JP4781407B2 - Yttrium oxide sintered body - Google Patents

Yttrium oxide sintered body Download PDF

Info

Publication number
JP4781407B2
JP4781407B2 JP2008209430A JP2008209430A JP4781407B2 JP 4781407 B2 JP4781407 B2 JP 4781407B2 JP 2008209430 A JP2008209430 A JP 2008209430A JP 2008209430 A JP2008209430 A JP 2008209430A JP 4781407 B2 JP4781407 B2 JP 4781407B2
Authority
JP
Japan
Prior art keywords
yttrium oxide
yttrium
fluorine
sintered body
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008209430A
Other languages
Japanese (ja)
Other versions
JP2008273838A (en
Inventor
紀子 齋藤
隆康 池上
博明 阪井
周一 市川
昭昌 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008209430A priority Critical patent/JP4781407B2/en
Publication of JP2008273838A publication Critical patent/JP2008273838A/en
Application granted granted Critical
Publication of JP4781407B2 publication Critical patent/JP4781407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、レ−ザホスト材料、高温用各種装置の観察窓、放電灯用発光管等に使用される酸化イットリウムの焼結体に関し、より詳しくは、酸化イットリウム結晶体が圧密焼結されて成る焼結体に関する。   The present invention relates to a sintered body of yttrium oxide used for a laser host material, an observation window of various high-temperature devices, a discharge tube for a discharge lamp, and the like. More specifically, the yttrium oxide crystal is compacted and sintered. It relates to a sintered body.

酸化イットリウムは、結晶構造が立方晶であり、複屈折が無いので、焼結体でも、純度が高く微細な粒径を有する酸化イットリウム粉末を使用することにより透明度が高く、光線の直線透過率が高いものが得られる。しかしながら、均一で微細な粒径を有する酸化イットリウム粉末を安定的に得ることが困難で、その為に高い直線透過率を有する酸化イットリウムの焼結体を得ることが出来ないでいるのが現状である。勿論、より微細で、均一な粒度分布を有する酸化イットリウムを製造する方法が提案されているが、高い直線透過率を有する酸化イットリウム焼結体を安定的に製造するには至ってはいないのが現状である。例えば、特開平9−315865号公報には、強酸のイットリウム塩の水溶液に塩基性炭酸塩の水溶液を加えて特定のpH領域に中和して炭酸イットリウムを沈澱させて、沈澱させた後、この沈澱した炭酸イットリウムを含む反応液を特定の温度範囲内に10時間以上保持しながら攪拌を続けて熟成させ、これを仮焼して酸化イットリウム粉末を得、得られた酸化イットリウム粉末を所望の形に成形後、焼結して目的とする酸化イットリウム焼結体を製造する方法が提案されている。しかし、原料などを厳選して出来るだけ均一の条件で製造しても、50%を超える高い直線透過率を有する酸化イットリウムも製造出来るが、かなりの頻度で直線透過率が10数%程度のものも製造されることがあり、安定して高い直線透過率を有する酸化イットリウムの焼結体を製造することが出来ないでいる。   Yttrium oxide has a cubic crystal structure and no birefringence. Therefore, even in a sintered body, yttrium oxide powder having high purity and fine particle size can be used to provide high transparency and linear light transmittance. A high one is obtained. However, it is difficult to stably obtain a yttrium oxide powder having a uniform and fine particle size, and for this reason, it is not possible to obtain a sintered body of yttrium oxide having a high linear transmittance. is there. Of course, a method for producing yttrium oxide having a finer and uniform particle size distribution has been proposed, but it has not yet been possible to stably produce a yttrium oxide sintered body having a high linear transmittance. It is. For example, in JP-A-9-315865, an aqueous solution of a basic carbonate is added to an aqueous solution of a strong acid yttrium salt to neutralize it to a specific pH range to precipitate yttrium carbonate. The reaction solution containing the precipitated yttrium carbonate is aged while being kept within a specific temperature range for 10 hours or more, and calcined to obtain an yttrium oxide powder. The obtained yttrium oxide powder is obtained in a desired shape. A method for producing an intended yttrium oxide sintered body after forming and then sintering has been proposed. However, yttrium oxide with a high linear transmittance exceeding 50% can be manufactured even if it is manufactured under as uniform conditions as possible by carefully selecting the raw materials, etc., but with a linear frequency of about 10% or so with considerable frequency. In other words, it is impossible to manufacture a sintered body of yttrium oxide having a stable and high linear transmittance.

本発明は、このような実情に鑑み、純度を高めるとの従来の方向性からはま逆の方向にありながら直線透過率を向上させることを知見するに至り、これを利用して、直線透過率を高くした酸化イットリウム焼結体を提供することを目的とする。   In view of such circumstances, the present invention has been found to improve the linear transmittance while being in the opposite direction from the conventional direction of increasing the purity, and using this, the linear transmission is improved. An object of the present invention is to provide a yttrium oxide sintered body having a high rate.

本発明の焼結体は、酸化イットリウム結晶体の酸素の一部がフッ素に置換され、当該フッ素の含有量が10〜1020ppmであることを特徴とする。   The sintered body of the present invention is characterized in that a part of oxygen in the yttrium oxide crystal is substituted with fluorine, and the fluorine content is 10 to 1020 ppm.

本発明に係る酸化イットリウムの焼結体は、上記のようにして、添加物としてフッ素が含有されることがかえって直線透過率を向上することに繋がることを知見したことによるもので、直線線透過率が約52%以上と高く、各種の光学的用途に好適に使用できるものである。
Sintered body of yttrium oxide according to the present invention, as described above, the fluorine as an additive leads to be contained to rather improve the linear transmittance due to the finding of a straight-line line The transmittance is as high as about 52% or more, and can be suitably used for various optical applications.

本発明に係る酸化イットリウムの焼結体は、特定量のフッ素を含む酸化イットリウム粉末から焼成用の成形体を調製し、これを焼成することにより得られる。本発明に係る酸化イットリウムの焼結体の製造方法において使用する酸化イットリウム粉末は、炭酸イットリウム、しゅう酸イットリウム、硝酸イットリウム、硫酸イットリウム等のイットリウム塩を仮焼することにより得られるものが好適に使用される。中でも、炭酸イットリウムを仮焼して得られる酸化イットリウム粉末が好ましい。係る炭酸イットリウムとしては、特開平9−315816号公報に記載の方法で製造されたものが使用できる。勿論、同方法により熟成した後濾取した炭酸イットリウムを硫酸アンモニウム水溶液で充分に洗浄したものを使用しても良い。上記以外の方法、例えば、本願発明と同日付けで出願した特願平10−87714特願平10−87715により製造されたものでも好適に使用できることは言うまでもない。 フッ素は、仮焼時でも、成形体の調製時でも添加することが出来る。均一にフッ素を酸化イットリウム粉末中に分散させるには、仮焼時に上記のイットリウム塩に添加することが好ましい。勿論、均一にフッ素を分散させることにより、より高い直線透過率を有する酸化イットリウムの焼結体が得られることによる。フッ素を仮焼時または成形体調製時に添加するに際しては、PTFE、FEP、PFA、ETFE、PCTFE、PVDF等のフッ素樹脂、フッ化アンモニウム、フッ化イットリウム等の残存する物質が焼結体の透明性に影響を及ぼさない各種の無機系フッ素化合物等が使用される。通常、これらのフッ素系の物質は、粉末状のもの、ペレット状のもの、顆粒状のもの等、上記のイットリウム塩または同塩を仮焼することにより得られる酸化イットリウム粉末に添加して、均一に分散混合できるものが好適に使用される。フッ素の添加量はフッ素原子換算で焼成用の成形体を調製する際の酸化イットリウム粉末中の含有量が20ppm〜2200ppm、好ましくは、100ppm〜1000ppmと成るように添加すれば良い。20ppm未満でも、また、2200ppmを超えた量でも酸化イットリウム焼結体の直線透過率の向上は認められないので好ましくない。焼成後の酸化イットリウムの焼結体中に含まれるフッ素は、結晶中に固溶して存在するものと考えられる。なぜならば、大量のフッ素の存在下で酸化イットリウムを焼成すると、直線透過率が低いばかりでなく、焼結体をx線回析すると明瞭な異相としてフッ化イットリウムの存在を示す回析ピークが認められるからである。上記の量のフッ素を含む酸化イットリウムを焼成することにより、少なくとも10ppmのフッ素(フッ素原子換算)を固溶状態で含み、直線透過率が50%以上、好ましくは、60%以上の直線透過率を有する酸化イットリウムの焼結体が得られる。かかる効果が認められる理由としては、固溶したフッ素が酸化イットリウム中の酸素と置換することで、プラスの電荷を得て、これにより酸素の物質移動を促進し焼結が促進された為と考えられる。また、異相として析出したフッ化イットリウムは散乱源となり透過率を低下させるためと考えている。かくして、直線透過率が約50%以上、好ましくは約60%以上で、固溶したフッ素を少なくとも10ppm以上含む酸化イットリウムの焼結体が提供される。
The sintered body of yttrium oxide according to the present invention can be obtained by preparing a fired compact from a yttrium oxide powder containing a specific amount of fluorine and firing the compact. As the yttrium oxide powder used in the method for producing a sintered body of yttrium oxide according to the present invention, a powder obtained by calcining an yttrium salt such as yttrium carbonate, yttrium oxalate, yttrium nitrate, or yttrium sulfate is preferably used. Is done. Among these, yttrium oxide powder obtained by calcining yttrium carbonate is preferable. As such yttrium carbonate, those produced by the method described in JP-A-9-315816 can be used. Of course, it is possible to use yttrium carbonate that has been aged by the same method and then sufficiently filtered and washed with an aqueous ammonium sulfate solution. Needless to say, methods other than those described above, for example, those manufactured by Japanese Patent Application Nos. 10-87714 and 10-87715 filed on the same date as the present invention can be used. Fluorine can be added at the time of calcination or at the time of preparation of a molded body. In order to uniformly disperse fluorine in the yttrium oxide powder, it is preferable to add to the yttrium salt at the time of calcination. Of course, by uniformly dispersing fluorine, a sintered body of yttrium oxide having a higher linear transmittance can be obtained. When fluorine is added at the time of calcination or preparation of a molded body, the fluororesin such as PTFE, FEP, PFA, ETFE, PCTFE, and PVDF, and remaining substances such as ammonium fluoride and yttrium fluoride are transparent in the sintered body. Various inorganic fluorine compounds that do not affect the above are used. Usually, these fluorine-based substances are added to the yttrium oxide powder obtained by calcining the above yttrium salt or the same, such as powder, pellets, granules, etc. Those that can be dispersed and mixed are preferably used. The amount of fluorine added may be such that the content in the yttrium oxide powder when preparing a molded article for firing in terms of fluorine atoms is 20 ppm to 2200 ppm, preferably 100 ppm to 1000 ppm. Even if it is less than 20 ppm or more than 2200 ppm, an improvement in the linear transmittance of the yttrium oxide sintered body is not recognized, which is not preferable. Fluorine contained in the sintered body of yttrium oxide after firing is considered to exist as a solid solution in the crystal. This is because when yttrium oxide is fired in the presence of a large amount of fluorine, not only the linear transmittance is low, but also when the sintered body is subjected to x-ray diffraction, a diffraction peak indicating the presence of yttrium fluoride as a distinct heterogeneous phase is observed. Because it is. By firing yttrium oxide containing fluorine in the above amount, it contains at least 10 ppm of fluorine (in terms of fluorine atoms) in a solid solution state, and has a linear transmittance of 50% or more, preferably 60% or more. A sintered body of yttrium oxide is obtained. The reason why this effect is recognized is that solid solution fluorine substituted oxygen in yttrium oxide to obtain a positive charge, which promoted oxygen mass transfer and promoted sintering. It is done. Further, it is considered that yttrium fluoride precipitated as a different phase serves as a scattering source and lowers the transmittance. Thus, a sintered body of yttrium oxide having a linear transmittance of about 50% or more, preferably about 60% or more and containing at least 10 ppm of dissolved fluorine is provided.

仮焼時にフッ素源を添加する場合には、炭酸イットリウム等のイットリウム塩に所定量のフッ素源を添加して調製した混合物を酸素雰囲気中で仮焼する。炭酸イットリウムであれば、700℃〜1300℃で、好ましくは、900℃〜1200℃で仮焼する。通常、仮焼時間は、3時間〜5時間で充分である。本発明に係る酸化イットリウム粉末を成形して得られた成形体にフッ素源を添加してこれを焼成して酸化イットリウムの焼結体を製造する場合には、酸化イットリウム微細粉末に所定量のフッ素源を添加して、これを所望の形に成形して、焼成すればよい。炭酸塩の場合には、成形したものを1500℃〜1800℃、好ましくは、1500℃〜1700℃で1時間〜5時間焼成すれば良い。焼成に際しては、1000℃〜1300℃で2時間〜3時間予備焼成して、引き続き1600℃〜1700℃で2時間〜3時間焼成すれば、より高い直線透過率を有する酸化イットリウム焼結体が製造できる。   When a fluorine source is added during calcination, a mixture prepared by adding a predetermined amount of a fluorine source to an yttrium salt such as yttrium carbonate is calcined in an oxygen atmosphere. In the case of yttrium carbonate, calcination is performed at 700 ° C to 1300 ° C, preferably 900 ° C to 1200 ° C. Usually, a calcining time of 3 hours to 5 hours is sufficient. In the case of producing a sintered body of yttrium oxide by adding a fluorine source to a molded body obtained by molding the yttrium oxide powder according to the present invention and firing it, a predetermined amount of fluorine is added to the yttrium oxide fine powder. A source may be added, and this may be formed into a desired shape and fired. In the case of carbonate, the molded product may be fired at 1500 ° C. to 1800 ° C., preferably 1500 ° C. to 1700 ° C. for 1 hour to 5 hours. When firing, presintering at 1000 ° C. to 1300 ° C. for 2 hours to 3 hours and then firing at 1600 ° C. to 1700 ° C. for 2 hours to 3 hours produces a yttrium oxide sintered body having higher linear transmittance. it can.

以下実施例と比較例とを挙げて、本発明を説明するが、勿論、本発明は、これらの例により何等制限されるものではないことは言うまでもない。以下の例において使用した光線の直線透過率の測定方法に付いて記載する。光源から直径2mm、波長600nmの直線光を放出し、光源から100mm離れた直径2mmの検出器上に正確に照射する。この時の光の検出量をyとする。両面を鏡面研磨して厚さ1mmの平板としたサンプルを、光源と検出器との中心に直線光に対して研磨面が垂直となるように挿入して光線を遮る。この時の光の検出量をxとする。
直線透過率(%)=(x÷y)x100
Hereinafter, the present invention will be described with reference to examples and comparative examples. Needless to say, the present invention is not limited to these examples. It describes about the measuring method of the linear transmittance of the light used in the following examples. A linear light having a diameter of 2 mm and a wavelength of 600 nm is emitted from the light source, and is accurately irradiated onto a detector having a diameter of 2 mm that is 100 mm away from the light source. The detected amount of light at this time is y. A sample having a 1 mm thick flat plate by mirror polishing on both sides is inserted in the center of the light source and detector so that the polished surface is perpendicular to the linear light, thereby blocking the light beam. Let x be the detected amount of light at this time.
Linear transmittance (%) = (x ÷ y) × 100

(実施例及び比較例)特開平9−315816号公報に記載された方法により調製された炭酸イットリウムを使用して、仮焼用のフッ素源を含む炭酸イットリウムを用意した。即ち、同公報に記載の方法で熟成し、析出させた炭酸イットリウムを濾取して、濾取した炭酸イットリウムを0.05重量%硫酸アンモニウム水溶液で充分に洗浄した。洗浄した炭酸イットリウムを100℃で乾燥して、炭酸イットリウムの針状結晶を得た。この炭酸イットリウムに下記の表1に示した様にフッ素樹脂としてPTFEの粉末をそれぞれ20ppm〜3000ppmを添加して充分に攪拌した後、この混合物を酸素雰囲気下、1000℃で4時間仮焼し、フッ素を含有する酸化イットリウム粉末を得た。この酸化イットリウム粉末を静水圧2t/cm で成形し、1.3×10 −3 Paを1700℃で真空焼結した。真空焼結したものに就いて上記の方法によりそれぞれ直線透過率を測定し、その結果を表1に示す。又、仮焼後の酸化イットリウム微粉末中の残存フッ素の量と焼結後の焼結体に含まれる残存フッ素の量を測定し、併せ表1に示す。尚、比較対象として炭酸イットリウム微粉末にフッ素樹脂を加えないもの、及びフッ素の添加量が本発明の範囲外であるものに就いても同様な操作を繰り返し、焼結体を得、実施例と同様に直線透過率とフッ素の含有量を測定し、その結果も表1に併せ示す。


(Examples and Comparative Examples) Using yttrium carbonate prepared by the method described in JP-A-9-315816, yttrium carbonate containing a fluorine source for calcination was prepared. That is, the yttrium carbonate which was aged and precipitated by the method described in the publication was collected by filtration, and the filtered yttrium carbonate was sufficiently washed with a 0.05 wt% ammonium sulfate aqueous solution. The washed yttrium carbonate was dried at 100 ° C. to obtain acicular crystals of yttrium carbonate. As shown in Table 1 below, 20 ppm to 3000 ppm of PTFE powder was added to the yttrium carbonate and sufficiently stirred, and the mixture was calcined at 1000 ° C. for 4 hours in an oxygen atmosphere. An yttrium oxide powder containing fluorine was obtained. This yttrium oxide powder was molded at a hydrostatic pressure of 2 t / cm 2 , and 1.3 × 10 −3 Pa was vacuum sintered at 1700 ° C. The linear transmittance was measured for each of the vacuum-sintered materials by the above method, and the results are shown in Table 1. Further, the amount of residual fluorine in the yttrium oxide fine powder after calcination and the amount of residual fluorine contained in the sintered body after sintering were measured and are shown in Table 1 together. As a comparison object, the same operation was repeated for the yttrium carbonate fine powder to which the fluororesin was not added and the fluorine addition amount outside the scope of the present invention to obtain a sintered body. Similarly, linear transmittance and fluorine content were measured, and the results are also shown in Table 1.


以下に示す表1の結果から明らかなように、本発明に係る酸化イットリウムの焼結体の直線透過率は、52.2%〜76.6%と何れも高いのに対して、フッ素を加えていないものやフッ素の添加量が成形体中のフッ素の量として2200ppmを超えた比較例の焼結体の直線透過率は何れも30%台で、最も高いものでも38.2%と低く満足な直線透過率を示すものは得られなかった。   As is clear from the results of Table 1 below, the linear transmittance of the sintered body of yttrium oxide according to the present invention is as high as 52.2% to 76.6%, while fluorine is added. The linear transmittance of the sintered body of the comparative example in which the added amount of fluorine exceeds 2200 ppm as the amount of fluorine in the molded body is in the 30% range, and the highest one is as low as 38.2%. No linear transmittance was obtained.

Claims (1)

酸化イットリウム結晶体が圧密焼結されて成る焼結体であって、前記結晶体の酸素の一部がフッ素に置換され、当該フッ素の含有量が10〜1020ppmであることを特徴とする焼結体。
A sintered body formed by compacting sintered yttrium oxide crystal, wherein a part of oxygen of the crystal body is substituted with fluorine, and the fluorine content is 10 to 1020 ppm. body.
JP2008209430A 2008-08-18 2008-08-18 Yttrium oxide sintered body Expired - Fee Related JP4781407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209430A JP4781407B2 (en) 2008-08-18 2008-08-18 Yttrium oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209430A JP4781407B2 (en) 2008-08-18 2008-08-18 Yttrium oxide sintered body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08771698A Division JP4231917B2 (en) 1998-03-31 1998-03-31 Method for producing yttrium oxide fired body

Publications (2)

Publication Number Publication Date
JP2008273838A JP2008273838A (en) 2008-11-13
JP4781407B2 true JP4781407B2 (en) 2011-09-28

Family

ID=40052299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209430A Expired - Fee Related JP4781407B2 (en) 2008-08-18 2008-08-18 Yttrium oxide sintered body

Country Status (1)

Country Link
JP (1) JP4781407B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120707A (en) * 1977-03-30 1978-10-21 Nippon Telegraph & Telephone Process for manufacturing light permeable y203 ceramics
JP2866891B2 (en) * 1990-06-21 1999-03-08 神島化学工業株式会社 Polycrystalline transparent yttrium aluminum garnet sintered body and method for producing the same
JPH0459658A (en) * 1990-06-29 1992-02-26 Sumitomo Electric Ind Ltd Light-transmitting sintered yttria and production thereof
JP3243278B2 (en) * 1992-04-10 2002-01-07 黒崎播磨株式会社 Polycrystalline transparent YAG ceramics for solid-state laser
JPH05286762A (en) * 1992-04-10 1993-11-02 Kurosaki Refract Co Ltd Manufacture of polycrystalline transparent yag ceramic for solid laser
JP2843908B2 (en) * 1996-05-27 1999-01-06 科学技術庁無機材質研究所長 Method for producing yttrium oxide fine powder
JP4178224B2 (en) * 1998-03-31 2008-11-12 独立行政法人物質・材料研究機構 Method for producing yttrium oxide powder

Also Published As

Publication number Publication date
JP2008273838A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5720848B2 (en) Method for producing polyhedral α-alumina fine particles
JP3783445B2 (en) Method for producing translucent alumina sintered body and use thereof
JP6744193B2 (en) Garnet type lithium-lanthanum-zirconium composite oxide and method for producing the same
JP5034349B2 (en) Zirconia fine powder, production method thereof and use thereof
TWI401211B (en) Indium oxide powder and method for producing same
KR20230129196A (en) Translucent zirconia sintered body and zirconia powder, and use therefor
JP2001064075A (en) Translucent alumina sintered body and its production
KR102156105B1 (en) Rod-like magnesium hydroxide particle and rod-like magnesium oxide particle each having high specific surface area, and methods respectively for producing said particles
KR102164056B1 (en) Calcium carbonate filler for resin and resin composition including said filler
JP2007332026A (en) Zirconia sintered compact
JP7062900B2 (en) Zirconia powder and its manufacturing method
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4231917B2 (en) Method for producing yttrium oxide fired body
JP6665542B2 (en) Zirconia powder and method for producing the same
JP4781407B2 (en) Yttrium oxide sintered body
US11136271B2 (en) Aluminum nitride particles
JP2013091585A (en) Zirconia powder, method for producing the same, and its application
JP4178224B2 (en) Method for producing yttrium oxide powder
JP4438495B2 (en) Barium titanate powder
JP6862702B2 (en) Zirconia calcined body and its manufacturing method
KR102108378B1 (en) Method for producing porous titanium oxide fine particle and porous fine titanium oxide fine particles
KR101751070B1 (en) Method of preparing barium titanate using acid-base reaction
JP3125067B2 (en) Method for producing transparent yttria sintered body
JPH0712922B2 (en) Method of forming inorganic hydroxide precipitate
JP3531678B2 (en) Method for producing zirconia powder containing solid solution of stabilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees