JP4768500B2 - 半導体集積回路の配線レイアウト装置、配線レイアウト方法、及び配線レイアウトプログラム - Google Patents

半導体集積回路の配線レイアウト装置、配線レイアウト方法、及び配線レイアウトプログラム Download PDF

Info

Publication number
JP4768500B2
JP4768500B2 JP2006113783A JP2006113783A JP4768500B2 JP 4768500 B2 JP4768500 B2 JP 4768500B2 JP 2006113783 A JP2006113783 A JP 2006113783A JP 2006113783 A JP2006113783 A JP 2006113783A JP 4768500 B2 JP4768500 B2 JP 4768500B2
Authority
JP
Japan
Prior art keywords
wiring
rewiring
critical
layout
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006113783A
Other languages
English (en)
Other versions
JP2007286915A (ja
Inventor
俊晃 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006113783A priority Critical patent/JP4768500B2/ja
Priority to US11/733,940 priority patent/US7735043B2/en
Publication of JP2007286915A publication Critical patent/JP2007286915A/ja
Application granted granted Critical
Publication of JP4768500B2 publication Critical patent/JP4768500B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/394Routing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

本発明は、半導体集積回路の配線レイアウト装置、配線レイアウト方法、及び配線レイアウトプログラムに関し、特に、配線幅や配線間隔が露光装置の解像度限界程度に小さい配線パターンをレイアウトする、半導体集積回路の配線レイアウト装置、配線レイアウト方法、及び配線レイアウトプログラムに関する。
従来、半導体集積回路の配線レイアウト設計においては、チップ上の回路素子、及び寄生素子の特性はほぼ均一という前提のもとで、マージンを持たせて設計が行われている。すなわち、チップ上での素子特性は多少のばらつきはあってもマージンの許容範囲内に入るという仮定のもと、所望のタイミング仕様のみを考慮して、半導体集積回路の配線レイアウト設計が行われていた。
近年では、デバイスの微細化が進み、半導体基板上に描画される配線などのパターンの寸法が描画露光装置の光源波長よりも短くなってきており、意図した設計寸法通りにパターンを加工することが困難になってきている。特に、マスクパターンの微細化及び高集積化により、フォトリソグラフィーやエッチング処理によるパターン形成工程において、パターンの配置状況や隣接関係が相互に及ぼす影響が大きくなっている。この問題を解決するため、加工後のパターン寸法が所望のパターン寸法と等しくなるように、設計パターンに対してあらかじめ補正パターンを付加する光近接効果補正処理(以下、OPC処理と示す)を施すことが一般的に行われている。
しかしながら、OPC処理によって高集積なレイアウトパターンを精度よく実現するためには、非常に多大なデータ処理時間を要する。また、近接するパターン形状の組み合わせに依存して加工寸法にばらつきが生じてしまい、寄生容量や抵抗もばらついてしまうために、タイミング設計上のクリティカルパスとなる配線上を伝播する信号遅延の変動を引き起こしてしまう。すなわち、OPC処理において設計パターンが十分に補正しきれないために、加工後のパターン寸法が所望の寸法にならず、素子の電気特性、特に、クリティカルパスとなる配線上を伝播する信号遅延にばらつきが生じてしまう。これにより、設定された動作周波数を実現できないチップが発生し、チップの歩留まり低下を招いてしまうという問題があった。
この問題に対処するものとして、設計パターンに対して所定の規則性を有するダミーの配線を付加し、加工によるパターン寸法変動を抑制した半導体集積回路装置が提案されている(例えば、特許文献1参照)。
しかしながら、近年のデバイスの微細化に伴い、配線がチップ全体に密に形成されるようになり、配線が敷設されない空きスペースが非常に少なくなってきているため、特許文献1に記載された半導体集積回路装置のように、設計パターンに対してダミー配線を付加することが困難になってしまうという問題があった。
特開2005−303089号公報
本発明は、以上の点に鑑みてなされたもので、ダミー配線を極力付加することなく、製造工程において発生する配線パターン寸法変動に起因した遅延変動を軽減して、レイアウト設計段階で遅延解析をより正確にし、回路の目標動作周波数達成を容易化する半導体集積回路の配線レイアウト装置、レイアウト方法、及びプログラムを提供することを目的とする。
本発明の一形態に係る半導体集積回路の配線レイアウト装置は、半導体集積回路の配線レイアウトを設計するレイアウト設計部と、前記配線レイアウトにおいて信号伝播遅延を解析してタイミングがクリティカルとなる信号パスを構成するクリティカル配線を検出するクリティカル配線検出部と、前記配線レイアウトに対し、前記クリティカル配線の近傍領域における配線パターンの均一性を向上させるように前記近傍領域における配線を再配置する再配線部と、前記再配置された配線レイアウトの配線パターンの均一性を評価して前記クリティカル配線のパターン寸法変動が許容範囲内か否かを判定するパターン寸法変動判定部と、を備え、前記再配線部は、前記クリティカル配線の前記近傍領域における前記配線の充填率と、前記近傍領域に存在する配線端部の頂点数とに基づき、前記近傍領域における配線パターンの均一性を判定することを特徴とする。
また、本発明の一形態に係る半導体集積回路の配線レイアウト方法は、レイアウト設計部、クリティカル配線検出部、再配線部及びパターン寸法変動判定部を具備したコンピュータで半導体集積回路の配線をレイアウトする方法であって、前記レイアウト設計部により半導体集積回路の配線レイアウトを設計するレイアウト設計工程と、前記クリティカル配線検出部により前記配線レイアウトにおいて信号伝播遅延を解析してタイミングがクリティカルとなる信号パスを構成するクリティカル配線を検出するクリティカル配線検出工程と、前記再配線部により、前記配線レイアウトに対し、前記クリティカル配線の近傍領域における配線パターンの均一性を向上させるように前記近傍領域における配線を再配置する再配線工程と、前記パターン寸法変動判定部により、前記再配置された配線レイアウトの配線パターンの均一性を評価して前記クリティカル配線のパターン寸法変動が許容範囲内か否かを判定するパターン寸法変動判定工程と、を備え、前記再配線工程は、前記クリティカル配線の前記近傍領域における前記配線の充填率と、前記近傍領域に存在する前記配線端部の頂点数とに基づき、前記近傍領域における配線パターンの均一性を判定し、前記近傍領域における配線パターンが不均一であると判定した場合は、前記配線の移動、及び/又は、入れ替え、及び/又は、延長によって再配線を行うことを特徴とする。
更に、本発明の一形態に係る半導体集積回路の配線レイアウトプログラムは、半導体集積回路の配線レイアウト結果から信号伝播遅延を解析してタイミングがクリティカルとなる信号パスを構成するクリティカル配線を検出するクリティカル配線検出手順と、前記配線レイアウトに対し、前記クリティカル配線の近傍領域における配線パターンの均一性を向上させるように前記近傍領域における配線を再配置する再配線手順と、を備え、前記再配線手順は、前記クリティカル配線の前記近傍領域における前記配線の充填率と、前記近傍領域に存在する前記配線端部の頂点数とに基づき、前記近傍領域における配線パターンの均一性を判定して前記近傍領域における前記配線パターンの均一性を向上させるように再配線する手順と、前記配線の移動、及び/又は、入れ替え、及び/又は、延長によって再配線を行う配線最適化手順とを含み、これら一連の手順をコンピュータに実行させることを特徴とする。
ダミー配線を極力付加することなく、製造工程において発生する配線パターン寸法変動に起因した遅延変動を軽減して、レイアウト設計段階で遅延解析をより正確にし、回路の目標動作周波数達成を容易化する半導体集積回路の配線レイアウト装置、レイアウト方法、及びプログラムを実現することができる。
以下、図面を参照して本発明の実施の形態を説明する。始めに、本発明の実施の形態に係わる半導体集積回路の配線レイアウト装置の構成について、図1を用いて説明する。図1は、本発明の実施の形態に係わる半導体集積回路の配線レイアウト装置1の構成を説明する概略図である。
図1に示すように、半導体集積回路の配線レイアウト装置1は、レイアウト設計部2と、クリティカル配線検出部3と、再配線部4と、パターン寸法変動判定部5とから構成される。
レイアウト設計部2では、論理回路図に基づきCADなどを用いて素子や配線の配置をレイアウトする、半導体集積回路の通常の配線レイアウトが行われる。クリティカル配線検出部3では、レイアウト設計部2で設計された配線レイアウトを基に、タイミング設計上、ボトルネックとなる配線が遅延クリティカルパス(以下、遅延CPと示す)として検出される。例えば、チップ上のクロック信号配線が遅延CPに該当する。
再配線部4では、クリティカル配線検出部3で検出された遅延CPに隣接する配線の再配線要否が検討され、必要に応じて再配線が行われる。配線のパターンが不均一であると、OPC処理及び実際の加工処理において配線パターンの寸法変動が生じてしまう。そこで、配線パターンを均一化することによって、寸法変動を抑制することができる。しかし、レイアウト設計2で設計された配線レイアウトは配線効率が最適化されたものであるため、これを再配線することは配線効率を悪化させることになってしまう。そこで、再配線部4では、配線パターンの寸法変動による容量や抵抗のばらつきに起因した信号遅延を生じさせたくない部分、すなわち、遅延CPの近傍領域の配線のみ必要に応じて再配線し、寸法変動によって信号遅延が発生しても、許容マージン内に収まるような配線に関しては、再配線を行わないよう、再配線処理が行われる。
遅延CP近傍領域の配線パターンの不均一性は、例えば、配線の充填率(所定の評価領域の面積に対する当該領域に占める配線の面積の割合)、配線端の局所的な集中の有無を検出することによって評価する。配線の充填率が高すぎたり、配線端が集中したりしている箇所では、リソグラフィー処理での露光マージンが減少するなどの不具合が生じるため、チップ上に形成されるレジストマスクの配線パターンに欠けが生じたり、所望の寸法からずれて配線パターンが形成されてしまったりする可能性がある。逆に、配線の充填率が低すぎる箇所でも、所望の寸法からずれて配線パターンが形成されてしまう可能性がある。
再配線部4では、上述のように配線パターンの均一性を評価し、不均一であると判定した箇所については、近傍領域の再配線を行う。再配線の方法としては、例えば次の3つの方法があげられる。
まず、一つ目の方法は、配線の移動である。この方法は、遅延CPの近傍領域から、遅延CPから離れた領域であって配線が敷設されていない領域に、配線を移動させる方法、もしくは逆に、遅延CPから離れた領域に敷設されている配線を、遅延CP近傍領域であって配線が敷設されていない領域に配線を移動させる方法である。
次に、二つ目の方法は、配線の入れ替えである。この方法は、遅延CPの近傍領域に敷設された配線と、遅延CPから離れた領域の配線とを交換する方法である。最後に三つ目の方法は、配線の延長である。この方法は、遅延CPの近傍領域に敷設された配線の端部位置を移動させるため、当該配線の配線の長さを延長させる方法である。
これらの方法の中から、周辺の配線の状況や配線パターンの均一性向上に対する有効性などを考慮して、1つないし複数の方法を組み合わせ、再配線が行われる。
最後に、パターンの均一性を評価してクリティカル配線のパターン寸法変動が許容範囲内か否かを判定するパターン寸法変動判定部5では、再配線部4で再配線された配線レイアウトを基に、パターンの均一性を評価してクリティカル配線のパターン寸法変動が許容範囲内か否かを判定するパターン寸法変動判定処理が行われる。再配線部4において配線パターンの均一性が向上されているため、クリティカル配線上を伝播する信号遅延の変動を抑制することができる。
次に、上述した半導体集積回路の配線レイアウト装置1を用いた配線レイアウト方法について、図2〜図11を用いて説明する。
まず、レイアウト設計部2において、チップの機能や性能を実現するために設計された論理回路図を基に、CADなどを用いて実際の素子や配線の配置を自動的に描画する、通常の配線レイアウトが行われる。半導体集積回路が複数の配線層を有する場合、すべての配線層に関してレイアウト設計が行われる。次に、クリティカル配線検出部3において、レイアウト設計部2で設計された配線レイアウトを基に、遅延CPを検出する。なお、1枚の配線層には複数の遅延CPが存在する場合もあるため、この工程では、全ての配線層に存在する全ての遅延CPを検出する。
次に、再配線部4において、遅延CPの近接領域の再配線を行う。以下、再配線部4における処理を、図2を用いて詳細に説明する。図2は、本発明の実施の形態に係わる配線レイアウト方法の手順を説明するフローチャートである。
まず、ステップS1において、再配線要否の評価対象の配線層11(以下、評価対象レイヤ11と示す)として、1層目の配線層を選択する。次に、ステップS2において、評価対象レイヤ11に含まれる遅延CPのうち、再配線要否の評価対象のCP12(以下、評価対象CP12と示す)を1つ選択する。続いてステップS3において、評価対象レイヤ11を同じ形状・面積を有する複数の小領域13に分割する(図3参照)。図3は、小領域13に分割後の評価対象レイヤ11の構成を説明する概略図である。例えば、図3に示すように、ステップS3終了後、評価対象レイヤ11は5×5=25個の同じ形状・面積を有する小領域13に分割される。なお、評価対象レイヤ11は、フォトリソグラフィー工程における光近接効果を補正することが可能な程度の大きさの領域に分割する必要があることから、例えば1μm×1μmの正方形の形状を有する小領域13に分割する。
次に、ステップS4において、評価対象CP12の近傍領域の配線パターンを評価し、再配線が必要と判定された場合は再配線を行う。このステップS4の詳細な手順を、図4を用いて説明する。図4は、評価対象CP12の近傍領域の再配線要否判定及び再配線の手順を説明するフローチャートである。
まず、ステップS41において、評価対象レイヤ11において、評価対象CP12を含む小領域13を評価対象領域として抽出する。例えば、図3においては、太線で囲まれた9個の小領域13が評価対象領域14として抽出される。
次に、ステップS42において、評価対象領域14に含まれる小領域13から、再配線要否判定を行う最初の小領域13にフレーム15をセットする。なお、再配線要否判定は、評価対象領域14に含まれる全ての小領域13について行われる。続いて、ステップS43において、フレーム15がセットされた小領域13について、配線パターンを評価し、フレーム15内の評価対象CP12近傍の配線に関する再配線の要否を判定する。このステップS43の詳細な手順を、図5を用いて説明する。図5は、再配線要否判定の手順を説明するフローチャートである。
まず、ステップS431において、配線の端部がフレーム15内に存在する場合、その頂点の個数Cをカウントする。例えば、フレーム15内に図6(a)に示すような配線がレイアウトされている場合、頂点の個数Cは丸印で囲まれた頂点の数、すなわち14個となる。図6は、評価対象CP12近傍の配線パターンの一例を説明するレイアウト図であり、図6(a)は再配線前の配線パターンを、図6(b)は再配線後の配線パターンを説明する図である。
次に、ステップS432において、ステップS431でカウントされた配線端部の頂点の個数Cが、予め設定された閾値Th1以上であるか否かを判定する。なお、閾値Th1は1以上の整数値であり、プロセス条件などに応じて適当な値が設定される。ステップS432において、配線端部の頂点の個数Cが閾値Th1以上である場合、ステップS437へ進み、フレーム15がセットされた小領域13において、評価対象CP12の近傍領域の配線を再配線する必要があると判定し、再配線要否判定を終了する。
一方、ステップS432において、配線端部の頂点の個数Cが閾値Th1未満である場合、当該フレーム15がセットされた小領域13では、リソグラフィー工程において配線パターンの寸法変動を生じさせるような、配線端の局所的な集中が生じていないものとみなされ、ステップS433に進む。
ステップS433では、フレーム15内に存在する配線の充填率αを算出する。配線の充填率αは、フレーム15内に敷設された配線の面積の和を、フレーム15の面積(=小領域13の面積)で除して算出する。次に、ステップS434において、ステップS433で算出された配線の充填率αが、予め設定された閾値Th2以上かつ閾値Th3以下であるか否かを判定する。なお、閾値Th2と閾値Th3とは0より大きく1未満の値であり、プロセス条件などに応じて適当な値が設定される。また、閾値Th2は閾値Th3よりも小さい値が設定される。
ステップS434において、配線の充填率αが閾値Th2未満、もしくは閾値Th3よりも大きな値である場合、ステップS437へ進み、フレーム15がセットされた小領域13において、評価対象CP12の近傍領域の配線を再配線する必要があると判定し、再配線要否判定を終了する。
一方、ステップS434において、配線の充填率αが閾値Th2以上かつ閾値Th3以下の範囲内である場合、当該フレーム15がセットされた小領域13では、配線の充填率αが低すぎる、すなわち配線間隔が広く粗にレイアウトされているために配線パターンが太線化されてしまったり、逆に配線の充填率αが高すぎる、すなわち配線を高密度にレイアウトされているために配線パターンが欠損・細線化されてしまったりするという、パターンの寸法変動が発生しないとみなされ、ステップS435に進む。
ステップS435では、フレーム15内に、リソグラフィー工程において配線パターンの寸法変動を発生させるような特定の配線パターンが含まれているか否かを検出する。上述の特定パターンとしては、例えば図7に示すような配線パターンがあげられる。図7は、配線パターンの寸法変動を起こす配線パターンの一例を示すレイアウト図である。
具体的な一例としては、図7(a)に示すように、評価対象CP12の近傍に他の配線の配線端が存在し、かつ、他の配線の延出する方向と評価対象CP12の延出する方向とが直交する位置関係にある配線パターンがあげられる。また、別の具体的な一例としては、図7(b)に示すように、クランク形状を有する評価対象CP12の近傍領域に、別の配線がこれと並行して敷設された配線パターンがあげられる。このような特定の配線パターンは、再配線要否可否判定に先立って設定されており、必要に応じて新たな配線パターンを追加して登録することが可能である。
ステップS435において、フレーム15内に特定の配線パターンが検出された場合、ステップS437へ進み、フレーム15がセットされた小領域13において、評価対象CP12の近傍領域の配線を再配線する必要があると判定し、再配線要否判定を終了する。一方、ステップS435において、フレーム15内に特定の配線パターンが検出されなかった場合、当該小領域13の配線レイアウトは適切であり、再配線は不要であると判定し、再配線要否判定を終了する。
以上のようにして判定された、ステップS43における再配線要否の判定の結果を基に、ステップS44において、再配線が必要であると判定された場合、ステップS45に進み、フレーム15がセットされている小領域13について、評価対象CP12の近傍領域の再配線を行った後、ステップS46に進む。一方、ステップS44において、再配線が不要であると判定された場合は、ステップS45を省略してステップS46に進む。
このステップS45における再配線の詳細な手順を、図8を用いて説明する。図8は、評価対象CP12の近傍領域の再配線の手順を説明するフローチャートである。再配線の主な方法としては、配線の移動、配線の入れ替え、配線の延長、の三つの方法があげられる。また、配線の移動と配線の入れ替えについては、評価対象CP12の存在する評価対象レイヤ11内で行う方法と、他のレイヤとの間で行う方法とがある。
まず、一つ目の方法である配線の移動について、図9を用いて具体的に説明する。図9は、移動による再配線の一例を説明するレイアウト図であり、図9(a)は再配線前の配線パターンを、図9(b)は再配線後の配線パターンを説明する図である。ここでは、評価対象レイヤ11内での配線の移動について説明する。例えば図9(a)に示すように、フレーム15内に、評価対象CP12の上側の配線トラックに配線が敷設されていない場合、もう一つ上側の配線トラックに敷設されている配線16を一つ下の配線トラックに移動させることで、フレーム15内の配線の充填率αを上昇させることができる(図9(b)配線16´参照)。なお、図9(b)の配線17は、図9(a)の表示範囲外に敷設されている配線を移動して再配線したものである。
このように、配線の移動とは、評価対象CP12から離れた領域に敷設されている配線16を引き剥がし、評価対象CP12の近傍領域であって配線が敷設されていない領域に設置する方法もしくは逆に、評価対象CP12の近傍領域に敷設されている配線を引き剥がし、遅延CPから離れた領域であって配線が敷設されていない領域に配線を設置する再配線の方法である。
次に、二つ目の方法である配線の入れ替えについて、図10を用いて具体的に説明する。図10は、入れ替えによる再配線の一例を説明するレイアウト図であり、図10(a)は再配線前の配線パターンを、図10(b)は再配線後の配線パターンを説明する図である。ここでは、評価対象レイヤ11ないでの配線の入れ替えについて説明する。例えば図10(a)に示すように、フレーム15内に、評価対象CP12の上側の配線トラックに短い配線18が敷設されており、もう一つ上側の配線トラックに配線18よりも長い配線19が敷設されている場合、配線18と配線19とを入れ替えることで、フレーム15内の評価対象CP12の上下の隣接トラックに存在していた対向する配線端点の存在を解消することができ、遅延がクリティカルとなっている配線の寸法変動を減少させて、遅延の変動を抑えることができる。(図10(b)配線18´,19´参照)。
最後に、三つ目の方法である配線の延長について、図11を用いて具体的に説明する。図11は、延長による再配線の一例を説明するレイアウト図であり、図11(a)は再配線前の配線パターンを、図11(b)は再配線後の配線パターンを説明する図である。例えば図11(a)に示すように、フレーム15内に、評価対象CP12の下側の配線トラックに短い配線20が敷設されており、上側の配線トラックには別の配線21が敷設されている場合、配線20の右側端部を延長することで、フレーム15内に存在する配線端部の頂点数Cを減らすことができる。(図11(b)配線20´参照)。
ステップS45では、これらの方法のうち、配線レイアウトの大幅な変更を伴わずに最も再配線コストが低い方法から順に、再配線の可否を検討していく。具体的には、同一レイヤ内での配線の移動、同一レイヤ内での配線の入れ替え、配線の延長、他レイヤとの間での配線の移動・入れ替え、の順に再配線の可否を検討する。
まず、ステップS451において、評価対象レイヤ11内で移動による再配線が可能か否かを判定する。例えば、再配線前の配線レイアウトが図9(a)に示すようなレイアウトであり、ステップS43において、配線の充填率αが閾値Th2よりも小さいために再配線が必要であると判定された場合、評価対象CP12の近傍領域に他の領域から配線を移動させるスペースがあるか否かを判定する。図9(a)の場合、評価対象CP12の上側の配線トラックに配線が敷設されておらず、空きスペースが存在するため、配線の移動が可能であり、配線16を移動させることによって配線の充填率α´がTh2≦α´≦Th3を満たすので、配線の移動が可能であると判定される。
ステップS451において、移動による再配線が不可であると判定された場合、ステップS456に進み、別の方法による再配線可否を判定する。一方、ステップS451において、移動による再配線が可能であると判定された場合、ステップS452に進んで再配線を行う(図9(b)参照)。続いて、ステップS453において、再配線後の評価対象レイヤ11の全体の評価関数CFを算出する。評価関数CFとは、評価対象CP12全体の近傍領域の配線パターンの均一性を算出する関数であり、例えば、評価対象CP12を含む全ての小領域13に関し、各小領域13について配線パターンの均一度に応じて重み付けされた評価値を算出し、これらの評価値を足し合わせることによって得られる。
ステップS454において、ステップS453で算出された評価関数CFが適切な値であり、再配線により評価対象CP12の近傍領域の配線パターンが適切な均一性を得られたか否かを判定する。本実施の形態の場合、評価関数CFが閾値Th4未満である場合、評価対象CP12の近傍領域の配線パターンが、加工による配線パターン寸法変動が許容範囲内に収まる程度の均一性を有すると判定される。なお、閾値Th4には、評価関数CFやプロセス条件などに応じて適当な値が設定される。
ステップS454において、評価関数CFが閾値Th4未満であると判定された場合、ステップS45の再配線を終了し、ステップS46に進む。一方、ステップS454において、評価関数CFが閾値Th4以上であると判定された場合、ステップS452で行われた再配線が不適切であり、適切な均一性が得られなかったとみなされ、ステップS455に進む。続くステップS455においては、ステップS452の再配線を行う前の状態に配線パターンを戻した後、ステップS456へ進む。
ステップS456では、評価対象レイヤ11内で入れ替えによる再配線が可能か否かを判定する。例えば、再配線前の配線レイアウトが図10(a)に示すようなレイアウトであり、ステップS43において、フレーム15内の評価対象CP12の上下の隣接トラックに対向する配線端点の存在があるために再配線が必要であると判定された場合、評価対象CP12の近傍領域の短い配線と、他の領域にある長い配線とを入れ替え可能か否かを判定する。図10(a)の場合、評価対象CP12の上側の配線トラックに敷設されている短い配線18と、その上側の配線トラックに敷設されている長い配線19とが入れ替え可能であり、配線18と配線19とを入れ替えることによってフレーム15内の評価対象CP12の上下の隣接トラックに存在していた対向する配線端点の存在を解消することができ、遅延がクリティカルとなっている配線の寸法変動を減少させて、遅延の変動を抑えることができるので、配線の入れ替え動可能であると判定される。
また、例えば、再配線前の配線レイアウトが図6(a)に示すようなレイアウトであり、ステップS43において、配線端部の頂点の個数Cが閾値Th1以上であるために再配線が必要であると判定された場合、評価対象CP12の近傍領域の配線トラックに敷設された短い配線(群)と、他の領域の配線トラックにある長い配線とを入れ替え可能か否かを判定する。図6(a)の場合、評価対象CP12の上側の配線トラックに敷設されている短い配線群22と、その上側の配線トラックに敷設されている長い配線23とが入れ替え可能であり、配線群22と配線23とを入れ替えることによって配線端部の頂点の個数C´がC´<Th1を満たすので、配線の入れ替えが可能であると判定される。
ステップS456において、入れ替えによる再配線が不可であると判定された場合、ステップS461に進み、別の方法による再配線可否を判定する。一方、ステップS456において、入れ替えによる再配線が可能であると判定された場合、ステップS457に進んで再配線を行う(図10(b),図6(b)参照)。続いて、ステップS458において、再配線後の評価対象レイヤ11の全体の評価関数CFを算出し、ステップS459において評価関数CFが閾値Th4以上であるか否かを判定する。なお、ステップS458,ステップS459の処理は、ステップS453,ステップS454と同様の処理である。
ステップS459において、評価関数CFが閾値Th4未満であると判定された場合、ステップS45の再配線を終了し、ステップS46に進む。一方、ステップS459において、評価関数CFが閾値Th4以上であると判定された場合、ステップS457で行われた再配線が不適切であり、適切な均一性が得られなかったとみなされ、ステップS460に進む。続くステップS460においては、ステップS457の再配線を行う前の状態に配線パターンを戻した後、ステップS461へ進む。
ステップS461では、評価対象レイヤ11内で延長による再配線が可能か否かを判定する。例えば、再配線前の配線レイアウトが図11(a)に示すようなレイアウトであり、ステップS43において、配線端部の頂点の個数Cが閾値Th1以上であるために再配線が必要であると判定された場合、評価対象CP12の近傍領域の短い配線を、フレーム15の外側の領域まで延長することが可能か否かを判定する。図11(a)の場合、評価対象CP12の下側の配線トラックに敷設されている短い配線20の右側の領域に配線が敷設されておらず、配線20を延長することが可能であり、配線20を延長することによって配線端部の頂点の個数C´がC´<Th1を満たすので、配線の延長が可能であると判定される。
ステップS461において、延長による再配線が不可であると判定された場合、ステップS466に進み、別の方法による再配線可否を判定する。一方、ステップS461において、延長による再配線が可能であると判定された場合、ステップS462に進んで再配線を行う(図11(b)参照)。続いて、ステップS463において、再配線後の評価対象レイヤ11の全体の評価関数CFを算出し、ステップS464において評価関数CFが閾値Th4以上であるか否かを判定する。なお、ステップS463,ステップS464の処理は、ステップS453,ステップS454と同様の処理である。
ステップS464において、評価関数CFが閾値Th4未満であると判定された場合、ステップS45の再配線を終了し、ステップS46に進む。一方、ステップS464において、評価関数CFが閾値Th4以上であると判定された場合、ステップS462で行われた再配線が不適切であり、適切な均一性が得られなかったとみなされ、ステップS465に進む。続くステップS465においては、ステップS462の再配線を行う前の状態に配線パターンを戻した後、ステップS466へ進む。
ステップS466では、評価対象レイヤ11と他のレイヤとの間で配線の移動や入れ替えによる再配線が可能か否かを判定する。ステップS466において、他のレイヤとの間で配線の移動や入れ替えが不可であると判定された場合、再配線不可であると判定し、ステップS45の再配線を終了し、ステップS46に進む。一方、ステップS466において、他のレイヤとの間で配線の移動や入れ替えによる再配線が可能であると判定された場合、ステップS467に進んで再配線を行う。続いて、ステップS468において、再配線後の評価対象レイヤ11の全体の評価関数CFを算出し、ステップS469において評価関数CFが閾値Th4以上であるか否かを判定する。なお、ステップS468,ステップS469の処理は、ステップS453,ステップS454と同様の処理である。
ステップS469において、評価関数CFが閾値Th4未満であると判定された場合、ステップS45の再配線を終了し、ステップS46に進む。一方、ステップS469において、評価関数CFが閾値Th4以上であると判定された場合、ステップS467で行われた再配線が不適切であり、適切な均一性が得られなかったとみなされ、ステップS470に進む。続くステップS470においては、ステップS467の再配線を行う前の状態に配線パターンを戻し、ステップS45の再配線を終了してステップS46に進む。なお、ステップS453,S458,S463,S468,における評価関数CFの算出と、ステップS454,S459,S464,S469における評価関数CFと閾値Th4との比較による配線パターンの均一性評価の各ステップは、パターン寸法変動判定部5において行われる。
以上の手順によって、フレーム15がセットされた小領域13の再配線を終了すると、ステップS46において、ステップS41において抽出された全ての小領域13に関して配線パターンの評価・再配線の一連の処理が行われたか否かが判定される。評価対象CP12を含む全ての小領域13について上記の一連の処理が終了している場合、ステップS4の配線パターンの評価・再配線を終了し、ステップS5に進む。一方、配線パターンの評価・再配線が行われていない小領域13が残っていると判定された場合、ステップS47に進み、一連の処理を未実施である小領域13にフレーム15をセットし、ステップS43からステップS45の一連の手順を実行する。
ステップS5では、評価対象レイヤ11に存在する別の遅延CPを評価対象CP12として選択する。続くステップS6において、評価対象レイヤ11に存在する全ての遅延CPについて、配線パターンの評価・再配線が行われたか否かが判定される。全ての遅延CPについて配線パターンの評価・再配線を終了している場合、ステップS7に進み、別のレイヤを評価対象レイヤ11として選択する。一方、配線パターンの評価・再配線が未実施のCPが残っていると判定された場合、評価対象レイヤ11に存在する全ての遅延CPに関してステップS3,ステップS4の処理を実行する。
ステップS8では、全てのレイヤについて配線パターンの評価・再配線が行われたか否かが判定される。全てのレイヤについて配線パターンの評価・再配線を終了している場合、再配線部4における配線レイアウトと、パターン寸法変動判定部5におけるパターンの均一性を評価して前記クリティカル配線のパターン寸法変動が許容範囲内か否かを判定する処理を完了し、OPC処理を行う。一方、配線パターンの評価・再配線が未実施のレイヤが残っていると判定された場合、全てのレイヤに関してステップS2からステップS4の処理を実行する。
OPC処理は、上述のステップS1からステップS8の一連の再配線処理が完了した配線レイアウトを元に、光近接効果を抑制するために、マスクレイアウトに対して必要な補正処理を施す処理であり、マスクレイアウト処理工程にて実施される。
本実施の形態においては、OPC処理前に、遅延CP近傍領域に関し、配線レイアウトの均一性を向上させているため、設計段階でのパターン寸法見積値と製造仕上がり後のパターン寸法値との差が少なく、結果的に、設計時のタイミング見積値と実チップのタイミングとの間の誤差を減少させることができる。
再配置された配線レイアウトに対しパターンの均一性を評価して、クリティカル配線のパターン寸法変動が許容範囲内となると、本実施の形態における配線レイアウト処理を完了する。
なお、遅延CPを検出する処理、及び、ステップS1からステップS8の一連の再配線処理は、プログラムに記載されており、コンピュータを用いて自動的に実行される。
このように、本実施の形態においては、通常の配線レイアウトに対し、配線パターンの均一性を評価して、不均一な領域については、加工による配線パターン寸法変動が許容範囲内に収まる程度の均一性を有するように再配線を行う。再配線によって均一性を向上させた配線パターンを元に加工を行うことができるため、パターン寸法変動を抑制することができる。再配線は、信号伝播遅延のボトルネックとなる配線(=遅延CP)の近傍領域についてのみ行うため、多大な時間を要することなく再配線を行うことができる。また、遅延CPの寸法変動を確実に抑制して抵抗や容量の変動を低減させることができるため、信号遅延の変動、即ち、設計段階でのパターン寸法見積値と製造仕上がり後のパターン寸法値との差が少なく、結果的に、設計時のタイミング見積値と実チップのタイミングとの間の誤差を減少させることが可能となり、チップの歩留まりを向上させることができる。更に、本実施例にてレイアウトした設計パターンを使用すれば、OPC処理でのデータ処理に要する計算機処理時間を短縮することもできる。
なお、本実施の形態においては、一つの小領域13には一種類の手法のみを用いて再配線を行ったが、複数の手法を組み合わせて再配線を行ってもよい。例えば、配線の充填率αを大きくするために、遅延CP近傍の空き領域に他の領域から配線を移動させると共に、遅延CP近傍に敷設された短い配線と、他の領域に敷設された長い配線とを入れ替えてもよい。また、本実施の形態においては、全ての遅延CPを含む小領域について、一度ずつ配線パターンの評価・再配線を行っているが、評価関数CFが好ましい値に収束するまで配線パターンの評価・再配線を複数回繰り返し行って、より均一な配線パターンを模索するようにしてもよい。
本発明の実施の形態に係わる半導体集積回路の配線レイアウト装置1の構成を説明する概略図。 本発明の実施の形態に係わる配線レイアウト方法の手順を説明するフローチャート。 小領域13に分割後の評価対象レイヤ11の構成を説明する概略図。 評価対象CP12の近傍領域の再配線要否判定及び再配線の手順を説明するフローチャート。 再配線要否判定の手順を説明するフローチャート。 評価対象CP12近傍の配線パターンの一例を説明するレイアウト図であり、図6(a)は再配線前の配線パターンを、図6(b)は再配線後の配線パターンを説明する図。 配線パターンの寸法変動を起こす配線パターンの一例を示すレイアウト図。 評価対象CP12の近傍領域の再配線の手順を説明するフローチャート。 移動による再配線の一例を説明するレイアウト図であり、図9(a)は再配線前の配線パターンを、図9(b)は再配線後の配線パターンを説明する図。 入れ替えによる再配線の一例を説明するレイアウト図であり、図10(a)は再配線前の配線パターンを、図10(b)は再配線後の配線パターンを説明する図。 延長による再配線の一例を説明するレイアウト図であり、図11(a)は再配線前の配線パターンを、図11(b)は再配線後の配線パターンを説明する図。
符号の説明
1…配線レイアウト装置、2…レイアウト設計部、3…クリティカル配線検出部、4…再配線部、5…パターン寸法変動判定部、

Claims (4)

  1. 半導体集積回路の配線レイアウトを設計するレイアウト設計部と、
    前記配線レイアウトにおいて信号伝播遅延を解析してタイミングがクリティカルとなる信号パスを構成するクリティカル配線を検出するクリティカル配線検出部と、
    前記配線レイアウトに対し、前記クリティカル配線の近傍領域における配線パターンの均一性を向上させるように前記近傍領域における配線を再配置する再配線部と、
    前記再配置された配線レイアウトの配線パターンの均一性を評価して前記クリティカル配線のパターン寸法変動が許容範囲内か否かを判定するパターン寸法変動判定部と、
    を備え
    前記再配線部は、前記クリティカル配線の前記近傍領域における前記配線の充填率と、前記近傍領域に存在する配線端部の頂点数とに基づき、前記近傍領域における配線パターンの均一性を判定することを特徴とする、半導体集積回路の配線レイアウト装置。
  2. 前記再配線部は、前記クリティカル配線の前記近傍領域にレイアウトされている配線を引き剥がしてその他の領域に敷設する、及び/または、前記その他の領域にレイアウトされている配線を引き剥がして前記クリティカル配線の前記近傍領域に敷設する、及び/または、前記クリティカル配線の前記近傍領域にレイアウトされている前記配線と、前記その他の領域にレイアウトされている前記配線を入れ替える、及び/または、前記クリティカル配線の前記近傍領域にレイアウトされている前記配線を延長することにより、前記近傍領域における配線を再配置することを特徴とする、請求項に記載の半導体集積回路の配線レイアウト装置。
  3. レイアウト設計部、クリティカル配線検出部、再配線部及びパターン寸法変動判定部を具備したコンピュータで半導体集積回路の配線をレイアウトする方法であって、
    前記レイアウト設計部により半導体集積回路の配線レイアウトを設計するレイアウト設計工程と、
    前記クリティカル配線検出部により前記配線レイアウトにおいて信号伝播遅延を解析してタイミングがクリティカルとなる信号パスを構成するクリティカル配線を検出するクリティカル配線検出工程と、
    前記再配線部により、前記配線レイアウトに対し、前記クリティカル配線の近傍領域における配線パターンの均一性を向上させるように前記近傍領域における配線を再配置する再配線工程と、
    前記パターン寸法変動判定部により、前記再配置された配線レイアウトの配線パターンの均一性を評価して前記クリティカル配線のパターン寸法変動が許容範囲内か否かを判定するパターン寸法変動判定工程と、
    を備え、前記再配線工程は、前記クリティカル配線の前記近傍領域における前記配線の充填率と、前記近傍領域に存在する前記配線端部の頂点数とに基づき、前記近傍領域における配線パターンの均一性を判定し、前記近傍領域における配線パターンが不均一であると判定した場合は、前記配線の移動、及び/又は、入れ替え、及び/又は、延長によって再配線を行うことを特徴とする、半導体集積回路の配線レイアウト方法。
  4. 半導体集積回路の配線レイアウト結果から信号伝播遅延を解析してタイミングがクリティカルとなる信号パスを構成するクリティカル配線を検出するクリティカル配線検出手順と、
    前記配線レイアウトに対し、前記クリティカル配線の近傍領域における配線パターンの均一性を向上させるように前記近傍領域における配線を再配置する再配線手順と、
    を備え、前記再配線手順は、前記クリティカル配線の前記近傍領域における前記配線の充填率と、前記近傍領域に存在する前記配線端部の頂点数とに基づき、前記近傍領域における配線パターンの均一性を判定して前記近傍領域における前記配線パターンの均一性を向上させるように再配線する手順と、前記配線の移動、及び/又は、入れ替え、及び/又は、延長によって再配線を行う配線最適化手順とを含み、
    これら一連の手順をコンピュータに実行させることを特徴とする、半導体集積回路の配線レイアウトプログラム。
JP2006113783A 2006-04-17 2006-04-17 半導体集積回路の配線レイアウト装置、配線レイアウト方法、及び配線レイアウトプログラム Expired - Fee Related JP4768500B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006113783A JP4768500B2 (ja) 2006-04-17 2006-04-17 半導体集積回路の配線レイアウト装置、配線レイアウト方法、及び配線レイアウトプログラム
US11/733,940 US7735043B2 (en) 2006-04-17 2007-04-11 Wiring layout apparatus, wiring layout method, and wiring layout program for semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113783A JP4768500B2 (ja) 2006-04-17 2006-04-17 半導体集積回路の配線レイアウト装置、配線レイアウト方法、及び配線レイアウトプログラム

Publications (2)

Publication Number Publication Date
JP2007286915A JP2007286915A (ja) 2007-11-01
JP4768500B2 true JP4768500B2 (ja) 2011-09-07

Family

ID=38606316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113783A Expired - Fee Related JP4768500B2 (ja) 2006-04-17 2006-04-17 半導体集積回路の配線レイアウト装置、配線レイアウト方法、及び配線レイアウトプログラム

Country Status (2)

Country Link
US (1) US7735043B2 (ja)
JP (1) JP4768500B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993362B2 (ja) * 2007-06-26 2012-08-08 ルネサスエレクトロニクス株式会社 半導体集積回路の自動遅延調整方法
US9251299B1 (en) 2013-06-28 2016-02-02 Cadence Design Systems, Inc. Methods, systems, and articles of manufacture for associating track patterns with rules for electronic designs
US9117052B1 (en) * 2012-04-12 2015-08-25 Cadence Design Systems, Inc. Methods, systems, and articles of manufacture for interactively implementing physical electronic designs with track patterns
US9003349B1 (en) 2013-06-28 2015-04-07 Cadence Design Systems, Inc. Methods, systems, and articles of manufacture for implementing a physical electronic design with area-bounded tracks
US9104830B1 (en) 2013-06-28 2015-08-11 Cadence Design Systems, Inc. Methods, systems, and articles of manufacture for assigning track patterns to regions of an electronic design
US9213793B1 (en) 2012-08-31 2015-12-15 Cadence Design Systems, Inc. Methods, systems, and articles of manufacture for implementing electronic designs using flexible routing tracks
US9165103B1 (en) 2013-06-28 2015-10-20 Cadence Design Systems, Inc. Methods, systems, and articles of manufacture for tessellating and labeling routing space for routing electronic designs
JP6321512B2 (ja) * 2014-09-29 2018-05-09 株式会社Screenホールディングス 配線データの生成装置、生成方法、および描画システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220250B2 (ja) * 1992-01-09 2001-10-22 株式会社東芝 セル自動配置方法
JP3624848B2 (ja) * 2000-10-19 2005-03-02 セイコーエプソン株式会社 クロック生成回路、データ転送制御装置及び電子機器
JP2003273221A (ja) * 2002-03-15 2003-09-26 Fujitsu Ltd 配線の遅延調整を可能にする集積回路のレイアウト方法及びそのプログラム
JP2003308351A (ja) * 2002-04-18 2003-10-31 Matsushita Electric Ind Co Ltd 半導体集積回路のレイアウト設計方法
US7331027B2 (en) * 2004-07-20 2008-02-12 International Business Machines Corporation Method for swapping circuits in a metal-only engineering change
JP2006091905A (ja) * 2005-10-24 2006-04-06 Matsushita Electric Ind Co Ltd 半導体設計レイアウトパタン生成方法および図形パタン生成装置
US7392496B1 (en) * 2006-10-03 2008-06-24 Lsi Corporation Device for avoiding timing violations resulting from process defects in a backfilled metal layer of an integrated circuit

Also Published As

Publication number Publication date
US20070245286A1 (en) 2007-10-18
US7735043B2 (en) 2010-06-08
JP2007286915A (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4768500B2 (ja) 半導体集積回路の配線レイアウト装置、配線レイアウト方法、及び配線レイアウトプログラム
US8312408B2 (en) Method and design system for semiconductor integrated circuit
US20150149969A1 (en) Layout design for electron-beam high volume manufacturing
JP4938696B2 (ja) 半導体装置の設計プログラムおよび半導体装置の設計システム
US8490031B2 (en) Method, apparatus and program for adjusting feature dimensions to compensate for planarizing effects in the generation of mask data and manufacturing semiconductor device
JP2007335850A (ja) 半導体集積回路、半導体集積回路の配線パターン設計方法および配線パターン設計装置
US20070234243A1 (en) Design data creating method, design data creating program product, and manufacturing method of semiconductor device
US8239788B2 (en) Frame cell for shot layout flexibility
US8843860B2 (en) Frame cell for shot layout flexibility
JP4469539B2 (ja) 半導体集積回路装置の製造方法
US8356262B1 (en) Cell architecture and method
US6892372B2 (en) Wiring layout method of integrated circuit
CN104977798A (zh) 图形修正方法
US8701052B1 (en) Method of optical proximity correction in combination with double patterning technique
JP2011165849A (ja) 研磨予測評価装置、研磨予測評価方法、研磨予測評価プログラム、過研磨条件算出装置、過研磨条件算出方法及び過研磨条件算出プログラム
KR100815953B1 (ko) 오프 그리드 방지를 위한 opc 처리방법
JP4799858B2 (ja) 半導体集積回路の自動設計方法
JP2001060212A (ja) パターンデータ密度検査装置及び密度検査方法並びにパターンデータ密度検査プログラムが記憶された記録媒体
Hui et al. Hotspot detection and design recommendation using silicon calibrated CMP model
JP2005294852A (ja) 回路パラメータ抽出方法、半導体集積回路の設計方法および装置
US7890918B2 (en) Method of designing semiconductor device
US7745239B1 (en) Arrangement of fill unit elements in an integrated circuit interconnect layer
US9547742B2 (en) Systems and methods for via placement
JP2007036290A (ja) 半導体集積回路装置
US8533638B2 (en) Post-optical proximity correction photoresist pattern collapse rule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees