JP4775211B2 - Decomposition and recovery method of thermosetting resin - Google Patents

Decomposition and recovery method of thermosetting resin Download PDF

Info

Publication number
JP4775211B2
JP4775211B2 JP2006260522A JP2006260522A JP4775211B2 JP 4775211 B2 JP4775211 B2 JP 4775211B2 JP 2006260522 A JP2006260522 A JP 2006260522A JP 2006260522 A JP2006260522 A JP 2006260522A JP 4775211 B2 JP4775211 B2 JP 4775211B2
Authority
JP
Japan
Prior art keywords
thermosetting resin
copolymer
acid
decomposition
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006260522A
Other languages
Japanese (ja)
Other versions
JP2008081549A (en
Inventor
尚治 中川
優 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006260522A priority Critical patent/JP4775211B2/en
Publication of JP2008081549A publication Critical patent/JP2008081549A/en
Application granted granted Critical
Publication of JP4775211B2 publication Critical patent/JP4775211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

本発明は、ポリエステル部と架橋部よりなる熱硬化性樹脂を亜臨界水で分解することにより得られる、モノマーと、架橋部と酸の共重合体とを分離,回収するための熱硬化性樹脂の分解回収方法に関する。   The present invention relates to a thermosetting resin for separating and recovering a monomer, a crosslinked part and an acid copolymer obtained by decomposing a thermosetting resin comprising a polyester part and a crosslinked part with subcritical water. The present invention relates to a method for decomposing and recovering.

従来、プラスチック廃棄物はその殆どが埋立処分又は焼却処理されており、資源として有効活用されていなかった。また埋立処分では埋立用地の確保が困難なことや埋立後の地盤の不安定になるという問題があり、焼却処理では炉の損傷、有害ガスや悪臭の発生、CO2排出といった問題がある。このため、平成7年に容器包装廃棄物法が制定され、プラスチックの回収再利用が義務付けられるようになった。さらに、各種リサイクル法の施行に伴いプラスチックを含む製品の回収リサイクルの流れは加速する傾向にある。 Conventionally, most plastic waste has been landfilled or incinerated, and has not been effectively utilized as a resource. In addition, landfill disposal has problems that it is difficult to secure a landfill site and that the ground becomes unstable after landfilling, and incineration treatment has problems such as furnace damage, generation of harmful gases and odors, and CO 2 emissions. For this reason, the Containers and Packaging Waste Law was enacted in 1995, and plastics must be collected and reused. Furthermore, with the enforcement of various recycling laws, the flow of collection and recycling of products containing plastics tends to accelerate.

これらの状況に合わせて、近年、プラスチック廃棄物を再資源化することが試みられており、その一つの方法として、超臨界水を反応媒体とする反応によりプラスチック廃棄物を分解油化し、有用な油状物を回収する方法が提案されている(特許文献1〜5参照)。また、各種構造材料に使用される繊維強化プラスチックについては、超臨界水又は亜臨界水を用いてプラスチック成分を分解し、ガラス繊維や炭素繊維等の繊維を回収し、再利用する方法が提案されている(特許文献6参照)。   In recent years, it has been attempted to recycle plastic waste in accordance with these situations. As one method, plastic waste is decomposed into oil by a reaction using supercritical water as a reaction medium, and useful. A method for recovering an oily substance has been proposed (see Patent Documents 1 to 5). For fiber-reinforced plastics used in various structural materials, a method has been proposed in which plastic components are decomposed using supercritical water or subcritical water, and fibers such as glass fibers and carbon fibers are recovered and reused. (See Patent Document 6).

これらの方法では、プラスチックは分解により低分子化した油状成分となり主に液体燃料として再利用される。また、高温水蒸気による加水分解反応を利用した分解方法も提案されており、この方法によれば熱可塑性プラスチック及び熱硬化性プラスチックの有機高分子成分を一応分解することができる。   In these methods, plastic becomes an oily component having a low molecular weight by decomposition, and is mainly reused as a liquid fuel. In addition, a decomposition method using a hydrolysis reaction with high-temperature steam has been proposed, and according to this method, the organic polymer component of the thermoplastic plastic and the thermosetting plastic can be decomposed once.

しかし、上記の各方法では、プラスチックをランダムに分解するため、分解生成物が多種成分からなる油状物質となり、一定品質の分解生成物を得ることが困難である。このため、ゼオライトに代表される触媒を用いて油質の改質を行なう等の後処理が必要となってコスト高になり、また改質した生成油においても灯油や軽油等の石油製品そのものにすることは困難であるので、実用化には至っていない。そして、石油資源の枯渇、二酸化炭素による地球温暖化といった地球環境全体の問題に鑑みると、プラスチックの分解及び再利用の抜本的な対策が必要であるというのが現状である。   However, in each of the above methods, since the plastic is randomly decomposed, the decomposition product becomes an oily substance composed of various components, and it is difficult to obtain a decomposition product having a constant quality. For this reason, post-treatment such as reforming of oil quality using a catalyst typified by zeolite is required, resulting in high costs, and the modified product oil is also used in petroleum products such as kerosene and light oil. Since it is difficult to do so, it has not been put into practical use. In view of the problems of the entire global environment, such as the depletion of petroleum resources and the global warming caused by carbon dioxide, it is necessary to take drastic measures to decompose and reuse plastics.

そこで、本願発明の発明者らは、多価アルコール及び酸よりなるコポリマーを架橋材で架橋した熱硬化性樹脂を亜臨界水を用いて熱硬化性樹脂の熱分解温度以下で分解させると、熱硬化性樹脂の原料として再利用できるモノマーと共に、架橋部と酸の共重合体を得ることができる方法を提案した(特許文献7参照)。
特表昭56−501205号公報 特開昭57−4225号公報 特開平5−31000号公報 特開平6−279762号公報 特開平10−67991号公報 特開平10−87872号公報 特開平9−221565号公報
Therefore, the inventors of the present invention, when decomposing a thermosetting resin obtained by crosslinking a copolymer comprising a polyhydric alcohol and an acid with a crosslinking material using subcritical water at a temperature lower than the thermal decomposition temperature of the thermosetting resin, A method for obtaining a copolymer of a crosslinked part and an acid together with a monomer that can be reused as a raw material for the curable resin has been proposed (see Patent Document 7).
JP-T 56-501205 Japanese Patent Laid-Open No. 57-4225 JP-A-5-31000 JP-A-6-279762 Japanese Patent Laid-Open No. 10-67991 Japanese Patent Laid-Open No. 10-87872 Japanese Patent Laid-Open No. 9-221565

ところで、本願発明の発明者らが提案した方法では、架橋部と酸の共重合体を得ることができるが、水溶液中に溶解した状態で回収され、その水溶液を酸性にすることで析出させる必要がある。しかし、水溶液中には多価アルコール及び酸のモノマーが含まれており、これらを回収する際に架橋部と酸の共重合体の存在が多価アルコール及び酸の回収の阻害要因となり、回収ロスになってしまう。   By the way, in the method proposed by the inventors of the present invention, a copolymer of a crosslinked portion and an acid can be obtained. However, it is necessary to recover the solution in a state of being dissolved in an aqueous solution and to precipitate it by acidifying the aqueous solution. There is. However, polyhydric alcohol and acid monomers are contained in the aqueous solution. When these are recovered, the presence of the cross-linked portion and the acid copolymer becomes an obstacle to the recovery of the polyhydric alcohol and the acid, resulting in a recovery loss. Become.

そこで本発明は、ポリエステル部と架橋部よりなる樹脂を亜臨界水で分解することにより得られる、モノマーと、架橋部と酸の共重合体とを分離することでモノマーを効率的に回収することを目的とする。さらに、本発明は、架橋部と酸の共重合体を再利用しやすい状態で回収することを目的とする。   Therefore, the present invention efficiently recovers the monomer by separating the monomer and the copolymer of the crosslinked part and the acid obtained by decomposing the resin comprising the polyester part and the crosslinked part with subcritical water. With the goal. Furthermore, an object of the present invention is to recover a crosslinked part and an acid copolymer in a state where they can be easily reused.

本発明に係る熱硬化性樹脂の分解回収方法は、ポリエステル部と架橋部よりなる熱硬化性樹脂を亜臨界水で分解することにより得られる、モノマーと、架橋部と酸の共重合体とを分離する熱硬化性樹脂の分解回収方法であって、分解して得られる液のpHが8.5以下となる濃度となるように亜臨界水で熱硬化性樹脂を分解し、分解して得られた液を固液分離することにより、モノマーと、架橋部と酸の共重合体とを分離することを特徴とする。
The method for decomposing and recovering a thermosetting resin according to the present invention comprises a monomer obtained by decomposing a thermosetting resin comprising a polyester part and a crosslinked part with subcritical water, and a copolymer of the crosslinked part and an acid. A method for decomposing and recovering a thermosetting resin to be separated, obtained by decomposing and decomposing the thermosetting resin with subcritical water so that the pH of the liquid obtained by decomposition becomes 8.5 or less. The obtained liquid is subjected to solid-liquid separation to separate the monomer, the crosslinked portion and the acid copolymer.

また、熱硬化性樹脂が無機物を含有する熱硬化性樹脂である場合、得られた共重合体を強アルカリ亜臨界水で加水分解して、水溶性の共重合体アルカリ金属塩を得ると良い。また熱硬化性樹脂が無機物を含有する熱硬化性樹脂である場合、得られた共重合体を超臨界メタノール分解して、共重合体のメチル化物を得ると良い。
Also, if the thermosetting resin is a thermosetting resin containing an inorganic material, is hydrolyzed with subcritical water of a strong alkali to the obtained copolymer, obtains a water-soluble copolymer alkali metal salts good. Further, when the thermosetting resin is a thermosetting resin containing an inorganic substance, the obtained copolymer may be decomposed by supercritical methanol to obtain a methylated product of the copolymer.

本発明において分解の対象となっている樹脂は、多価アルコールと酸よりなるコポリマーを架橋剤で架橋した熱硬化性樹脂である。このような熱硬化性樹脂としては、ポリエステル樹脂を例示することができ、特に不飽和ポリエステル樹脂等の熱硬化性樹脂を例示することができる。また、上記多価アルコールとしては、エチレングリコール、ジニチレングリコール、プロピレングリコール、ジプロピレングリコール等のグリコール類を例示することができるがこれに限定されるものではない。また、上記不飽和多塩基酸としては、無水マレイン酸、マレイン酸、フマル酸等の脂肪族不飽和二塩基酸を例示することができるがこれに限定されるものではない。さらに、上記の架橋剤としては、スチレンやメタクリル酸メチルなどの重合性ビニルモノマーを例示することができるがこれに限定されるものではない。   The resin to be decomposed in the present invention is a thermosetting resin obtained by crosslinking a copolymer of polyhydric alcohol and acid with a crosslinking agent. As such a thermosetting resin, a polyester resin can be illustrated, and in particular, a thermosetting resin such as an unsaturated polyester resin can be illustrated. Examples of the polyhydric alcohol include glycols such as ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol, but are not limited thereto. Examples of the unsaturated polybasic acid include, but are not limited to, aliphatic unsaturated dibasic acids such as maleic anhydride, maleic acid, and fumaric acid. Furthermore, examples of the crosslinking agent include polymerizable vinyl monomers such as styrene and methyl methacrylate, but are not limited thereto.

本発明では上記のような不飽和ポリエステル樹脂等の熱硬化性樹脂に実質的に無アルカリ状態のほぼ中性の水を加え、温度及び圧力を上昇させて水を臨界点(臨界温度374.4℃、臨界圧力22.1MPa)以下の亜臨界状態にして熱硬化性樹脂を分解することにより得られた液を固液分離することにより、モノマーと、架橋部と酸の共重合体を分離し、モノマー(多価アルコールと不飽和多塩基酸)を水溶液中に回収すると共に、固体として架橋部と酸の共重合体を得るものである。実質的に無アルカリ状態で分解した場合には、得られた架橋部と酸の共重合体は無機物を含有した固形として回収されるので、その固形分に溶剤を加えて水溶性の共重合体へ変性させることにより、無機物と分離することで共重合体の変性物を得ることができる。又は、架橋部と酸の共重合体が無機物を含有した状態で、プラスチック等の低収縮剤や分散剤としても再利用することができる。   In the present invention, substantially neutral water in a substantially alkali-free state is added to the thermosetting resin such as the unsaturated polyester resin as described above, and the temperature and pressure are increased to bring the water to a critical point (critical temperature 374.4). The liquid obtained by decomposing the thermosetting resin in a subcritical state at or below a critical pressure of 22.1 MPa is separated from the monomer, the crosslinked part and the acid copolymer by solid-liquid separation. In addition to recovering monomers (polyhydric alcohol and unsaturated polybasic acid) in an aqueous solution, a copolymer of a crosslinked part and an acid is obtained as a solid. When decomposed in a substantially alkali-free state, the resulting copolymer of the crosslinked part and the acid is recovered as a solid containing an inorganic substance, so a water-soluble copolymer is added to the solid content by adding a solvent. By modifying the polymer, it is possible to obtain a modified product of the copolymer by separating from the inorganic material. Alternatively, it can be reused as a low-shrinkage agent or dispersant for plastics or the like in a state where the copolymer of the crosslinked part and the acid contains an inorganic substance.

ここで、熱硬化性樹脂と水の配合割合は特に制限されるものではないが、熱硬化性樹脂100質量部に対して水の添加量を200〜500質量部の範囲にするのが好ましい。また、分解温度は、熱硬化性樹脂が加水分解されるが、熱分解する温度未満であり、且つ、架橋部と酸の共重合体が熱分解する温度未満であることが好ましく、180〜270℃の範囲に設定するのが好ましい。分解反応時の温度が180℃未満であると、分解処理に多大な時間がかかり、処理コストが高くなる恐れがあり、また分解反応時の温度が270℃を超えると、熱分解の影響が大きくなり、架橋部と酸の共重合体が分解されて、固体としての架橋部と酸の共重合体として回収することが困難になる恐れがある。また、分解時間は、分解温度などの条件によって異なり、熱分解の影響が生じない温度以下では1〜4時間程度が好ましいが特に限定されるものではない。   Here, the mixing ratio of the thermosetting resin and water is not particularly limited, but the amount of water added is preferably in the range of 200 to 500 parts by mass with respect to 100 parts by mass of the thermosetting resin. The decomposition temperature is preferably less than the temperature at which the thermosetting resin is hydrolyzed, but less than the temperature at which the copolymer of the crosslinked portion and the acid is thermally decomposed, and is preferably 180 to 270. It is preferable to set in the range of ° C. If the temperature during the decomposition reaction is less than 180 ° C., the decomposition process takes a long time and the processing cost may increase. If the temperature during the decomposition reaction exceeds 270 ° C., the influence of thermal decomposition is large. Accordingly, the copolymer of the cross-linked part and the acid is decomposed, and it may be difficult to recover the cross-linked part and the acid as a solid copolymer. The decomposition time varies depending on the conditions such as the decomposition temperature, and is preferably about 1 to 4 hours below the temperature at which the influence of thermal decomposition does not occur, but is not particularly limited.

一般に、亜臨界水によるプラスチックの分解処理は、熱分解反応及び加水分解反応によって起こるものであり、多価アルコール及び有機酸を含む原料により製造された熱硬化性のプラスチックにおいても同様であるが、亜臨界水を接触させて処理する場合には、加水分解反応が支配的となり、選択的に加水分解反応が起こって、多価アルコール及び有機酸のモノマー又はこれらが複数個結合したオリゴマーに分解される。従って、本発明においても、上記のような熱硬化性樹脂を亜臨界水に接触させて処理することにより、多価アルコールと不飽和多塩基酸及び架橋部と酸の共重合体とに分解することができ、このように熱硬化性樹脂を分解して得られたモノマー又はオリゴマーを回収してプラスチックの製造原料として再利用することができる。   In general, the decomposition treatment of the plastic with subcritical water is caused by a thermal decomposition reaction and a hydrolysis reaction, and the same applies to a thermosetting plastic produced from a raw material containing a polyhydric alcohol and an organic acid. In the case of processing with contact with subcritical water, the hydrolysis reaction becomes dominant, and the hydrolysis reaction occurs selectively and decomposes into polyhydric alcohol and organic acid monomers or oligomers in which a plurality of these are combined. The Therefore, also in the present invention, the above-mentioned thermosetting resin is contacted with subcritical water and treated to decompose into a polyhydric alcohol, an unsaturated polybasic acid, and a copolymer of a cross-linked part and an acid. In this manner, the monomer or oligomer obtained by decomposing the thermosetting resin can be recovered and reused as a raw material for producing plastic.

なお、亜臨界水分解後に水溶液中に多価アルコール及び有機酸のモノマー又はオリゴマーと共に架橋部と酸の共重合体が共存していると、多価アルコール及び酸のモノマー又はオリゴマーを回収する際に、架橋部と酸の共重合体がモノマー又はオリゴマーを含んだ亜臨界水を抱き込んでしまうために、それらの回収の阻害要因になってしまい、分解によって生成しても回収ロスになってしまう。従って、無アルカリの亜臨界水のアルカリ含有量が分解して得られた液のpHが8.5以下となる濃度の亜臨界水を用いることが望ましい。これにより、溶解しない架橋剤と酸の共重合体を得ることができる。   It should be noted that when the polyhydric alcohol and the organic acid monomer or oligomer coexist in the aqueous solution after the subcritical water decomposition together with the crosslinked part and the acid copolymer, the polyhydric alcohol and the acid monomer or oligomer are recovered. In addition, since the copolymer of the cross-linked part and the acid embraces the subcritical water containing the monomer or oligomer, it becomes an impediment to the recovery of them, and even if it is generated by decomposition, a recovery loss occurs. . Therefore, it is desirable to use subcritical water having a concentration such that the pH of the liquid obtained by decomposing the alkali content of alkali-free subcritical water is 8.5 or less. Thereby, the copolymer of a crosslinking agent and an acid which do not melt | dissolve can be obtained.

図1は、亜臨界水を用いて無機物を含む熱硬化性樹脂を分解し、多価アルコールと酸を亜臨界水に溶解させて回収し、固形分として架橋部と酸の共重合体と無機物の混合物を回収した後、(1)混合物の状態で回収する工程、(2)架橋部と酸の共重合体に溶剤を加えることで水溶性の共重合体変性物を得、無機物と分離して回収する工程を示すフローチャートである。   FIG. 1 shows the decomposition of a thermosetting resin containing an inorganic substance using subcritical water, and a polyhydric alcohol and an acid dissolved in the subcritical water and recovered. (1) A step of recovering the mixture in the state of the mixture, (2) A water-soluble copolymer modified product is obtained by adding a solvent to the copolymer of the crosslinked part and the acid, and separated from the inorganic substance. It is a flowchart which shows the process collect | recovered.

図1に示すように、本発明では、始めに、分解処理の対象となる熱硬化性樹脂を水及びアルカリ等の添加物と混合し、亜臨界水で熱硬化性樹脂を分解処理する。次に、冷却後、濾過等の方法で固液分離する。ここで、水及び水に溶解している水可溶成分が液分として得られ、蒸留して水とグリコール等の多価アルコールと有機酸を回収することができる。そして熱硬化性樹脂に含まれていたガラス繊維、炭酸カルシウム等の無機物及び架橋部と酸の共重合体が固形分として得られ、固形分中の無機物と架橋部と酸の共重合体を混合物の状態でプラスチック等の低収縮剤又は分散剤として再利用することができる。また、固形分は以下の4つの方法にて回収、再利用することができる。   As shown in FIG. 1, in the present invention, first, a thermosetting resin to be decomposed is mixed with an additive such as water and alkali, and the thermosetting resin is decomposed with subcritical water. Next, after cooling, solid-liquid separation is performed by a method such as filtration. Here, water and a water-soluble component dissolved in water are obtained as a liquid component, and water and a polyhydric alcohol such as glycol and an organic acid can be recovered by distillation. And the inorganic substance such as glass fiber and calcium carbonate contained in the thermosetting resin and the copolymer of the crosslinked part and the acid are obtained as a solid content, and the inorganic substance, the crosslinked part and the acid copolymer in the solid content are mixed. In this state, it can be reused as a low shrinkage agent or dispersant such as plastic. Further, the solid content can be recovered and reused by the following four methods.

(1)図2に示すような架橋部と酸の共重合体を強アルカリが存在する亜臨界水で加水分解することで、無機物と分離して水溶性の共重合体アルカリ金属塩を得ることができる。その水溶液を脱水させて、低収縮剤あるいは樹脂に混ぜ込んで再利用することができる。 (1) A water-soluble copolymer alkali metal salt is obtained by hydrolyzing a cross-linked copolymer and an acid copolymer as shown in FIG. 2 with subcritical water containing a strong alkali to separate it from an inorganic substance. Can do. The aqueous solution can be dehydrated and mixed with a low shrinkage agent or resin for reuse.

(2)図3に示すような架橋部と酸の共重合体を超臨界メタノールで分解することで、無機物と分離して共重合体のメチル化物となり、メタノール溶液中に溶解する。その溶液と共重合体のメチル化物を分離させて、低収縮剤あるいは樹脂に混ぜ込んで再利用することができる。 (2) By decomposing a copolymer of a cross-linked portion and an acid as shown in FIG. 3 with supercritical methanol, it is separated from an inorganic substance to become a methylated product of the copolymer, which is dissolved in a methanol solution. The solution and the methylated copolymer can be separated and mixed with a low shrinkage agent or resin for reuse.

(3)図4に示すような架橋部と酸の共重合体をベンジルクロライドと反応させて、共重合体のベンジルクロライド変性物を得て、有機溶剤に溶解させて無機物と分離し、その有機溶剤を気化させて低収縮剤あるいは樹脂に混ぜ込んで再利用することができる。有機溶剤はトルエン等が挙げられる。 (3) A cross-linked copolymer and an acid copolymer as shown in FIG. 4 are reacted with benzyl chloride to obtain a benzyl chloride modified product of the copolymer, which is dissolved in an organic solvent and separated from an inorganic substance. The solvent can be vaporized and mixed with a low shrinkage agent or resin for reuse. Examples of the organic solvent include toluene.

(4)図5に示すような架橋部と酸の共重合体をエチレングリコールと反応させて、共重合体のエチレングリコール変性物を得て、エチレングリコールと分離させて、低収縮剤あるいは樹脂に混ぜ込んで再利用することができる。また共重合体のエチレングリコール変性物に、マレイン酸やフマル酸等の不飽和脂肪酸を添加して脱水縮合させ、その後共重合体のエチレングリコール変性物の架橋剤と同じ架橋剤を加えて重合させることで熱硬化性樹脂として再利用することができる。 (4) A cross-linked copolymer and an acid copolymer as shown in FIG. 5 are reacted with ethylene glycol to obtain an ethylene glycol-modified product of the copolymer, which is separated from ethylene glycol to form a low shrinkage agent or resin. Can be mixed and reused. In addition, unsaturated fatty acids such as maleic acid and fumaric acid are added to the ethylene glycol-modified product of the copolymer for dehydration condensation, and then the same cross-linking agent as that of the ethylene glycol-modified product of the copolymer is added for polymerization. Therefore, it can be reused as a thermosetting resin.

以下、本発明を実施例によって説明する。   Hereinafter, the present invention will be described by way of examples.

(実施例1)
実施例1では、熱硬化性樹脂の硬化物として、多価アルコールであるグリコール類のプロピレングリコール、ネオペンチルグリコール、ジプロピレングリコールと不飽和有機酸である無水マレイン酸をグリコール類と当量配合したワニスに、架橋剤としてスチレンをワニスと当量配合した熱硬化性樹脂100質量部に炭酸カルシウム165質量部とガラス繊維90質量部を配合した硬化物を用意する。
Example 1
In Example 1, as a cured product of a thermosetting resin, a varnish in which propylene glycol such as polyhydric alcohol, neopentyl glycol, dipropylene glycol and maleic anhydride, which is an unsaturated organic acid, are blended in an equivalent amount with glycols. In addition, a cured product obtained by blending 165 parts by mass of calcium carbonate and 90 parts by mass of glass fiber with 100 parts by mass of thermosetting resin in which styrene is blended in an equivalent amount to the varnish as a crosslinking agent is prepared.

次に、上記熱硬化性樹脂の硬化物4gと純水10gとを取り、これらを図6に示す反応管1に仕込み、230℃の恒温槽2に浸漬し、反応管1内の純水を亜臨界状態にして8時間浸漬したまま放置し、熱硬化性樹脂の硬化物の分解処理を8時間行なった。この後、反応管1を恒温槽2から取り出して冷却槽3に浸漬し、反応管1を急冷して室温までに戻した。上記分解処理後の反応管1の内容物は、水可溶成分と未溶解樹脂残渣と炭酸カルシウムとガラス繊維であり、この内容物を濾過することにより固形分を分離して反応管1から回収した。   Next, 4 g of the cured product of the thermosetting resin and 10 g of pure water are taken and charged into the reaction tube 1 shown in FIG. 6 and immersed in a constant temperature bath 2 at 230 ° C., and the pure water in the reaction tube 1 is taken up. The sub-critical state was left as it was immersed for 8 hours, and the cured product of the thermosetting resin was decomposed for 8 hours. Thereafter, the reaction tube 1 was taken out from the thermostatic bath 2 and immersed in the cooling bath 3, and the reaction tube 1 was rapidly cooled to room temperature. The content of the reaction tube 1 after the decomposition treatment is a water-soluble component, an undissolved resin residue, calcium carbonate, and glass fiber, and the solid content is separated and recovered from the reaction tube 1 by filtering the content. did.

また、水可溶成分と未溶解樹脂残渣を分析し、水可溶成分からガスクロマトグラフィー分析(GC分析)によりグリコールモノマー成分を定量してグリコール生成率(=グリコールモノマー成分の定量結果/硬化物のグリコールモノマー成分の推定含有量×100)を算出し、イオン交換クロマトグラフィー分析(IC分析)により有機酸モノマー成分を定量して有機酸生成率(=有機酸モノマー成分の定量結果/硬化物の有機酸モノマー成分の推定含有量×100)を算出し、水可溶成分に塩酸を添加させて生じた沈殿物を有機溶媒を用いて抽出し、乾燥させて質量を測定して、反応管1に仕込んだ硬化物の質量との比較・計算により、架橋部と酸の共重合体の生成率を算出し、さらに分解率{=(硬化物の樹脂量−未溶解樹脂残渣)/硬化物の樹脂量×100}を算出した。算出結果を以下の表1に示す。   In addition, water-soluble components and undissolved resin residues are analyzed, and glycol monomer components are quantified from water-soluble components by gas chromatography analysis (GC analysis) to determine glycol production rate (= quantification result of glycol monomer components / cured product) Estimated content of glycol monomer component of 100 × 100) and quantified the organic acid monomer component by ion exchange chromatography analysis (IC analysis) to determine the organic acid production rate (= quantification result of organic acid monomer component / cured product) Estimated content of organic acid monomer component × 100) is calculated, and a precipitate formed by adding hydrochloric acid to a water-soluble component is extracted using an organic solvent, dried, measured for mass, and reaction tube 1 By calculating and comparing with the mass of the cured product charged in the product, the rate of formation of the copolymer of the crosslinked portion and the acid is calculated, and the decomposition rate {= (resin amount of cured product−undissolved resin residue) / curing Resin amount of product × 100} was calculated. The calculation results are shown in Table 1 below.

(実施例2)
実施例2では、純水の代わりに、濃度0.2mol/LのNaOH水溶液を用いた以外は実施例1と同様にして分解処理を行なうと共に、グリコール生成率、有機酸生成率、架橋部と酸の共重合体の生成率、分解率を算出した。算出結果を以下の表1に示す。
(Example 2)
In Example 2, in place of pure water, a decomposition treatment was performed in the same manner as in Example 1 except that a 0.2 mol / L NaOH aqueous solution was used, and the glycol production rate, the organic acid production rate, The production rate and decomposition rate of the acid copolymer were calculated. The calculation results are shown in Table 1 below.

(比較例1)
比較例1では、純水の代わりに濃度0.72mol/LのNaOH水溶液を用いて、8時間処理を行なう代わりに4時間の分解処理を行なった以外は、実施例1と同様にして分解処理を行なうと共に、グリコール生成率、有機酸生成率、架橋部と酸の共重合体の生成率、分解率を算出した。算出結果を以下の表1に示す。
(Comparative Example 1)
In Comparative Example 1, a decomposition treatment was performed in the same manner as in Example 1 except that an aqueous NaOH solution having a concentration of 0.72 mol / L was used instead of pure water, and the decomposition treatment was performed for 4 hours instead of the 8 hour treatment. In addition, the glycol production rate, the organic acid production rate, the production rate of the crosslinked portion and the acid copolymer, and the decomposition rate were calculated. The calculation results are shown in Table 1 below.

(比較例2)
純水の代わりに濃度0.8mol/LのNaOH水溶液を用いて、8時間分解処理を行なう代わりに2時間の分解処理を行なった以外は、実施例1と同様にして分解処理を行なうと共に、グリコール生成率、有機酸生成率、架橋部と酸の共重合体の生成率、分解率を算出した。算出結果を以下の表1に示す。

Figure 0004775211
(Comparative Example 2)
A decomposition treatment was performed in the same manner as in Example 1 except that a 0.8 mol / L NaOH aqueous solution was used instead of pure water, and the decomposition treatment was performed for 2 hours instead of the 8-hour decomposition treatment. The glycol production rate, the organic acid production rate, the production rate of the crosslinked portion and acid copolymer, and the decomposition rate were calculated. The calculation results are shown in Table 1 below.
Figure 0004775211

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

本発明に係る熱硬化性樹脂の分離回収方法の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the separation-and-recovery method of the thermosetting resin which concerns on this invention. 架橋部と酸の共重合体の回収、再利用方法の一例を示す図である。It is a figure which shows an example of the collection | recovery of the copolymer of a bridge | crosslinking part and an acid, and a reuse method. 架橋部と酸の共重合体の回収、再利用方法の他の例を示す図である。It is a figure which shows the other example of the collection | recovery of the copolymer of a bridge | crosslinking part and an acid, and a reuse method. 架橋部と酸の共重合体の回収、再利用方法の他の例を示す図である。It is a figure which shows the other example of the collection | recovery of the copolymer of a bridge | crosslinking part and an acid, and a reuse method. 架橋部と酸の共重合体の回収、再利用方法の他の例を示す図である。It is a figure which shows the other example of the collection | recovery of the copolymer of a bridge | crosslinking part and an acid, and a reuse method. 熱硬化性樹脂の分離回収装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the isolation | separation collection | recovery apparatus of a thermosetting resin.

符号の説明Explanation of symbols

1:反応管
2:恒温槽
3:冷却槽
1: Reaction tube 2: Thermostatic bath 3: Cooling bath

Claims (3)

ポリエステル部及び架橋部よりなる熱硬化性樹脂を亜臨界水で分解することにより得られるモノマーと、架橋部と酸の共重合体とを分離する熱硬化性樹脂の分解回収方法であって、
分解して得られる液のpHが8.5以下となる濃度となるように亜臨界水で熱硬化性樹脂を分解し、分解して得られた液を固液分離することにより、モノマーと、架橋部と酸の共重合体とを分離することを特徴とする熱硬化性樹脂の分解回収方法。
A method for decomposing and recovering a thermosetting resin by separating a monomer obtained by decomposing a thermosetting resin comprising a polyester part and a crosslinked part with subcritical water, and a copolymer of a crosslinked part and an acid,
By decomposing the thermosetting resin with subcritical water so that the pH of the liquid obtained by decomposition is 8.5 or less, and separating the liquid obtained by decomposition into solid and liquid, A method for decomposing and recovering a thermosetting resin, comprising separating a crosslinked part and an acid copolymer.
請求項1に記載の熱硬化性樹脂の分解回収方法において、熱硬化性樹脂が無機物を含有する熱硬化性樹脂であり、得られた共重合体をアルカリの亜臨界水で加水分解して、水溶性の共重合体アルカリ金属塩を得ることを特徴とする熱硬化性樹脂の分解回収方法。   The method for decomposing and recovering a thermosetting resin according to claim 1, wherein the thermosetting resin is a thermosetting resin containing an inorganic substance, and the obtained copolymer is hydrolyzed with an alkaline subcritical water, A method for decomposing and recovering a thermosetting resin, comprising obtaining a water-soluble copolymer alkali metal salt. 請求項1に記載の熱硬化性樹脂の分解回収方法において、熱硬化性樹脂が無機物を含有する熱硬化性樹脂であり、得られた共重合体を超臨界メタノール分解して、共重合体のメチル化物を得ることを特徴とする熱硬化性樹脂の分解回収方法。   The method for decomposing and recovering a thermosetting resin according to claim 1, wherein the thermosetting resin is a thermosetting resin containing an inorganic substance, and the obtained copolymer is subjected to supercritical methanol decomposition to obtain a copolymer. A method for decomposing and recovering a thermosetting resin, comprising obtaining a methylated product.
JP2006260522A 2006-09-26 2006-09-26 Decomposition and recovery method of thermosetting resin Expired - Fee Related JP4775211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260522A JP4775211B2 (en) 2006-09-26 2006-09-26 Decomposition and recovery method of thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260522A JP4775211B2 (en) 2006-09-26 2006-09-26 Decomposition and recovery method of thermosetting resin

Publications (2)

Publication Number Publication Date
JP2008081549A JP2008081549A (en) 2008-04-10
JP4775211B2 true JP4775211B2 (en) 2011-09-21

Family

ID=39352736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260522A Expired - Fee Related JP4775211B2 (en) 2006-09-26 2006-09-26 Decomposition and recovery method of thermosetting resin

Country Status (1)

Country Link
JP (1) JP4775211B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202102A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Method for separating polybasic acid vinyl monomer copolymer salt
LU101761B1 (en) 2020-04-30 2021-11-05 Luxembourg Inst Science & Tech List Multi-material disassembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287766A (en) * 1997-04-11 1998-10-27 Sumitomo Bakelite Co Ltd Decomposing and recycling methods for thermosetting resin
JP3850149B2 (en) * 1998-08-05 2006-11-29 旭化成ケミカルズ株式会社 Method for recovering aromatic dicarboxylic acid
JP4330918B2 (en) * 2003-04-24 2009-09-16 三井化学株式会社 How to recycle polyester waste
JP2005054082A (en) * 2003-08-05 2005-03-03 Matsushita Electric Works Ltd Method for decomposing/recovering plastic
JP4579584B2 (en) * 2004-06-04 2010-11-10 日機装株式会社 Recovery method of bisphenol A
JP4754237B2 (en) * 2005-02-23 2011-08-24 パナソニック電工株式会社 Plastic disassembly method
JP2006241380A (en) * 2005-03-04 2006-09-14 Matsushita Electric Works Ltd Method for decomposing plastic

Also Published As

Publication number Publication date
JP2008081549A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4473268B2 (en) Plastic disassembly method
JP2006008984A (en) Method for decomposing or separating plastic
JP4754237B2 (en) Plastic disassembly method
JP4495629B2 (en) Plastic disassembly / separation method
JP4979753B2 (en) Decomposition of thermosetting resin and recovery method of decomposition product
JP2006206638A (en) Method of decomposing artificial marble
JP4775211B2 (en) Decomposition and recovery method of thermosetting resin
JP2010168560A (en) Method for decomposing composite material
JP4806758B2 (en) Decomposition and recovery method of thermosetting resin
JP4718868B2 (en) Decomposition method of thermosetting resin
JP4699785B2 (en) How to recycle plastic
JP2004155964A (en) Method for decomposing plastic
JP4116948B2 (en) Decomposition and recovery method of unsaturated polyester resin
JP4754246B2 (en) Plastic disassembly method
JP2007224081A (en) Method for recovering styrene-maleic acid copolymer
JP4806757B2 (en) Decomposition and recovery method of thermosetting resin
JP2008184475A (en) Method for decomposing and recovering plastic
JP2005054082A (en) Method for decomposing/recovering plastic
JP5508025B2 (en) Decomposition of thermosetting resin and recovery method of decomposition product
JP4291126B2 (en) Plastic disassembly method
JP4971124B2 (en) Decomposition and recovery method of thermosetting resin
JP4979568B2 (en) Decomposition and recovery method of thermosetting resin
JP5243464B2 (en) Plastic disassembly / recovery method
JP2010163620A (en) Decomposition-separation process for plastic
JP2011111502A (en) Method for decomposing plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees