテトを加熱する。水を含有する物質36として水道水が使用される。凝固点は正確に0度となる。有利には食塩水を使用することもできる。凍結点は塩含有量に応じて0度をはるかに下回り、極端に低い場合−18度である。このような低温でも、収着剤35として用いられるゼオライトプレートは80度を上回るレベルで放熱することができる。
有利には、凝固容器34は、絶縁性の、図示していないボックスに鉛直方向で設置し、ボックスの内室を相並んで位置する冷却領域と加熱領域とに仕切ることができる。
図4aには、食品用トレーの構成をした凝固容器54の有利な1実施例を示した。フラットなトレーは、気流通路53の貫通した低温領域を備えており、この低温領域は、予め給水された凍結した段ボールから成っている。ここでは凝固は図3に示したように真空室で行われる。収着剤4は、この実施例では、気流通路51の設けられた、プレスされたフラットなゼオライトプレート50である。断熱性のスペーサ52は段ボールのように成形されたプラスチックフィルムから成っており、このプラスチックフィルムは、フィルムバッグ55が外側の空気圧によって内側構造を負荷するにもかかわらず、蒸気を抵抗なく通流させる。フィルムシート55は開口56で真空密に溶接されている。真空密の通路53,51によって収着反応が排気装置の外側でも進行できるので、トレーは、食事用にセットされた料理の冷却および加熱を行う。トレーは、追加的に凹所ならびに縁取り部分を備えることもでき、これらは料理を収容するか仕切るのに利用することができる。
図5には、排気装置の別の有利な1実施例を示した。ここでは部分的に図1〜図4と同じ符号を用いた。
収着剤4は、電気的な加熱装置58に良好に接触して、真空室57の下位部分に設けられている。真空ポンプ1は、収着剤4の下方で延びる気流通路59を介して、真空室57から空気と非収着性のガスとを吸い出す。収着剤4の上方に配置されたシェル60にフレキシブルな多層バッグ61が設けられており、この多層バッグ61内に水を含有する物質7の供給された吸収性の材料43が設けられている。蓋31を介して凝固容器は真空室に搬入することができる。多層バッグ61の開口38は、この実施例でも、可動の2つの溶接ビーム39の間に位置している。図3とは異なって、収着剤4は凝固容器の外側に存在する。再生のために収着剤4は真空室57の内側に維持される。電気的な加熱装置58を介して収着剤4は加熱することができる。発生する水蒸気は開放状態の蓋31を通って抵抗なく流出する。
排気プロセスの開始に際して、水を含有する物質7の供給された吸収性の材料43は多層バッグ61に延設され、この多層バッグ61の開口38は溶接ビーム39の間に配置される。蓋31と通気弁14とを閉鎖したあとで、真空ポンプ1は真空室57を排気する。凝固しようとする物質7から流出する水蒸気は、収着剤4によって収着される。水を含有するう物質7が凝固したあとで、まだ真空下で多層バッグ61は閉鎖され、続いて真空室57の通気のあとで取り出される。このようにして数秒のうちに形成される保冷氷(Eisakku)は、たとえば料理およびドリンクを冷却容器内で保冷するために利用される。時間の経過と共に溶融する水が真空下で存在するので、多層バッグ61に対する良好な熱接触が得られる。溶融水が冷却容器の内容物を濡らすことはない。
本発明の排気装置を概略的に示す縦断面図である。
図1のA−A線に沿った、収着剤容器を示す横断面図である。
収着剤容器のための再生ステーションを示す縦断面図である。
本発明の別の排気装置を概略的に示す縦断面図である。
凝固容器の1使用例を示す図である。
トレーの構成をした凝固容器の1実施例を示す図である。
電気的な加熱装置の組み込まれた排気装置を示す図である。
符号の説明
1 真空ポンプ、 2 収着剤容器、 3 真空室、 4 収着剤、 5 凝固物質、 6 凝固容器、 7 水を含有する物質、 8 ノズル、 9 管路、 10,11 電磁弁、 12,13 貯蔵タンク、 14 通気弁、 15 矢印、 16 孔付−ケーシング、 17 気流通路、 18 内側通路、 19 シールストリップ、 20 結合箇所、 21 再生ユニット、 22 接続管片、 23 加熱装置、 24 ファン、 25 矢印、 26 外側スリーブ、 30 真空室、 31 蓋、 32 シール、 34 凝固容器、 35 収着剤、 36 水を含有する物質、 37 スペーサ、 38 開口、 39 溶接ビーム、 40 領域、 40,41 食品、 42 紙包装、 43 吸収性の材料、 44 両矢、 50 ゼオライトプレート、 51 気流通路、 52 スペーサ、 53 気流通路、 54 凝固容器、 55 フィルムバッグ、 56 開口、 57 真空室、 58 加熱装置、 59 気流通路、 60 シェル、 61 多層バッグ

Claims (20)

  1. 水を含有する物質と収着剤とを収容する真空系内で、水を含有する物質から水を直接的に蒸発させて収着剤に水蒸気を収着させることによって、水を含有する物質を凝固させる方法において、
    真空ポンプを用いて真空系を排気して、真空系の圧力を、真空系の周辺の圧力レベルから5mbar(絶対値)を下回るようにし、真空ポンプによって吸い出される非収着性のガスを、収着剤を通過するように吸い出し、
    使用される収着剤の質量が、水を含有する物質の水成分の質量の少なくとも半分であり
    2分を下回る凝固過程を達成し、
    水を含有する物質を、真空系から取出可能な凝固容器内で凝固させ、次いで真空系を通気し、凝固物質を凝固容器と共に真空系から取り出すことを特徴とする、水を含有する物質を凝固させる方法。
  2. 水を含有する物質を凝固させるために、水を含有する物質を真空系に吸い込水を含有する物質が吸い込まれて真空系に進入する際に水を含有する物質が凝固する、請求項1記載の方法。
  3. 収着剤が水蒸気で飽和したあとで、該収着剤を、高温空気を通流することによって再生する、請求項1または2記載の方法。
  4. 収着剤を、凝固過程の前に、その都度凝固しようとする物質の種類および量に適合させて真空系に取り付ける、請求項1から3までのいずれか1項記載の方法。
  5. 水を含有する物質を、凝固過程の間、機械的に撹拌する、請求項1から4までのいずれか1項記載の方法。
  6. 水を含有する物質を、吸収性の構造物に吸収させ、該吸収性の構造物が、迅速な排気兼凝固過程に際して、水を含有する物質の噴出を抑制するようにする、請求項1から5までのいずれか1項記載の方法。
  7. 凝固容器において凝固した水を含有する物質を、真空系で気密に包装し、真空系の通気後に、真空包装したまま維持する、請求項1から6までのいずれか1項記載の方法。
  8. 収着剤を、凝固した水を含有する物質と共に、凝固容器内で気密に封止し、凝固した水を含有する物質から収着剤に向かう、水蒸気の通流経路を維持する、請求項6記載の方法。
  9. 凝固した水を含有する物質を、真空系で、ガス供給下で、機械的な処理によって泡立てる、請求項1から8までのいずれか1項記載の方法。
  10. 蒸発した水を、ゼオライト含有する収着剤で収着する、請求項1から9までのいずれか1項記載の方法。
  11. 請求項1から10までのいずれか1項記載の方法を実施するための排気装置において、
    絶対値で5mbarを下回る最終真空を有する機械的な真空ポンプが設けられており、
    収着剤が設けられており、
    凝固容器と凝固しようとする水を含有する物質とを収容するための真空室が設けられており、
    凝固した水を含有する物質を取り出すための開口が設けられており、
    真空室を通気するための通気装置が設けられていることを特徴とする、排気装置。
  12. 真空室に向かう、水を含有する物質のための遮断可能な少なくとも1つの供給路が設けられている、請求項11記載の排気装置。
  13. 真空室において水を含有する物質を運動させるための撹拌装置が設けられている、請求項11記載の排気装置。
  14. 収着剤を加熱するための加熱装置が設けられている、請求項11から13までのいずれか1項記載の排気装置。
  15. 真空室で凝固容器を真空密に閉鎖するための閉鎖装置が設けられている、請求項11から14までのいずれか1項記載の排気装置。
  16. 請求項1から10までのいずれか1項記載の方法を実施するための凝固容器において、
    当該凝固容器が、搬送兼貯蔵用包装物として、水を含有する物質を有しており、当該凝固容器に、凝固前に水蒸気を流出させるための十分な開口が形成されていることを特徴とする、凝固容器。
  17. 当該凝固容器が、フレキシブルなスリーブを備えており、該スリーブが、凝固した水を含有する物質を真空密に閉鎖するのに適している、請求項15記載の凝固容器。
  18. 請求項1から10までのいずれか1項記載の方法を実施するための凝固容器において、
    当該凝固容器が、水を含有する物質と、凝固するのに必要な量の収着剤とを収容できるようになっていることを特徴とする、凝固容器。
  19. 当該凝固容器が、フレキシブルなスリーブを備えており、該スリーブが、収着剤と凝固した水を含有する物質とを真空密に取り囲むのに適している、請求項17記載の凝固容器。
  20. 請求項1から10までのいずれか1項記載の方法を実施するための凝固容器において、
    当該凝固容器が、食材および収着剤を有していることを特徴とする、凝固容器。
JP2004260240A 2003-09-25 2004-09-07 水を含有する物質を迅速に凝固させる方法および装置 Expired - Fee Related JP4791720B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10344455A DE10344455A1 (de) 2003-09-25 2003-09-25 Verfahren und Vorrichtungen zum schnellen Erstarren wasserhaltiger Substanzen
DE10344455.6 2003-09-25

Publications (2)

Publication Number Publication Date
JP2005095888A JP2005095888A (ja) 2005-04-14
JP4791720B2 true JP4791720B2 (ja) 2011-10-12

Family

ID=34177936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260240A Expired - Fee Related JP4791720B2 (ja) 2003-09-25 2004-09-07 水を含有する物質を迅速に凝固させる方法および装置

Country Status (4)

Country Link
US (1) US7213411B2 (ja)
EP (1) EP1519125A3 (ja)
JP (1) JP4791720B2 (ja)
DE (1) DE10344455A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034297A1 (de) * 2005-02-25 2006-08-31 Zeo-Tech Zeolith-Technologie Gmbh Sorptions-Kühlelement mit gasdichter Folie
EP1854365A1 (en) * 2006-05-10 2007-11-14 Nestec S.A. A device and a method for production of a frozen dessert
US11105556B2 (en) 2013-03-29 2021-08-31 Tokitae, LLC Temperature-controlled portable cooling units
US9170053B2 (en) 2013-03-29 2015-10-27 Tokitae Llc Temperature-controlled portable cooling units
US9657982B2 (en) * 2013-03-29 2017-05-23 Tokitae Llc Temperature-controlled medicinal storage devices
US10941971B2 (en) 2013-03-29 2021-03-09 Tokitae Llc Temperature-controlled portable cooling units
US9528737B2 (en) 2013-10-31 2016-12-27 Pepsico, Inc. Ice making and harvesting
WO2015116903A1 (en) * 2014-01-31 2015-08-06 The Coca-Cola Company Systems and methods for vacuum cooling a beverage
DE102014008450B4 (de) * 2014-06-05 2021-01-21 Airbus Defence and Space GmbH Thermische Konditionierung von Bauteilen
DE102015204671B4 (de) * 2015-03-16 2023-09-14 Robert Bosch Gmbh Batterietemperiersystem mit beheizbarem Sorptiv
DE102015204667B4 (de) * 2015-03-16 2023-11-09 Robert Bosch Gmbh Batterietemperierung mit Sorptionsmittel-Verdampfer-Elementen
CN113418352B (zh) * 2016-10-27 2023-04-18 可口可乐公司 用于真空冷却饮料的***和方法
DE102017117450A1 (de) * 2017-08-01 2019-02-07 Hochschule Bonn-Rhein-Sieg Filtervorrichtung zur Anreicherung gasförmiger und/oder partikelgebundener Stoffe
US20210310711A1 (en) 2019-05-31 2021-10-07 Gobi Technologies Inc. Temperature-controlled sorption system
CN113905707A (zh) 2019-05-31 2022-01-07 戈比技术公司 热调节***

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE36055C (de) * INTERNATIONALER VACUUM - EISMASCHINEN-VEREIN in Berlin N Vacuum-Kälte-Maschine für Handbetrieb
US734748A (en) * 1903-01-20 1903-07-28 William A Sweetser Ice-making machine.
FR466365A (fr) * 1913-12-18 1914-05-11 George Grilhe Système de formation de blocs de glace sous l'action du vide par admissions successives de l'eau ou autre liquide à congeler
DE3207656A1 (de) 1982-02-15 1983-08-25 Hieronimi, Ulrich, 8000 München Sorptionsapparate und verfahren fuer ihren betrieb
DE3342985A1 (de) 1983-11-28 1985-06-13 Fritz Dipl.-Ing. Kaubek Kontinuierlichwirkende sorptionsapparate und verfahren zu deren betrieb
DE3347700C2 (de) 1983-12-31 1994-07-07 Zeolith Tech Zeolithformling mit hoher Wärmeleitung und Verfahren zur Herstellung
DE3413349C2 (de) 1984-04-09 1986-09-25 Fritz Dipl.-Ing. Kaubek Verfahren und Vorrichtung zum Heizen mit einer periodischen Adsorptionsspeicher-Wärmepumpe
DE3425419C2 (de) * 1984-07-10 1993-12-09 Zeolith Tech Adiabatische Heiz- und Kühlvorrichtungen nach dem Adsorptionsprinzip
DE3521484A1 (de) 1985-06-14 1986-12-18 Fritz Dipl.-Ing. Kaubek Adsorptionskuehler
DE3837872A1 (de) 1988-11-08 1990-05-10 Zeolith Tech Sorptionskuehlsystem
DE3837880A1 (de) 1988-11-08 1990-05-10 Zeolith Tech Kuehlbehaelter fuer einen sorptionsapparat
DE3901558A1 (de) 1989-01-20 1990-07-26 Zeolith Tech Sorptionsbehaelter fuer feste sorptionsmittel
DE4003107A1 (de) 1990-02-02 1991-08-08 Zeolith Tech Eiserzeuger nach dem sorptionsprinzip
DE4121131A1 (de) 1991-06-26 1993-01-07 Zeolith Tech Sorptionsmittelbehaelter-anordnung und sorptionsverfahren mit regenerativem waermetausch
DE4126960A1 (de) 1991-08-14 1993-02-18 Zeolith Tech Sorptionsapparat zum kuehlen und/oder heizen
DE4138114A1 (de) 1991-11-19 1993-05-27 Zeolith Tech Kuehlvorrichtung und kuehlverfahren zur kuehlung eines mediums innerhalb eines gefaesses
DE59207855D1 (de) 1992-07-06 1997-02-20 Zeolith Tech Kühlsystem mit einer vakuumdichten Arbeitsmitteldampf-Sammelleitung
DE4243817A1 (de) 1992-12-23 1994-06-30 Zeolith Tech Adapter für ein Sorptionssystem und Verfahren zur Verwendung dieses Adapters
DE4243816A1 (de) 1992-12-23 1994-06-30 Zeolith Tech Sorptionsmittel-Patrone
DE4304786A1 (de) 1993-02-17 1994-08-18 Zeolith Tech Handbetätigbare Vakuumpumpe
US5416251A (en) * 1993-03-12 1995-05-16 Monolith Technology Incorporated Method and apparatus for the solidification of radioactive wastes and products produced thereby
MX9701840A (es) 1994-09-12 1997-06-28 Electrolux Leisure Appliances Unidad de refrigeracion de absorcion.
US5737940A (en) * 1996-06-07 1998-04-14 Yao; Jame Aromatics and/or heavies removal from a methane-based feed by condensation and stripping
DE19922848A1 (de) * 1999-05-19 2000-11-23 Zeolith Tech Vorrichtung und Verfahren zum Kühlen einer Flüssigkeit in einem Behälter
DE10016352A1 (de) 2000-04-03 2001-10-04 Zeolith Tech Sorptionskühler
DE10028030A1 (de) * 2000-06-09 2001-12-13 Zeolith Tech Sorptionsvorrichtung zum Heizen und Kühlen von Gasströmen
DE10250510A1 (de) 2002-10-29 2004-05-19 Zeo-Tech Zeolith-Technologie Gmbh Adsorptions-Kühlapparat mit Pufferspeicher

Also Published As

Publication number Publication date
EP1519125A2 (de) 2005-03-30
EP1519125A3 (de) 2012-11-21
JP2005095888A (ja) 2005-04-14
US7213411B2 (en) 2007-05-08
DE10344455A1 (de) 2005-05-12
US20050061022A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP4791720B2 (ja) 水を含有する物質を迅速に凝固させる方法および装置
JP3021693B2 (ja) 耐真空性収着容器を有する製氷装置
US5440896A (en) Apparatus for cooling a medium within a container
US4752310A (en) Adiabatic heating and cooling process and portable devices in accordance with the adsorption principle
US7726139B2 (en) Cooling sorption element with gas-impermeable sheeting
US4928495A (en) Self cooling and self heating container
US6378326B2 (en) Sorption cooler
JP2000346482A (ja) 容器内の液体を冷却するための方法と装置
JP2004529309A5 (ja)
JPH0583797B2 (ja)
US8074470B2 (en) Sorption cooling element with regulator organ and additional heat source
WO2002090240A1 (en) Cooling and dispensing of products
US20080314070A1 (en) Flexible sorption cooling elements
JP2002098457A (ja) 飲料用自冷式パッケージ
US7266949B2 (en) Insulation of a self-cooling beverage package
US11433349B1 (en) Humidification process and apparatus for chilling beverages and food products and process of manufacturing the same
EP1854365A1 (en) A device and a method for production of a frozen dessert
JPH04502665A (ja) 真空絶縁されたソーベント駆動される冷蔵装置
ES2304344T3 (es) Preparacion de materiales refrigerantes.
DE102015002421A1 (de) Vakuum-Gerät mit Sorptionsmittel-Patrone
JPS63294389A (ja) 野菜、果実、花卉等の流通用鮮度保持装置
AU629715B2 (en) Improvements relating to vacuum cooling
JPS61119894A (ja) 真空断熱ユニツトとその製造方法
WO2002088608A1 (en) Method of manufacturing a multi-layered sorbent-driven self-cooling device
JPH0375461A (ja) 湯水冷却器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101007

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101014

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees