JP4786955B2 - Functional water generating apparatus and functional water generating method using the same - Google Patents

Functional water generating apparatus and functional water generating method using the same Download PDF

Info

Publication number
JP4786955B2
JP4786955B2 JP2005211066A JP2005211066A JP4786955B2 JP 4786955 B2 JP4786955 B2 JP 4786955B2 JP 2005211066 A JP2005211066 A JP 2005211066A JP 2005211066 A JP2005211066 A JP 2005211066A JP 4786955 B2 JP4786955 B2 JP 4786955B2
Authority
JP
Japan
Prior art keywords
ultrapure water
functional
flow rate
fluid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005211066A
Other languages
Japanese (ja)
Other versions
JP2007021454A (en
Inventor
元重 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005211066A priority Critical patent/JP4786955B2/en
Publication of JP2007021454A publication Critical patent/JP2007021454A/en
Application granted granted Critical
Publication of JP4786955B2 publication Critical patent/JP4786955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Description

本発明は、機能流体(炭酸ガス、水素、オゾン、酸素、アンモニアから選択される機能性気体、又はアンモニア、フッ酸から選択される機能性液体)を超純水に溶解又は混合して機能水を生成する機能水生成装置及びそれを用いた機能水生成方法に関する。さらに詳しくは、機能流体の超純水への溶解量又は混合量を精密に制御して、正確な機能流体濃度の機能水を生成することが可能であるとともに、小型かつ安価な機能水生成装置及びそれを用いた効率的な機能水生成方法に関する。 The present invention, the functional fluid (carbon dioxide gas, hydrogen, ozone, oxygen, functional gas selected from ammonia, or ammonia, function liquid is selected from hydrofluoric acid) were dissolved or mixed in ultrapure water The present invention relates to a functional water generating device that generates functional water and a functional water generating method using the same. More specifically, by precisely controlling the amount of dissolution or mixing of the ultra-pure water of the functional fluid, together it is possible to generate the functional water of the correct functional fluid density, compact and inexpensive functional water The present invention relates to a generation device and an efficient functional water generation method using the same.

機能水(各種機能が付加された水)が各種産業分野で用いられている。例えば、半導体の製造分野においては基板の洗浄に超純水を用いるが、超純水をそのまま用いたのでは、超純水の比抵抗が高いため、被洗浄物の表面に静電気を発生させ、半導体の配線に絶縁破壊を生じさせるという不都合があり、このような不都合を解消するため、超純水に炭酸ガスを溶解させて、比抵抗の減少という機能が付加された機能水としてから、基板の洗浄に用いている。   Functional water (water with various functions added) is used in various industrial fields. For example, in the field of semiconductor manufacturing, ultrapure water is used for cleaning a substrate. However, if ultrapure water is used as it is, since the specific resistance of ultrapure water is high, static electricity is generated on the surface of the object to be cleaned. There is an inconvenience of causing dielectric breakdown in the wiring of the semiconductor, and in order to eliminate such an inconvenience, carbon dioxide is dissolved in ultrapure water to obtain a functional water to which a function of reducing specific resistance is added. Used for cleaning.

このような機能水生成装置及び機能水生成方法としては、例えば、超純水流路中に、流量を予め測定する流量センサーと、炭酸ガスを直接注入する炭酸ガス注入器と、比抵抗測定器とを順次配設し、炭酸ガスマスフローメータによって炭酸ガス注入量を計測し、超純水径路中の流量変動値と、比抵抗測定値と、比抵抗設定値とから炭酸ガス注入量を演算し、炭酸ガスマスフローメータの計測値をこの演算値にリアルタイムに合致させ、所定の比抵抗値の超純水を得る方法が開示されている(特許文献1参照)。また、比抵抗値が目標値より低い値となるように炭酸ガスが付加された超純水を生成させる手段と、その炭酸ガス付加水を超純水原水に均一混合させることによって、所望の比抵抗値の超純水を製造する装置が開示されている(特許文献2参照)。
特公平7−67554号公報 特開平10−324502号公報
As such a functional water generating device and a functional water generating method, for example, a flow rate sensor that measures a flow rate in advance in an ultrapure water flow path, a carbon dioxide gas injector that directly injects carbon dioxide gas, a specific resistance measuring instrument, Are sequentially disposed, the carbon dioxide injection amount is measured by a carbon dioxide mass flow meter, the carbon dioxide injection amount is calculated from the flow rate fluctuation value in the ultrapure water path, the specific resistance measurement value, and the specific resistance setting value, A method of obtaining ultrapure water having a predetermined specific resistance value by matching a measured value of a carbon dioxide gas mass flow meter with this calculated value in real time is disclosed (see Patent Document 1). In addition, a means for generating ultrapure water to which carbon dioxide gas is added so that the specific resistance value is lower than the target value, and the carbon dioxide added water are uniformly mixed with the ultrapure water raw water to obtain a desired ratio. An apparatus for producing ultrapure water having a resistance value is disclosed (see Patent Document 2).
Japanese Examined Patent Publication No. 7-67554 JP-A-10-324502

しかしながら、特許文献1に開示された方法では、超純水の流量を測定する流量センサー、炭酸ガスの量を計測するマスフローメーター、超純水の比抵抗を計測する比抵抗測定器、及びこれらを制御するマイクロコンピュータを用いているため、機能水製造装置そのものが大型かつ高価にならざるを得ず、また、比抵抗の変化に対応して炭酸ガスの流量を制御しているため、炭酸ガス流量の増減に時間的遅れがあり、比抵抗の値が変動するという問題があった。また、特許文献2に開示された装置では、原超純水を分配して一方の超純水に炭酸ガスの圧力を一定に保持するための調圧弁を経由させた炭酸ガスを溶解して、炭酸ガス高濃度付加水を製造し、バイパス管路を経た原水とを合流させているため、系内において流量の変化に対応して炭酸ガスの流量を制御することが困難であり、比抵抗値を精密に制御することが困難であるという問題があった。   However, in the method disclosed in Patent Document 1, a flow rate sensor that measures the flow rate of ultrapure water, a mass flow meter that measures the amount of carbon dioxide gas, a specific resistance measuring instrument that measures the specific resistance of ultrapure water, and these Since the controlling microcomputer is used, the functional water production apparatus itself must be large and expensive, and the flow rate of carbon dioxide gas is controlled according to the change in specific resistance. There was a problem that the specific resistance value fluctuated due to a time delay in the increase / decrease. In addition, in the apparatus disclosed in Patent Document 2, the raw ultrapure water is distributed, and the carbon dioxide gas passed through the pressure regulating valve for keeping the pressure of the carbon dioxide gas constant in one ultrapure water is dissolved. Since carbon dioxide high-concentration added water is manufactured and combined with raw water that has passed through the bypass pipe, it is difficult to control the flow rate of carbon dioxide gas in response to changes in the flow rate in the system, and the specific resistance value There was a problem that it was difficult to precisely control.

本発明は、上記問題を解決するためになされたものであり、機能流体の超純水への溶解量又は混合量を精密に制御して、正確な機能流体濃度の機能水を生成することが可能であるとともに、小型かつ安価な機能水生成装置及びそれを用いた効率的な機能水生成方法を提供することを目的とする。 The present invention has been made to solve the above problems, and precisely control the amount of dissolution or mixing of the ultra-pure water of the functional fluid, to generate the functional water of the correct functional fluid density An object of the present invention is to provide a small and inexpensive functional water generating apparatus and an efficient functional water generating method using the same.

上記目的を達成するため、本発明によれば、以下の機能水生成装置及びそれを用いた機能水生成方法が提供される。   In order to achieve the above object, according to the present invention, the following functional water generating device and a functional water generating method using the same are provided.

[1]超純水に、炭酸ガス、水素、オゾン、酸素、アンモニアから選択される気体、又はアンモニア、フッ酸から選択される液体である機能性流体を溶解又は混合して機能水を生成する機能水生成装置であって、前記超純水の主流路としての超純水主流路と、前記超純水主流路から分岐した超純水分岐流路と、前記機能性流体の流路としての機能性流体流路と、前記超純水分岐流路に連通して配設されるとともに、前記超純水分岐流路の連通とは別の連通路で前記機能性流体流路に連通した、前記超純水分岐流路における超純水の流量に対応して前記機能性流体の流量を制御する流体流量制御手段と、前記超純水分岐流路の、前記流体流量制御手段の配設箇所よりも下流に連通して配設されるとともに、前記超純水分岐流路の連通とは別の連通路で前記機能性流体流路に連通した、前記超純水分岐流路を流れる超純水(第1の超純水)に、前記流体流量制御手段によって流量を制御された前記機能性流体を溶解又は混合して第1の機能水を生成する混合手段とを備え、前記超純水主流路を流れる超純水(第2の超純水)に、前記混合手段から前記第1の機能水を導入し、溶解又は混合することによって、第2の機能水を生成することを特徴とする機能水生成装置(以下、「第1の発明」ということがある)。 [1] Functional water is generated by dissolving or mixing a functional fluid that is a gas selected from carbon dioxide, hydrogen, ozone, oxygen, and ammonia, or a liquid selected from ammonia and hydrofluoric acid, in ultrapure water. A functional water generating device comprising: an ultrapure water main flow path as a main flow path of the ultra pure water; an ultra pure water branch flow path branched from the ultra pure water main flow path; and a flow path of the functional fluid. The functional fluid flow path is disposed in communication with the ultrapure water branch flow path and communicated with the functional fluid flow path through a communication path different from the communication of the ultra pure water branch flow path. Fluid flow rate control means for controlling the flow rate of the functional fluid corresponding to the flow rate of ultrapure water in the ultrapure water branch flow path, and the location of the fluid flow rate control means in the ultrapure water branch flow path In addition to the communication of the ultrapure water branch flow path. The functional fluid whose flow rate is controlled by the fluid flow rate control means is added to the ultrapure water (first ultrapure water) that flows through the ultrapure water branch flow channel that communicates with the functional fluid flow channel through a channel. Mixing means for generating first functional water by dissolving or mixing, and supplying the first functional water from the mixing means to the ultrapure water (second ultrapure water) flowing through the ultrapure water main flow path. A functional water generator (hereinafter also referred to as “first invention”) characterized by generating second functional water by introducing, dissolving or mixing.

[2]超純水に、炭酸ガス、水素、オゾン、酸素、アンモニアから選択される気体、又はアンモニア、フッ酸から選択される液体である機能性流体を溶解又は混合して機能水を生成する機能水生成装置であって、前記超純水の流路としての超純水流路と、前記機能性流体の流路としての機能性流体流路と、前記超純水流路に連通して配設されるとともに、前記超純水流路の連通とは別の連通路で前記機能性流体流路に連通した、前記超純水流路における超純水の流量に対応して前記機能性流体の流量を制御する流体流量制御手段と、前記超純水流路の、前記流体流量制御手段の配設箇所よりも下流に連通して配設されるとともに、前記超純水流路の連通とは別の連通路で前記機能性流体流路に連通した、前記超純水流路を流れる超純水に、前記流体流量制御手段によって流量を制御された前記機能性流体を溶解又は混合して機能水を生成する混合手段とを備えてなることを特徴とする機能水生成装置(以下、「第2の発明」ということがある)。 [2] Functional water is generated by dissolving or mixing a functional fluid that is a gas selected from carbon dioxide, hydrogen, ozone, oxygen, and ammonia, or a liquid selected from ammonia and hydrofluoric acid, in ultrapure water. A functional water generator, wherein the ultrapure water channel as the ultrapure water channel, the functional fluid channel as the functional fluid channel, and the ultrapure water channel are in communication with each other And the flow rate of the functional fluid corresponding to the flow rate of the ultrapure water in the ultrapure water flow channel communicated with the functional fluid flow channel through a communication path different from the communication of the ultrapure water flow channel. The fluid flow rate control means to be controlled and the communication path different from the communication of the ultra pure water flow path are disposed downstream of the location of the fluid flow rate control means of the ultra pure water flow path. The ultrapure water flowing through the ultrapure water flow channel communicated with the functional fluid flow channel at A functional water generating device (hereinafter referred to as “second invention”), characterized in that it comprises mixing means for dissolving or mixing the functional fluid whose flow rate is controlled by the fluid flow control means to generate functional water. Sometimes).

[3]前記流体流量制御手段が、前記超純水分岐流路又は前記超純水流路に連通した超純水連通路と、前記機能性流体流路に連通した機能性流体連通路と、前記超純水連通路に配設された、前記超純水の流量に対応して移動可能な円筒状抵抗子と、前記機能性流体連通路に、前記円筒状抵抗子に囲繞される状態で配設された、前記円筒状抵抗子の移動に連動して移動可能な流体流量制御子と、前記流体流量制御子の移動に対応して、前記機能性流体連通路の大きさを調整可能な流体連通路調整手段とを有し、前記超純水の流量に対応して前記機能性流体の流量を制御するものである前記[1]又は[2]に記載の機能水生成装置。 [3] The fluid flow rate control means includes an ultrapure water communication channel communicating with the ultrapure water branch channel or the ultrapure water channel, a functional fluid communication channel communicating with the functional fluid channel, A cylindrical resistor disposed in the ultrapure water communication path and movable in accordance with the flow rate of the ultrapure water, and disposed in the functional fluid communication path in a state surrounded by the cylindrical resistor. A fluid flow controller that is movable in conjunction with the movement of the cylindrical resistor, and a fluid that can adjust the size of the functional fluid communication path in accordance with the movement of the fluid flow controller. The functional water generating device according to [1] or [2], further including a communication path adjusting unit that controls a flow rate of the functional fluid in accordance with a flow rate of the ultrapure water.

[4]前記円筒状抵抗子が、円筒状駆動マグネットを同心状に内蔵したものであり、前記流体流量制御子が、前記円筒状抵抗子の前記円筒状駆動マグネットと磁力結合した棒状従動マグネットを内蔵したものであり、さらに、前記流体連通路調整手段が、前記流体流量制御子の先端に配設された弁棒と、前記機能性流体連通路に配設された弁座及び付勢手段とから構成されたものであるとともに、前記弁棒が前記付勢手段によって前記弁座に押圧されるように構成されたものであり、前記超純水の流れによって前記円筒状抵抗子が移動すると、前記流体流量制御子が連動して移動し、前記流体流量制御子の先端に配設された前記弁棒を前記付勢手段からの押圧に抗しつつ前記弁座から離間又は近接させて、前記流体連通路の大きさを拡大又は縮小する前記[3]に記載の機能水生成装置。 [4] The cylindrical resistor includes a cylindrical driving magnet concentrically built therein, and the fluid flow controller includes a rod-shaped driven magnet magnetically coupled to the cylindrical driving magnet of the cylindrical resistor. Further, the fluid communication path adjusting means includes a valve rod disposed at a tip of the fluid flow controller, a valve seat and a biasing means disposed in the functional fluid communication path. And the valve rod is configured to be pressed against the valve seat by the biasing means, and when the cylindrical resistor is moved by the flow of the ultrapure water, The fluid flow control element moves in conjunction with the valve rod disposed at the tip of the fluid flow control element while being separated from or close to the valve seat while resisting the pressure from the urging means, Increase the size of the fluid communication path or Functional water generating apparatus according to the small [3].

[5]前記円筒状抵抗子が、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)及びエチレンテトラフルオロエチレン樹脂(ETFE)からなる群から選ばれる少なくとも一の樹脂によりライニングされてなるとともに、前記超純水連通路を構成する部品が前記樹脂から構成されてなる前記[3]又は[4]に記載の機能水生成装置。 [5] The cylindrical resistor is selected from the group consisting of perfluoroalkoxy resin (PFA), polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), and ethylene tetrafluoroethylene resin (ETFE). The functional water generating device according to [3] or [4], wherein the functional water generating device is lined with at least one resin and a part constituting the ultrapure water communication path is made of the resin.

[6]前記円筒状抵抗子の先端に配設された弁棒と、前記超純水連通路に配設された弁座とから構成された弁機構を有するとともに、前記弁棒と前記弁座との間に、前記超純水を常時流す分岐連通路が構成されてなる前記[3]〜[5]のいずれかに記載の機能水生成装置。 [6] It has a valve mechanism composed of a valve rod disposed at the tip of the cylindrical resistor and a valve seat disposed in the ultrapure water communication path, and the valve rod and the valve seat. The functional water generating device according to any one of [3] to [5], in which a branch communication path through which the ultrapure water is constantly flowed is configured between the two.

[7]前記流体流量制御手段が、前記超純水分岐流路又は前記超純水流路に連通した超純水連通路と、前記機能性流体流路に連通した機能性流体連通路と、前記超純水連通路に配設された、前記超純水の流量に対応して移動可能な棒状抵抗子と、前記機能性流体連通路に、前記棒状抵抗子に並列する状態で配設された、前記棒状抵抗子の移動に連動して移動可能な流体流量制御子と、前記流体流量制御子の移動に対応して、前記機能性流体連通路の大きさを調整可能な流体連通路調整手段とを有し、前記超純水の流量に対応して前記機能性流体の流量を制御するものである前記[1]又は[2]に記載の機能水生成装置。 [7] The fluid flow control means includes the ultrapure water branch channel or the ultrapure water communication channel that communicates with the ultrapure water channel, the functional fluid communication channel that communicates with the functional fluid channel, A rod-shaped resistor disposed in the ultrapure water communication path and movable in accordance with the flow rate of the ultrapure water, and disposed in the functional fluid communication path in parallel with the rod-shaped resistor. A fluid flow rate controller that can move in conjunction with the movement of the rod-shaped resistor, and a fluid communication path adjustment means that can adjust the size of the functional fluid communication path in accordance with the movement of the fluid flow rate controller The functional water generating apparatus according to [1] or [2], wherein the functional fluid flow rate is controlled corresponding to the flow rate of the ultrapure water.

[8]前記棒状抵抗子が、棒状駆動マグネットを内蔵したものであり、前記流体流量制御子が、前記棒状抵抗子の前記棒状駆動マグネットと磁力結合した棒状従動マグネットを内蔵したものであり、さらに、前記流体連通路調整手段が、前記流体流量制御子の先端に配設された弁棒と、前記機能性流体連通路に配設された弁座及び付勢手段とから構成されたものであるとともに、前記弁棒が前記付勢手段によって前記弁座に押圧されるように構成されたものであり、前記超純水の流れによって前記棒状抵抗子が移動すると、前記流体流量制御子が連動して移動し、前記流体流量制御子の先端に配設された前記弁棒を前記付勢手段からの押圧に抗しつつ前記弁座から離間又は近接させて、前記流体連通路の大きさを拡大又は縮小する前記[7]に記載の機能水生成装置。 [8] The rod-shaped resistor has a built-in rod-shaped drive magnet, the fluid flow controller has a built-in rod-shaped driven magnet magnetically coupled to the rod-shaped drive magnet of the rod-shaped resistor, and The fluid communication path adjusting means includes a valve rod disposed at the tip of the fluid flow controller, and a valve seat and biasing means disposed in the functional fluid communication path. At the same time, the valve rod is configured to be pressed against the valve seat by the biasing means, and when the rod-shaped resistor is moved by the flow of the ultrapure water, the fluid flow rate controller is interlocked. The size of the fluid communication passage is increased by moving the valve rod disposed at the tip of the fluid flow control element away from or close to the valve seat against the pressing force from the urging means. Or reduce the above [7] Functional water generating apparatus according.

[9]前記棒状抵抗子が、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)及びエチレンテトラフルオロエチレン樹脂(ETFE)からなる群から選ばれる少なくとも一の樹脂によりライニングされてなるとともに、前記超純水連通路を構成する部品が前記樹脂から構成されてなる前記[7]又は[8]に記載の機能水生成装置。 [9] The rod-shaped resistor is at least selected from the group consisting of perfluoroalkoxy resin (PFA), polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), and ethylene tetrafluoroethylene resin (ETFE). The functional water generating device according to [7] or [8], wherein the functional water generating device is lined with a single resin, and the components constituting the ultrapure water communication path are made of the resin.

[10]前記棒状抵抗子の先端に配設された弁棒と、前記超純水連通路に配設された弁座とから構成された弁機構を有するとともに、前記弁棒と前記弁座との間に、前記超純水を常時流す分岐連通路が構成されてなる前記[7]〜[9]のいずれかに記載の機能水生成装置。 [10] A valve mechanism including a valve rod disposed at a tip of the rod-shaped resistor and a valve seat disposed in the ultrapure water communication path, and the valve rod and the valve seat The functional water generating device according to any one of [7] to [9], in which a branch communication path through which the ultrapure water is always flowed is configured.

[11]前記流体流量制御手段が、前記超純水分岐流路又は前記超純水流路に連通した超純水連通路と、前記機能性流体流路に連通した機能性流体連通路と、前記超純水連通路に配設された前記超純水の流量に対応して移動可能な抵抗子部分、及び前記機能性流体連通路に配設された、前記抵抗子部分と一体的に形成された流体流量制御子部分から構成された弁棒状抵抗子と、前記弁棒状抵抗子に配設された、前記超純水連通路と前記機能性流体連通路とを分断するとともに前記弁棒状抵抗子を前記抵抗子部分と前記流体流量制御子部分とに分断するダイアフラムと、前記機能性流体連通路の大きさを調整可能な流体連通路調整手段とを有し、前記超純水の流量に対応して前記機能性流体の流量を制御するものである前記[1]又は[2]に記載の機能水生成装置。 [11] The fluid flow control means includes the ultrapure water branch channel or the ultrapure water communication channel that communicates with the ultrapure water channel, the functional fluid communication channel that communicates with the functional fluid channel, It is formed integrally with the resistor portion disposed in the ultrapure water communication path and movable in accordance with the flow rate of the ultrapure water, and the resistor portion disposed in the functional fluid communication path. A valve rod-shaped resistor composed of a fluid flow controller, and the ultrapure water communication passage and the functional fluid communication passage disposed in the valve rod-shaped resistor and the valve rod-shaped resistor. The diaphragm portion is divided into the resistor portion and the fluid flow rate controller portion, and the fluid communication path adjustment means capable of adjusting the size of the functional fluid communication path, and corresponds to the flow rate of the ultrapure water. In the above [1] or [2], which controls the flow rate of the functional fluid Mounting of functional water generating apparatus.

[12]前記流体連通路調整手段が、前記流体流量制御子部分の先端に配設された弁棒と、前記機能性流体連通路に配設された弁座及び付勢手段とから構成されたものであるとともに、前記弁棒が前記付勢手段によって前記弁座に押圧されるように構成されたものであり、前記超純水の流れによって前記弁棒状抵抗子の前記抵抗子部分が移動すると、前記抵抗子部分と一体的に構成された前記流体流量制御子部分が連動して移動し、前記流体流量制御子部分の先端に配設された前記弁棒を前記付勢手段からの押圧に抗しつつ前記弁座から離間又は近接させて、前記流体連通路の大きさを拡大又は縮小する前記[11]に記載の機能水生成装置。 [12] The fluid communication path adjusting means comprises a valve rod disposed at the tip of the fluid flow rate controller portion, and a valve seat and biasing means disposed in the functional fluid communication path. And the valve stem is configured to be pressed against the valve seat by the urging means, and when the resistor portion of the valve stem resistor is moved by the flow of the ultrapure water. The fluid flow rate controller portion integrally formed with the resistor portion moves in conjunction with the valve rod disposed at the tip of the fluid flow rate controller portion to press the biasing means. The functional water generating device according to [11], wherein the size of the fluid communication path is enlarged or reduced by moving away from or close to the valve seat while resisting.

[13]前記抵抗子部分が、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)及びエチレンテトラフルオロエチレン樹脂(ETFE)からなる群から選ばれる少なくとも一の樹脂によりライニングされてなるとともに、前記超純水連通路を構成する部品が前記樹脂から構成されてなる前記[11]又は[12]に記載の機能水生成装置。 [13] The resistor portion is at least selected from the group consisting of perfluoroalkoxy resin (PFA), polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), and ethylene tetrafluoroethylene resin (ETFE). The functional water generating device according to [11] or [12], wherein the functional water generating device is lined with a single resin, and the parts constituting the ultrapure water communication path are made of the resin.

[14]前記抵抗子部分の先端に配設された弁棒と、前記超純水連通路に配設された弁座とから構成された弁機構を有するとともに、前記弁棒と前記弁座との間に、前記超純水を常時流す分岐連通路が構成されてなる前記[11]〜[13]のいずれかに記載の機能水生成装置。 [14] It has a valve mechanism composed of a valve rod disposed at the tip of the resistor portion and a valve seat disposed in the ultrapure water communication passage, and the valve rod and the valve seat The functional water generator according to any one of [11] to [13], in which a branch communication path through which the ultrapure water is constantly flowed is configured.

15]前記[1]〜[14]のいずれかに記載の機能水生成装置を用いて機能水を生成することを特徴とする機能水生成方法。 [ 15 ] A functional water generating method, wherein functional water is generated using the functional water generating device according to any one of [1] to [ 14 ].

本発明によって、機能流体の超純水への溶解量又は混合量を精密に制御して、正確な機能流体濃度の機能水を生成することが可能であるとともに、小型かつ安価な機能水生成装置及びそれを用いた効率的な機能水生成方法が提供される。 The present invention, the functional dissolution amount or mixing amount of the ultrapure water fluid precisely controlled, with it is possible to generate the functional water of the correct functional fluid density, compact and inexpensive functional water A generating device and an efficient functional water generating method using the same are provided.

以下、本発明を実施するための最良の形態を図面を参照しつつ具体的に説明する。   Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings.

図1は、本発明(第1の発明)の一の実施の形態を模式的に示す説明図である。図1に示すように、本実施の形態の機能水生成装置は、超純水Wに機能性流体Gを溶解又は混合して機能水(図1では最終的に第2の機能水F2)を生成する機能水生成装置100であって、超純水Wの主流路としての超純水主流路101と、超純水主流路101から分岐した超純水分岐流路102と(図1では分岐する前の超純水流路を符号101aで示す)、機能性流体Gの流路としての機能性流体流路103と(図1では機能性流体の貯蔵源を符号103aで示す)、超純水分岐流路102に連通して配設されるとともに、超純水分岐流路102の連通とは別の連通路で機能性流体流路103に連通した、超純水分岐流路102における超純水Wの流量に対応して機能性流体Gの流量を制御する流体流量制御手段104と、超純水分岐流路102の、流体流量制御手段104の配設箇所よりも下流に連通して配設されるとともに、超純水分岐流路102の連通とは別の連通路で機能性流体流路103に連通した、超純水分岐流路102を流れる超純水(第1の超純水)W1に、流体流量制御手段104によって流量を制御された機能性流体Gを溶解又は混合して第1の機能水F1を生成する混合手段105とを備え、超純水主流路101を流れる超純水(第2の超純水)W2に、混合手段105から第1の機能水F1を導入し、溶解又は混合することによって、第1の機能水F1よりは機能性流体Gの溶解濃度又は混合濃度の薄い第2の機能水F2を生成することを特徴とするものである。なお、図1中、符号106は、機能性流体Gの圧力を制御する圧力制御弁を、符号107は、超純水主流路101を流れる第2の超純水W2が混合手段105から送られる第1の機能水F1に逆流することを防止するための逆止弁を、符号108は、気体として超純水の中に残存する機能性流体Gを除いて、さらに下流に配設された、例えば、洗浄装置(図示せず)へ送るための疎水膜フィルタをそれぞれ示す。   FIG. 1 is an explanatory view schematically showing one embodiment of the present invention (first invention). As shown in FIG. 1, the functional water generator of the present embodiment dissolves or mixes a functional fluid G in ultrapure water W to finally produce functional water (second functional water F2 in FIG. 1 finally). A functional water generating apparatus 100 that generates an ultrapure water main channel 101 as a main channel of ultrapure water W, and an ultrapure water branch channel 102 branched from the ultrapure water main channel 101 (in FIG. 1, branching) The ultrapure water flow path before the operation is indicated by reference numeral 101a), the functional fluid flow path 103 as the flow path of the functional fluid G (the functional fluid storage source is indicated by reference numeral 103a in FIG. 1), and ultrapure water. The ultrapure water in the ultrapure water branch flow path 102 is disposed in communication with the branch flow path 102 and communicates with the functional fluid flow path 103 through a communication path different from the communication of the ultrapure water branch flow path 102. Fluid flow control means 104 for controlling the flow rate of the functional fluid G corresponding to the flow rate of the water W, and ultrapure water branch The passage 102 is arranged to communicate downstream from the location where the fluid flow rate control means 104 is arranged, and communicates with the functional fluid flow path 103 through a communication path different from the communication of the ultrapure water branch flow path 102. The functional fluid G, whose flow rate is controlled by the fluid flow rate control means 104, is dissolved or mixed in the ultrapure water (first ultrapure water) W1 flowing through the ultrapure water branch flow path 102. The first functional water F1 is introduced from the mixing means 105 into the ultrapure water (second ultrapure water) W2 flowing through the ultrapure water main channel 101 and dissolved or dissolved. By mixing, the second functional water F2 having a lower dissolved concentration or mixed concentration of the functional fluid G than the first functional water F1 is generated. In FIG. 1, reference numeral 106 denotes a pressure control valve that controls the pressure of the functional fluid G, and reference numeral 107 denotes a second ultrapure water W <b> 2 that flows through the ultrapure water main channel 101 from the mixing unit 105. The check valve 108 for preventing backflow into the first functional water F1 is disposed further downstream except for the functional fluid G remaining in the ultrapure water as a gas. For example, a hydrophobic membrane filter for sending to a cleaning device (not shown) is shown.

このように、機能性流体Gの溶解濃度又は混合濃度の高い第1の機能水F1を先ず生成し、次いで機能性流体Gを溶解又は混合していない第2の超純水W2によって薄めて第2の機能水F2を生成することによって、初めから所定の溶解濃度又は混合濃度の第2の機能水F2を生成する場合よりも、得られる第2の機能水F2の濃度の溶解濃度又は混合濃度のバラツキを抑制することができる。   Thus, the first functional water F1 having a high concentration or mixed concentration of the functional fluid G is first generated, and then the functional fluid G is diluted with the second ultrapure water W2 not dissolved or mixed. By generating the second functional water F2, the dissolved concentration or the mixed concentration of the concentration of the second functional water F2 obtained than when the second functional water F2 having a predetermined dissolved concentration or mixed concentration is generated from the beginning. Can be suppressed.

図2は、本発明(第2の発明)の一の実施の形態を模式的に示す説明図である。図2に示すように、本実施の形態の機能水生成装置は、超純水Wに機能性流体Gを溶解又は混合して機能水Fを生成する機能水生成装置200であって、超純水Wの流路としての超純水流路201と、機能性流体Gの流路としての機能性流体流路203と、超純水流路201に連通して配設されるとともに、超純水流路201の連通とは別の連通路で機能性流体流路203に連通した、超純水流路201における超純水Wの流量に対応して機能性流体Gの流量を制御する流体流量制御手段204と、超純水流路201の、流体流量制御手段204の配設箇所よりも下流に連通して配設されるとともに、超純水流路201の連通とは別の連通路で機能性流体流路203に連通した、超純水流路201を流れる超純水に、流体流量制御手段204によって流量を制御された機能性流体Gを溶解又は混合して機能水Fを生成する混合手段205とを備えてなることを特徴とするものである。なお、図2中、符号206は、機能性流体Gの圧力を制御する圧力制御弁を、符号208は、気体として超純水の中に残存する機能性流体Gを除いて、さらに下流に配設された、例えば、洗浄装置(図示せず)へ送るための疎水膜フィルタをそれぞれ示す。   FIG. 2 is an explanatory view schematically showing one embodiment of the present invention (second invention). As shown in FIG. 2, the functional water generator of the present embodiment is a functional water generator 200 that generates functional water F by dissolving or mixing a functional fluid G in ultrapure water W. The ultrapure water channel 201 as the water W channel, the functional fluid channel 203 as the functional fluid G channel, and the ultrapure water channel 201 are arranged in communication with the ultrapure water channel 201. Fluid flow rate control means 204 for controlling the flow rate of the functional fluid G corresponding to the flow rate of the ultrapure water W in the ultrapure water flow channel 201 communicated with the functional fluid flow channel 203 through a communication path different from the communication of 201. And the functional fluid flow path in a communication path different from the communication of the ultrapure water flow path 201 and disposed downstream of the location of the fluid flow rate control means 204 in the ultra pure water flow path 201. The fluid flow control means 204 is added to the ultrapure water flowing through the ultrapure water flow path 201, which communicates with 203. Therefore those characterized by comprising a mixing means 205 for generating a dissolved or mixed functional water F controlled functional fluids G flow. In FIG. 2, reference numeral 206 denotes a pressure control valve that controls the pressure of the functional fluid G, and reference numeral 208 denotes a functional fluid G remaining in the ultrapure water as a gas, further downstream. Each of the installed hydrophobic membrane filters, for example, for sending to a cleaning device (not shown) is shown.

第2の発明は、第1の発明よりも、機能性流体Gの溶解濃度又は混合濃度のバラツキに対する許容範囲が大きく、また、装置に対する小型化及び安価化の要請が大きい場合に用いることが好ましい。   The second invention is preferably used when the tolerance for the variation of the dissolved concentration or mixed concentration of the functional fluid G is larger than that of the first invention and there is a greater demand for downsizing and cost reduction of the apparatus. .

図3は、本発明に用いられる流体流量制御手段の一の例(第1の流体流量制御手段)について模式的に示す断面図で、図3(a)は超純水の流量を小にして機能性流体の流量を小にする場合、図3(b)は超純水の流量を大にして機能性流体の流量を大にする場合をそれぞれ示す。図3(a)、(b)に示すように、本発明(以下、第1の発明に基づいて説明するが第2の発明の場合も同様である)に用いられる第1の流体流量制御手段204aは、超純水分岐流路102(図1参照)に連通した超純水連通路251と、機能性流体流路203(図1参照)に連通した機能性流体連通路252と、超純水連通路251に配設された、超純水の流量に対応して移動可能な円筒状抵抗子253と、機能性流体連通路252に、円筒状抵抗子253に囲繞される状態で配設された、円筒状抵抗子253の移動に連動して移動可能な流体流量制御子254と、流体流量制御子254の移動に対応して、機能性流体連通路252の大きさを調整可能な流体連通路調整手段(図3(a)では流体流量制御子254の先端に配設された弁棒(ニードル)254b及び機能性流体連通路252に配設された弁座255)とを有し、超純水の流量に対応して機能性流体の流量を制御することができる。このように、図3に示す例では、機能性流体の通路である機能性流体連通路252と超純水の流路である超純水連通路251とは互いに別々に連通している(互いに隔絶されている)ことが必要であり、超純水の流量の増大(減少)に対応して、機能性流体の流量も増大(減少)するようになっており、精密に制御された流量の機能性流体を混合手段105(図1参照)に送り込むことができる。   FIG. 3 is a cross-sectional view schematically showing an example of the fluid flow rate control means (first fluid flow rate control means) used in the present invention. FIG. When the flow rate of the functional fluid is reduced, FIG. 3B shows the case where the flow rate of the functional fluid is increased by increasing the flow rate of ultrapure water. As shown in FIGS. 3A and 3B, the first fluid flow rate control means used in the present invention (hereinafter described based on the first invention, but the same applies to the second invention). 204a includes an ultrapure water communication path 251 that communicates with the ultrapure water branch flow path 102 (see FIG. 1), a functional fluid communication path 252 that communicates with the functional fluid flow path 203 (see FIG. 1), and an ultrapure water. A cylindrical resistor 253 that is movable in accordance with the flow rate of ultrapure water disposed in the water communication path 251 and a functional fluid communication path 252 that is surrounded by the cylindrical resistor 253. The fluid flow rate controller 254 that can move in conjunction with the movement of the cylindrical resistor 253 and the fluid that can adjust the size of the functional fluid communication path 252 in accordance with the movement of the fluid flow rate controller 254 The communication path adjusting means (the valve disposed at the tip of the fluid flow rate controller 254 in FIG. (Needle) 254b and functional fluids valve seat 255 disposed in the communication passage 252) and has, can control the flow rate of the functional fluid in response to the flow rate of ultra pure water. In this way, in the example shown in FIG. 3, the functional fluid communication path 252 that is a functional fluid path and the ultrapure water communication path 251 that is a flow path of ultrapure water are in communication with each other separately (each other In response to an increase (decrease) in the flow rate of ultrapure water, the flow rate of the functional fluid also increases (decreases). Functional fluid can be fed into the mixing means 105 (see FIG. 1).

図3(a)に基づき、第1の流体流量制御手段204aについてさらに具体的に説明する。スリット256については後述する。シリンダ261は両端部が開口した機能性流体連通路252を形成し、流体流量制御子254の外径はシリンダ261の内部を滑動可能な寸法に設定されている。シリンダ261の下端には弁座255が挿入され、流体流量制御子254の弁棒(ニードル)254bとともに機能性流体の流量を制御する。流体流量制御子254の上部には付勢手段(スプリング)263が配設され、流体流量制御子254を弁座255に圧着している。付勢手段(スプリング)263の付勢力は、中心に機能性流体連通路252を有する止めネジ264のねじ込み加減による。シリンダ261は上部が鍔付きのフランジとなっており、本体カバー266に対して嵌合された後、止め輪265で固定されている。円筒状抵抗子253は本体カバー266(パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)等の、超純水への成分溶出性の小さい材料で構成することが好ましい)の円筒内壁271に対して軸方向に滑動可能となっており、弁棒(コニカル部)253c(図4参照)が本体カバー266の弁座270に当接している。第1の流体流量制御手段204aは本体カバー266とOリング268、269によりに密閉され、円筒状抵抗子253を収納する空間を形成するとともに、超純水連通路251を形成している。円筒状抵抗子253の軸方向の移動はトラベルストッパ267で制限される。本体カバー266には、超純水入口257及び超純水出口258が形成され、超純水入口257から流入した超純水は、円筒状抵抗子253の弁棒(コニカル部)253cと弁座270の間を流れ、流量が増大するとその抵抗により円筒状抵抗子253は軸方向、図3(a)においては上部に向かって移動し、棒状従動マグネット254aにより磁力連結された流体流量制御子254も同期して上部方向に移動して、機能性流体が機能性流体入口259から機能性流体出口260へ流れることになる。なお、この例では、第1の流体流量制御手段204aの円筒状抵抗子253を重力により弁座270に当接させて、機能性流体連通路252を軸方向(上下方向)に配設しているが、円筒状抵抗子253に、付勢手段(例えば、スプリング)を設けることによって、第1の流体流量制御手段204aの設置向きは、この例のような縦向きだけではなく、例えば、横向き、斜め向き等と任意に設定することができる。なお、図3(a)において、符号262は、弁座255部分における気密性を確保するためのOリングを示す。   Based on FIG. 3A, the first fluid flow rate control means 204a will be described more specifically. The slit 256 will be described later. The cylinder 261 forms a functional fluid communication path 252 that is open at both ends, and the outer diameter of the fluid flow rate controller 254 is set to a dimension that allows the inside of the cylinder 261 to slide. A valve seat 255 is inserted at the lower end of the cylinder 261 and controls the flow rate of the functional fluid together with the valve rod (needle) 254b of the fluid flow rate controller 254. An urging means (spring) 263 is disposed on the upper part of the fluid flow rate controller 254 and presses the fluid flow rate controller 254 to the valve seat 255. The urging force of the urging means (spring) 263 is due to screwing of a set screw 264 having a functional fluid communication path 252 at the center. The cylinder 261 has a flange with a flange at the top, and is fitted to the main body cover 266 and then fixed with a retaining ring 265. The cylindrical resistor 253 is a cylindrical inner wall of the main body cover 266 (preferably made of a material having a low component elution property to ultrapure water, such as perfluoroalkoxy resin (PFA) or polytetrafluoroethylene resin (PTFE)). The valve rod (conical portion) 253 c (see FIG. 4) is in contact with the valve seat 270 of the main body cover 266. The first fluid flow rate control means 204a is hermetically sealed by a main body cover 266 and O-rings 268, 269, and forms a space for accommodating the cylindrical resistor 253 and forms an ultrapure water communication path 251. The movement of the cylindrical resistor 253 in the axial direction is restricted by a travel stopper 267. The main body cover 266 is formed with an ultrapure water inlet 257 and an ultrapure water outlet 258, and the ultrapure water flowing from the ultrapure water inlet 257 is connected to the valve rod (conical part) 253 c of the cylindrical resistor 253 and the valve seat. When the flow rate increases between 270 and the flow rate increases, the resistance of the cylindrical resistor 253 moves in the axial direction, upward in FIG. 3A, and is fluidly connected by the rod-shaped driven magnet 254a. Are also moved in the upward direction in synchronism with each other, and the functional fluid flows from the functional fluid inlet 259 to the functional fluid outlet 260. In this example, the cylindrical resistor 253 of the first fluid flow control means 204a is brought into contact with the valve seat 270 by gravity, and the functional fluid communication path 252 is disposed in the axial direction (vertical direction). However, by providing an urging means (for example, a spring) to the cylindrical resistor 253, the installation direction of the first fluid flow rate control means 204a is not limited to the vertical direction as in this example, for example, the horizontal direction. It can be arbitrarily set to an oblique direction or the like. In FIG. 3A, reference numeral 262 indicates an O-ring for ensuring airtightness in the valve seat 255 portion.

図4は、流体流量制御手段に用いられる円筒状抵抗子の一の例を模式的に示す断面図であり、図5は、流体流量制御手段に用いられる流体流量制御子の一の例を模式的に示す断面図である。図4、5に示すように、円筒状抵抗子253は、円筒状駆動マグネット253aを同心状に内蔵したものであり、流体流量制御子254は、円筒状抵抗子253の円筒状駆動マグネット253aと磁力結合した棒状従動マグネット254aを内蔵したものであり、さらに、流体連通路調整手段は、流体流量制御子254の先端に配設された弁棒(ニードル)254bと、機能性流体連通路252(図3(a)参照)に配設された弁座255(図3(a)参照)及び付勢手段(図3(a)ではスプリング)263とから構成されたものであるとともに、弁棒(ニードル)254bは付勢手段(スプリング)263によって弁座254bに押圧(圧着)されるように構成されたものであり、超純水の流れによって円筒状抵抗子253が移動すると、流体流量制御子254が連動して移動し、流体流量制御子254の先端に配設された弁棒(ニードル)254bを付勢手段(スプリング)263からの押圧に抗しつつ弁座255から離間又は近接させて、流体連通路252(図3(a)参照)の大きさを拡大又は縮小することができるようになっている。なお、図4における符号253bはパーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)等によるライニングを示す。   FIG. 4 is a cross-sectional view schematically showing an example of a cylindrical resistor used in the fluid flow control means, and FIG. 5 is a schematic example of a fluid flow control element used in the fluid flow control means. FIG. As shown in FIGS. 4 and 5, the cylindrical resistor 253 has a cylindrical drive magnet 253 a built in concentrically, and the fluid flow rate controller 254 is connected to the cylindrical drive magnet 253 a of the cylindrical resistor 253. A magnetically coupled rod-shaped driven magnet 254a is incorporated, and the fluid communication path adjusting means further includes a valve rod (needle) 254b disposed at the tip of the fluid flow rate controller 254, and a functional fluid communication path 252 ( 3 (a)) and a biasing means (a spring in FIG. 3 (a)) 263, and a valve rod (see FIG. 3 (a)). The needle 254b is configured to be pressed (crimped) against the valve seat 254b by a biasing means (spring) 263, and when the cylindrical resistor 253 moves due to the flow of ultrapure water. The fluid flow control element 254 moves in conjunction with it and moves away from the valve seat 255 while resisting the pressure from the urging means (spring) 263 on the valve rod (needle) 254 b disposed at the tip of the fluid flow control element 254. Alternatively, the size of the fluid communication path 252 (see FIG. 3A) can be enlarged or reduced by being close to each other. In addition, the code | symbol 253b in FIG. 4 shows lining by a perfluoro alkoxy resin (PFA), a polytetrafluoroethylene resin (PTFE), etc.

流体流量制御子254の具体例としては、例えば、サマリウムコバルト、ネオジウム等の希土類系の棒状従動マグネット254aと、部分安定化ジルコニア、炭化珪素等のセラミックス、又は超硬金属からなる弁棒(ニードル)254bとをライニング254cで一体に成形したものを好適例として挙げることができる。ライニング254cとしては、機能性流体に対する耐食性があるポリエーテルエーテルケトン樹脂(PEEK)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS樹脂)からなるものを好適例として挙げることができる。流体流量制御子254の棒状従動マグネット254aと、円筒状抵抗子253の円筒状駆動マグネット253aとは、軸方向に略同一の長さを有するとともに、磁力極性S、Nが互いに引き付け合う位置に配置され、同期して軸方向に動くことができるようになっている。   Specific examples of the fluid flow rate controller 254 include, for example, a rare earth rod-like driven magnet 254a such as samarium cobalt and neodymium, and a valve rod (needle) made of ceramics such as partially stabilized zirconia and silicon carbide, or super hard metal. An example in which 254b and lining 254c are integrally formed is a preferred example. Preferred examples of the lining 254c include those made of polyether ether ketone resin (PEEK) and acrylonitrile / butadiene / styrene resin (ABS resin) which have corrosion resistance to the functional fluid. The rod-shaped driven magnet 254a of the fluid flow controller 254 and the cylindrical drive magnet 253a of the cylindrical resistor 253 have substantially the same length in the axial direction and are arranged at positions where the magnetic polarities S and N attract each other. And can move in the axial direction synchronously.

円筒状抵抗子253は、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)及びエチレンテトラフルオロエチレン樹脂(ETFE)からなる群から選ばれる少なくとも一の樹脂によりライニングで完全に被覆されてなることが好ましい。また、超純水連通路251(図3(a)参照)を構成する部品は上述の樹脂から構成されてなること好ましい。このように構成することによって、構成成分の超純水への溶出を防止することができる。中でも、パーフルオロアルコキシ樹脂(PFA)が、溶出防止効果が大で溶融成形が可能であることからさらに好ましい。   The cylindrical resistor 253 is at least one selected from the group consisting of perfluoroalkoxy resin (PFA), polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), and ethylene tetrafluoroethylene resin (ETFE). It is preferable that the resin is completely covered with a lining. Moreover, it is preferable that the parts which comprise the ultrapure water communication path 251 (refer FIG. 3 (a)) are comprised from the above-mentioned resin. By comprising in this way, the elution to the ultrapure water of a structural component can be prevented. Among these, perfluoroalkoxy resin (PFA) is more preferable because it has a large elution prevention effect and can be melt-molded.

第1の流体流量制御手段204a(図3(a)参照)は、円筒状抵抗子253の先端に配設された弁棒(コニカル部)253c(図4参照)と、超純水連通路251(図3(a)参照)に配設された弁座270とから構成された弁機構を有し、超純水の流量に対応して円筒状抵抗子253を軸方向に移動させることができるようになっている。また、弁棒(コニカル部)253cと弁座270との間に、半径方向に複数の、超純水を常時流す分岐連通路(図3(a)ではスリット)256が配設されて、弁棒(コニカル部)253cと弁座270とが密着しても、一部が開放されて超純水が常時流れるようになっている(このような機構はスローリークと称されている)。このような機構を有する第1の流体流量制御手段204aは、超純水連通路251に超純水が常時流れていないと、超純水が滞留することによって、少ないとはいえ第1の流体流量制御手段204aの超純水と接触する構成成分が超純水へ溶出して溶出成分の濃度が高くなってしまうことになる。このように微量の超純水を常時流しておくことによってこれを防止することができるようになっている。   The first fluid flow rate control means 204a (see FIG. 3A) includes a valve stem (conical portion) 253c (see FIG. 4) disposed at the tip of the cylindrical resistor 253, and an ultrapure water communication path 251. It has a valve mechanism composed of a valve seat 270 disposed in (see FIG. 3A) and can move the cylindrical resistor 253 in the axial direction in accordance with the flow rate of ultrapure water. It is like that. Further, a plurality of branch communication passages (slits in FIG. 3A) 256 for constantly flowing ultrapure water in the radial direction are arranged between the valve stem (conical portion) 253c and the valve seat 270, and the valve Even if the rod (conical portion) 253c and the valve seat 270 are in close contact with each other, a part thereof is opened so that ultrapure water always flows (such a mechanism is called a slow leak). The first fluid flow rate control means 204a having such a mechanism is configured so that the ultrapure water stays in the ultrapure water communication passage 251 and the ultrapure water stays in the first fluid, although it is small. The component that comes into contact with the ultrapure water of the flow rate control means 204a is eluted into the ultrapure water, and the concentration of the eluted component is increased. In this way, this can be prevented by always flowing a small amount of ultrapure water.

図6は、本発明に用いられる流体流量制御手段の他の例(第2の流体流量制御手段)について模式的に示す断面図で、図6(a)は超純水の流量を小にして機能性流体の流量を小にする場合、図6(b)は超純水の流量を大にして機能性流体の流量を大にする場合をそれぞれ示す。図7は、図6(a)におけるA−A線の断面図である。図8は、第2の流体流量制御手段に用いられる棒状抵抗子の一の例を模式的に示す断面図である。図6〜8に示すように、第2の流体流量制御手段304は、超純水分岐流路102(図1参照)に連通した超純水連通路351と、機能性流体流路103(図1参照)に連通した機能性流体連通路352と、超純水連通路351に配設された、超純水の流量に対応して移動可能な棒状抵抗子353と、機能性流体連通路352に、棒状抵抗子353に並列する状態で配設された、棒状抵抗子353の移動に連動して移動可能な流体流量制御子354と、流体流量制御子354の移動に対応して、機能性流体連通路352の大きさを調整可能な流体連通路調整手段(図6(a)では流体流量制御子354の先端に配設された弁棒(ニードル)354b及び機能性流体連通路352に配設された弁座355)とを有し、超純水の流量に対応して機能性流体の流量を制御することができる(この機能性流体の流量の制御については、後に、さらに具体的に説明する)。このように、図6に示す例では、機能性流体の通路である機能性流体連通路352と超純水の流路である超純水連通路351とは互いに別々に連通している(互いに隔絶されている)ことが必要であり、超純水の流量の増大(減少)に対応して、機能性流体の流量も増大(減少)するようになっており、精密に制御された流量の機能性流体を混合手段105(図1参照)に送り込むことができるようになっている。本体カバー366は、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)等の、超純水への成分溶出性の小さい材料で構成することが好ましい。図6(a)において、超純水入口357、超純水出口358、機能性流体入口359、機能性流体出口360、Oリング362、スリット356、弁座370については図3に示す第1の流体流量制御手段の場合と同様である。第1の円形孔部372及び第2の円形孔部373については後述する。第1の円形孔部372は蓋374によって密閉され、蓋374と本体カバーとは溶接部374で溶接されている。   FIG. 6 is a cross-sectional view schematically showing another example of the fluid flow rate control means (second fluid flow rate control means) used in the present invention. FIG. When the flow rate of the functional fluid is reduced, FIG. 6B shows the case where the flow rate of the functional fluid is increased by increasing the flow rate of ultrapure water. FIG. 7 is a cross-sectional view taken along line AA in FIG. FIG. 8 is a cross-sectional view schematically showing an example of a rod-like resistor used for the second fluid flow rate control means. As shown in FIGS. 6 to 8, the second fluid flow rate control means 304 includes an ultrapure water communication path 351 that communicates with the ultrapure water branch path 102 (see FIG. 1), and a functional fluid path 103 (see FIG. 6). 1), a rod-like resistor 353 that is disposed in the ultrapure water communication passage 351 and is movable in accordance with the flow rate of ultrapure water, and a functional fluid communication passage 352. In addition, a fluid flow rate controller 354 that is arranged in parallel with the rod resistor 353 and is movable in conjunction with the movement of the rod resistor 353, and a function corresponding to the movement of the fluid flow rate controller 354. A fluid communication path adjusting means capable of adjusting the size of the fluid communication path 352 (in FIG. 6A, it is disposed in a valve rod (needle) 354b and a functional fluid communication path 352 disposed at the tip of the fluid flow rate controller 354. The valve seat 355) is provided, and the machine responds to the flow rate of ultrapure water. It is possible to control the flow rate of the sex fluid (the control of the flow rate of the functional fluid is later more specifically described). As described above, in the example shown in FIG. 6, the functional fluid communication path 352 that is a functional fluid path and the ultrapure water communication path 351 that is a flow path of ultrapure water are in communication with each other separately (each other In response to an increase (decrease) in the flow rate of ultrapure water, the flow rate of the functional fluid also increases (decreases). The functional fluid can be fed into the mixing means 105 (see FIG. 1). The main body cover 366 is preferably made of a material having a low component elution property to ultrapure water, such as perfluoroalkoxy resin (PFA) or polytetrafluoroethylene resin (PTFE). 6A, the ultrapure water inlet 357, the ultrapure water outlet 358, the functional fluid inlet 359, the functional fluid outlet 360, the O-ring 362, the slit 356, and the valve seat 370 are the first shown in FIG. This is similar to the case of the fluid flow rate control means. The first circular hole 372 and the second circular hole 373 will be described later. The first circular hole 372 is sealed by a lid 374, and the lid 374 and the main body cover are welded by a welding portion 374.

図6(a)に示すように、棒状抵抗子353は、棒状駆動マグネット353a(図8参照)を内蔵したものであり、流体流量制御子354は、棒状抵抗子353の棒状駆動マグネット353aと磁力結合した棒状従動マグネット354aを内蔵したものであり、さらに、流体連通路調整手段は、流体流量制御子354の先端に配設された弁棒(ニードル)354bと、機能性流体連通路352に配設された弁座355及び付勢手段(スプリング)363とから構成されたものであるとともに、弁棒(ニードル)354bが付勢手段(スプリング)363によって弁座355に押圧されるように構成されたものであり、超純水の流れによって棒状抵抗子353が軸方向に移動すると、流体流量制御子354が連動して軸方向に移動し、流体流量制御子354の先端に配設された弁棒(ニードル)354bを付勢手段(スプリング)363からの押圧に抗しつつ弁座355から離間又は近接させて、流体連通路352の大きさを拡大又は縮小することができるようになっている。   As shown in FIG. 6A, the rod-shaped resistor 353 has a built-in rod-shaped drive magnet 353a (see FIG. 8), and the fluid flow rate controller 354 has a magnetic force with the rod-shaped drive magnet 353a of the rod-shaped resistor 353. A coupled rod-shaped driven magnet 354a is built in, and the fluid communication path adjusting means is arranged in a valve rod (needle) 354b disposed at the tip of the fluid flow rate controller 354 and the functional fluid communication path 352. The valve seat 355 and the biasing means (spring) 363 are provided, and the valve rod (needle) 354b is pressed against the valve seat 355 by the biasing means (spring) 363. When the rod-like resistor 353 moves in the axial direction due to the flow of ultrapure water, the fluid flow rate controller 354 moves in the axial direction in conjunction with the fluid flow rate. The size of the fluid communication passage 352 is increased or decreased by moving the valve rod (needle) 354b disposed at the tip of the plunger 354 away from or close to the valve seat 355 while resisting the pressing from the biasing means (spring) 363. It can be reduced.

図7に示すように、第2の流体流量制御手段304には、その内部を貫通するように、超純水連通路351と第1の円形孔部372とが一体化された状態で、また、機能性流体連通路352と第2の円形孔部373とが一体化された状態で形成されている。図6(a)に示す流体流量制御子354が第2の円形孔部373の内表面を滑動可能に挿入され、流体流量制御子354の弁棒(ニードル)354bと弁座355とによって機能性流体の流量が制御される。第2の流体流量制御手段304は付勢手段(スプリング)363で付勢され、その付勢力は止めネジ364で設定される。   As shown in FIG. 7, in the second fluid flow rate control means 304, the ultrapure water communication path 351 and the first circular hole 372 are integrated so as to penetrate through the inside thereof, and The functional fluid communication path 352 and the second circular hole 373 are formed in an integrated state. A fluid flow rate controller 354 shown in FIG. 6A is slidably inserted on the inner surface of the second circular hole 373, and the function is achieved by the valve rod (needle) 354b and the valve seat 355 of the fluid flow rate controller 354. The fluid flow rate is controlled. The second fluid flow rate control means 304 is urged by an urging means (spring) 363, and the urging force is set by a set screw 364.

図8に示す棒状抵抗子353は、棒状駆動マグネット353aの周りをライニング353bで完全に被覆された構造を有し、下端にテーパー状の弁棒(ニードル)353cを有している。図6(a)に示すように、本体カバー366の超純水連通路351には、棒状抵抗子353の弁棒(ニードル)353cに対応したコニカル状の弁座370を有し、また、その一部にはスリット356を有して、棒状抵抗子353が弁座370に密着しても、わずかの超純水のリークを可能としている。このようなスローリークについては、第1の流体流量制御手段204aの場合と同様である。棒状抵抗子353の軸方向の移動量は、蓋374により制限される。蓋374は本体カバー366と溶接部375にて溶接され密閉されている。超純水連通路351には超純水入口357を有し、超純水の流量が増大すると棒状抵抗子353が軸方向の上部に向かって移動して、超純水は超純水連通路351を通過して超純水出口358から混合ユニット105(図1参照)へ流れることになる。棒状抵抗子353の移動に対応して磁気結合された流体流量制御子354も軸方向の上下に向かって移動して、機能性流体連通路352の機能性流体入口359から流入した機能性流体は、機能性流体連通路352通って機能性流体出口360から混合ユニット105へ流れることになる。機能性流体は流体流量制御子354の上部に配設された機能性流体入口359から機能性流体連通路352に導入される例を示しているが、流体流量制御子354の弁棒(ニードル)354b側から導入してもよい。しかし、機能性流体の流量の制御は、流体流量制御子354を弁座355に押圧して機能性流体の量を制御しているので、付勢手段(スプリング)363の付勢方向と一致させる方が好ましい。   The rod-shaped resistor 353 shown in FIG. 8 has a structure in which the rod-shaped drive magnet 353a is completely covered with a lining 353b, and has a tapered valve rod (needle) 353c at the lower end. As shown in FIG. 6A, the ultrapure water communication passage 351 of the main body cover 366 has a conical valve seat 370 corresponding to the valve rod (needle) 353c of the rod-like resistor 353, and Some of them have a slit 356 so that even if the rod-like resistor 353 is in close contact with the valve seat 370, a slight amount of ultrapure water can be leaked. Such a slow leak is the same as in the case of the first fluid flow control means 204a. The amount of axial movement of the rod-shaped resistor 353 is limited by the lid 374. The lid 374 is welded and sealed with a main body cover 366 and a welded portion 375. The ultrapure water communication path 351 has an ultrapure water inlet 357, and when the flow rate of ultrapure water increases, the rod-like resistor 353 moves toward the upper part in the axial direction, so that the ultrapure water passes through the ultrapure water communication path. It will flow from the ultrapure water outlet 358 to the mixing unit 105 (see FIG. 1) through 351. The fluid flow rate controller 354 magnetically coupled in response to the movement of the rod-shaped resistor 353 also moves upward and downward in the axial direction, and the functional fluid flowing in from the functional fluid inlet 359 of the functional fluid communication path 352 is Then, the fluid flows from the functional fluid outlet 360 to the mixing unit 105 through the functional fluid communication path 352. An example is shown in which the functional fluid is introduced into the functional fluid communication path 352 from the functional fluid inlet 359 disposed on the upper portion of the fluid flow controller 354. The valve rod (needle) of the fluid flow controller 354 is shown. You may introduce from the 354b side. However, since the flow rate of the functional fluid is controlled by pressing the fluid flow rate controller 354 against the valve seat 355 to control the amount of the functional fluid, the flow rate of the functional fluid is matched with the biasing direction of the biasing means (spring) 363. Is preferred.

棒状抵抗子353は、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)及びエチレンテトラフルオロエチレン樹脂(ETFE)からなる群から選ばれる少なくとも一の樹脂によりライニングで完全に被覆されてなることが好ましい。また、超純水連通路351を構成する部品は上述の樹脂から構成されてなること好ましい。このように構成することによって、構成成分の超純水への溶出を防止することができる。中でも、パーフルオロアルコキシ樹脂(PFA)が、溶出防止効果が大で溶融成形が可能であることからさらに好ましい。   The rod-shaped resistor 353 is at least one resin selected from the group consisting of perfluoroalkoxy resin (PFA), polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), and ethylene tetrafluoroethylene resin (ETFE). Is preferably completely covered with a lining. Moreover, it is preferable that the parts which comprise the ultrapure water communication path 351 are comprised from the above-mentioned resin. By comprising in this way, the elution to the ultrapure water of a structural component can be prevented. Among these, perfluoroalkoxy resin (PFA) is more preferable because it has a large elution prevention effect and can be melt-molded.

棒状抵抗子353の先端に配設された弁棒(ニードル)353c(図8参照)と、超純水連通路351に配設された弁座370とから構成された弁機構を有するとともに、弁棒(ニードル)353cと弁座370との間に、超純水を常時流す分岐連通路が構成されていることが好ましいのも第1の流体流量制御手段204aの場合と同様である。   The valve mechanism includes a valve rod (needle) 353c (see FIG. 8) disposed at the tip of the rod-shaped resistor 353, and a valve seat 370 disposed in the ultrapure water communication path 351. As in the case of the first fluid flow rate control means 204a, it is preferable that a branch communication path for constantly flowing ultrapure water is formed between the rod (needle) 353c and the valve seat 370.

図9は、第2の流体流量制御手段についての一の変形例(横向きにした例)を模式的に示す断面図で、図9(a)は超純水の流量を小にして機能性流体の流量を小にする場合、図9(b)は超純水の流量を大にして機能性流体の流量を大にする場合をそれぞれ示す。前述のように棒状抵抗子353は第2の流体流量制御手段304内に超純水をスローリーク量以上に流していない場合は、弁座370(図6(a)参照)に押圧されていることが必要なため、マグネットカップリングを応用し、図9(a)に示すように、棒状駆動マグネット353aと棒状従動マグネット354aの軸方向の位置を長さTだけずらして、棒状駆動マグネット353aと棒状従動マグネット354aの間に軸方向のスラスト力(両棒状マグネット353a、354aが同一の軸方向位置になろうとする力)を与えることになる。その他の構成、材料等は図6(a)に示す場合と同様である。   FIG. 9 is a cross-sectional view schematically showing one modified example (sideways example) of the second fluid flow rate control means, and FIG. 9A shows a functional fluid with a reduced flow rate of ultrapure water. FIG. 9B shows a case where the flow rate of the functional fluid is increased by increasing the flow rate of ultrapure water. As described above, the rod-like resistor 353 is pressed by the valve seat 370 (see FIG. 6A) when the ultrapure water is not flowing in the second fluid flow rate control means 304 at a rate greater than the slow leak amount. Therefore, by applying magnet coupling, as shown in FIG. 9A, the axial positions of the rod-like drive magnet 353a and the rod-like driven magnet 354a are shifted by the length T, and the rod-like drive magnet 353a An axial thrust force (a force with which both rod-shaped magnets 353a and 354a try to be in the same axial position) is applied between the rod-shaped driven magnets 354a. Other configurations, materials, and the like are the same as those shown in FIG.

図10は、本発明に用いられる流体流量制御手段の他の例(第3の流体流量制御手段)について模式的に示す断面図で、図10(a)は超純水の流量を小にして機能性流体の流量を小にする場合、図10(b)は超純水の流量を大にして機能性流体の流量を大にする場合をそれぞれ示す。図11は、第3の流体流量制御手段に用いられる弁棒状抵抗子の一の例を模式的に示す断面図である。図10、11に示すように、第3の流体流量制御手段404は、超純水分岐流路102(図1参照)に連通した超純水連通路451と、機能性流体流路103(図1参照)に連通した機能性流体連通路452と、超純水連通路451に配設された超純水の流量に対応して移動可能な抵抗子部分454s、及び機能性流体連通路452に配設された、抵抗子部分454sと一体的に形成された流体流量制御子部分454tから構成された弁棒状抵抗子454と、弁棒状抵抗子454に配設された、超純水連通路451と機能性流体連通路452とを分断するとともに弁棒状抵抗子454を抵抗子部分454sと流体流量制御子部分454tとに分断するダイアフラム454bと、機能性流体連通路452の大きさを調整可能な流体連通路調整手段(図10(a)では弁棒状抵抗子454(流体流量制御子部分454t)の先端に配設された弁棒(ニードル)454a及び機能性流体連通路452に配設された弁座455)とを有し、超純水の流量に対応して機能性流体の流量を制御することができるようになっている。この機能性流体の流量の制御については、後に、さらに具体的に説明する。   FIG. 10 is a cross-sectional view schematically showing another example of the fluid flow rate control means (third fluid flow rate control means) used in the present invention. FIG. 10 (a) shows the flow rate of ultrapure water being reduced. When the flow rate of the functional fluid is reduced, FIG. 10B shows the case where the flow rate of the functional fluid is increased by increasing the flow rate of ultrapure water. FIG. 11 is a cross-sectional view schematically showing an example of a valve rod resistor used in the third fluid flow rate control means. As shown in FIGS. 10 and 11, the third fluid flow rate control means 404 includes an ultrapure water communication path 451 communicating with the ultrapure water branch path 102 (see FIG. 1), and a functional fluid path 103 (FIG. 1), a resistor portion 454s movable in accordance with the flow rate of ultrapure water disposed in the ultrapure water communication passage 451, and the functional fluid communication passage 452. A valve rod-shaped resistor 454 composed of a fluid flow rate controller portion 454t formed integrally with the resistor portion 454s, and an ultrapure water communication path 451 disposed in the valve rod-shaped resistor 454. And the functional fluid communication passage 452 and the diaphragm 454b for dividing the valve rod resistor 454 into the resistor portion 454s and the fluid flow control portion 454t, and the size of the functional fluid communication passage 452 can be adjusted. Fluid communication path adjuster (In FIG. 10A, the valve stem 454a disposed at the tip of the valve rod-like resistor 454 (fluid flow rate controller portion 454t) and the valve seat 455 disposed in the functional fluid communication passage 452); The flow rate of the functional fluid can be controlled in accordance with the flow rate of ultrapure water. The control of the flow rate of the functional fluid will be described more specifically later.

流体連通路調整手段は、弁棒状抵抗子454(流体流量制御子部分454t)の先端に配設された弁棒(ニードル)454aと、機能性流体連通路452に配設された弁座455及び付勢手段(スプリング)463とから構成されたものであるとともに、弁棒(ニードル)454aが付勢手段(スプリング)463によって弁座455に押圧されるように構成されたものであり、超純水の流れによって弁棒状抵抗子454の抵抗子部分454sが軸方向に移動すると、抵抗子部分454sと一体的に構成された流体流量制御子部分454tが連動して移動し、流体流量制御子部分454tの先端に配設された弁棒(ニードル)454aを付勢手段スプリング)463からの押圧に抗しつつ弁座455から離間又は近接させて、機能性流体連通路452の大きさを拡大又は縮小することができるようになっている。   The fluid communication path adjusting means includes a valve rod (needle) 454a disposed at the tip of the valve rod-shaped resistor 454 (fluid flow rate controller portion 454t), a valve seat 455 disposed in the functional fluid communication path 452, and The urging means (spring) 463 and the valve rod (needle) 454a are pressed against the valve seat 455 by the urging means (spring) 463. When the resistor portion 454s of the valve stem resistor 454 moves in the axial direction due to the flow of water, the fluid flow rate controller portion 454t configured integrally with the resistor portion 454s moves in association with the fluid flow rate controller portion. A functional fluid communication is performed by moving a valve rod (needle) 454a disposed at the tip of 454t away from or close to the valve seat 455 while resisting the pressing from the biasing means spring 463. And it is capable of enlarging or reducing the size of 452.

弁棒状抵抗子454は、一端に弁棒(ニードル)454a、他端にスピンドル454dを有し、その間にスピンドル454dに向かって拡径するコニカル部454eを有している。弁棒(ニードル)454aはステンレス又はセラミックス製であることが好ましく、スピンドル454d及びコニカル部454eは、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)等の、超純水への成分溶出性の小さい材料で被覆したものに、抵抗子弁座476を収納してから、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)等製のダイヤフラム454bを溶接部454fで溶接して一体となっている。抵抗子弁座476には、上述のスローリークのためのスリット456が形成されている。超純水側ハウジング479は超純水連通路451、超純水入口457及び超純水出口458を有し、弁棒状抵抗子454にOリング477を取付けてから超純水側ハウジング479に嵌合して、さらに、機能性流体側ハウジング480を超純水側ハウジング479に嵌合して、付勢手段(スプリング)463をスナップリング478で固定して、弁座ハウジング481を嵌合し、ボルト(図示せず)で軸方向に一体に組立てている。機能性流体側ハウジング480、弁座ハウジング481はステンレス等から構成することが好ましい。弁棒状抵抗子454はスピンドル454dを超純水側ハウジング479の円形孔482にて滑動可能に保持され、ダイヤフラム454bの外周を超純水側ハウジング479と機能性流体側ハウジング480で支えられ、弁棒(ニードル)454aは付勢手段(スプリング)463により弁座ハウジング481の弁座455に当接している。超純水側ハウジン479の円形孔482には、円形孔482の内部と機能性流体連通路452とを連通する溝483が形成されている。超純水入口457から超純水連通路451に流入した超純水の量が増大すると、弁棒状抵抗子454は軸方向の上部に向かって移動し、連動して弁棒状抵抗子454の弁棒(ニードル)454aも上部に向かって移動して機能性流体入口459から導入された機能性流体が機能性流体出口460から混合ユニット105(図1参照)へ流れることになる。なお、図11における符号254cはパーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)等によるライニングを示す。   The valve rod-shaped resistor 454 has a valve rod (needle) 454a at one end, a spindle 454d at the other end, and a conical portion 454e that increases in diameter toward the spindle 454d. The valve stem (needle) 454a is preferably made of stainless steel or ceramics, and the spindle 454d and the conical part 454e are components of ultrapure water such as perfluoroalkoxy resin (PFA) and polytetrafluoroethylene resin (PTFE). A resistor valve seat 476 is accommodated in a material coated with a low elution property, and then a diaphragm 454b made of perfluoroalkoxy resin (PFA), polytetrafluoroethylene resin (PTFE) or the like is welded at a welded portion 454f. All together. The resistor valve seat 476 is formed with the slit 456 for the slow leak described above. The ultrapure water side housing 479 has an ultrapure water communication passage 451, an ultrapure water inlet 457, and an ultrapure water outlet 458, and is fitted to the ultrapure water side housing 479 after an O-ring 477 is attached to the valve rod-shaped resistor 454. Further, the functional fluid side housing 480 is fitted to the ultrapure water side housing 479, the urging means (spring) 463 is fixed by the snap ring 478, and the valve seat housing 481 is fitted. The bolts (not shown) are integrally assembled in the axial direction. The functional fluid side housing 480 and the valve seat housing 481 are preferably made of stainless steel or the like. The valve rod-like resistor 454 is slidably held by a spindle 454d in a circular hole 482 of the ultrapure water side housing 479, and the outer periphery of the diaphragm 454b is supported by the ultrapure water side housing 479 and the functional fluid side housing 480. The rod (needle) 454 a is in contact with the valve seat 455 of the valve seat housing 481 by biasing means (spring) 463. A groove 483 that connects the inside of the circular hole 482 and the functional fluid communication path 452 is formed in the circular hole 482 of the ultrapure water side housing 479. When the amount of ultrapure water flowing from the ultrapure water inlet 457 into the ultrapure water communication passage 451 increases, the valve rod resistor 454 moves toward the upper portion in the axial direction and interlocks with the valve of the valve rod resistor 454. The bar (needle) 454a also moves upward and the functional fluid introduced from the functional fluid inlet 459 flows from the functional fluid outlet 460 to the mixing unit 105 (see FIG. 1). In addition, the code | symbol 254c in FIG. 11 shows lining by a perfluoro alkoxy resin (PFA), a polytetrafluoroethylene resin (PTFE), etc.

抵抗子部分454sは、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)及びエチレンテトラフルオロエチレン樹脂(ETFE)からなる群から選ばれる少なくとも一の樹脂によりライニングで完全に被覆されてなることが好ましい。また、超純水連通路451を構成する部品は上述の樹脂から構成されてなること好ましい。このように構成することによって、構成成分の超純水への溶出を防止することができる。中でも、パーフルオロアルコキシ樹脂(PFA)が、溶出防止効果が大で溶融成形が可能であることからさらに好ましい。   The resistor portion 454s is at least one resin selected from the group consisting of perfluoroalkoxy resin (PFA), polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), and ethylene tetrafluoroethylene resin (ETFE). Is preferably completely covered with a lining. Moreover, it is preferable that the parts which comprise the ultrapure water communication path 451 are comprised from the above-mentioned resin. By comprising in this way, the elution to the ultrapure water of a structural component can be prevented. Among these, perfluoroalkoxy resin (PFA) is more preferable because it has a large elution prevention effect and can be melt-molded.

抵抗子部分454sの先端に配設された弁棒(図10(a)ではコニカル部)454eと、超純水連通路451に配設された弁座476とから構成された弁機構を有するとともに、弁棒(コニカル部)454eと弁座476との間に、超純水を常時流す分岐連通路(図10(a)ではスリット)456が構成されてなることが好ましいのは、第1の流体流量制御手段の場合と同様である。   While having a valve mechanism composed of a valve stem (conical portion in FIG. 10A) 454e disposed at the tip of the resistor portion 454s and a valve seat 476 disposed in the ultrapure water communication passage 451. It is preferable that a branch communication path (slit in FIG. 10A) 456 that constantly flows ultrapure water is formed between the valve stem (conical portion) 454e and the valve seat 476. This is similar to the case of the fluid flow rate control means.

図12は、本発明に用いられる混合手段の一の例を模式的に示す断面図である。図12に示すように、この例の混合手段は、機能性流体連通路552を有し、機能性流体連通路552を経由して機能性流体Gを供給する機能性流体供給部501と、超純水連通路551を有し、超純水連通路551内で、機能性流体供給部501から供給された機能性流体G及び超純水連通路551を連続的に通過する超純水Wを混合して機能水Fを製造する混合部502とを備えた混合手段500であって、機能性流体供給部501と混合部502とが、着脱自在に固定されている。ここで、機能性流体供給部501と混合部502とを、着脱自在に固定する方法としては、例えば、図12に示すように、機能性流体供給部501を混合部502に螺合することを挙げることができる。この他に、ビス止めによる固定、クリップを介在させる固定、互いをカップリング形状にすることによる固定等であってもよい。   FIG. 12 is a cross-sectional view schematically showing an example of the mixing means used in the present invention. As shown in FIG. 12, the mixing means of this example has a functional fluid communication path 552, a functional fluid supply section 501 that supplies the functional fluid G via the functional fluid communication path 552, A pure water communication passage 551 is provided, and in the ultra pure water communication passage 551, the functional fluid G supplied from the functional fluid supply unit 501 and the ultra pure water W passing through the ultra pure water communication passage 551 continuously are supplied. The mixing unit 500 includes a mixing unit 502 that mixes to produce functional water F, and the functional fluid supply unit 501 and the mixing unit 502 are detachably fixed. Here, as a method of detachably fixing the functional fluid supply unit 501 and the mixing unit 502, for example, the functional fluid supply unit 501 is screwed into the mixing unit 502 as shown in FIG. Can be mentioned. In addition, fixing by screwing, fixing by interposing a clip, fixing by making each other into a coupling shape, and the like may be used.

機能性流体供給部501は、機能性流体連通路552内に、超純水連通路551に面する端面側から順に、多孔質板512、逆止弁513及びオリフィス514を具備してなることが好ましく、オリフィス514の上流側に、オリフィス用フィルタ515をさらに具備してなることがさらに好ましい。このように構成することによって、機能水の機能性流体濃度を正確かつ迅速に制御することができる。   The functional fluid supply unit 501 includes a porous plate 512, a check valve 513, and an orifice 514 in order from the end surface side facing the ultrapure water communication path 551 in the functional fluid communication path 552. More preferably, an orifice filter 515 is further provided on the upstream side of the orifice 514. By comprising in this way, the functional fluid density | concentration of functional water can be controlled correctly and rapidly.

本発明に用いられる機能性流体は、炭酸ガス又はアンモニアガスであることが好ましい。   The functional fluid used in the present invention is preferably carbon dioxide gas or ammonia gas.

本発明の機能水生成方法は、上述の機能水生成装置を用いて機能水を生成することを特徴とする。このように構成することによって、正確な機能流体濃度の機能水を効率的に生成することができる。 The functional water production | generation method of this invention produces | generates functional water using the above-mentioned functional water production | generation apparatus, It is characterized by the above-mentioned. By comprising in this way, the functional water of the exact functional fluid density | concentration can be produced | generated efficiently.

以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1)
図1に示す構成にて、機能水の量として、0〜16リットル/分に対応できる図3(a)に示す構造の流体流量制御手段(ガス流量制御装置)を用い、0.1MPaに圧力を設定した炭酸ガスをガス流量制御装置に導入し、20MΩに調整した超純水の流量に対する炭酸ガス流量と、超純水の比抵抗値の変化を計測した。その結果を図13に示す。図13に示すように、超純水の量が1リットル/分までは炭酸ガスは混合手段には流れないので比抵抗値は20MΩのままであるが、超純水の流量が1リットル/分から2リットル/分の間には超純水の比抵抗値は急速に上昇し、超純水の流量が2リットル/分から16リットル/分までの間は比抵抗値は超純水の流量に対し、0.2±0.02MΩとなり、ウエハ等の洗浄に適した滞電防止が可能な超純水となっていた。
(Example 1)
In the configuration shown in FIG. 1, the fluid flow rate control means (gas flow rate control device) having the structure shown in FIG. 3 (a) capable of handling 0 to 16 liters / minute as the amount of functional water is used and the pressure is reduced to 0.1 MPa. Was introduced into a gas flow rate control device, and changes in the flow rate of carbon dioxide gas relative to the flow rate of ultrapure water adjusted to 20 MΩ and the specific resistance value of ultrapure water were measured. The result is shown in FIG. As shown in FIG. 13, since the carbon dioxide gas does not flow to the mixing means until the amount of ultrapure water is 1 liter / min, the specific resistance value remains 20 MΩ, but the flow rate of ultrapure water is from 1 liter / min. The resistivity value of ultrapure water rises rapidly between 2 liters / minute, and the resistivity value with respect to the flow rate of ultrapure water is between 2 liters / minute and 16 liters / minute. 0.2 ± 0.02 MΩ, which is ultrapure water capable of preventing electric leakage suitable for cleaning wafers and the like.

本発明の機能水生成装置及びそれを用いた機能水生成方法は、例えば、シリコンウエハ、液晶ガラス基板、有機ELガラス基板等の洗浄を必要とする半導体工業、電子・電気工業、化学工業等の各種産業分野で好適に利用される。   The functional water generating apparatus and the functional water generating method using the same of the present invention include, for example, semiconductor industry, electronic / electric industry, chemical industry, etc. that require cleaning of silicon wafers, liquid crystal glass substrates, organic EL glass substrates, etc. It is suitably used in various industrial fields.

本発明(第1の発明)の一の実施の形態を模式的に示す説明図である。It is explanatory drawing which shows typically one Embodiment of this invention (1st invention). 本発明(第2の発明)の一の実施の形態を模式的に示す説明図である。It is explanatory drawing which shows typically one Embodiment of this invention (2nd invention). 本発明に用いられる流体流量制御手段の一の例(第1の流体流量制御手段)について模式的に示す断面図で、図3(a)は超純水の流量を小にして機能性流体の流量を小にする場合、図3(b)は超純水の流量を大にして機能性流体の流量を大にする場合をそれぞれ示す。FIG. 3A is a cross-sectional view schematically showing one example of the fluid flow rate control means (first fluid flow rate control means) used in the present invention. FIG. When the flow rate is reduced, FIG. 3B shows a case where the flow rate of the functional fluid is increased by increasing the flow rate of ultrapure water. 流体流量制御手段に用いられる円筒状抵抗子の一の例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the cylindrical resistor used for a fluid flow control means. 流体流量制御手段に用いられる流体流量制御子の一の例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the fluid flow control element used for a fluid flow control means. 本発明に用いられる流体流量制御手段の他の例(第2の流体流量制御手段)について模式的に示す断面図で、図6(a)は超純水の流量を小にして機能性流体の流量を小にする場合、図6(b)は超純水の流量を大にして機能性流体の流量を大にする場合をそれぞれ示す。FIG. 6A is a cross-sectional view schematically showing another example of the fluid flow rate control means (second fluid flow rate control means) used in the present invention. FIG. 6A shows the functional fluid flow by reducing the flow rate of ultrapure water. When the flow rate is reduced, FIG. 6B shows a case where the flow rate of the functional fluid is increased by increasing the flow rate of ultrapure water. 図6におけるA−A線の断面図である。It is sectional drawing of the AA line in FIG. 第2の流体流量制御手段に用いられる棒状抵抗子の一の例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the rod-shaped resistor used for a 2nd fluid flow control means. 第2の流体流量制御手段についての一の変形例(横向きにした例)を模式的に示す断面図で、図9(a)は超純水の流量を小にして機能性流体の流量を小にする場合、図9(b)は超純水の流量を大にして機能性流体の流量を大にする場合をそれぞれ示す。FIG. 9A is a cross-sectional view schematically showing one modified example (sideways example) of the second fluid flow rate control means. FIG. 9A shows a flow rate of the functional fluid by reducing the flow rate of ultrapure water. FIG. 9B shows a case where the flow rate of the ultra-pure water is increased and the flow rate of the functional fluid is increased. 本発明に用いられる流体流量制御手段の他の例(第3の流体流量制御手段)について模式的に示す断面図で、図10(a)は超純水の流量を小にして機能性流体の流量を小にする場合、図10(b)は超純水の流量を大にして機能性流体の流量を大にする場合をそれぞれ示す。FIG. 10A is a cross-sectional view schematically showing another example of the fluid flow rate control means (third fluid flow rate control means) used in the present invention. FIG. When the flow rate is reduced, FIG. 10B shows a case where the flow rate of the functional fluid is increased by increasing the flow rate of ultrapure water. 第3の流体流量制御手段に用いられる弁棒状抵抗子の一の例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the valve rod-shaped resistor used for a 3rd fluid flow control means. 本発明に用いられる混合手段の一の例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the mixing means used for this invention. 実施例1において、20MΩに調整した超純水の流量に対する炭酸ガス流量と、超純水の比抵抗値の変化を計測した結果を示すグラフである。In Example 1, it is a graph which shows the result of having measured the carbon dioxide gas flow rate with respect to the flow rate of ultrapure water adjusted to 20 MΩ, and the change of the specific resistance value of ultrapure water.

符号の説明Explanation of symbols

100:機能水生成装置
101:超純水主流路
101a:超純水流路
102:超純水分岐流路
103:機能性流体流路
103a:機能性流体の貯蔵源
104:流体流量制御手段
105:混合手段
106:圧力制御弁
107:逆止弁
108:疎水膜フィルタ
200:機能水生成装置
201:超純水流路
203:機能性流体流路
203a:機能性流体の貯蔵源
204:流体流量制御手段
204a:第1の流体流量制御手段
205:混合手段
206:圧力制御弁
207:逆止弁
208:疎水膜フィルタ
251:超純水連通路
252:機能性流体連通路
253:円筒状抵抗子
253a:円筒状駆動マグネット
253b:ライニング
253c:弁棒(コニカル部)
254:流体流量制御子
254a:棒状従動マグネット
254b:弁棒(ニードル)
254c:ライニング
255:弁座
256:スリット
257:超純水入口
258:超純水出口
259:機能性流体入口
260:機能性流体出口
261:シリンダ
262:Oリング
263:付勢手段(スプリング)
264:止めネジ
265:止め輪
266:本体カバー
267:トラベルストッパ
268:Oリング
269:Oリング
270:弁座
271:円筒内壁
304:第2の流体流量制御手段
351:超純水連通路
352:機能性流体連通路
353:棒状抵抗子
353a:棒状駆動マグネット
353b:ライニング
353c:弁棒(ニードル)
354:流体流量制御子
354a:棒状従動マグネット
354b:弁棒(ニードル)
355:弁座
356:スリット
357:超純水入口
358:超純水出口
359:機能性流体入口
360:機能性流体出口
362:Oリング
363:付勢手段(スプリング)
364:止めネジ
366:本体カバー
370:弁座
372:第1の円形孔部
373:第2の円形孔部
374:蓋
375:溶接部
404:第3の流体流量制御手段
451:超純水連通路
452:機能性流体連通路
454:流体流量制御子
454a:弁棒(ニードル)
454b:ダイアフラム
454c:ライニング
454d:スピンドル
454e:コニカル部
454f:溶接部
454s:抵抗子部分
454t:流体流量制御子部分
455:弁座
456:スリット
457:超純水入口
458:超純水出口
459:機能性流体入口
460:機能性流体出口
463:付勢手段(スプリング)
470:弁座
476:抵抗子弁座
477:Oリング
478:スナップリング
479:超純水側ハウジング
480:機能性流体側ハウジング
481:弁座ハウジング
482:円形孔
483:溝
500:混合手段
501:機能性流体供給部
502:混合部
512:多孔質板
513:逆止弁
514:オリフィス
515:オリフィス用フィルタ
551:超純水連通路
552:機能性流体連通路
W:超純水
W1:第1の超純水
W2:第2の超純水
G:機能性流体
F:機能水
F1:第1の機能水
F2:第2の機能水
100: Functional water generator 101: Ultrapure water main channel 101a: Ultrapure water channel 102: Ultrapure water branch channel 103: Functional fluid channel 103a: Functional fluid storage source 104: Fluid flow rate control means 105: Mixing means 106: Pressure control valve 107: Check valve 108: Hydrophobic membrane filter 200: Functional water generator 201: Ultrapure water flow path 203: Functional fluid flow path 203a: Functional fluid storage source 204: Fluid flow rate control means 204a: First fluid flow rate control means 205: Mixing means 206: Pressure control valve 207: Check valve 208: Hydrophobic membrane filter 251: Ultrapure water communication path 252: Functional fluid communication path 253: Cylindrical resistor 253a: Cylindrical drive magnet 253b: Lining 253c: Valve stem (conical part)
254: Fluid flow controller 254a: Rod-shaped driven magnet 254b: Valve rod (needle)
254c: Lining 255: Valve seat 256: Slit 257: Ultrapure water inlet 258: Ultrapure water outlet 259: Functional fluid inlet 260: Functional fluid outlet 261: Cylinder 262: O-ring 263: Biasing means (spring)
264: Set screw 265: Retaining ring 266: Main body cover 267: Travel stopper 268: O-ring 269: O-ring 270: Valve seat 271: Cylindrical inner wall 304: Second fluid flow rate control means 351: Ultrapure water communication path 352: Functional fluid communication path 353: rod-shaped resistor 353a: rod-shaped drive magnet 353b: lining 353c: valve rod (needle)
354: Fluid flow rate controller 354a: Rod-shaped driven magnet 354b: Valve rod (needle)
355: Valve seat 356: Slit 357: Ultrapure water inlet 358: Ultrapure water outlet 359: Functional fluid inlet 360: Functional fluid outlet 362: O-ring 363: Biasing means (spring)
364: set screw 366: body cover 370: valve seat 372: first circular hole 373: second circular hole 374: lid 375: weld 404: third fluid flow control means 451: ultrapure water ream Passage 452: Functional fluid communication passage 454: Fluid flow rate controller 454a: Valve stem (needle)
454b: Diaphragm 454c: Lining 454d: Spindle 454e: Conical part 454f: Welded part 454s: Resistor part 454t: Fluid flow controller part 455: Valve seat 456: Slit 457: Ultrapure water inlet 458: Ultrapure water outlet 459: Functional fluid inlet 460: Functional fluid outlet 463: Biasing means (spring)
470: Valve seat 476: Resistor valve seat 477: O-ring 478: Snap ring 479: Ultrapure water side housing 480: Functional fluid side housing 481: Valve seat housing 482: Circular hole 483: Groove 500: Mixing means 501: Functional fluid supply unit 502: mixing unit 512: porous plate 513: check valve 514: orifice 515: orifice filter 551: ultrapure water communication path 552: functional fluid communication path W: ultrapure water W1: first Ultrapure water W2: second ultrapure water G: functional fluid F: functional water F1: first functional water F2: second functional water

Claims (15)

超純水に、炭酸ガス、水素、オゾン、酸素、アンモニアから選択される気体、又はアンモニア、フッ酸から選択される液体である機能性流体を溶解又は混合して機能水を生成する機能水生成装置であって、
前記超純水の主流路としての超純水主流路と、
前記超純水主流路から分岐した超純水分岐流路と、
前記機能性流体の流路としての機能性流体流路と、
前記超純水分岐流路に連通して配設されるとともに、前記超純水分岐流路の連通とは別の連通路で前記機能性流体流路に連通した、前記超純水分岐流路における超純水の流量に対応して前記機能性流体の流量を制御する流体流量制御手段と、
前記超純水分岐流路の、前記流体流量制御手段の配設箇所よりも下流に連通して配設されるとともに、前記超純水分岐流路の連通とは別の連通路で前記機能性流体流路に連通した、前記超純水分岐流路を流れる超純水(第1の超純水)に、前記流体流量制御手段によって流量を制御された前記機能性流体を溶解又は混合して第1の機能水を生成する混合手段とを備え、
前記超純水主流路を流れる超純水(第2の超純水)に、前記混合手段から前記第1の機能水を導入し、溶解又は混合することによって、第2の機能水を生成することを特徴とする機能水生成装置。
Functional water generation to generate functional water by dissolving or mixing a functional fluid that is a gas selected from carbon dioxide, hydrogen, ozone, oxygen, ammonia, or a liquid selected from ammonia and hydrofluoric acid, into ultra pure water A device,
An ultrapure water main channel as the main channel of the ultrapure water;
An ultrapure water branch channel branched from the ultrapure water main channel;
A functional fluid channel as the functional fluid channel;
The ultrapure water branch flow path that is disposed in communication with the ultrapure water branch flow path and that communicates with the functional fluid flow path through a communication path different from the communication of the ultra pure water branch flow path. Fluid flow rate control means for controlling the flow rate of the functional fluid corresponding to the flow rate of ultrapure water in
The functionality of the ultrapure water branch flow path is communicated downstream from the location where the fluid flow rate control means is disposed, and the functionality is different from the communication path of the ultrapure water branch flow path. The functional fluid whose flow rate is controlled by the fluid flow rate control means is dissolved or mixed in ultrapure water (first ultrapure water) that flows through the ultrapure water branch flow channel that communicates with the fluid flow channel. Mixing means for generating the first functional water,
The first functional water is introduced into the ultrapure water (second ultrapure water) flowing through the ultrapure water main channel from the mixing unit, and dissolved or mixed to generate second functional water. A functional water generator characterized by that.
超純水に、炭酸ガス、水素、オゾン、酸素、アンモニアから選択される気体、又はアンモニア、フッ酸から選択される液体である機能性流体を溶解又は混合して機能水を生成する機能水生成装置であって、
前記超純水の流路としての超純水流路と、
前記機能性流体の流路としての機能性流体流路と、
前記超純水流路に連通して配設されるとともに、前記超純水流路の連通とは別の連通路で前記機能性流体流路に連通した、前記超純水流路における超純水の流量に対応して前記機能性流体の流量を制御する流体流量制御手段と、
前記超純水流路の、前記流体流量制御手段の配設箇所よりも下流に連通して配設されるとともに、前記超純水流路の連通とは別の連通路で前記機能性流体流路に連通した、前記超純水流路を流れる超純水に、前記流体流量制御手段によって流量を制御された前記機能性流体を溶解又は混合して機能水を生成する混合手段とを備えてなることを特徴とする機能水生成装置。
Functional water generation to generate functional water by dissolving or mixing a functional fluid that is a gas selected from carbon dioxide, hydrogen, ozone, oxygen, ammonia, or a liquid selected from ammonia and hydrofluoric acid, into ultra pure water A device,
An ultrapure water channel as the ultrapure water channel;
A functional fluid channel as the functional fluid channel;
The flow rate of the ultrapure water in the ultrapure water channel that is arranged in communication with the ultrapure water channel and communicates with the functional fluid channel through a communication channel different from the communication of the ultrapure water channel. Fluid flow rate control means for controlling the flow rate of the functional fluid in response to
The ultrapure water flow channel is disposed downstream of the fluid flow rate control unit and is connected to the functional fluid flow channel through a communication path different from the communication of the ultrapure water flow channel. Mixing means for generating functional water by dissolving or mixing the functional fluid whose flow rate is controlled by the fluid flow rate control means in the ultrapure water flowing through the ultrapure water flow path. A functional water generator.
前記流体流量制御手段が、前記超純水分岐流路又は前記超純水流路に連通した超純水連通路と、前記機能性流体流路に連通した機能性流体連通路と、前記超純水連通路に配設された、前記超純水の流量に対応して移動可能な円筒状抵抗子と、前記機能性流体連通路に、前記円筒状抵抗子に囲繞される状態で配設された、前記円筒状抵抗子の移動に連動して移動可能な流体流量制御子と、前記流体流量制御子の移動に対応して、前記機能性流体連通路の大きさを調整可能な流体連通路調整手段とを有し、前記超純水の流量に対応して前記機能性流体の流量を制御するものである請求項1又は2に記載の機能水生成装置。   The fluid flow rate control means includes the ultrapure water branch channel or the ultrapure water communication channel communicated with the ultrapure water channel, the functional fluid communication channel communicated with the functional fluid channel, and the ultrapure water. A cylindrical resistor disposed in the communication path and movable in accordance with the flow rate of the ultrapure water, and disposed in the functional fluid communication path in a state surrounded by the cylindrical resistor. , A fluid flow controller that can move in conjunction with the movement of the cylindrical resistor, and a fluid communication path adjustment that can adjust the size of the functional fluid communication path in accordance with the movement of the fluid flow controller The functional water generating device according to claim 1, wherein the functional water generating device is configured to control the flow rate of the functional fluid corresponding to the flow rate of the ultrapure water. 前記円筒状抵抗子が、円筒状駆動マグネットを同心状に内蔵したものであり、前記流体流量制御子が、前記円筒状抵抗子の前記円筒状駆動マグネットと磁力結合した棒状従動マグネットを内蔵したものであり、さらに、前記流体連通路調整手段が、前記流体流量制御子の先端に配設された弁棒と、前記機能性流体連通路に配設された弁座及び付勢手段とから構成されたものであるとともに、前記弁棒が前記付勢手段によって前記弁座に押圧されるように構成されたものであり、前記超純水の流れによって前記円筒状抵抗子が移動すると、前記流体流量制御子が連動して移動し、前記流体流量制御子の先端に配設された前記弁棒を前記付勢手段からの押圧に抗しつつ前記弁座から離間又は近接させて、前記流体連通路の大きさを拡大又は縮小する請求項3に記載の機能水生成装置。   The cylindrical resistor has a cylindrical drive magnet built in concentrically, and the fluid flow controller has a built-in rod driven magnet that is magnetically coupled to the cylindrical drive magnet of the cylindrical resistor. Further, the fluid communication path adjusting means is composed of a valve rod disposed at the tip of the fluid flow controller, a valve seat disposed in the functional fluid communication path, and an urging means. The valve rod is pressed against the valve seat by the urging means, and the fluid flow rate when the cylindrical resistor is moved by the flow of the ultrapure water. The control element moves in conjunction with the fluid communication path by moving the valve rod disposed at the tip of the fluid flow rate control element away from or close to the valve seat while resisting the pressure from the urging means. Increase or decrease the size of Functional water generating apparatus according to claim 3. 前記円筒状抵抗子が、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)及びエチレンテトラフルオロエチレン樹脂(ETFE)からなる群から選ばれる少なくとも一の樹脂によりライニングされてなるとともに、前記超純水連通路を構成する部品が前記樹脂から構成されてなる請求項3又は4に記載の機能水生成装置。   The cylindrical resistor is at least one selected from the group consisting of perfluoroalkoxy resin (PFA), polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), and ethylene tetrafluoroethylene resin (ETFE). The functional water generating device according to claim 3 or 4, wherein the functional water generating device is formed by lining with a resin, and the parts constituting the ultrapure water communication path are made of the resin. 前記円筒状抵抗子の先端に配設された弁棒と、前記超純水連通路に配設された弁座とから構成された弁機構を有するとともに、前記弁棒と前記弁座との間に、前記超純水を常時流す分岐連通路が構成されてなる請求項3〜5のいずれかに記載の機能水生成装置。   A valve mechanism having a valve rod disposed at a tip of the cylindrical resistor and a valve seat disposed in the ultrapure water communication path; and between the valve rod and the valve seat. The functional water generating device according to any one of claims 3 to 5, wherein a branch communication passage through which the ultrapure water is always flowed is configured. 前記流体流量制御手段が、前記超純水分岐流路又は前記超純水流路に連通した超純水連通路と、前記機能性流体流路に連通した機能性流体連通路と、前記超純水連通路に配設された、前記超純水の流量に対応して移動可能な棒状抵抗子と、前記機能性流体連通路に、前記棒状抵抗子に並列する状態で配設された、前記棒状抵抗子の移動に連動して移動可能な流体流量制御子と、前記流体流量制御子の移動に対応して、前記機能性流体連通路の大きさを調整可能な流体連通路調整手段とを有し、前記超純水の流量に対応して前記機能性流体の流量を制御するものである請求項1又は2に記載の機能水生成装置。   The fluid flow rate control means includes the ultrapure water branch channel or the ultrapure water communication channel communicated with the ultrapure water channel, the functional fluid communication channel communicated with the functional fluid channel, and the ultrapure water. A rod-shaped resistor that is movable in correspondence with the flow rate of the ultrapure water disposed in the communication path, and the rod-shaped resistor that is disposed in the functional fluid communication path in parallel with the rod-shaped resistor. A fluid flow rate controller that can move in conjunction with the movement of the resistor, and a fluid communication path adjustment means that can adjust the size of the functional fluid communication path in accordance with the movement of the fluid flow rate controller. The functional water generating device according to claim 1, wherein the flow rate of the functional fluid is controlled corresponding to the flow rate of the ultrapure water. 前記棒状抵抗子が、棒状駆動マグネットを内蔵したものであり、前記流体流量制御子が、前記棒状抵抗子の前記棒状駆動マグネットと磁力結合した棒状従動マグネットを内蔵したものであり、さらに、前記流体連通路調整手段が、前記流体流量制御子の先端に配設された弁棒と、前記機能性流体連通路に配設された弁座及び付勢手段とから構成されたものであるとともに、前記弁棒が前記付勢手段によって前記弁座に押圧されるように構成されたものであり、前記超純水の流れによって前記棒状抵抗子が移動すると、前記流体流量制御子が連動して移動し、前記流体流量制御子の先端に配設された前記弁棒を前記付勢手段からの押圧に抗しつつ前記弁座から離間又は近接させて、前記流体連通路の大きさを拡大又は縮小する請求項7に記載の機能水生成装置。   The rod-shaped resistor has a built-in rod-shaped drive magnet, the fluid flow controller has a built-in rod-shaped driven magnet magnetically coupled to the rod-shaped drive magnet of the rod-shaped resistor, and the fluid The communication path adjusting means is composed of a valve rod disposed at the tip of the fluid flow rate controller, a valve seat disposed in the functional fluid communication path, and an urging means, and The valve rod is configured to be pressed against the valve seat by the biasing means. When the rod-shaped resistor is moved by the flow of the ultrapure water, the fluid flow controller is moved in conjunction with the valve rod. The size of the fluid communication passage is enlarged or reduced by moving the valve rod disposed at the tip of the fluid flow control element away from or close to the valve seat while resisting the pressing from the urging means. Claim 7 Noh water generation apparatus. 前記棒状抵抗子が、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)及びエチレンテトラフルオロエチレン樹脂(ETFE)からなる群から選ばれる少なくとも一の樹脂によりライニングされてなるとともに、前記超純水連通路を構成する部品が前記樹脂から構成されてなる請求7又は8に記載の機能水生成装置。   The rod-shaped resistor is at least one resin selected from the group consisting of perfluoroalkoxy resin (PFA), polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), and ethylene tetrafluoroethylene resin (ETFE). The functional water generating device according to claim 7 or 8, wherein the functional water generating device is formed by the resin and the components constituting the ultrapure water communication path are made of the resin. 前記棒状抵抗子の先端に配設された弁棒と、前記超純水連通路に配設された弁座とから構成された弁機構を有するとともに、前記弁棒と前記弁座との間に、前記超純水を常時流す分岐連通路が構成されてなる請求項7〜9のいずれかに記載の機能水生成装置。   The valve mechanism includes a valve rod disposed at the tip of the rod-shaped resistor and a valve seat disposed in the ultrapure water communication path, and between the valve rod and the valve seat. The functional water generating device according to any one of claims 7 to 9, wherein a branch communication path through which the ultrapure water is constantly flowed is configured. 前記流体流量制御手段が、前記超純水分岐流路又は前記超純水流路に連通した超純水連通路と、前記機能性流体流路に連通した機能性流体連通路と、前記超純水連通路に配設された前記超純水の流量に対応して移動可能な抵抗子部分、及び前記機能性流体連通路に配設された、前記抵抗子部分と一体的に形成された流体流量制御子部分から構成された弁棒状抵抗子と、前記弁棒状抵抗子に配設された、前記超純水連通路と前記機能性流体連通路とを分断するとともに前記弁棒状抵抗子を前記抵抗子部分と前記流体流量制御子部分とに分断するダイアフラムと、前記機能性流体連通路の大きさを調整可能な流体連通路調整手段とを有し、前記超純水の流量に対応して前記機能性流体の流量を制御するものである請求項1又は2に記載の機能水生成装置。   The fluid flow rate control means includes the ultrapure water branch channel or the ultrapure water communication channel communicated with the ultrapure water channel, the functional fluid communication channel communicated with the functional fluid channel, and the ultrapure water. Resistor portion movable in correspondence with the flow rate of the ultrapure water disposed in the communication passage, and fluid flow rate formed integrally with the resistor portion disposed in the functional fluid communication passage A valve rod resistor composed of a controller portion, and the ultrapure water communication passage and the functional fluid communication passage disposed in the valve rod resistor are divided and the valve rod resistor is A diaphragm that divides into a child part and the fluid flow controller part, and a fluid communication path adjusting means that can adjust the size of the functional fluid communication path, and corresponding to the flow rate of the ultrapure water The functional aquatic according to claim 1 or 2, which controls a flow rate of the functional fluid. Apparatus. 前記流体連通路調整手段が、前記流体流量制御子部分の先端に配設された弁棒と、前記機能性流体連通路に配設された弁座及び付勢手段とから構成されたものであるとともに、前記弁棒が前記付勢手段によって前記弁座に押圧されるように構成されたものであり、前記超純水の流れによって前記弁棒状抵抗子の前記抵抗子部分が移動すると、前記抵抗子部分と一体的に構成された前記流体流量制御子部分が連動して移動し、前記流体流量制御子部分の先端に配設された前記弁棒を前記付勢手段からの押圧に抗しつつ前記弁座から離間又は近接させて、前記流体連通路の大きさを拡大又は縮小する請求項11に記載の機能水生成装置。   The fluid communication path adjusting means comprises a valve rod disposed at the tip of the fluid flow rate controller portion, and a valve seat and biasing means disposed in the functional fluid communication path. In addition, the valve stem is configured to be pressed against the valve seat by the biasing means, and when the resistor portion of the valve stem-shaped resistor moves by the flow of the ultrapure water, the resistance The fluid flow controller part integrally formed with the child part moves in conjunction with the valve rod disposed at the tip of the fluid flow controller part against the pressure from the urging means. The functional water generating device according to claim 11, wherein the size of the fluid communication path is enlarged or reduced by being separated from or close to the valve seat. 前記抵抗子部分が、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)及びエチレンテトラフルオロエチレン樹脂(ETFE)からなる群から選ばれる少なくとも一の樹脂によりライニングされてなるとともに、前記超純水連通路を構成する部品が前記樹脂から構成されてなる請求項11又は12に記載の機能水生成装置。   The resistor portion is at least one resin selected from the group consisting of perfluoroalkoxy resin (PFA), polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), and ethylene tetrafluoroethylene resin (ETFE). The functional water generating device according to claim 11 or 12, wherein the component constituting the ultrapure water communication path is made of the resin. 前記抵抗子部分の先端に配設された弁棒と、前記超純水連通路に配設された弁座とから構成された弁機構を有するとともに、前記弁棒と前記弁座との間に、前記超純水を常時流す分岐連通路が構成されてなる請求項11〜13のいずれかに記載の機能水生成装置。   A valve mechanism configured by a valve rod disposed at a tip of the resistor portion and a valve seat disposed in the ultrapure water communication path; and between the valve rod and the valve seat. The functional water generating device according to any one of claims 11 to 13, wherein a branch communication passage through which the ultrapure water is constantly flowed is configured. 請求項1〜14のいずれかに記載の機能水生成装置を用いて機能水を生成することを特徴とする機能水生成方法。 Functional water generating method characterized by generating a functional water with a functional water generator according to any one of claims 1-14.
JP2005211066A 2005-07-21 2005-07-21 Functional water generating apparatus and functional water generating method using the same Active JP4786955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211066A JP4786955B2 (en) 2005-07-21 2005-07-21 Functional water generating apparatus and functional water generating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211066A JP4786955B2 (en) 2005-07-21 2005-07-21 Functional water generating apparatus and functional water generating method using the same

Publications (2)

Publication Number Publication Date
JP2007021454A JP2007021454A (en) 2007-02-01
JP4786955B2 true JP4786955B2 (en) 2011-10-05

Family

ID=37782899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211066A Active JP4786955B2 (en) 2005-07-21 2005-07-21 Functional water generating apparatus and functional water generating method using the same

Country Status (1)

Country Link
JP (1) JP4786955B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037618A1 (en) 2021-09-07 2023-03-16 栗田工業株式会社 Device for supplying liquid for semiconductor manufacturing

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101269214B1 (en) * 2008-08-25 2013-05-28 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, program and storage medium
JP2010050393A (en) * 2008-08-25 2010-03-04 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, program, and storage medium
JP5370027B2 (en) * 2009-09-10 2013-12-18 Jfeエンジニアリング株式会社 Fluid mixing method and fluid mixing apparatus
JP5509981B2 (en) * 2010-03-26 2014-06-04 Jfeエンジニアリング株式会社 Fluid mixing method and fluid mixing apparatus
JP5589485B2 (en) * 2010-03-26 2014-09-17 Jfeエンジニアリング株式会社 Fluid mixing method and fluid mixing apparatus
JP5540973B2 (en) * 2010-08-03 2014-07-02 Jfeエンジニアリング株式会社 Fluid atomization nozzle, fluid atomization device
JP6211877B2 (en) * 2013-10-03 2017-10-11 東京エレクトロン株式会社 Substrate processing system
KR102488938B1 (en) * 2015-09-17 2023-01-16 코웨이 주식회사 An apparatus feeding functional chemicals
JP6232086B2 (en) * 2016-01-29 2017-11-15 野村マイクロ・サイエンス株式会社 Functional water production apparatus and functional water production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166285A (en) * 1983-03-14 1984-09-19 Kurita Water Ind Ltd Control device for specific resistance of ultrapure water
JP2003305349A (en) * 2002-04-12 2003-10-28 Ngk Insulators Ltd Carbonated water production device and water cleaner having the same
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037618A1 (en) 2021-09-07 2023-03-16 栗田工業株式会社 Device for supplying liquid for semiconductor manufacturing

Also Published As

Publication number Publication date
JP2007021454A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4786955B2 (en) Functional water generating apparatus and functional water generating method using the same
KR101943238B1 (en) Diluted liquid production method and diluted liquid production device
JP4999838B2 (en) Valve assembly with articulated rigid seating surface
EP1553339B1 (en) Flow control valve and flow control device
US8939428B2 (en) Liquid flow controller and precision dispense apparatus and system
JP2008161734A (en) Functional water making apparatus and functional water making method using it
US7387135B2 (en) Valve assembly having rigid seating surfaces
JP2015523540A (en) Back pressure adjustment
WO2006132025A1 (en) Flow rate meter and flow rate control system using the same
JP2015114966A (en) Flow control valve and flow controller using the same
JP2014228058A (en) Flow rate adjustment apparatus
KR20150042699A (en) Flow control valve and flow control system using same
KR102302845B1 (en) Flow rate adjustment device
JP3073177B2 (en) Flow control valve and valve stem
EP2755748A1 (en) Method and apparatus for dynamic gas mixture production
JP2008115894A (en) Fluid control valve
US20070001137A1 (en) Precision metering valve
JP2005175183A (en) Liquid-pressurizing mechanism, and apparatus and method for controlling liquid using it
US9910019B2 (en) Pressure control valve and supercritical fluid chromatograph
JP2007247712A (en) Check valve and fluid supply device using same
JP2006184989A (en) Liquid supply device, substrate processing apparatus and liquid supply method
JP2006065575A (en) Regulator for liquid
JP6254863B2 (en) Flow control valve and flow control device using the same
JP4563086B2 (en) Fluid control valve
US20140306132A1 (en) Flow regulating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Ref document number: 4786955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3