JP4780394B2 - Droplet supply method and apparatus - Google Patents

Droplet supply method and apparatus Download PDF

Info

Publication number
JP4780394B2
JP4780394B2 JP2006010846A JP2006010846A JP4780394B2 JP 4780394 B2 JP4780394 B2 JP 4780394B2 JP 2006010846 A JP2006010846 A JP 2006010846A JP 2006010846 A JP2006010846 A JP 2006010846A JP 4780394 B2 JP4780394 B2 JP 4780394B2
Authority
JP
Japan
Prior art keywords
fine particles
droplet
suspension
dispersed
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006010846A
Other languages
Japanese (ja)
Other versions
JP2007059373A (en
Inventor
英彦 屋代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006010846A priority Critical patent/JP4780394B2/en
Publication of JP2007059373A publication Critical patent/JP2007059373A/en
Application granted granted Critical
Publication of JP4780394B2 publication Critical patent/JP4780394B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、レーザー生成プラズマを用いたEUV(極端紫外線)光源装置のうち溶性でない金属もしくは金属化合物微粒子を含有した液滴ターゲットの製造に関するものである。   The present invention relates to the manufacture of a droplet target containing insoluble metal or metal compound fine particles in an EUV (extreme ultraviolet) light source device using laser-produced plasma.

EUVリソグラフィー露光装置は、複数のMo/Si多層膜による反射型光学系で構成される。そのため該露光装置の光源は、該多層膜において最も反射率の高い13.5nm(2%バンド幅)付近の波長の光が捕集多層膜で反射し集光した点(中間集光点)において100W以上の高い出力が必要となる。   The EUV lithography exposure apparatus is composed of a reflective optical system composed of a plurality of Mo / Si multilayer films. Therefore, the light source of the exposure apparatus is 100 W at the point where light having a wavelength near 13.5 nm (2% bandwidth) having the highest reflectivity in the multilayer film is reflected and collected by the collection multilayer film (intermediate light collection point). The above high output is required.

レーザー生成プラズマにより輻射を行う光源の場合、高い平均出力を得るため5kHz以上の高繰り返し動作でターゲット物質を供給する方法が求められる。   In the case of a light source that emits laser generated plasma, a method of supplying a target material with a high repetition rate of 5 kHz or more is required in order to obtain a high average output.

プラズマ標的材料を高繰り返し動作で供給する方法としてXeを液化し液体として連続供給することで数kHzに対応可能な高繰り返し動作でレーザー生成プラズマEUV光源を発生させることが考えられている。(下記非特許文献1参照)   As a method of supplying a plasma target material with a high repetition rate, it is considered to generate a laser-produced plasma EUV light source with a high repetition rate capable of supporting several kHz by liquefying Xe and continuously supplying it as a liquid. (See Non-Patent Document 1 below)

一方、原子番号48のCd付近から74のW付近までの元素のイオンの発光スペクトルは、イオン価数による影響が極めて小さく4d-4f遷移が同じ波長域で凝集する特徴を持っている。そのため、プラズマになる元素を選択することで波長域の選択が可能である(下記非特許文献2参照)。   On the other hand, the emission spectrum of the ions of the element from the vicinity of Cd of atomic number 48 to the vicinity of W of 74 has a characteristic that the influence of the ion valence is extremely small and the 4d-4f transition aggregates in the same wavelength region. Therefore, the wavelength range can be selected by selecting an element that becomes plasma (see Non-Patent Document 2 below).

Mo/Si多層膜の反射率の高い13.5nmの波長にこの4d-4f遷移を持つのがSnであり、10価イオンを中心に多価にわたり多数の凝集したスペクトル構造を持つ。このスペクトル幅は遷移の光学的厚みに依存するが2%のバンド幅より数倍以上の十分広い範囲で構成される。   Sn has this 4d-4f transition at a highly reflective wavelength of 13.5 nm of the Mo / Si multilayer film, and has a large number of aggregated spectral structures centering around 10-valent ions. This spectral width depends on the optical thickness of the transition, but is composed of a sufficiently wide range several times more than the 2% bandwidth.

この固体Sn ターゲットを利用した研究が進められたが、固体から放出されるSn プラズマの密度が高く13.5nm を輻射するスペクトル線の光学的厚み( 遷移確率、媒質長、遷移に関する準位のイオン密度等に依存する。) が厚すぎること、再吸収を行う発光域周辺のプラズマ等が避けられない状態のため十分な変換効率が得られなかった経緯がある(下記非特許文献3 参照)。   Although research using this solid Sn target has proceeded, the optical thickness of the spectral line radiating 13.5 nm with high density of Sn plasma emitted from the solid (transition probability, medium length, ion density at the level related to transition) )) Is too thick, and plasma around the light emitting region where reabsorption is performed is unavoidable, and there is a reason why sufficient conversion efficiency could not be obtained (see Non-Patent Document 3 below).

このSnターゲットの光学的厚みを抑え、かつレーザーの吸収長に対して十分低い密度のターゲットを得る。また、光源内の密度勾配を均一にし全てのイオンが輻射に寄与するように、周囲に再吸収する物質がなく、境界が明確な構造となるように微粒子群ターゲットの構造が考えられている(下記特許文献1参照)。   The optical thickness of the Sn target is suppressed, and a target having a sufficiently low density with respect to the absorption length of the laser is obtained. Also, the structure of the fine particle group target is considered so that there is no reabsorbing substance in the surroundings and the boundary is clear so that the density gradient in the light source is uniform and all ions contribute to radiation ( See Patent Document 1 below).

一方、ターゲットの供給法として、数kHzの高繰り返し動作で供給できる方法としては、液滴供給法が最も有力な候補である。液滴供給法においては、水、アルコール、冷却し液化した気体、加熱した液体金属、水溶液、アルコール溶液に成り得る塩化物等の液体として取り扱える場合に安定して供給することが可能である。   On the other hand, as a method for supplying a target, a droplet supplying method is the most promising candidate as a method that can be supplied at a high repetition rate of several kHz. In the droplet supply method, stable supply is possible when it can be handled as a liquid such as water, alcohol, a cooled and liquefied gas, a heated liquid metal, an aqueous solution, or a chloride that can form an alcohol solution.

一方、効率よく13.5nmの波長近傍のEUV光を発光する物質は、Snである。しかしながら、SnもしくはSn化合物は、水あるいはアルコールに溶けない(本明細書においては「不溶性」という。)。このため微粒子として強制的に混在させ液滴として抽出するしかなかった(下記非特許文献4)。
特開2004−288517号公報 B.A.M.Hansson, et.al. SPIE4688 (2002), p102 G.O’Sulliban andP.K.Carroll, Opt. Soc. Am. 71, 227, (1981). R.C.Spitzer, et.al. J. Appl. Phys. 79 (5),2251, (1996). M.Richardson,et.al. J.Vac.Sci. Technol. B22(2), 785 (2004).
On the other hand, a substance that efficiently emits EUV light in the vicinity of a wavelength of 13.5 nm is Sn. However, Sn or Sn compounds are not soluble in water or alcohol (referred to herein as “insoluble”). For this reason, there is no choice but to forcibly mix them as fine particles and extract them as droplets (Non-Patent Document 4 below).
JP 2004-288517 A BAMHansson, et.al.SPIE4688 (2002), p102 G.O'Sulliban and P.K.Carroll, Opt. Soc. Am. 71, 227, (1981). RCSpitzer, et.al.J.Appl.Phys. 79 (5), 2251, (1996). M. Richardson, et.al. J. Vac. Sci. Technol. B22 (2), 785 (2004).

上記のように、Sn化合物は、水に溶けないため、水と混濁して供給するしか方法がなかった。一方、Sn化合物のような比重の重い物質(SnO2、6.95g/cm3)は、1μmの微粒子径の場合3.0×10-6m/s、10μmで3.0×10-4m/sの沈降速度で簡単に水中に沈降、沈殿を生じる。このため、固体の微粒子と水を混合し、流体として安定供給する場合、供給する液体を容器内で十分に攪拌し擬似的に均一な状態で液体として取り扱う必要がある。 As described above, since the Sn compound does not dissolve in water, there is only a method of supplying it in turbidity with water. On the other hand, substances with heavy specific gravity (SnO 2 , 6.95 g / cm 3 ), such as Sn compounds, settle at 3.0 × 10 −6 m / s for fine particles of 1 μm and 3.0 × 10 −4 m / s at 10 μm. Sedimentation and precipitation in water easily at speed. For this reason, when solid fine particles and water are mixed and stably supplied as a fluid, it is necessary to sufficiently stir the supplied liquid in the container and handle it as a liquid in a pseudo-uniform state.

また十分に攪拌した状態でも、微粒子の一次粒子径の小さいものほど、凝集力は強くなり一時粒子径の中心が30nmのものでは、実際の微粒子群の直径としては10μmを超える径になってしまう。このため、沈降速度が極めて速いこと、液滴放出ノズルの目詰まりを簡単に生じること、また、上記特許文献1において記載されているように、真空中で微粒子群として単独の微粒子として分散させた後でも中心までプラズマ化できない大型微粒子になること等の様々な問題が生じることとなる。   Even in a sufficiently stirred state, the smaller the primary particle size of the fine particles, the stronger the cohesion force becomes, and if the center of the temporary particle size is 30 nm, the actual fine particle group diameter will exceed 10 μm. . For this reason, the sedimentation speed is extremely fast, the clogging of the droplet discharge nozzle is easily caused, and as described in Patent Document 1, the particles are dispersed as single particles in a vacuum. Various problems will occur, such as the formation of large particles that cannot be converted into plasma even afterwards.

さらに容器内の微粒子の攪拌が十分でない場合、容器内の高さ方向で混合液体の密度の均一性が微粒子の沈降のために時間経過とともに変化する。このため発光源となるSnプラズマの密度の違いが生じEUV輻射出力が大きくこれに依存し不安定となる。   Further, when the fine particles in the container are not sufficiently stirred, the uniformity of the density of the mixed liquid in the height direction in the container changes over time due to the precipitation of the fine particles. For this reason, a difference in density of Sn plasma serving as a light emission source occurs, and the EUV radiation output is greatly dependent on this and becomes unstable.

また、微粒子の沈降は供給に用いられる配管内でも生じる。同時に供給に要する液滴径を140μmとして、搬送管の内径に比べ極端に短い直径50μm前後の径の液滴ノズルからの極微量供給を行う場合、ノズル径に比べて圧倒的に太い供給管内では流速の差から澱みが生じる。   In addition, sedimentation of the fine particles also occurs in the piping used for supply. At the same time, if the droplet diameter required for supply is 140 μm, and a very small amount of liquid is supplied from a droplet nozzle with a diameter of approximately 50 μm, which is extremely short compared to the inner diameter of the transfer tube, in the supply tube that is much thicker than the nozzle diameter Stagnation occurs from the difference in flow rate.

50μmのノズル径に対し50kPaの圧力を容器にかけて、水を液滴として放出した場合、わずか0.8cc/minしか液滴として流れない。例えば、内径5mmの配管を水平にして用いた場合、平均流速はわずか4.1cm/minとなる。このため、搬送管の長さを1m、配管断面の平均沈降深さを2mmとすると、沈降しないためには微粒子の直径は2μm以下にする必要がある。   When water is discharged as droplets by applying a pressure of 50 kPa to a 50 μm nozzle diameter, only 0.8 cc / min flows as droplets. For example, when a pipe with an inner diameter of 5 mm is used horizontally, the average flow velocity is only 4.1 cm / min. Therefore, if the length of the transport pipe is 1 m and the average sedimentation depth of the pipe cross section is 2 mm, the diameter of the fine particles must be 2 μm or less in order to prevent sedimentation.

同様に鉛直方向に配管が存在する場合、同様に配管内の密度分布が沈降により生じる。同様に流速の10%まで許容できれば、5μm以下、1%まで許容できれば1.5μm以下の粒子径となる。また沈降により密度が高くなることにより、液滴放出先端での目詰まりが生じる。   Similarly, when a pipe exists in the vertical direction, the density distribution in the pipe similarly occurs due to sedimentation. Similarly, if the flow rate is acceptable up to 10%, the particle size is 5 μm or less, and if it is acceptable up to 1%, the particle size is 1.5 μm or less. Further, due to the increase in density due to sedimentation, clogging at the droplet discharge tip occurs.

一方、上記特許文献1に記載されているように、励起レーザーの候補であるYAGレーザー(パルス幅10ns)を仮定し、微粒子が真空中で分散した状態でプラズマ化する場合、ターゲット物質が完全にプラズマ化されず一部でもイオン以外の飛散物とならないためには微粒子径は、全域でプラズマ化が行える直径の2μm以下に限定しなくてはならない。   On the other hand, as described in Patent Document 1, when a YAG laser (pulse width: 10 ns), which is a candidate for an excitation laser, is assumed and plasma is formed in a state where fine particles are dispersed in a vacuum, the target material is completely In order not to be converted into plasma and to be partly scattered other than ions, the particle diameter must be limited to 2 μm or less, which is the diameter that can be converted into plasma throughout the entire area.

Sn微粒子を流体として取り扱うために微粒子の分散処理を行った懸濁液を予め用意し供給することが可能であるが、時間経過とともに再凝縮が生じる。これを防止するため界面活性剤を必要とする。水、微粒子以外の不純物は液滴として供給後、プラズマ化の際に深刻な問題となる汚染物質を大量に放出する問題が生じる。そのため、EUV輻射光を捕集する多層膜反射鏡に付着し、反射率を著しく低下させる。このため、界面活性剤を液的中に混ぜることは現実的ではない。   In order to handle Sn fine particles as a fluid, it is possible to prepare and supply a suspension in which fine particles are dispersed in advance, but recondensation occurs over time. In order to prevent this, a surfactant is required. Impurities other than water and fine particles are supplied as droplets, and then a problem arises in that a large amount of contaminants, which become a serious problem during plasma formation, are released. For this reason, it adheres to a multilayer mirror that collects EUV radiation, and the reflectivity is significantly reduced. For this reason, it is not realistic to mix the surfactant into the liquid.

上記の状態を解決するためSnおよびSn化合物と水は、水溶液のように流体として取り扱うことができる必要がある。そのため、微粒子は、その沈降速度が無視できる大きさの微粒子に細分化される必要があり、結果として、水と懸濁した状態になる。配管中の沈降による不均一性、微粒子中心までプラズマ化が可能な直径を考慮した場合、最大微粒子径は、2μm以下の粒子径まで分散させる必要がある。一方、最凝集防止の界面活性剤を混入はできないため再凝集前に懸濁液として流体で取り扱うか、再凝集前に再度分散処理を行い常に分散した懸濁液にする必要がある。   In order to solve the above-mentioned state, it is necessary that Sn and the Sn compound and water can be handled as a fluid like an aqueous solution. For this reason, the fine particles need to be subdivided into fine particles having a negligible settling rate, and as a result, the fine particles are suspended with water. In consideration of non-uniformity due to sedimentation in the pipe and the diameter that can be converted to plasma up to the center of the fine particles, the maximum fine particle size needs to be dispersed to a particle size of 2 μm or less. On the other hand, since the most anti-aggregation surfactant cannot be mixed, it is necessary to handle it as a suspension before re-aggregation, or to carry out dispersion treatment again before re-aggregation to always make a dispersed suspension.

EUVリソグラフィー光源の場合、励起源の候補であるYAGレーザー(10nsパルス幅)で真空中に拡散した微粒子に照射し完全にプラズマ化可能な径は、2μm程度の直径となる。この場合、放出されるものは、イオンと電子であり、中性の飛散物は、存在せず、汚染の低減につながる。   In the case of an EUV lithography light source, the diameter that can be completely converted to plasma by irradiating fine particles diffused in a vacuum with a YAG laser (10 ns pulse width), which is a candidate for an excitation source, is about 2 μm. In this case, ions and electrons are emitted, and there are no neutral scattered matters, which leads to a reduction in contamination.

微粒子の一次粒径がこれ以下である場合、超音波分散機等の外からの力で細分化することが可能である。また、1μmに細分化した微粒子は、2時間までの時間経過でも再凝集せず、攪拌のみで均一な状態が得られることが実験的に確かめられている。したがって、微粒子の分散後、液体として供給することで、不溶性のSn化合物も界面活性剤なしで流体として取り扱うことが可能である。   When the primary particle size of the fine particles is less than this, the fine particles can be subdivided by an external force such as an ultrasonic disperser. In addition, it has been experimentally confirmed that fine particles finely divided to 1 μm do not re-aggregate even after the lapse of time up to 2 hours, and a uniform state can be obtained only by stirring. Therefore, insoluble Sn compounds can be handled as a fluid without a surfactant by supplying them as a liquid after dispersion of the fine particles.

EUVリソグラフィー光源において、プラズマ光源径は、露光装置性能から捕集立体角πsrの場合、約0.5mmの直径に相当する。また、13.5nm の波長を輻射するための10価程度のイオンへ電離を行うためには、電子温度は、30eV程度と考えられている。このプラズマを1.06μmの波長を持つYAGレーザーにより生成する場合、大部分のレーザーエネルギーが0.5mmの媒質長に渡って吸収されるイオン密度は、イオンの平均価数を考慮すれば約5×1018cm-3となる。これは30μmの直径のSnの球の体積に匹敵する。 In the EUV lithography light source, the plasma light source diameter corresponds to a diameter of about 0.5 mm in the case of the collection solid angle πsr from the performance of the exposure apparatus. Also, in order to perform ionization to about 10-valent ions for radiating a wavelength of 13.5 nm, the electron temperature is considered to be about 30 eV. When this plasma is generated by a YAG laser having a wavelength of 1.06 μm, the ion density where most of the laser energy is absorbed over a medium length of 0.5 mm is about 5 × 10, considering the average valence of ions. 18 cm -3 . This is comparable to the volume of a 30 μm diameter Sn sphere.

Sn化合物の懸濁液においては、約7.5%程度の重量比まで、懸濁液として生成可能なことが実験により確かめられている。SnO2の比重は、6.5g/cm3であり、懸濁液中の水とSnO2の0.9%以上の分子比率となる。したがって、1%の分子比率の場合、1滴に供給される液滴の直径140μmで必要十分なSn化合物を供給することができる。数kHzで発生させた液滴で次々に放出される液滴間隔が直径の5倍の場合、50μm程度の直径を持つノズルが必要となる。 Experiments have confirmed that a suspension of Sn compound can be formed as a suspension up to a weight ratio of about 7.5%. The specific gravity of SnO 2 is 6.5 g / cm 3 , resulting in a molecular ratio of 0.9% or more of water and SnO 2 in the suspension. Therefore, when the molecular ratio is 1%, a necessary and sufficient Sn compound can be supplied with a diameter of 140 μm of the droplet supplied to one droplet. When the interval between the droplets generated one after another at a frequency of several kHz is 5 times the diameter, a nozzle having a diameter of about 50 μm is required.

Sn化合物を分散させ懸濁液にするためには、超音波分散機を利用することができる。一次粒子径の粒度分布の中心30nmのSnO2微粒子(7g)が水(93g)が7.5%までの重量比で混合した場合、超音波ノズルφ36mm、出力300Wの超音波分散機1分照射により、粒度分布は数10μmから100nm以下(測定限界以下)にすることが可能であった。分散前の凝集した粒径の粒度分布の中心は、20μm程度であり、一部は想定される液滴発生用ノズル径50μm以上の径となりノズルの目詰まりが生じる。一方、分散後の微粒子は、全ての微粒子が1μm以下に全て分散しているため、目詰まりは生じない。 An ultrasonic disperser can be used to disperse the Sn compound into a suspension. When SnO 2 fine particles (7g) with a central particle size distribution of primary particle size (7g) are mixed in a weight ratio of water (93g) up to 7.5%, an ultrasonic disperser with an ultrasonic nozzle φ36mm, output 300W, The particle size distribution could be reduced from several tens of μm to 100 nm or less (below the measurement limit). The center of the particle size distribution of the aggregated particle size before dispersion is about 20 μm, and a part of the assumed droplet generation nozzle diameter is 50 μm or more, resulting in nozzle clogging. On the other hand, the dispersed fine particles are not clogged because all the fine particles are dispersed to 1 μm or less.

また、1μmのSnO2微粒子の水に対する沈降速度は、約3.0×10-6m/sである。1時間で1cm沈降する速度であり、数10cm深さの容器において、均一の流体として取り扱うことができる。また、攪拌機を併用することで微粒子の沈降は、全く無視できる。 The sedimentation rate of 1 μm SnO 2 fine particles into water is about 3.0 × 10 −6 m / s. The rate of sedimentation is 1 cm per hour, and can be handled as a uniform fluid in a container with a depth of several tens of cm. Moreover, sedimentation of fine particles can be completely ignored by using a stirrer in combination.

上記懸濁液100gは超音波分散機(出力300W)の1分照射で実験的に生成することが可能である。一方、液滴発生用ノズルから供給すべき懸濁液は、1cm3/min以下であるため、分散速度が100倍速い。このため懸濁液の生成に関する問題はない。 100 g of the suspension can be experimentally generated by 1 minute irradiation with an ultrasonic disperser (output 300 W). On the other hand, since the suspension to be supplied from the droplet generating nozzle is 1 cm 3 / min or less, the dispersion speed is 100 times faster. For this reason, there is no problem regarding the formation of the suspension.

本願発明のレーザー生成プラズマ光源用微粒子水懸濁液滴供給方法により、水溶できない微粒子でも2μm以下の微粒子径に分散懸濁化させることで液滴供給用のノズルを目詰まりさせることなく長時間の運転が可能である。   By the fine particle water suspension droplet supply method for laser-produced plasma light source of the present invention, it is possible to disperse and suspend fine particles that cannot be water-soluble to a particle size of 2 μm or less for a long time without clogging the nozzle for supplying droplets. Driving is possible.

目的とする微粒子を水等の液体に懸濁液として取り扱うことにより均一な流体として取り扱うことができ、同時に安定して比率の一定な微粒子比率の液滴を供給することが可能となる。これにより、レーザー生成プラズマ輻射EUV光の強度の安定化を行うことができる。   By treating the target fine particles as a suspension in a liquid such as water, it can be handled as a uniform fluid, and at the same time, it is possible to stably supply droplets having a fine particle ratio with a constant ratio. As a result, the intensity of the laser-generated plasma radiation EUV light can be stabilized.

また、2μm以上の径の微粒子の場合、飛散物となっていたターゲット物質を全てプラズマ化することができ、イオン除去対策として用いられている技術により捕集することができ、多層膜鏡への付着を避けることが可能となる。そのため、光源システム全体としての長寿命化を図ることが可能となる。   In addition, in the case of fine particles with a diameter of 2 μm or more, all of the target material that has been scattered can be converted to plasma, and can be collected by techniques used as a countermeasure for removing ions, It is possible to avoid adhesion. Therefore, it is possible to extend the life of the entire light source system.

上記方法により生成したSnO2微粒子混入懸濁液のpHは、該微粒子の濃度にも依存するが、4前後となる。一方、重量濃度1%程度の場合、該微粒子は、2時間以上分散し続けており、原則的には問題がない。しかし、該微粒子の濃度を上げた場合、微粒子同士の衝突頻度が格段に上昇し、凝集が促進され、分散状態を維持できる時間は、極めて短くなる。同時に、粘性が上昇し、懸濁液を液滴として用いることが次第に困難な状況になる。 The pH of the SnO 2 fine particle mixed suspension produced by the above method is about 4, although it depends on the concentration of the fine particles. On the other hand, when the weight concentration is about 1%, the fine particles are continuously dispersed for 2 hours or more, and there is no problem in principle. However, when the concentration of the fine particles is increased, the collision frequency between the fine particles is remarkably increased, aggregation is promoted, and the time during which the dispersed state can be maintained becomes extremely short. At the same time, the viscosity increases and it becomes increasingly difficult to use the suspension as droplets.

このpHが4程度の懸濁液において、NaOH水溶液またはKOH水溶液を添加し、pHを7以上にすると、上記微粒子濃度が高い場合においても、粘性が低く、5日後においても、粒度分布に変化が生じないほど凝集していないことを確認した。このとき、NaOH水溶液またはKOH水溶液を添加しない、同じ微粒子濃度のpHが4前後のものは再凝集により沈殿している。   In this suspension having a pH of about 4, when an aqueous NaOH solution or an aqueous KOH solution is added and the pH is increased to 7 or more, the viscosity is low even when the fine particle concentration is high, and the particle size distribution changes even after 5 days. It was confirmed that the agglomeration was not so much that it did not occur. At this time, no NaOH aqueous solution or KOH aqueous solution is added, and the same fine particle concentration having a pH of around 4 is precipitated by reaggregation.

この現象は、シリカ微粒子等の懸濁液がアルカリ性溶媒により結合が切断され、負に帯電することにより再凝集しない現象と同一であると考えられ、SnO2微粒子表面にあったOH-基の反応により凝集が防げられるものと考えられる。このとき懸濁液の粘性も著しく下がるため、液滴として生成することに適した状態になる。 This phenomenon, suspensions such as silica fine particles is disconnected coupled with an alkaline solvent, is considered to be identical to the phenomenon that does not re-aggregation by negatively charged, reaction of OH- groups were in SnO 2 fine particle surface It is thought that aggregation can be prevented by this. At this time, since the viscosity of the suspension is remarkably lowered, the suspension becomes suitable for generation as droplets.

また、凝集せずに粘性が下がることから、酸化錫微粒子の濃度(存在比)を高くすることが可能となり、最大30%程度の重量比まで懸濁液として生成できる。   Further, since the viscosity is lowered without agglomeration, the concentration (abundance ratio) of the tin oxide fine particles can be increased, and a suspension can be produced up to a weight ratio of about 30% at maximum.

Sn及びSn化合物は、その微粒子を水、もしくはアルコールに混入し、超音波分散させることにより懸濁液として取り扱うことが可能である。これによりレーザー生成SnプラズマとしてEUV光を抽出する場合、長時間安定してターゲット物質を供給することができる。また、微粒子径を2μm以下に限定することが可能であるため、微粒子群としてプラズマ化した場合、デブリを発生させるようなターゲットとはならず、クリーンな光源が生成でき、リソグラフィー光源の長寿命化にも貢献することになる。   Sn and Sn compounds can be handled as suspensions by mixing the fine particles in water or alcohol and ultrasonically dispersing them. As a result, when EUV light is extracted as laser-generated Sn plasma, the target material can be stably supplied for a long time. In addition, since the particle diameter can be limited to 2 μm or less, when it is converted into plasma as a particle group, it does not become a target that generates debris, a clean light source can be generated, and the life of the lithography light source can be extended. Will also contribute.

以下に本願発明を実施するための最良の形態を示す。   The best mode for carrying out the present invention will be described below.

図1に示すように、容器1内の水中において微粒子を混合させ、該液体をポンプ2により超音波拡散機3に輸送し、超音波照射することにより微粒子を振動分散させ、懸濁液を生成する。タンクに循環された懸濁液は、攪拌機で均一化を行う。容器内の微粒子は、10μm以上の大きさで凝縮している場合においても、直径10cm程度のアンカー型攪拌羽を200rpm以上回転させることにより、均一に攪拌することができ、沈降による深さ方向の密度分布の違いを低減することができる。   As shown in FIG. 1, fine particles are mixed in water in a container 1, the liquid is transported to an ultrasonic diffuser 3 by a pump 2, and the fine particles are vibrated and dispersed by ultrasonic irradiation to generate a suspension. To do. The suspension circulated in the tank is homogenized with a stirrer. Even when the fine particles in the container are condensed to a size of 10 μm or more, the anchor-type stirring blade having a diameter of about 10 cm can be stirred uniformly by rotating it at 200 rpm or more. Differences in density distribution can be reduced.

容器中に空気等で圧力をかけることにより容器中の懸濁液は、液滴供給ノズル5へと輸送され、該ノズルから放出される。該ノズルにおいては、高周波振動により強制的かつ安定して液滴を供給させることも可能である。   By applying pressure to the container with air or the like, the suspension in the container is transported to the droplet supply nozzle 5 and discharged from the nozzle. In the nozzle, it is possible to supply droplets forcibly and stably by high-frequency vibration.

微粒子全体がレーザー照射によりプラズマ化される径の2μm以下の一次粒径を持つ微粒子を、超音波分散機により凝集した状態から2μm以下の一次粒子に近い状態まで分散させる。   Fine particles having a primary particle size of 2 μm or less, whose diameter is converted into plasma by laser irradiation, are dispersed from an aggregated state to a state close to primary particles of 2 μm or less by an ultrasonic disperser.

超音波分散機は、2μm以上に凝集している微粒子が細分可能な性能を持つ出力と、振幅を持つものを使用する必要がある。300W出力、超音波照射部の直径36mmの超音波分散機の場合、一次粒径30nmの微粒子は、全てが1μm以下、中心粒度分布は100nm以下に細分化できることが実験的に確かめられた。   It is necessary to use an ultrasonic disperser that has an output capable of subdividing fine particles aggregated to 2 μm or more and has an amplitude. In the case of an ultrasonic disperser with a 300 mm output and an ultrasonic irradiation part diameter of 36 mm, it was experimentally confirmed that all the fine particles with a primary particle size of 30 nm can be subdivided into 1 μm or less and the central particle size distribution to 100 nm or less.

分散器で分散させ懸濁液を作成する場合、混入に応じてpHの確認を行い、pH7以上(アルカリ性が望ましい)にすることで、粘性を下げ、同時に液中の混入比率を上げていくようにして懸濁液を作製することが望ましい。   When preparing a suspension by dispersing with a disperser, check the pH according to the mixing, and make it pH 7 or higher (preferably alkaline) to lower the viscosity and increase the mixing ratio in the liquid at the same time. It is desirable to make a suspension.

図2に示すように、超音波分散機3を通過後、容器1に戻る懸濁液のパイプと液滴ノズルに輸送される懸濁液の比率をバルブ6及びポンプ2の能力を調整することにより高周波振動している液滴ノズルから液滴として放出した。この場合、水圧は、ポンプ2の回転数とバルブ6の開閉により決定されるため、容器内の気圧は、液滴放出先の装置と同一の圧力を維持することで制御可能である。この場合も、上記実施例1と同様の事実が確かめられた。   As shown in FIG. 2, adjusting the capacity of the valve 6 and the pump 2 to adjust the ratio of the suspension pipe returned to the container 1 after passing through the ultrasonic disperser 3 and the suspension transported to the droplet nozzle. Were discharged as droplets from a droplet nozzle that vibrated at a high frequency. In this case, since the water pressure is determined by the number of rotations of the pump 2 and the opening and closing of the valve 6, the atmospheric pressure in the container can be controlled by maintaining the same pressure as the droplet discharge destination device. Also in this case, the same facts as in Example 1 were confirmed.

図3に示すように、図2の配置で配管内の懸濁液の液滴ノズルへの流速が遅い、もしくは長距離の配管長が必要で微粒子の沈降による沈殿、深さ方向の密度変化を生じる場合、またバルブ6の開口の狭さにより懸濁液の超音波分散機による分散が再凝集までの時間に追いつかない場合、容器内のポンプ7を別個儲け、上記実施例2と同様にバルブ6を儲け、ポンプの回転数とバルブの開閉により液滴供給が可能である。この場合、上記実施例2に比べ、微粒子の分散処理が最速で行われること、長距離の運搬でも液滴放出ノズル径に依存しない高速度での懸濁液の供給が可能なため、微粒子の沈降による影響を排除することがより可能となる。   As shown in FIG. 3, with the arrangement of FIG. 2, the flow rate of the suspension liquid in the pipe to the droplet nozzle is slow, or a long pipe length is required. If this occurs, and if the dispersion of the suspension by the ultrasonic disperser cannot keep up with the time until re-aggregation due to the narrowness of the opening of the valve 6, the pump 7 in the container is provided separately, and the valve is the same as in Example 2 above. 6 can be used to supply droplets by the number of rotations of the pump and the opening and closing of the valve. In this case, compared to Example 2 above, the dispersion process of the fine particles is performed at the fastest speed, and the suspension can be supplied at a high speed independent of the droplet discharge nozzle diameter even when transported over a long distance. It becomes possible to eliminate the influence of sedimentation.

本願発明に係る液滴供給装置の第1の実施例の模式図Schematic diagram of a first embodiment of a droplet supply apparatus according to the present invention 本願発明に係る液滴供給装置の第2の実施例の模式図Schematic diagram of a second embodiment of the droplet supply apparatus according to the present invention 本願発明に係る液滴供給装置の第3の実施例の模式図Schematic diagram of a third embodiment of the droplet supply apparatus according to the present invention

符号の説明Explanation of symbols

1 容器
2 ポンプ
3 超音波分散機
4 加圧装置
5 液滴ノズル
6 バルブ
7 ポンプ
1 Container 2 Pump 3 Ultrasonic Disperser 4 Pressurizer 5 Droplet Nozzle 6 Valve 7 Pump

Claims (4)

レーザー生成プラズマEUV光源において不溶性微粒子を分散媒に混入し液滴供給を行う方法であって、
上記微粒子はSn又はSn化合物、上記分散媒は水又はアルコールであり
上記微粒子を直径2μm以下になるように超音波振動により分散させ懸濁液とし、かつ上記懸濁液のpHを7以上として、均一な微粒子密度と
高周波振動している液滴ノズルから液滴供給を行うことを特徴とする液滴微粒子供給方法。
A method of supplying droplets by mixing insoluble fine particles into a dispersion medium in a laser-generated plasma EUV light source,
The fine particles are Sn or Sn compound, the dispersion medium is water or alcohol ,
A suspension was dispersed by ultrasonic vibration so that the fine particles below the diameter 2 [mu] m, and the pH of the suspension as 7 or more, and a uniform particle density,
A droplet fine particle supply method, wherein droplet supply is performed from a droplet nozzle that vibrates at high frequency .
レーザー生成プラズマEUV光源において不溶性微粒子を分散媒に混入し液滴供給を行う装置であって、
超音波分散機及び液滴ノズルを備え
上記微粒子はSn又はSn化合物、上記分散媒は水又はアルコールであり
上記超音波分散機により、上記微粒子を直径2μm以下になるように超音波振動により分散させ、かつpHが7以上の懸濁液とし
上記懸濁液を高周波振動している上記液滴ノズルから液滴として供給することを特徴とする液滴微粒子供給装置。
An apparatus for supplying droplets by mixing insoluble fine particles into a dispersion medium in a laser-generated plasma EUV light source,
Equipped with ultrasonic disperser and droplet nozzle ,
The fine particles are Sn or Sn compound, the dispersion medium is water or alcohol ,
Using the ultrasonic disperser, the fine particles are dispersed by ultrasonic vibration so as to have a diameter of 2 μm or less , and a suspension having a pH of 7 or more is obtained .
A droplet fine particle supply device, wherein the suspension is supplied as droplets from the droplet nozzle that is vibrated at high frequency .
上記超音波振動により分散された微粒子が再凝集する前に液滴として供給できることを特徴とする請求項2記載の液滴微粒子供給装置。 3. The droplet microparticle supply apparatus according to claim 2, wherein the microparticles dispersed by the ultrasonic vibration can be supplied as droplets before reaggregating. 上記超音波振動により分散された微粒子が再凝集する前に再度超音波分散し、常に分散した状態で取り扱うことができることを特徴とする請求項2記載の液滴微粒子供給装置。 3. The droplet microparticle supply apparatus according to claim 2, wherein the microparticles dispersed by the ultrasonic vibration are ultrasonically dispersed again before being re-aggregated, and can be handled in a constantly dispersed state.
JP2006010846A 2005-07-29 2006-01-19 Droplet supply method and apparatus Expired - Fee Related JP4780394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010846A JP4780394B2 (en) 2005-07-29 2006-01-19 Droplet supply method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005220912 2005-07-29
JP2005220912 2005-07-29
JP2006010846A JP4780394B2 (en) 2005-07-29 2006-01-19 Droplet supply method and apparatus

Publications (2)

Publication Number Publication Date
JP2007059373A JP2007059373A (en) 2007-03-08
JP4780394B2 true JP4780394B2 (en) 2011-09-28

Family

ID=37922653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010846A Expired - Fee Related JP4780394B2 (en) 2005-07-29 2006-01-19 Droplet supply method and apparatus

Country Status (1)

Country Link
JP (1) JP4780394B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807560B2 (en) * 2005-11-04 2011-11-02 国立大学法人 宮崎大学 Extreme ultraviolet light generation method and extreme ultraviolet light generation apparatus
JP5386799B2 (en) * 2007-07-06 2014-01-15 株式会社ニコン EUV light source, EUV exposure apparatus, EUV light emission method, EUV exposure method, and electronic device manufacturing method
JP5234448B2 (en) * 2007-08-09 2013-07-10 国立大学法人東京工業大学 Radiation source target, manufacturing method thereof, and radiation generator
JP4924899B2 (en) * 2007-10-18 2012-04-25 学校法人日本大学 Diffusion apparatus and diffusion method for particulate matter
NL1036614A1 (en) * 2008-03-21 2009-09-22 Asml Netherlands Bv A target material, a source, an EUV lithographic apparatus and a device manufacturing method using the same.
JP6154459B2 (en) 2012-03-27 2017-06-28 エーエスエムエル ネザーランズ ビー.ブイ. Fuel system for lithographic apparatus, EUV source, lithographic apparatus and fuel filtering method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972421B2 (en) * 2000-06-09 2005-12-06 Cymer, Inc. Extreme ultraviolet light source
DE10297575T5 (en) * 2001-12-20 2005-01-13 Aveka, Inc., Woodbury Process for the preparation of reacted aluminum or copper nanoparticles
JP3979344B2 (en) * 2003-05-27 2007-09-19 住友金属鉱山株式会社 Dispersed aqueous solution and dispersed organic solvent of nickel powder, method for producing them, and conductive paste using them
JP4176627B2 (en) * 2003-12-19 2008-11-05 石原産業株式会社 Colloidal metal particles, method for producing the same, fluid composition containing the same, and electrode formed using the fluid composition

Also Published As

Publication number Publication date
JP2007059373A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4780394B2 (en) Droplet supply method and apparatus
CN1185911C (en) Production of dense mist of micrometric droplets in particular for extreme UV lithography
US9516730B2 (en) Systems and methods for buffer gas flow stabilization in a laser produced plasma light source
US8212228B2 (en) Extreme ultra violet light source apparatus
JP6076742B2 (en) Method for producing nanoparticles of organic compounds in liquid by ultra-high-speed pulsed laser ablation with high repetition frequency
JP4111487B2 (en) Extreme ultraviolet light source device
CN102292159B (en) Production of nanoparticles with high repetition rate ultrashort pulsed laser ablation in liquids
JP4264505B2 (en) Laser plasma generation method and apparatus
US20130001833A1 (en) Method and apparatus for production of uniformly sized nanoparticles
CN107107200A (en) For the Nanoparticulate compositions for preparing the system and method for aspherical nano particle and thus preparing
EP1782663B1 (en) A method and apparatus for generating radiation or particles by interaction between a laser beam and a target
WO2007141244A1 (en) Method for the production of nanoparticles
JP2023083302A (en) Cleaning surface of optic located in chamber of extreme ultraviolet light source
JP2007258069A (en) Extreme-ultraviolet light source device
JP7320505B2 (en) Regeneration of debris flux measurement system in vacuum vessel
JP3897287B2 (en) LPP light source device
JP5234448B2 (en) Radiation source target, manufacturing method thereof, and radiation generator
Chen et al. Synthesis of nanomaterials using top-down methods
Gheorghiu et al. Structuring Free-Standing Foils for Laser-Driven Particle Acceleration Experiments
JP4111638B2 (en) Colloidal gold particles, preparation method thereof, and selective capture of gold ions
Rajan et al. Laser Plasma Induced Cu2O Nanoparticle Synthesis in Ethanol and Nanofluid Particle Characterization
Vovk et al. Development of technological methods for fabrication high-density luminescent structures based on up-conversion NaYF4: Yb3+, Er3+ particles
JP2009119340A (en) In-liquid laser ablation system
RU2633726C1 (en) DEVICE FOR RECEIVING DIRECTIONAL EXTREME ULTRAVIOLET RADIATION WITH WAVELENGTH OF 11,2 nm ±1% FOR HIGH-RESOLUTION PROJECTIVE LITHOGRAPHY
JP6863880B2 (en) Metal nanocolloid generation method and metal nanocolloid generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees