JP4781552B2 - Light wave distance meter - Google Patents

Light wave distance meter Download PDF

Info

Publication number
JP4781552B2
JP4781552B2 JP2001103853A JP2001103853A JP4781552B2 JP 4781552 B2 JP4781552 B2 JP 4781552B2 JP 2001103853 A JP2001103853 A JP 2001103853A JP 2001103853 A JP2001103853 A JP 2001103853A JP 4781552 B2 JP4781552 B2 JP 4781552B2
Authority
JP
Japan
Prior art keywords
light
housing
end surface
distance
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001103853A
Other languages
Japanese (ja)
Other versions
JP2002296029A (en
Inventor
中村  聡
Original Assignee
株式会社 ソキア・トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ソキア・トプコン filed Critical 株式会社 ソキア・トプコン
Priority to JP2001103853A priority Critical patent/JP4781552B2/en
Publication of JP2002296029A publication Critical patent/JP2002296029A/en
Application granted granted Critical
Publication of JP4781552B2 publication Critical patent/JP4781552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、筐体の先端面から測定点に対して測距光を送光し、先端面から測定点までの距離、又は、先端面の反対側の尾端面から測定点までの距離を測定するノンプリズム光波距離計に関する。
【0002】
【従来の技術】
従来、上記光波距離計として、筐体の尾端面が平面に形成されたものが知られている。この光波距離計は、距離測定をする場合、例えば、床面(測定基準面)の所定位置と天井(測定点)との距離を測定する場合には、床面の所定位置に筐体の尾端面を接触させ、筐体の先端面から天井に対して測距光を送光して、床面から天井までの距離を測定している。
【0003】
【発明が解決しようとする課題】
しかし、この従来の構造では、床面が水平な天井に対して傾斜している場合、床面に筐体の尾端面を接触させると、筐体が天井に対して傾くので、床面の所定位置から天井までの距離を正確に測定できないといった問題があった。
【0004】
そこで本発明は、上記の問題点に鑑み、測定基準面が傾斜していても測定点までの距離を正確に測定できる光波距離計を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために本発明は、筐体と、筐体の先端面から測定点に対して所定の周波数で発光する光源からの光を測距光として送光する送光手段と、測定点で反射されて戻ってきた測距光を上記筐体の先端面で受光する受光手段とを備え、該受光手段で受光した測距光の位相と光源の発光位相との位相差に基づいて、又は、送光手段で送光した測距光が測定点で反射して受光手段で受光されるまでの時間に基づいて、上記筐体の先端面から測定点までの距離、又は、上記筐体の先端面の反対側の尾端面から測定点までの距離を測定する光波距離計において、上記筐体の尾端面を、上記測距光の光軸に直交する方向に平行な母線を有する断面円弧状の凸面に形成したことを特徴とする。
【0006】
これによれば、筐体の尾端面が断面円弧状の凸面に形成されているので、該尾端面を測定基準面に接触させながら筐体を傾動させることができ、測定された距離のうち最小のものを測定値とすることで、正確に測定点までの距離を測定することができる。
【0007】
また、尾端面を断面円弧状の凸面に形成する代わりに、上記筐体の尾端面の略中央に、上記測距光の光軸に直交する方向に長手の突条を形成しても良い。また、上記筐体の尾端面に、筐体の外側に向けて付勢され筐体の内側に嵌入自在な複数の脚部を設け、これら脚部を水平面に接触させることにより、筐体を鉛直姿勢で自立可能にすることが好ましい。また、表示部を備え、距離測定中に測定された距離のうち最小値を表示部に表示するようにしても良い。
【0008】
【発明の実施の形態】
図1を参照して、1は略直方体に形成されたノンプリズム光波距離計の筐体であり、筐体1の先端面1aにはレーザー射出口2と受光レンズ3とが設けられ、上面1bには表示部4と操作部5が設けられている。
【0009】
筐体1内部には、図示しないレーザーダイオード及び受光素子とCPUとが備えられている。レーザーダイオードから射出された所定の周波数で発光するレーザー光は、上記レーザー射出口2から測定点に対して測距光として送光され(送光手段)、測定点で反射されて戻ってきた測距光は上記受光レンズ3を介して受光素子で受光される(受光手段)。CPUは受光素子で受光した測距光の位相とレーザーダイオードの発光位相との位相差に基づいて、図2に示された筐体の尾端面1cから測定点までの距離を計算し、その計算された距離を上記表示部4に表示する。
【0010】
操作部5にはモード切替ボタン5aと2つの電源・測距ボタン5b、5cが設けられている。モード切替ボタン5aは測距のモード切替をするためのボタンである。電源・測距ボタン5bは、筐体1の尾端面1cから測距点までの距離を測定するためのボタンであり、電源・測距ボタン5cは、筐体1の先端面1aから測距点までの距離を測定するためのボタンである。電源・測距ボタン5b、5cは、電源OFFの状態でボタンを押圧すると電源がONされ、さらに、ボタンを押圧することにより測距が開始・継続され、押圧を解除すると測距が終了する。本実施の形態では、3つのボタン5a、5b、5cのうち少なくとも1つのボタンが一定時間以上押されないと電源をOFFにする、オートパワーカットオフ機能を採用している。また、電源・測距ボタン5bを押すと、表示部4に「rear」と表示され、電源・測距ボタン5cを押すと、表示部4に「front」と表示される。これにより、表示部4の表示によって、尾端面1cから測距点まで測距なのか、先端面1aから測距点まで測距なのかがわかるようになっている。
【0011】
筐体1の尾端面1cは、上記レーザーダイオードから送光される測距光の光軸に直交する方向に平行な母線を有する断面円弧状の凸面に形成されている。ここで、該断面の円弧の半径Rは、光波距離計の用途、要求される精度等に応じて変更しても良く、断面の円弧の半径Rを大きくすると、筐体1内の、内部装置を設置不可能な非有効容積を小さくすることができる。また、尾端面1cには、断面円弧状の凸面の母線に直交する方向に、該凸面に沿って数本の突条tが設けられており、該突条tにより、尾端面1cにゴミやホコリが付着しにくいようになっている。
【0012】
図3を参照して、筐体1の尾端面1cの4つの角部にはそれぞれ、筐体1の内側から外側に貫通する脚穴6が設けられ、該脚穴6に、筐体の内側に嵌入自在な脚部7が備えられている。各脚部7は、脚穴6よりも大きいフランジ71を有し、該フランジ71が筐体1の内側の面に接触することにより、脚部7が脚穴6から筐体1外部に抜け落ちないようになっている。また、各脚部7は、筐体1内部に固定された板バネ8によって筐体1の外側に向けて付勢されている。
【0013】
ここで、本実施の形態の光波距離計による測距について説明する。例えば、床面(測定基準面)の所定位置と天井(測定点)との距離を測定する場合、まず、操作部5の電源・測距ボタン5bによって光波距離計の電源をONにし、モード選択ボタン5aによって測距モードを最短距離測定モードに切り換えておく。続いて、床面の所定位置に、光波距離計を手で保持しながら筐体1の尾端面1cを接触させる。次に、操作部5の電源・測距ボタン5bを押すと、ボタンを押圧している間、レーザーダイオードからのレーザー光がレーザー射出口2から天井に対して測距光として送光され、天井のレーザーが照射されている部分が発光する。天井で反射されて戻ってきた測距光は受光レンズ3を介して受光素子で受光される。CPUは受光素子で受光した測距光の位相とレーザーダイオードの発光位相との位相差に基づいて、筐体の尾端面1c、即ち床面から天井までの距離を計算し、その計算された距離を上記表示部4に表示する。ここで、電源・測距ボタン5bを押圧しつづけると共に、筐体1の尾端面1cと床面とを接触させながら筐体1を、尾端面1cの断面円弧状の凸面の母線に垂直な方向に傾動させると、傾動方向の2つの脚部が筐体1内部に嵌入し、床面の所定位置から天井のレーザーが照射されている部分までの距離が変化する。筐体1を適当な範囲で傾動させた後、電源・測距ボタン5bの押圧を解除すると、最短距離測定モードにおいては、電源・測距ボタン5bが押圧されている間に測定された距離のうち最小のものを表示部4に表示するようになっているため、床面の所定位置から天井までの最短距離が正確に測定される。また、常に床面と尾端部1c及び少なくとも2つの脚部とが接触しているため、床面の所定位置から筐体1がずれるおそれが少ない。
【0014】
本実施の形態においては、床面と天井との間の距離測定について説明したが、本願発明の光波距離計による距離測定はこれに限られるものではなく、対向する壁間の距離等も同様に測定することができる。また、本実施の形態では、受光手段で受光した測距光の位相と光源の発光位相との位相差に基づいて測定点まで距離を測定する、いわゆる位相差方式の光波距離計について説明したが、送光手段で送光した測距光が測定点で反射して受光手段で受光されるまでの時間に基づいて距離を測定する、いわゆるパルス方式の光波距離計であっても勿論良い。また、本実施の形態では、筐体1の尾端面1cを断面円弧状の凸面に形成したが、図4に示すように、筐体1の尾端面1cの略中央に、測距光の光軸に直交する方向に長手の突条9を形成しても、同様の作用効果が得られる。
【0015】
【発明の効果】
以上の説明から明らかなように、本発明は、筐体の尾端面が断面円弧状の凸面に形成されているので、該尾端面を測定基準面に接触させながら筐体を傾動させることができ、測定された距離のうち最小のものを測定値とすることで、正確に測定点までの距離を測定することができる。
【図面の簡単な説明】
【図1】 筐体の先端面側からの外観斜視図
【図2】 筐体の尾端面側からの外観斜視図
【図3】 筐体の尾端面の断面図
【図4】 本願発明の他の実施の形態の尾端面を示す図
【符号の説明】
1 筐体
1a 先端面
1b 尾端面
2 レーザー射出口
3 受光レンズ
[0001]
BACKGROUND OF THE INVENTION
The present invention transmits distance measuring light from the front end surface of the housing to the measurement point, and measures the distance from the front end surface to the measurement point or the distance from the tail end surface on the opposite side of the front end surface to the measurement point. It relates to a non-prism light wave rangefinder.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as the light wave distance meter, one in which a tail end surface of a casing is formed in a flat surface is known. When measuring the distance, for example, when measuring the distance between a predetermined position on the floor surface (measurement reference surface) and the ceiling (measurement point), this optical distance meter is positioned at a predetermined position on the floor surface. The end surface is brought into contact, and distance measuring light is transmitted from the front end surface of the housing to the ceiling to measure the distance from the floor surface to the ceiling.
[0003]
[Problems to be solved by the invention]
However, in this conventional structure, when the floor surface is inclined with respect to the horizontal ceiling, if the tail end surface of the housing is brought into contact with the floor surface, the housing is inclined with respect to the ceiling. There was a problem that the distance from the position to the ceiling could not be measured accurately.
[0004]
In view of the above problems, an object of the present invention is to provide a lightwave distance meter that can accurately measure the distance to a measurement point even when the measurement reference plane is inclined.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a housing, light transmitting means for transmitting light from a light source that emits light at a predetermined frequency from a front end surface of the housing to a measurement point as distance measuring light, Light receiving means for receiving the distance measuring light reflected by the point at the front end surface of the housing, and based on the phase difference between the phase of the distance measuring light received by the light receiving means and the light emission phase of the light source Or the distance from the front end surface of the casing to the measurement point based on the time until the ranging light transmitted by the light transmitting means is reflected by the measurement point and received by the light receiving means, or the casing A cross section having a generatrix parallel to a direction perpendicular to the optical axis of the distance measuring light on the tail end surface of the housing in the optical wave distance meter that measures the distance from the tail end surface on the opposite side of the front end surface of the body to the measurement point It is characterized by being formed on an arcuate convex surface.
[0006]
According to this, since the tail end surface of the housing is formed in a convex surface having an arc cross section, the housing can be tilted while the tail end surface is in contact with the measurement reference surface, and the smallest of the measured distances. By using the measured value as the measurement value, the distance to the measurement point can be accurately measured.
[0007]
Further, instead of forming the tail end surface as a convex surface having an arcuate cross section, a long ridge may be formed in the center of the tail end surface of the casing in a direction perpendicular to the optical axis of the distance measuring light. In addition, a plurality of legs that are urged toward the outside of the casing and can be fitted inside the casing are provided on the tail end surface of the casing, and the legs are brought into contact with a horizontal plane so that the casing is vertically It is preferable to be able to stand by posture. Further, a display unit may be provided, and the minimum value among the distances measured during the distance measurement may be displayed on the display unit.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, reference numeral 1 denotes a housing of a non-prism light wave distance meter formed in a substantially rectangular parallelepiped. A laser emission port 2 and a light receiving lens 3 are provided on a front end surface 1a of the housing 1, and an upper surface 1b. A display unit 4 and an operation unit 5 are provided.
[0009]
A laser diode and a light receiving element (not shown) and a CPU are provided in the housing 1. Laser light emitted from the laser diode and emitted at a predetermined frequency is transmitted as distance measuring light from the laser emission port 2 to the measurement point (light transmission means), reflected by the measurement point, and returned to the measurement point. The distance light is received by the light receiving element through the light receiving lens 3 (light receiving means). The CPU calculates the distance from the tail end surface 1c of the housing shown in FIG. 2 to the measurement point based on the phase difference between the distance measurement light received by the light receiving element and the light emission phase of the laser diode. The displayed distance is displayed on the display unit 4.
[0010]
The operation unit 5 is provided with a mode switching button 5a and two power / ranging buttons 5b and 5c. The mode switching button 5a is a button for switching the ranging mode. The power / ranging button 5b is a button for measuring the distance from the tail end surface 1c of the housing 1 to the distance measuring point, and the power / ranging button 5c is the distance measuring point from the front end surface 1a of the housing 1 It is a button for measuring the distance to. The power / ranging buttons 5b and 5c are turned on when the button is pressed while the power is off, and the distance measurement is started and continued by pressing the button. When the button is released, the distance measurement ends. In the present embodiment, an auto power cut-off function is employed in which the power is turned off when at least one of the three buttons 5a, 5b, 5c is not pressed for a certain time. When the power / ranging button 5b is pressed, “rear” is displayed on the display unit 4, and when the power / ranging button 5c is pressed, “front” is displayed on the display unit 4. Thereby, the display on the display unit 4 can know whether the distance is measured from the tail end surface 1c to the distance measuring point or the distance is measured from the front end surface 1a to the distance measuring point.
[0011]
The tail end surface 1c of the housing 1 is formed as a convex surface having an arcuate cross section having a generatrix parallel to a direction perpendicular to the optical axis of the distance measuring light transmitted from the laser diode. Here, the radius R of the arc of the cross section may be changed according to the use of the optical wave distance meter, the required accuracy, etc. If the radius R of the arc of the cross section is increased, the internal device in the housing 1 is increased. The ineffective volume that cannot be installed can be reduced. The tail end surface 1c is provided with a plurality of protrusions t along the convex surface in a direction perpendicular to the generatrix of the convex surface having an arcuate cross section. Dust is hard to adhere.
[0012]
Referring to FIG. 3, leg holes 6 penetrating from the inside to the outside of the casing 1 are provided at the four corners of the tail end surface 1 c of the casing 1. The leg part 7 which can be freely inserted in is provided. Each leg part 7 has a flange 71 larger than the leg hole 6, and the leg part 7 does not fall out of the casing 1 from the leg hole 6 by contacting the inner surface of the casing 1. It is like that. Each leg 7 is urged toward the outside of the housing 1 by a leaf spring 8 fixed inside the housing 1.
[0013]
Here, distance measurement by the light wave rangefinder of the present embodiment will be described. For example, when measuring the distance between a predetermined position on the floor surface (measurement reference surface) and the ceiling (measurement point), first, the optical distance meter is turned on by the power source / ranging button 5b of the operation unit 5 and the mode is selected. The distance measuring mode is switched to the shortest distance measuring mode by the button 5a. Subsequently, the tail end surface 1c of the housing 1 is brought into contact with a predetermined position on the floor surface while the optical distance meter is held by hand. Next, when the power / ranging button 5b of the operation unit 5 is pressed, the laser light from the laser diode is transmitted as distance measuring light from the laser emission port 2 to the ceiling while the button is being pressed, and the ceiling. The portion irradiated with the laser emits light. The distance measuring light reflected and returned from the ceiling is received by the light receiving element via the light receiving lens 3. The CPU calculates the distance from the tail end surface 1c of the housing, that is, the floor surface to the ceiling, based on the phase difference between the phase of the ranging light received by the light receiving element and the light emission phase of the laser diode, and the calculated distance Is displayed on the display unit 4. Here, while pressing the power / ranging button 5b, the casing 1 is placed in a direction perpendicular to the generatrix of the convex surface having a circular arc cross section of the tail end face 1c while the tail end face 1c of the casing 1 is in contact with the floor surface. When tilted, the two legs in the tilting direction are fitted into the housing 1, and the distance from a predetermined position on the floor surface to the portion irradiated with the laser on the ceiling changes. When the power source / ranging button 5b is released after the casing 1 is tilted within an appropriate range, the distance measured while the power source / ranging button 5b is being pressed in the shortest distance measurement mode. Since the smallest one is displayed on the display unit 4, the shortest distance from the predetermined position on the floor surface to the ceiling is accurately measured. Moreover, since the floor, the tail end 1c, and at least two legs are always in contact with each other, there is little possibility that the housing 1 is displaced from a predetermined position on the floor.
[0014]
In the present embodiment, the distance measurement between the floor surface and the ceiling has been described. However, the distance measurement by the light wave distance meter of the present invention is not limited to this, and the distance between the facing walls is also the same. Can be measured. In the present embodiment, a so-called phase difference type light wave distance meter has been described that measures the distance to the measurement point based on the phase difference between the phase of the ranging light received by the light receiving means and the light emission phase of the light source. Of course, a so-called pulse-type optical distance meter that measures the distance based on the time until the distance measuring light transmitted by the light transmitting means is reflected by the measurement point and received by the light receiving means may be used. Further, in the present embodiment, the tail end surface 1c of the housing 1 is formed in a convex surface having an arc-shaped cross section. However, as shown in FIG. Even if the elongated protrusion 9 is formed in a direction orthogonal to the axis, the same effect can be obtained.
[0015]
【The invention's effect】
As is apparent from the above description, the present invention is such that the tail end surface of the housing is formed as a convex surface having an arc cross section, and the housing can be tilted while the tail end surface is in contact with the measurement reference surface. By setting the smallest of the measured distances as a measured value, the distance to the measurement point can be accurately measured.
[Brief description of the drawings]
FIG. 1 is an external perspective view from the front end surface side of the housing. FIG. 2 is an external perspective view from the tail end surface side of the housing. FIG. 3 is a cross-sectional view of the tail end surface of the housing. Showing the tail end face of the embodiment
DESCRIPTION OF SYMBOLS 1 Case 1a Front end surface 1b Tail end surface 2 Laser emission port 3 Light receiving lens

Claims (3)

筐体と、筐体の先端面から測定点に対して所定の周波数で発光する光源からの光を測距光として送光する送光手段と、測定点で反射されて戻ってきた測距光を上記筐体の先端面で受光する受光手段とを備え、該受光手段で受光した測距光の位相と光源の発光位相との位相差に基づいて、又は、送光手段で送光した測距光が測定点で反射して受光手段で受光されるまでの時間に基づいて、上記筐体の先端面から測定点までの距離、又は、上記筐体の先端面の反対側の尾端面から測定点までの距離を測定する光波距離計において、上記筐体の尾端面を、上記測距光の光軸に直交する方向に平行な母線を有する断面円弧状の凸面に形成し、且つ、上記筐体の尾端面の母線と直交する方向に複数本の突条を設け、上記筐体の尾端面の4つの角部に、上記筐体の外側に向けて付勢され上記筐体の内側に嵌入自在な複数の脚部を設け、これら脚部を水平面に接触させることにより、上記筐体を鉛直姿勢で自立可能にしたことを特徴とする光波距離計。A housing, a light transmitting means for transmitting light from a light source that emits light at a predetermined frequency from the front end surface of the housing to a measurement point as distance measuring light, and a distance measuring light that is reflected by the measurement point and returned Light receiving means for receiving light at the front end surface of the housing, and based on the phase difference between the phase of the distance measuring light received by the light receiving means and the light emission phase of the light source, or the light transmitted by the light transmitting means. Based on the time until the distance light is reflected at the measurement point and received by the light receiving means, the distance from the front end surface of the housing to the measurement point, or the tail end surface on the opposite side of the front end surface of the housing In the optical wave distance meter that measures the distance to the measurement point, the tail end surface of the housing is formed into a convex surface having an arc-shaped cross section having a generatrix parallel to a direction orthogonal to the optical axis of the distance measuring light, and A plurality of protrusions are provided in a direction orthogonal to the generatrix of the tail end surface of the housing, and the four corners of the tail end surface of the housing are Providing a plurality of legs that are urged toward the outside of the casing and that can be fitted inside the casing, and that the legs are brought into contact with a horizontal plane, thereby enabling the casing to stand in a vertical posture. A light wave rangefinder. 筐体と、筐体の先端面から測定点に対して所定の周波数で発光する光源からの光を測距光として送光する送光手段と、測定点で反射されて戻ってきた測距光を上記筐体の先端面で受光する受光手段とを備え、該受光手段で受光した測距光の位相と光源の発光位相との位相差に基づいて、又は、送光手段で送光した測距光が測定点で反射して受光手段で受光されるまでの時間に基づいて、上記筐体の先端面から測定点までの距離、又は、上記筐体の先端面の反対側の尾端面から測定点までの距離を測定する光波距離計において、上記筐体の尾端面を平面とし、上記筐体の尾端面の略中央に、上記測距光の光軸に直交する方向に長手の突条を形成し、上記筐体の尾端面の4つの角部に、上記筐体の外側に向けて付勢され上記筐体の内側に嵌入自在な複数の脚部を設け、これら脚部を水平面に接触させることにより、上記筐体を鉛直姿勢で自立可能にしたことを特徴とする光波距離計。A housing, a light transmitting means for transmitting light from a light source that emits light at a predetermined frequency from the front end surface of the housing to a measurement point as distance measuring light, and a distance measuring light that is reflected by the measurement point and returned Light receiving means for receiving light at the front end surface of the housing, and based on the phase difference between the phase of the distance measuring light received by the light receiving means and the light emission phase of the light source, or the light transmitted by the light transmitting means. Based on the time until the distance light is reflected at the measurement point and received by the light receiving means, the distance from the front end surface of the housing to the measurement point, or the tail end surface on the opposite side of the front end surface of the housing In the light wave rangefinder for measuring the distance to the measurement point , the tail end surface of the housing is a flat surface, and a ridge that is long in the direction perpendicular to the optical axis of the distance measuring light is substantially at the center of the tail end surface of the housing. forming a, the four corners of the tail end face of the housing, rotatably fitted inside said casing biased toward the outside of the housing A a plurality of legs, by contacting the horizontal plane of these legs, the light wave distance meter, characterized in that to enable autonomous the housing in a vertical orientation. 表示部を備え、距離測定中に測定された距離のうち最小値を表示部に表示するようにしたことを特徴とする請求項1又は2に記載の光波距離計。The light wave distance meter according to claim 1, further comprising a display unit, wherein a minimum value among the distances measured during the distance measurement is displayed on the display unit.
JP2001103853A 2001-04-02 2001-04-02 Light wave distance meter Expired - Fee Related JP4781552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001103853A JP4781552B2 (en) 2001-04-02 2001-04-02 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001103853A JP4781552B2 (en) 2001-04-02 2001-04-02 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2002296029A JP2002296029A (en) 2002-10-09
JP4781552B2 true JP4781552B2 (en) 2011-09-28

Family

ID=18956842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001103853A Expired - Fee Related JP4781552B2 (en) 2001-04-02 2001-04-02 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP4781552B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320790A1 (en) * 2003-05-09 2004-12-02 Hilti Ag Electro-optical distance measuring device
EP1669776A1 (en) * 2004-12-11 2006-06-14 Leica Geosystems AG Handheld distance measuring apparatus and a method therefore

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543368Y2 (en) * 1988-05-21 1993-11-01
JPH0990037A (en) * 1995-09-21 1997-04-04 Nikon Corp Range finder
DE19652438C2 (en) * 1996-12-17 1999-06-17 Leica Geosystems Ag Measuring stop device for a hand-held distance measuring device
DE19804051B4 (en) * 1998-02-03 2004-10-28 Robert Bosch Gmbh distance measuring

Also Published As

Publication number Publication date
JP2002296029A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
US20230273572A1 (en) Sensors for Characterizing Movement of a Watch Crown
US7639346B2 (en) Non-contact measurement device
RU2209444C2 (en) Range finder
US9182226B2 (en) Hand-held laser distance measuring device
US20050280802A1 (en) Distance measuring device with laser indicating device
JP4177784B2 (en) Surveying system
JP4614506B2 (en) Portable distance measuring device
US6917414B2 (en) Device for distance measurement
US20060021237A1 (en) Measuring and leveling device
JP2000249546A (en) Portable small-sized electronic measure
US6560560B1 (en) Apparatus and method for determining the distance between two points
JP2017528736A (en) measuring device
TW201525416A (en) Laser detecting device
TW201300807A (en) Device for measuring static angle of voice coil motor
JP4781552B2 (en) Light wave distance meter
WO2011078838A1 (en) Non-contact measurement device
US20220236408A1 (en) Ultrasonic measurement device
JP2001506754A (en) Measurement contact device for rangefinder
CN210720726U (en) Electronic automatic distance measuring instrument
US20210102804A1 (en) Automatic electronic rangefinder
JP3210487U (en) Laser distance meter
JPH0990037A (en) Range finder
JP3744639B2 (en) Mechanical height measuring method and mechanical height measuring device
KR102392096B1 (en) Automatic electronic rangefinder
TW202107064A (en) Angle detecting device and angle detecting method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees