JP4768995B2 - 光学フィルタおよび撮像装置 - Google Patents

光学フィルタおよび撮像装置 Download PDF

Info

Publication number
JP4768995B2
JP4768995B2 JP2005033684A JP2005033684A JP4768995B2 JP 4768995 B2 JP4768995 B2 JP 4768995B2 JP 2005033684 A JP2005033684 A JP 2005033684A JP 2005033684 A JP2005033684 A JP 2005033684A JP 4768995 B2 JP4768995 B2 JP 4768995B2
Authority
JP
Japan
Prior art keywords
infrared cut
layer
infrared
filter
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005033684A
Other languages
English (en)
Other versions
JP2006220873A5 (ja
JP2006220873A (ja
Inventor
紀之 猪山
一幸 細川
健 川俣
延好 豊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Olympus Imaging Corp
Original Assignee
Olympus Corp
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Imaging Corp filed Critical Olympus Corp
Priority to JP2005033684A priority Critical patent/JP4768995B2/ja
Priority to US11/196,761 priority patent/US7411729B2/en
Publication of JP2006220873A publication Critical patent/JP2006220873A/ja
Publication of JP2006220873A5 publication Critical patent/JP2006220873A5/ja
Priority to US12/215,206 priority patent/US20080285119A1/en
Application granted granted Critical
Publication of JP4768995B2 publication Critical patent/JP4768995B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blocking Light For Cameras (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

本発明は、光学フィルタおよび撮像装置に関する。
近年、撮像素子としてCCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等を有する電子撮像光学系が備えられたデジタルビデオカメラやデジタルカメラ、内視鏡等が注目されている。
上述のCCDやCMOSからなる電子撮像素子は可視域(一般的に、波長が約380nmから約750nm程度の帯域をいう。)より長波長側の領域、いわゆる赤外線領域においても高い感度を有しているため、受光した赤外線により解像度の低下や画像の劣化が生じることが知られている。そのため、CCDやCMOSなどの撮像素子を用いた電子撮像光学系に用いられる赤外線を除去する赤外線カットフィルタ等が提案されている(例えば、特許文献1および2参照。)。
特開2004−25459号公報 特公昭62−18881号公報
上述の特許文献1においては、基板の両面に多層膜を形成した近赤外線カットフィルタや、複数枚の基板を有しその基板の間に多層膜を配置した近赤外線カットフィルタなどが開示されている。この近赤外線カットフィルタによれば、複数の多層膜により赤外線をカットすることにより、人間の視感度に近い波長特性の光を得ることができるなど、設計の自由度を向上させることができる。
しかしながら、複数の基板、複数の多層膜を備える上述の近赤外線カットフィルタでは、近年の電子撮像光学系の光軸方向への小型化・薄型化の要望に応えることは困難であった。
また、基板と多層膜等との温度・湿度による膨張率の差により、基板の形状に歪み(反り)が発生する問題があった。特に、基板に樹脂を用いた場合には、基板形状の歪みが顕著になるという問題があった。
上述の電子撮像光学系の小型化・薄型化の要望に応えるために、光学フィルタ等では、その基板の厚さが薄くなっている。しかし、基板の厚さが約0.5mm以下に薄くなると、上述の基板形状の歪み(反り)の発生が顕著となる問題があった。
上述の特許文献2においては、透明な基板の一方の面に所定の特性を有する多層膜または単層膜を蒸着し、他方の面に基板の歪みを補正する別種類の蒸着膜が形成された透過型光学部材が開示されている。この他方の面に形成された蒸着膜は反射防止膜でもある。
しかしながら、上述の透過型光学部材では、基板の歪みの補正を重視すると一方の面または他方の面に形成された多層膜等の特性(透過特性等)を確保することが困難となるという問題があった。逆に、上記多層膜等の特性を確保すると基板の歪みの補正が不十分になるという問題があった。
基板の歪みが残存すると、光を透過型光学部材に略垂直に入射させることが困難となり、透過型光学部材の透過特性等に影響が現れるという問題があった。
本発明は、上記の課題を解決するためになされたものであって、赤外線を良好にカットするとともに、透過率特性(波長特性)を損なうことなく小型化・薄型化を図ることができる光学フィルタおよび光学フィルタを用いた撮像装置を提供することを目的とする。
上記目的を達成するために、本発明は、以下の手段を提供する。
本発明は、赤外線を吸収する厚さ0.5mm以下の基板と、該基板の一方の面に形成された赤外線を反射する赤外線カット層と、前記基板の他方の面に形成された反射防止層と、を有し、前記赤外線カット層および前記反射防止層が、屈折率の異なる複数の薄膜層を積層した多層構造からなり、前記反射防止層の層数と、前記赤外線カット層の層数とが、以下の条件式を満足する光学フィルタを提供する。
1<(層数IR)/(層数AR)≦2.5 ・・・(3)
ただし、(層数IR)は赤外線カット層の層数、(層数AR)は反射防止層の層数である。
本発明によれば、赤外線を吸収する基板を用いることにより、光学フィルタにおいてカットする赤外線の一部を基板に吸収させ、残りを赤外線カット層で反射させることができる。そのため、光学フィルタとして赤外線を良好にカットするとともに、赤外線カット層に求められる赤外線反射特性を緩和させ、赤外線カット層の層数を減少させることができる。
また、赤外線カット層の層数を減少させて、光学フィルタに作用する応力を減少させることができ、反射防止層により基板の歪みを補正することができる。そのため、光を光学フィルタに略垂直に入射させることができ、光学フィルタの透過率特性等が損なわれることを防止できる。
なお、赤外線カット層および反射防止層は、高屈折率層と低屈折率層とを交互に積層した多層構造を有するものであることが好ましい。
この場合に、赤外線カット層の層数と反射防止層の層数とが条件式(3)を満たすため、赤外線カット層により基板に働く応力と、反射防止層により基板に働く応力とがより均衡し、基板の歪みを所定のより狭い範囲内に納めることができる。そのため、光の光学フィルタへの入射角をより狭い角度範囲内に納めることができ、光学フィルタの透過率特性等が損なわれることをより確実に防止できる。
また、上記発明においては、前記基板が樹脂から形成されていることが望ましい。
本発明によれば、基材が赤外線を吸収する樹脂から形成されているため、光学フィルタの軽量化を図ることができると共に、安価に製造することができる。
さらに、上記発明においては、前記反射防止層の層厚と、前記赤外線カット層の層厚とが、以下の条件式(1)を満足することが望ましい。
0.05 ≦(層厚AR)/(層厚IR)≦ 1 ・・・(1)
ただし、(層厚AR)は反射防止層の層厚、(層厚IR)は赤外線カット層の層厚である。
本発明によれば、赤外線カット層の層厚と反射防止層の層厚とが条件式(1)を満たすため、赤外線カット層により基板に働く応力と、反射防止層により基板に働く応力とが打ち消しあい、基板の歪みを所定の範囲内に収めることができる。そのため、光の光学フィルタへの入射角を所定の角度範囲内に収めることができ、光学フィルタの透過率特性等が損なわれることを防止できる。
上記発明においては、750nmから850nmの波長帯域における光の透過率が、500nmから550nmの波長帯域における光の透過率の平均値を基準として、10%以下であることが好ましい。
本発明によれば、例えば、CCD等の電子撮像素子に入射する光の赤外線カットに本発明の光学フィルタを用いる場合、750nmから850nmの波長帯域における光の透過率が、500nmから550nmの波長帯域における光の透過率の平均値を基準として、10%以下であるため、電子撮像素子における解像度の低下や画質の劣化が生じることを防止できる。
本発明は、屈折率を有する光学素子を備える光学系と、上記本発明の光学フィルタ、または上記本発明の光学フィルタの製造方法により製造された光学フィルタと、前記光学系の像側に配置され、前記光学フィルタを透過した光が入射される電子撮像素子と、を備える撮像装置を提供する。
本発明の光学フィルタを撮像装置に用いることにより、電子撮像素子に入射される光の赤外線を良好にカットすることができる。また、光学フィルタの小型化・薄型化を図ることができるため、撮像装置の小型化・薄型化を図ることができる。
さらに、光学フィルタの透過率特性等が損なわれることを防止できるため、電子撮像素子により撮像された画像において、透過した赤外線による色ムラが発生することを防止できる。
本発明の光学フィルタおよび撮像装置によれば、光学フィルタとして赤外線を良好にカットするとともに、透過率特性(波長特性)を損なうことなく光学フィルタの小型化・薄型化を図ることができるという効果を奏する。
[赤外線カットフィルタ]
〔第1の実施形態〕
以下、本発明に係る赤外線カットフィルタにおける第1の実施形態について図1から図3を参照して説明する。
図1は、本実施形態における赤外線カットフィルタの構成を説明する図である。
赤外線カットフィルタ(光学フィルタ)1Aは、図1に示すように、赤外線を吸収する基板である赤外線吸収フィルタ(基板)3aと、赤外線を反射する赤外線カットコート(赤外線カット層)5aと、光の反射を抑える反射防止コート(反射防止層)7と、から概略構成されている。
赤外線吸収フィルタ3aはプラスチック等の樹脂から形成された板状の部材であり、例えば、呉羽化学工業株式会社製のルミクル(登録商標)を例示することができる。赤外線吸収フィルタ3aを樹脂から形成することにより、赤外線カットフィルタ1Aの軽量化を図ることができると共に、安価に製造することができる。
赤外線カットコート5aは、蒸着により屈折率の異なる酸化チタン(TiO)の層(薄膜層)と酸化シリコン(SiO)の層(薄膜層)とが交互に積層された多層膜として形成され、本実施形態においては酸化チタン層と酸化シリコン層が14層積層されたものであって、赤外線カットコート5a全体のコート膜厚が1.49μmのものに適用して説明する。赤外線カットコート5aの膜厚などの詳細なデータを以下の表に示す。
Figure 0004768995
反射防止コート7も、蒸着により屈折率の異なる酸化チタン(TiO)の層(薄膜層)と酸化シリコン(SiO)の層(薄膜層)とを交互に積層したものであり、本実施形態においては酸化チタン層と酸化シリコン層が5層積層されたものであって、反射防止コート7全体の膜厚が0.34μmのものに適用して説明する。反射防止コート7の膜厚などの詳細なデータを以下の表に示す。
Figure 0004768995
反射防止コート7の膜厚7と、赤外線カットコート5aの膜厚との比は、(0.34μm)/(1.49μm)=0.228であり、条件式(1)を満たしている。
そのため、赤外線カットコート5aにより赤外線吸収フィルタ3aに働く応力と、反射防止コート7により赤外線吸収フィルタ3aに働く応力とが打ち消しあい、赤外線吸収フィルタ3aの歪みを所定の範囲内に収めることができる。そのため、光の赤外線カットフィルタ1Aへの入射角を所定の角度範囲内に収めることができ、赤外線カットフィルタ1Aの透過率特性等が損なわれることを防止できる。
また、赤外線カットコート5aの層数と、反射防止コート7の層数との比は、(14層)/(5層)=2.8であり、条件式(2)を満たしている。
そのため、赤外線カットコート5aにより赤外線吸収フィルタ3aに働く応力と、反射防止コート7により赤外線吸収フィルタ3aに働く応力とが打ち消しあい、赤外線吸収フィルタ3aの歪みを所定の範囲内に収めることができる。そのため、光の赤外線カットフィルタ1Aへの入射角を所定の角度範囲内に収めることができ、赤外線カットフィルタ1Aの透過率特性等が損なわれることを防止できる。
次に、基板である赤外線吸収フィルタ3aに働く応力について説明する。
図2は、一方の面に薄膜が形成された薄板基板に働く応力を計算する際に用いる計算モデルを説明する図である。図2(a)は、薄板基板を斜め上方から見た斜視図であり、図2(b)は、薄板基板を側面から見た側面図である。
ここでは、説明を簡単にするため、図2に示すように、赤外線吸収フィルタ3aを厚さがDの短冊状の薄板基板BPとし、この薄板基板BPの一方の面に膜厚がdの薄膜TFを形成した場合に、薄板基板BPの長軸方向に発生する応力σについて説明する。
応力σと、基板厚Dと、膜厚dなどとの関係は、以下に示す式(4)で表すことができる。また、式(4)中の1/Rは、式(5)により薄膜TF成膜前の基板BPの曲率半径R1と、薄膜TF形成後の基板BPの曲率半径R2とにより求めることができる。
Figure 0004768995
ただし、dは薄膜TFの膜厚、νsはポアソン比、Esはヤング率、Dは基板BPの厚さ、Rは式(5)により求められる曲率半径である。
Figure 0004768995
ただし、R1は薄膜TF形成前の基板BPの曲率半径、R2は薄膜TF形成後の基板BPの曲率半径である。
薄膜TF形成前の基板BPが平らな場合には、R1は無限大となり、(1/R1)≒0となる。また、R2は基板の反り量から求められる。
薄膜TFにより発生する応力が圧縮応力の場合には、図2(b)に示すように、薄膜TFが形成された面が凸状に湾曲する反りが発生し、逆に引っ張り応力が発生する場合には、薄膜TFが形成された面が凹状に湾曲する反りが発生する。
上述の薄膜に発生する膜応力は成膜方法に依存するため、膜応力と成膜方法との関係について説明する。
蒸着法により薄膜を成膜する場合には、成膜種により膜応力が異なる。例えば、酸化シリコン(SiO)層を成膜した場合には圧縮応力が発生するが、酸素を導入して酸化チタン(TiO)層を成膜した場合には引っ張り応力が発生する。したがって、酸化シリコン層と、酸化チタン層とを積層して形成する本実施形態の赤外線カットコート5aや反射防止コート7は、圧縮応力と引っ張り応力とが相殺され、全体としての膜応力が小さくなる。
イオンプレーティング法や、イオンアシスト蒸着法や、スパッタ法など、高密度の膜を形成する方法により成膜する場合には、酸化シリコン層、酸化チタン層ともに大きな圧縮応力が発生する。したがって、本実施形態の赤外線カットコート5aや反射防止コート7全体としても発生する圧縮応力が大きくなる。
次に、上述の赤外線カットフィルタ1Aによる作用について説明する。
例えば、反射防止コート7側(図1中の右側)から赤外線カットフィルタ1Aに入射する光は、まず、反射防止コート7を透過して赤外線吸収フィルタ3aに入射する。反射防止コート7が光の入射面に形成されていることにより、赤外線吸収フィルタ3aにおいて入射する光の反射が防止されている。
入射した光の赤外線の一部は赤外線吸収フィルタ3aに吸収され、残りの光は赤外線吸収フィルタ3aを透過し、赤外線カットコート5aに入射する。赤外線吸収フィルタ3aを透過した赤外線の一部は、赤外線カットコート5aにおいて反射され、残りの赤外線を含む光は赤外線カットフィルタ1Aから出射される。
図3は、本実施形態における赤外線カットフィルタ1Aにおける各波長に対する透過率(T%)を示すグラフである。
このようにして赤外線を吸収および反射する赤外線カットフィルタ1Aの各波長に対する透過率は、図3に示す通りであり、750nmから850nmの波長帯域における光の透過率は、500nmから550nmの波長帯域における光の透過量の平均値を基準として、約10%以下となっている。
上記の構成によれば、赤外線を吸収する赤外線吸収フィルタ3aを用いることにより、赤外線カットフィルタ1Aにおいてカットする赤外線の一部を赤外線吸収フィルタ3aに吸収させ、残りを赤外線カットコート5aで反射させることができる。そのため、赤外線カットフィルタ1Aとして赤外線を良好にカットするとともに、赤外線カットコート5aに求められる赤外線反射特性を緩和させ、赤外線カットコート5aの層数を減少させることができ、赤外線カットフィルタ1Aの小型化・薄型化を図ることができる。
また、赤外線カットコート5aの層数を減少させることができるため、赤外線カットフィルタ1Aに作用する応力を減少することができ、反射防止コート7により赤外線吸収フィルタ3aの歪みを補正することができる。そのため、光を赤外線カットフィルタ1Aに略垂直に入射させることができ、赤外線カットフィルタ1Aの透過率特性等が損なわれることを防止できる。
〔第2の実施形態〕
次に、本発明に係る赤外線カットフィルタにおける第2の実施形態について図4および図5を参照して説明する。
図4は、本実施形態における赤外線カットフィルタの構成を説明する図である。
なお、第1の実施形態と同一の構成要素については、同一の符号を付してその説明を省略する。
赤外線カットフィルタ(光学フィルタ)1Bは、図4に示すように、赤外線を吸収する基板である赤外線吸収フィルタ3aと、赤外線を反射する赤外線カットコート(赤外線カット層)5bと、光の反射を抑える反射防止コート7と、から概略構成されている。
赤外線カットコート5bは、屈折率の異なる酸化チタン(TiO)の層(薄膜層)と酸化シリコン(SiO)の層(薄膜層)とが交互に積層された多層膜として形成され、本実施形態においては酸化チタン層と酸化シリコン層が12層積層されたものであって、赤外線カットコート5b全体のコート膜厚が1.19μmのものに適用して説明する。赤外線カットコート5bの膜厚などの詳細なデータを以下の表に示す。
Figure 0004768995
反射防止コート7の膜厚7と、赤外線カットコート5bの膜厚との比は、(0.34μm)/(1.19μm)=0.286であり、条件式(1)を満たしている。
そのため、赤外線カットコート5bにより赤外線吸収フィルタ3aに働く応力と、反射防止コート7により赤外線吸収フィルタ3aに働く応力とが打ち消しあい、赤外線吸収フィルタ3aの歪みを所定の範囲内に収めることができる。そのため、光の赤外線カットフィルタ1Bへの入射角を所定の角度範囲内に収めることができ、赤外線カットフィルタ1Bの透過率特性等が損なわれることを防止できる。
また、赤外線カットコート5bの層数と、反射防止コート7の層数との比は、(12層)/(5層)=2.4であり、条件式(3)を満たしている。
そのため、赤外線カットコート5bにより赤外線吸収フィルタ3aに働く応力と、反射防止コート7により赤外線吸収フィルタ3aに働く応力とがより均衡し、赤外線吸収フィルタ3aの歪みを所定のより狭い範囲内に収めることができる。そのため、光の赤外線カットフィルタ1Bへの入射角を所定の角度範囲内に収めることができ、赤外線カットフィルタ1Bの透過率特性等が損なわれることをより確実に防止できる。
赤外線カットフィルタ1Bの作用は、14層の多層膜構造を有する赤外線カットコート5aが12層の多層膜構造を有する赤外線カットコート5bに変更されている点を除けば、第1の実施形態と同様であるので、図5に本実施形態における赤外線カットフィルタ1Bにおける各波長に対する透過率(T%)を示すグラフを示して、その説明を省略する。
上記の構成によれば、第1の実施形態に係る赤外線カットコート5aよりも薄い赤外線カットコート5bを用いることにより、赤外線カットフィルタ1Bをより小型化・薄型化することができる。また、赤外線カットフィルタ1Bの歪の発生をより防止できるため、赤外線カットフィルタ1Bの透過率特性等が損なわれることをより確実に防止できる。
〔第3の実施形態〕
次に、本発明に係る赤外線カットフィルタにおける第3の実施形態について図6および図7を参照して説明する。
図6は、本実施形態における赤外線カットフィルタの構成を説明する図である。
なお、第1の実施形態と同一の構成要素については、同一の符号を付してその説明を省略する。
赤外線カットフィルタ(光学フィルタ)1Cは、図6に示すように、赤外線を吸収する基板である赤外線吸収フィルタ3aと、赤外線を反射する赤外線カットコート(赤外線カット層)5cと、光の反射を抑える反射防止コート7と、から概略構成されている。
赤外線カットコート5cは、蒸着により屈折率の異なる酸化チタン(TiO)の層(薄膜層)と酸化シリコン(SiO)の層(薄膜層)とが交互に積層された多層膜として形成され、本実施形態においては酸化チタン層と酸化シリコン層が22層積層されたものであって、赤外線カットコート5c全体のコート膜厚が2.49μmのものに適用して説明する。赤外線カットコート5cの膜厚などの詳細なデータを以下の表に示す。
Figure 0004768995
反射防止コート7の膜厚7と、赤外線カットコート5cの膜厚との比は、(0.34μm)/(2.49μm)=0.137であり、条件式(1)を満たしている。
そのため、赤外線カットコート5cにより赤外線吸収フィルタ3aに働く応力と、反射防止コート7により赤外線吸収フィルタ3aに働く応力とが打ち消しあい、赤外線吸収フィルタ3aの歪みを所定の範囲内に収めることができる。そのため、光の赤外線カットフィルタ1Cへの入射角を所定の角度範囲内に収めることができ、赤外線カットフィルタ1Cの透過率特性等が損なわれることを防止できる。
また、赤外線カットコート5cの層数と、反射防止コート7の層数との比は、(14層)/(5層)=4.4である。
赤外線カットフィルタ1Cの作用は、14層の多層膜構造を有する赤外線カットコート5aが22層の多層膜構造を有する赤外線カットコート5cに変更されている点を除けば、第1の実施形態と同様であるので、図7に本実施形態における赤外線カットフィルタ1Bにおける各波長に対する透過率(T%)を示すグラフを示して、その説明を省略する。
上記の構成によれば、22層の多層膜構造を有する赤外線カットコート5cを用いることにより赤外線の反射特性を向上させ、赤外線カットフィルタ1Cにより赤外線を良好にカットすることができる。
[光学系]
〔単焦点光学系〕
次に、本発明の赤外線カットフィルタを用いた単焦点光学系の一実施形態について図8から図10を参照しながら説明する。
図8は、本発明の赤外線カットフィルタを用いた単焦点光学系の無限遠物点合焦時のレンズ断面図である。
単焦点光学系(撮像装置)50は、図8に示すように、結像レンズ系(光学系)Lと、像を撮像する電子撮像素子51と、電子撮像素子51のカバーガラスを兼用する赤外線カットフィルタ(光学フィルタ)53と、から概略構成されている。
赤外線カットフィルタ53は、上述の第1の実施形態から第6の実施形態に係る赤外線カットフィルタのいずれかを用いたものである。また、電子撮像素子51としては、CCDやCMOSなどを用いることができる。
結像レンズ系Lは、絞り54と、物体側(図8中において左側)に凸面を向けた物体側面非球面の第1正メニスカスレンズL1と、両凸の像面側面非球面の第2正レンズL2と、両凹の両面非球面の第3負レンズL3と、から構成されている。
本実施形態では、第1レンズL1から第3レンズL3は全てプラスチックから構成されたものに適用して説明する。
なお、本実施形態における結像レンズ系Lの仕様は、焦点距離f=3.83mm、像高2.30mmであり、Fナンバー=2.98、全画角2ω=63.0°である。
以下に、本実施形態の結像レンズ系Lのデータを示す。
fは全系焦点距離、FNOはFナンバー、2ωは画角、r 1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。
また、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。
x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A44 +A6 6 +A8 8
ただし、rは光軸上の曲率半径、Kは円錐係数、A4 、A6 、A8 はそれぞれ4次、6次、8次の非球面係数である。
Figure 0004768995
上記の構成によれば、本発明の赤外線カットフィルタ53を単焦点光学系50に用いることにより、電子撮像素子51に入射される光の赤外線を良好にカットすることができる。また、赤外線カットフィルタ53の小型化・薄型化を図ることができるため、単焦点光学系50の小型化・薄型化を図ることができる。
さらに、赤外線カットフィルタ53の透過率特性等が損なわれることを防止できるため、電子撮像素子51により撮像された画像において、透過した赤外線による色ムラが発生することを防止できる。
なお、上述のように、赤外線カットフィルタ53が電子撮像素子51のカバーガラスを兼用してもよいし、図9に示すように、赤外線カットフィルタ53とカバーガラス55とを別々に設けて、赤外線カットフィルタ53がローパスフィルタを兼用してもよい。
また、図10に示すように、赤外線カットフィルタ53とカバーガラス55とローパスフィルタ57とを別々に設けてもよい。
〔自由曲面光学系〕
次に、本発明の赤外線カットフィルタを用いた自由曲面光学系について図11から図13を参照しながら説明する。
図11は、本発明の赤外線カットフィルタを用いた自由曲面光学系の一実施形態を説明する断面図である。
まず、本実施例の説明に用いる構成パラメータについて、図11を用いながら説明する。
本実施形態の構成パラメータは、図11に示すように、順光線追跡で、軸上主光線ML1を、物体中心から光学系の絞り61の中心を垂直に通り、電子撮像素子51中心に至る光線で定義されている。そして、光学系の最も物体側の第1面(図11の場合は、第11面11)の軸上主光線ML1と交差する位置を偏心光学系の偏心光学面の原点として、軸上主光線ML1に沿う方向をZ軸方向とし、物体から第1面に向かう方向をZ軸正方向とし、光軸が折り曲げられる平面をY−Z平面とし、原点を通りY−Z平面に直交する方向をX軸方向とし、図11の紙面の表から裏へ向かう方向をX軸正方向とし、X軸、Z軸と右手直交座標系を構成する軸をY軸とする。
本実施形態においては、このY−Z平面内で各面の偏心を行っており、また、各回転非対称自由曲面の唯一の対称面をY−Z面としている。
偏心面については、光学系の原点の中心からその面の面頂位置の偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、その面の中心軸(自由曲面については、後記の引用文献の(a)式のZ軸)のX軸、Y軸、Z軸それぞれを中心とする傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。
なお、面の中心軸のα,β,γの回転のさせ方は、面の中心軸とそのXYZ直交座標系を、まずX軸の回りで反時計回りにα回転させ、次に、その回転した面の中心軸を新たな座標系のY軸の回りで反時計回りにβ回転させると共に1度回転した座標系もY軸の回りで反時計回りにβ回転させ、次いで、その2度回転した面の中心軸を新たな座標系の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。
本実施形態の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には、面間隔が与えられており、その他、媒質の屈折率、アッベ数が慣用法に従って与えられている。
また、本発明で用いられる自由曲面の面の形状は、例えば米国特許第6,124,989号(特開2000−66105号)の(a)式により定義される自由曲面であり、その定義式のZ軸が自由曲面の軸となる。
なお、データの記載されていない自由曲面に関する項は0である。屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。
したがって、図11は、本実施形態の自由曲面光学系における軸上主光線を含むY−Z断面図となる。
自由曲面光学系(撮像装置)60は、図11に示すように、プリズムを有するプリズム光学系(光学系)Pと、像を撮像する電子撮像素子51と、電子撮像素子51のカバーガラスを兼用する赤外線カットフィルタ53と、から概略構成されている。から概略構成されている。
プリズム光学系Pは、物体側から光の通る順に、前群を構成する第1プリズム10と、絞り61と、後群を構成する第2プリズム20と、から構成されている。
第1プリズム10は、図11に示すように、第11面11から第13面13により構成され、その第11面11は第1透過面、第12面12は第1反射面、第13面13は第2透過面である。
これらの面は、物体からの光線が第1透過面である第11面11を透過し、第1反射面である第12面12で内面反射され、第2透過面である第13面13を透過し、第2プリズム20に向けて出射するように配置されている。
第2プリズム20は第21面21から第24面24により構成され、その第21面21は第1透過面、第22面22は第1反射面、第23面23は第2反射面、第24面24は第2透過面である。
これらの面は、第1プリズム10からの光線が第1透過面である第21面21を透過し、第1反射面である第22面22で内面反射され、第2反射面である第23面23で内面反射され、第2透過面である第24面24を透過し、撮像ユニット30に向けて出射するように配置されている。
また、第2プリズム20の第21面21と第22面22とは、プリズム媒質を挟んで対向配置され、第23面23と第24面24とがプリズム媒質を挟んで対向配置されている。さらに、これらの面は、第21面21と第22面22とを結ぶ光路が、第23面23と第24面24とを結ぶ光路とプリズム内で交差するように配置されている。
なお、上述の第1プリズム10および第2プリズム20からなる結像光学系においては、中間像を形成していない。
また、第1プリズム10の第11面11および第12面12は自由曲面から構成され、第13面13は平面から構成されている。第2プリズム20の第21面21は平面から構成され、第22面22から第24面24は自由曲面から構成されている。
上述の実施形態は、例えば、撮像面のサイズが4.8mm×3.6mmであり、撮影画角が水平画角51.3°、垂直画角が39.6°、入射瞳径がφ1.77mmであり、Fナンバーは2.8相当の実施形態に適用することができる。
なお、上述の実施形態はその他のサイズ等の実施形態へ適用しても構わず、特に限定するものではない。
以下に、第1プリズム10および第2プリズム20の数値データを示す。表中の“FFS”は自由曲面を示し、“RE”は反射面を示している。
Figure 0004768995
Figure 0004768995
上記の構成によれば、本発明の赤外線カットフィルタ53を自由曲面光学系60に用いることにより、電子撮像素子51に入射される光の赤外線を良好にカットすることができる。また、赤外線カットフィルタ53の小型化・薄型化を図ることができるため、自由曲面光学系60の小型化・薄型化を図ることができる。
さらに、赤外線カットフィルタ53の透過率特性等が損なわれることを防止できるため、電子撮像素子51により撮像された画像において、透過した赤外線による色ムラが発生することを防止できる。
なお、上述のように、赤外線カットフィルタ53が電子撮像素子51のカバーガラスを兼用してもよいし、図12に示すように、赤外線カットフィルタ53とカバーガラス55とを別々に設けて、赤外線カットフィルタ53がローパスフィルタを兼用してもよい。
また、図13に示すように、赤外線カットフィルタ53とカバーガラス55とローパスフィルタ57とを別々に設けてもよい。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記の実施の形態においては、本発明の赤外線カットフィルタを単焦点光学系に適応して説明したが、本発明は単焦点光学系に限られることなく、ズーム光学系など、その他各種の光学系に適応できるものである。
また、上記実施の形態では、高屈折率層(TiO)と低屈折率層(SiO)とを交互に積層した赤外線カットコートおよび反射防止コートについて例示したが、本発明はこれに限らず、高屈折率層、中間屈折率層、低屈折率層を交互に積層させてもよい。
本発明に係る第1の実施形態における赤外線カットフィルタの構成を説明する図である。 一方の面に薄膜が形成された薄板基板に働く応力を計算する際に用いる計算モデルを説明する図である。 図1の赤外線カットフィルタにおける各波長に対する透過率(T%)を示すグラフである。 本発明に係る第2の実施形態における赤外線カットフィルタの構成を説明する図である。 図4の赤外線カットフィルタにおける各波長に対する透過率(T%)を示すグラフである。 本発明に係る第3の実施形態における赤外線カットフィルタの構成を説明する図である。 図6の赤外線カットフィルタにおける各波長に対する透過率(T%)を示すグラフである。 本発明の赤外線カットフィルタを用いた単焦点光学系の無限遠物点合焦時のレンズ断面図である。 図8の単焦点光学系の別の実施形態の構成を説明する図である。 図8の単焦点光学系の更に別の実施形態の構成を説明する図である。 本発明の赤外線カットフィルタを用いた自由曲面光学系の一実施形態を説明する断面図である。 図11の自由曲面光学系の別の実施形態の構成を説明する図である。 図11の自由曲面光学系の更に別の実施形態の構成を説明する図である。
符号の説明
1A,1B,1C 赤外線カットフィルタ(光学フィルタ)
3a 赤外線吸収フィルタ(基板)
5a,5b,5c 赤外線カットコート(赤外線カット層)
7 反射防止コート(反射防止層)
50 単焦点光学系(撮像装置)
51 電子撮像素子
53 赤外線カットフィルタ(光学フィルタ)
60 自由曲面光学系(撮像装置)
L 結像レンズ系(光学系)
P プリズム光学系(光学系)

Claims (5)

  1. 赤外線を吸収する厚さ0.5mm以下の基板と、
    該基板の一方の面に形成された赤外線を反射する赤外線カット層と、
    前記基板の他方の面に形成された反射防止層と、を有し、
    前記赤外線カット層および前記反射防止層が、屈折率の異なる複数の薄膜層を積層した多層構造からなり、
    前記反射防止層の層数と、前記赤外線カット層の層数とが、以下の条件式を満足する光学フィルタ。
    1<(層数IR)/(層数AR)≦2.5 ・・・(3)
    ただし、(層数IR)は赤外線カット層の層数、(層数AR)は反射防止層の層数である。
  2. 前記基板が樹脂から形成されている請求項1記載の光学フィルタ。
  3. 前記反射防止層の層厚と、前記赤外線カット層の層厚とが、以下の条件式を満足する請求項1または請求項2に記載の光学フィルタ。
    0.05≦(層厚AR)/(層厚IR)≦1 ・・・(1)
    ただし、(層厚AR)は反射防止層の層厚、(層厚IR)は赤外線カット層の層厚である。
  4. 750nmから850nmの波長帯域における光の透過率が、500nmから550nmの波長帯域における光の透過量の平均値を基準として、10%以下である請求項1から請求項3のいずれかに記載の光学フィルタ。
  5. 屈折率を有する光学素子を備える光学系と、
    請求項1から請求項4のいずれかに記載の光学フィルタと、
    前記光学系の像側に配置され、前記光学フィルタを透過した光が入射される電子撮像素子と、を備える撮像装置。
JP2005033684A 2004-08-12 2005-02-09 光学フィルタおよび撮像装置 Expired - Fee Related JP4768995B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005033684A JP4768995B2 (ja) 2005-02-09 2005-02-09 光学フィルタおよび撮像装置
US11/196,761 US7411729B2 (en) 2004-08-12 2005-08-04 Optical filter, method of manufacturing optical filter, optical system, and imaging apparatus
US12/215,206 US20080285119A1 (en) 2004-08-12 2008-06-24 Optical filter, method of manufacturing optical filter, optical system, and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033684A JP4768995B2 (ja) 2005-02-09 2005-02-09 光学フィルタおよび撮像装置

Publications (3)

Publication Number Publication Date
JP2006220873A JP2006220873A (ja) 2006-08-24
JP2006220873A5 JP2006220873A5 (ja) 2008-01-17
JP4768995B2 true JP4768995B2 (ja) 2011-09-07

Family

ID=36983246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033684A Expired - Fee Related JP4768995B2 (ja) 2004-08-12 2005-02-09 光学フィルタおよび撮像装置

Country Status (1)

Country Link
JP (1) JP4768995B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200827782A (en) * 2006-12-28 2008-07-01 Nippon Catalytic Chem Ind Selectively light-transmitting filter
JP5433943B2 (ja) * 2007-11-30 2014-03-05 セイコーエプソン株式会社 光学部材、撮像系光学物品、撮像モジュール、カメラ、及び光学部材の製造方法
JP5517405B2 (ja) * 2007-12-27 2014-06-11 株式会社日本触媒 光選択透過フィルター
JP2010097062A (ja) * 2008-10-17 2010-04-30 Fujifilm Corp 長波紫外線吸収積層体
JP5769918B2 (ja) * 2009-08-26 2015-08-26 ソニー株式会社 光学素子、撮像光学系及び撮像装置
JP2011075984A (ja) 2009-10-01 2011-04-14 Sony Corp 撮像光学系及び撮像装置
WO2011071052A1 (ja) 2009-12-07 2011-06-16 旭硝子株式会社 光学部材、近赤外線カットフィルタ、固体撮像素子、撮像装置用レンズ、およびそれらを用いた撮像・表示装置
KR101374755B1 (ko) 2010-06-18 2014-03-17 가부시키가이샤 다이신쿠 적외선 차단 필터
JP5383755B2 (ja) * 2010-12-17 2014-01-08 株式会社日本触媒 光選択透過フィルター、樹脂シート及び固体撮像素子
JP2012159658A (ja) * 2011-01-31 2012-08-23 Daishinku Corp 光学フィルタモジュール、および光学フィルタシステム
CN103389561B (zh) * 2012-05-11 2016-03-30 玉晶光电(厦门)有限公司 具有阻挡红外线功能的光学镜头与其光学镜片
JP2014048402A (ja) * 2012-08-30 2014-03-17 Kyocera Corp 光学フィルタ部材および撮像装置
JP6174379B2 (ja) * 2013-05-31 2017-08-02 京セラ株式会社 可視光透過フィルタ
JP5854014B2 (ja) * 2013-09-17 2016-02-09 ソニー株式会社 光学装置及び撮像装置
JP6642575B2 (ja) 2015-07-31 2020-02-05 Agc株式会社 光学フィルタおよび近赤外線カットフィルタ
TWM525451U (zh) * 2016-05-04 2016-07-11 白金科技股份有限公司 吸收式近紅外線濾光片及影像感測器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238402A (ja) * 1985-08-13 1987-02-19 Asahi Glass Co Ltd 光学フイルタ−
JPS6477601A (en) * 1987-09-18 1989-03-23 Shintaku Mitsuo Triple socks

Also Published As

Publication number Publication date
JP2006220873A (ja) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4768995B2 (ja) 光学フィルタおよび撮像装置
JP4855042B2 (ja) 撮影光学系,撮影レンズユニットおよびカメラ
JP4788953B2 (ja) 撮像装置及びズームレンズ
US7336421B2 (en) Optical system with anti-reflection coating
JP5429244B2 (ja) 光学系、光学装置
JP5896061B1 (ja) 光学系および撮像システム
JP5422895B2 (ja) レンズ系及びこれを有する光学装置
US8179603B2 (en) Optical element and optical system having the same
WO2010071077A1 (ja) 撮像レンズ
JP5853715B2 (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
KR20180116374A (ko) 커버 글래스의 적층 구조, 카메라 구조, 촬상 장치
JP5093657B2 (ja) レトロフォーカスレンズ、撮像装置、およびレトロフォーカスレンズの合焦方法
JP2009198855A (ja) 広角レンズ及びこれを有する撮像装置
JPH1039207A (ja) 結像レンズ
US20140307326A1 (en) Eyepiece lens, viewfinder optical system and optical apparatus equipped with the same, and method for manufacturing eyepiece lens
JP2006220872A (ja) 光学フィルタ、光学フィルタの製造方法および撮像装置
US20220373724A1 (en) Optical lens assembly, imaging apparatus and electronic device
JP5464379B2 (ja) 光学系、光学装置
JP5440810B2 (ja) 光学系、光学装置
JP2006084887A (ja) レンズ装置
JP5464380B2 (ja) 光学系、光学装置
JP2021096283A (ja) レンズ系
JP2010271374A (ja) 光学系及びそれを有する光学機器
US20230168413A1 (en) Optical system and image capturing apparatus including the same
CN221101080U (zh) 折反射光学膜、成像光学镜头、取像装置及电子装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4768995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees