JP4767670B2 - Centralized management system for refrigeration equipment with multiple showcases - Google Patents

Centralized management system for refrigeration equipment with multiple showcases Download PDF

Info

Publication number
JP4767670B2
JP4767670B2 JP2005343599A JP2005343599A JP4767670B2 JP 4767670 B2 JP4767670 B2 JP 4767670B2 JP 2005343599 A JP2005343599 A JP 2005343599A JP 2005343599 A JP2005343599 A JP 2005343599A JP 4767670 B2 JP4767670 B2 JP 4767670B2
Authority
JP
Japan
Prior art keywords
pressure
compressor
refrigeration
value
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005343599A
Other languages
Japanese (ja)
Other versions
JP2007147184A (en
Inventor
嘉之 畠田
究 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamura Corp
Original Assignee
Okamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamura Corp filed Critical Okamura Corp
Priority to JP2005343599A priority Critical patent/JP4767670B2/en
Publication of JP2007147184A publication Critical patent/JP2007147184A/en
Application granted granted Critical
Publication of JP4767670B2 publication Critical patent/JP4767670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、複数のショーケースにそれぞれ内蔵した蒸発器に対し共通の圧縮機から吐出した冷媒を凝縮器を介して供給する冷凍サイクルにおいて、複数のショーケースの個々の冷却状態を示す情報に基づき、圧縮機の冷媒吸入圧力を設定する冷凍・冷蔵設備の集中管理システムに関する。   The present invention is based on information indicating individual cooling states of a plurality of showcases in a refrigeration cycle in which refrigerant discharged from a common compressor is supplied to evaporators incorporated in the plurality of showcases via a condenser. The present invention relates to a centralized management system for refrigeration / refrigeration equipment for setting refrigerant suction pressure of a compressor.

従来、複数のショーケースにそれぞれ内蔵した蒸発器に対し共通の圧縮機から吐出した冷媒を凝縮器を介して供給する冷凍サイクルにおいて、ショーケース内に温度を一定の範囲内に保持するために、ショーケース内の循環冷気温度の測定値が上限設定値になると電磁弁が開いて冷媒を蒸発器側に流入させ、下限設定値になると電磁弁を閉じて蒸発器側への冷媒の流入を遮断するようにした冷凍・冷蔵設備が知られている。このような冷凍・冷蔵設備は、圧縮機による冷凍能力は、一般に夏期を基準にしているため、夏期以外では冷凍能力がショーケース負荷に比べ過大となり、無駄な電力消費が起こるので、電磁弁のオン、オフの運転率を各ショーケース毎に求め、運転率が高い場合には通常状態と判断し、運転率が低い場合には冷凍能力過剰運転と判断して、圧縮機の吸入冷媒圧力をシフトアップした技術が公知である。(例えば、特許文献1参照)。   Conventionally, in a refrigeration cycle in which refrigerant discharged from a common compressor is supplied to an evaporator built in each of a plurality of showcases via a condenser, in order to keep the temperature within a certain range in the showcase, When the measured value of the circulating cold air temperature in the showcase reaches the upper limit set value, the solenoid valve opens and the refrigerant flows into the evaporator. When the measured value reaches the lower limit value, the solenoid valve is closed to block the refrigerant from flowing into the evaporator. There are known freezing and refrigeration equipment. In such refrigeration and refrigeration equipment, the refrigeration capacity of the compressor is generally based on the summer, so the refrigeration capacity is excessive compared to the showcase load outside the summer and wasteful power consumption occurs. The on / off operation rate is obtained for each showcase. When the operation rate is high, it is determined as a normal state, and when the operation rate is low, it is determined that the refrigerating capacity is excessive, and the refrigerant suction refrigerant pressure is determined. Shifted-up technology is known. (For example, refer to Patent Document 1).

特開2001−66032号公報(段落0015〜0018、図1,3)JP 2001-66032 A (paragraphs 0015 to 0018, FIGS. 1 and 3)

しかしながら、特許文献1にあっては、圧縮機の運転率を絶えず演算する負荷判定部が必要となり、制御方式が複雑化するだけでなく、負荷を高負荷と通常負荷との2段階で切り換えるので、通常運転における細かな冷凍機の省エネ運転は不可能であり、しかも複数のショーケースのうち庫内温度を比較的低温に維持しなければならないショーケースがいくつか存在する場合には、当該ショーケースを基準にして圧縮機の吸入冷媒圧力を設定するため、圧縮機の吸入冷媒圧力を大きくシフトアップして、エネルギ消費を少なくすることが困難であった。   However, Patent Document 1 requires a load determination unit that constantly calculates the operation rate of the compressor, which not only complicates the control method, but also switches the load in two stages, a high load and a normal load. If a small refrigerator is not energy-saving during normal operation, and there are several showcases where the internal temperature must be kept relatively low among the multiple showcases, Since the intake refrigerant pressure of the compressor is set based on the case, it is difficult to greatly increase the intake refrigerant pressure of the compressor to reduce energy consumption.

本発明は、このような問題点に着目してなされたもので、制御方式がシンプルであり、夏期冬季を問わず、しかも他に比べ低温に維持しなければならないショーケースが混在していてもエネルギー消費の少ない圧縮機の運転が可能な複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムを提供することを目的とする。   The present invention has been made paying attention to such problems, and the control method is simple, regardless of summer / winter, and even if there are mixed showcases that must be kept at a lower temperature than others. An object of the present invention is to provide a centralized management system for refrigeration / refrigeration facilities having a plurality of showcases capable of operating a compressor with low energy consumption.

前記課題を解決するために、本発明の請求項1に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムは、複数のショーケースにそれぞれ内蔵した蒸発器に対し共通の圧縮機から吐出した冷媒を凝縮器を介して供給する冷凍サイクルにおいて、前記複数のショーケースの個々の冷却状態を示す情報に基づき、前記圧縮機の冷媒吸入圧力を設定する冷凍・冷蔵設備の集中管理システムであって、前記圧縮機の冷媒吸入圧力を、各ショーケース単位の運転状況情報、冷媒圧力、固有の圧力損失値に基づき設定して冷凍機の容量制御を行うに際し、前記圧縮機の冷媒吸入圧力は、運転されている各ショーケース側の個々の蒸発圧力からそれぞれのショーケースに基づく固有の圧力損失値を引いた値を所要時間毎に算出し、最も低い圧力値に基づいて所要時間毎に設定されることを特徴としている。
この特徴によれば、圧縮機の冷媒吸入圧力をショーケースに基づく固有の圧力損失値を考慮して、所要時間毎に最も低い圧力値に基づいて設定しているので、圧縮機の冷媒吸入圧力値を所要時間毎に絶えず選定することで、冷凍機のエネルギー消費を常に低い状態に維持できる。
In order to solve the above-mentioned problems, a centralized management system for a refrigeration / refrigeration facility having a plurality of showcases according to claim 1 of the present invention is a compressor common to evaporators incorporated in the plurality of showcases. Centralized management system for refrigeration / refrigeration equipment for setting refrigerant suction pressure of the compressor based on information indicating individual cooling states of the plurality of showcases in a refrigeration cycle for supplying refrigerant discharged from the condenser via a condenser The refrigerant suction pressure of the compressor is set when the refrigerant suction pressure of the compressor is set on the basis of the operation status information, the refrigerant pressure, and the inherent pressure loss value for each showcase unit to control the capacity of the refrigerator. The pressure is the lowest, calculated for each required time, by subtracting the specific pressure loss value based on each showcase from the individual evaporation pressure on each showcase being operated. It is characterized by being set for each required time on the basis of the force value.
According to this feature, the refrigerant suction pressure of the compressor is set based on the lowest pressure value for each required time in consideration of the inherent pressure loss value based on the showcase. By constantly selecting values for each required time, the energy consumption of the refrigerator can always be kept low.

本発明の請求項に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムは、請求項に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムであって、前記圧縮機の冷媒吸入圧力は所要時間毎に算出した最も低い圧力値から所定のオフセット量低い圧力としたことを特徴としている。
この特徴によれば、最も低い圧力値からさらにオフセット量低くし圧力値を圧縮機の冷媒吸入圧力とすることにより、冷凍機の冷却能力に余裕を持たせることができる。
A centralized management system for a refrigeration / refrigeration facility having a plurality of showcases according to claim 2 of the present invention is a centralized management system for a refrigeration / refrigeration facility having a plurality of showcases according to claim 1. The refrigerant suction pressure of the compressor is a pressure that is lower by a predetermined offset amount than the lowest pressure value calculated every required time.
According to this feature, the offset amount is further lowered from the lowest pressure value, and the pressure value is set as the refrigerant suction pressure of the compressor, so that the cooling capacity of the refrigerator can be given a margin.

本発明の請求項に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムは、請求項に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムであって、前記オフセット量低くした圧力値を上限値とし、該上限値より所定圧力更に低い圧力値を下限値とし、前記圧縮機の冷媒吸入圧力が前記上限値と下限値の範囲内に収まるように圧縮機が容量制御されることを特徴としている。
この特徴によれば、圧縮機の冷媒吸入圧力が上限値と下限値を有する一定のディファレンシャル差圧を有しているので、圧縮機の風量制御の追従性が良くなり、圧縮機の短時間での容量の反転動作(いわゆるハンチング)を防ぐことができる。
A centralized management system for a refrigeration / refrigeration facility having a plurality of showcases according to claim 3 of the present invention is a centralized management system for a refrigeration / refrigeration facility having a plurality of showcases according to claim 2. The pressure value with the offset amount lowered is set as the upper limit value, the pressure value lower than the upper limit value by a predetermined pressure is set as the lower limit value, and the refrigerant suction pressure of the compressor is compressed within the range between the upper limit value and the lower limit value. The capacity of the machine is controlled.
According to this feature, since the refrigerant suction pressure of the compressor has a constant differential pressure difference having an upper limit value and a lower limit value, the followability of the air flow control of the compressor is improved, and the compressor can be operated in a short time. Inversion operation (so-called hunting) can be prevented.

本発明の請求項に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムは、請求項に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムであって、前記ショーケースの冷却運転がすべて停止し、圧縮機の冷媒吸入圧力が前記下限値より所定値低下した場合に、冷凍機の運転を停止することを特徴としている。
この特徴によれば、デフロストで全てのショーケースの冷却運転が停止した場合に、圧縮機の冷媒吸入圧力が真空化するのを事前に防ぎ、冷凍システムの保護を図ることができる。
A centralized management system for a refrigeration / refrigeration facility having a plurality of showcases according to claim 4 of the present invention is a centralized management system for a refrigeration / refrigeration facility having a plurality of showcases according to claim 3. When the cooling operation of the showcase is all stopped and the refrigerant suction pressure of the compressor is lower than the lower limit value by a predetermined value, the operation of the refrigerator is stopped.
According to this feature, when the cooling operation of all the showcases is stopped due to defrost, it is possible to prevent the refrigerant suction pressure of the compressor from being evacuated in advance and to protect the refrigeration system.

本発明に係る複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムを実施するための最良の形態を実施例に基づいて以下に説明する。   The best mode for carrying out a centralized management system for a refrigeration / refrigeration facility having a plurality of showcases according to the present invention will be described below based on examples.

本発明の実施例1を図面に基づいて説明する。図1は、冷凍サイクルを説明するための本発明が適用される冷蔵又は冷凍ショーケースの一般的な構造説明図であり、図2は本発明の冷凍・冷蔵設備の集中管理システムの系統図であり、図3は制御管理ユニットの概略構成を示すブロック図であり、図4はショーケース単位の、種類や、圧力損失値等の各種情報を示した表であり、図5は、圧縮機の吸入圧力推移範囲を自動設定した場合のエコ運転状況を示す線図である。図1の符号1は、スーパーマーケットなどに設置されるオープンショーケースとして構成された冷蔵ショーケースであり、図1において1台しか示されていないが、冷凍ショーケースも含んで複数のショーケースが互いに間隔をおいて連設されており、これら複数のショーケースは一系統の冷凍機ユニット3により冷却制御されている。   A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a general structure of a refrigeration or refrigeration showcase to which the present invention is applied to explain a refrigeration cycle, and FIG. 3 is a block diagram showing a schematic configuration of the control management unit, FIG. 4 is a table showing various types of information such as types and pressure loss values in units of showcases, and FIG. It is a diagram which shows the eco-driving condition at the time of automatically setting the suction pressure transition range. Reference numeral 1 in FIG. 1 is a refrigerated showcase configured as an open showcase installed in a supermarket or the like. Although only one unit is shown in FIG. 1, a plurality of showcases including a frozen showcase are mutually connected. The plurality of showcases are connected to each other at intervals, and cooling is controlled by a single refrigerator unit 3.

冷凍機ユニット3は、圧縮機5,凝縮器7、受液器9を備え、凝縮器7からの冷媒は矢印で示すように、受液器9を介して電磁弁11,膨張弁13を通り蒸発器15に供給され、ここで冷媒は蒸発してショーケース1内を冷却し、その後、圧縮機5に回収される。また、ショーケース1本体内には商品陳列棚17が多段に設けられていると共に、ショーケース1の内周部には内側の冷気循環通路19と外側の空気循環通路21の2つの通路が2重構造に形設されている。   The refrigerator unit 3 includes a compressor 5, a condenser 7, and a liquid receiver 9, and the refrigerant from the condenser 7 passes through the electromagnetic valve 11 and the expansion valve 13 via the liquid receiver 9, as indicated by arrows. The refrigerant is supplied to the evaporator 15, where the refrigerant evaporates to cool the inside of the showcase 1, and is then collected by the compressor 5. Further, the display case 17 is provided with a plurality of product display shelves 17 in the main body of the showcase 1, and two passages, an inner cold air circulation passage 19 and an outer air circulation passage 21, are provided in the inner peripheral portion of the showcase 1. It is shaped into a heavy structure.

送風機23によりショーケース1内を循環する空気は、蒸発器15のところで冷却され、冷気となって内側の冷気循環通路19を経由してショーケース1の前面開口に導かれ、冷気エアーカーテン25を形成する。一方、送風機23によりショーケース1内を循環する空気は、冷気循環通路19の外側に設けた空気循環通路21を通り冷気エアーカーテン25の外側に保護エアーカーテン28を形成する。   The air circulated in the showcase 1 by the blower 23 is cooled at the evaporator 15, becomes cold air, is guided to the front opening of the showcase 1 through the inner cool air circulation passage 19, and the cool air curtain 25 is Form. On the other hand, the air circulated in the showcase 1 by the blower 23 passes through the air circulation passage 21 provided outside the cold air circulation passage 19 and forms a protective air curtain 28 outside the cold air curtain 25.

また、ショーケース1内には庫内温度を計測する温度センサー29が設置され、この温度センサー29からの信号は図示しないコントローラに入力される。コントローラは温度センサー29で計測した温度が予め設定した上下限値と比較し、上限値より高くなれば電磁弁11を開放して冷却を図り、下限値より低くなれば電磁弁11を閉鎖して冷却を停止し、ショーケース1の庫内温度が設定温度範囲内になるように制御している。   Further, a temperature sensor 29 for measuring the internal temperature is installed in the showcase 1, and a signal from the temperature sensor 29 is input to a controller (not shown). The controller compares the temperature measured by the temperature sensor 29 with the upper and lower limit values set in advance, and if the temperature is higher than the upper limit value, the solenoid valve 11 is opened and cooling is performed. If the temperature is lower than the lower limit value, the solenoid valve 11 is closed. Cooling is stopped, and control is performed so that the internal temperature of the showcase 1 falls within the set temperature range.

次に、図2に基づきは本発明の冷凍・冷蔵設備の集中管理システムについて説明する。冷凍機ユニット3は複数のショーケース1A、1B・・・に冷媒を循環供給している。即ち、冷凍機ユニット3に圧縮機5から凝縮器7、受液器9を介して各ショーケース1A、1B・・・の電磁弁11A,11B・・・、膨張弁13A,13B・・・を通り蒸発器15A,15B・・・に供給された冷媒は、蒸発して各ショーケース1A,1B・・・内を冷却し、その後、再び圧縮機5に戻される。   Next, based on FIG. 2, the centralized management system of the freezing / refrigeration equipment of this invention is demonstrated. The refrigerator unit 3 circulates and supplies the refrigerant to a plurality of showcases 1A, 1B,. That is, the electromagnetic valves 11A, 11B,..., Expansion valves 13A, 13B,... Of the showcases 1A, 1B,. The refrigerant supplied to the evaporators 15A, 15B,... Evaporates and cools the inside of each showcase 1A, 1B,.

各ショーケース1A,1B・・・内での温度制御は、先に説明したように、温度センサー29A,29B・・・からの信号に基づき各コントローラ31A,31B・・・からの出力信号で電磁弁11A,11B・・・を開閉制御することで行う。制御管理ユニット33は、各ショーケース1A,1B・・・の各コントローラ31A,31B・・・から運転状況情報や庫内温度情報を、また、電磁弁11A,11B・・・と膨張弁13A,13B・・・間の冷媒配管に設けた冷媒の入り口温度センサー35A,35B・・・で計測した蒸発器入り口温度からの計測情報、圧縮機5の冷媒吸入圧力を計測する圧力センサー37からの情報に基づき、最適な圧縮機の冷媒吸入圧力が得られるよう圧縮機制御部39に出力して圧縮機の運転制御を行って、冷凍・冷蔵設備の集中管理をする。   As described above, the temperature control in each showcase 1A, 1B,... Is based on the output signals from the controllers 31A, 31B,. This is done by controlling the opening and closing of the valves 11A, 11B. The control management unit 33 receives operation status information and internal temperature information from the controllers 31A, 31B... Of the showcases 1A, 1B..., And the electromagnetic valves 11A, 11B. Measurement information from the evaporator inlet temperature measured by the refrigerant inlet temperature sensors 35A, 35B... Provided in the refrigerant pipe between 13B..., Information from the pressure sensor 37 that measures the refrigerant suction pressure of the compressor 5 On the basis of the above, the compressor control unit 39 outputs the optimum refrigerant refrigerant suction pressure to control the operation of the compressor, thereby centrally managing the refrigeration / refrigeration equipment.

運転状況情報は冷媒が蒸発器15A,15B・・・内を流通しているかどうかを判断するものであり、電磁弁11A,11B・・・の開(オン),閉(オフ)で判断している。また、冷媒の入り口温度センサー35A,35B・・・で計測した温度は、制御管理ユニット33において各ショーケース1A,1B・・・の冷媒蒸発圧力(以下単に冷媒圧力という)に変換される。   The operating status information is used to determine whether the refrigerant is circulating in the evaporators 15A, 15B..., And is determined by opening (on) and closing (off) the solenoid valves 11A, 11B. Yes. Further, the temperatures measured by the refrigerant inlet temperature sensors 35A, 35B,... Are converted by the control management unit 33 into refrigerant evaporation pressures (hereinafter simply referred to as refrigerant pressures) of the showcases 1A, 1B,.

図3に示すように、制御管理ユニット33は、制御部33a、外部信号入力部33b、制御信号出力部33c、記憶部33d、表示部33eを備え、外部信号入力部33bには各コントローラ31A,31B・・・から所属の電磁弁11A,11B・・・のオン、オフ情報と、各ショーケース1A,1B・・・毎の蒸発器の入り口温度情報と、圧縮機5の冷媒吸入圧力情報とを受け取ると共に、操作端末を介し各種設定情報を入力することができる。   As shown in FIG. 3, the control management unit 33 includes a control unit 33a, an external signal input unit 33b, a control signal output unit 33c, a storage unit 33d, and a display unit 33e. The external signal input unit 33b includes each controller 31A, ON / OFF information of the solenoid valves 11A, 11B... Belonging to 31B..., Evaporator inlet temperature information for each showcase 1A, 1B..., Refrigerant suction pressure information of the compressor 5 And various setting information can be input via the operation terminal.

制御部33aでは電磁弁11A,11B・・・のオン、オフ情報により各ショーケース1A,1B・・・毎に運転状態にあるか否かを判定すると共に、各ショーケース1A,1B・・・毎の蒸発器の入り口温度情報より冷媒の蒸発温度を換算し、そのときの冷媒の蒸発圧力を演算して、記憶部33dに運転状態や演算結果を記憶保存する。また記憶部に33dにはメモリカード等の外部記憶媒体33d’に各種情報を記憶させて取り出すことができると共に、外部記憶媒体33d’に記憶した各種設定情報を記憶部33dに取り込むこともできる。   The controller 33a determines whether or not each showcase 1A, 1B,... Is in an operating state based on on / off information of the electromagnetic valves 11A, 11B,. The refrigerant evaporating temperature is converted from the inlet temperature information of each evaporator, the evaporating pressure of the refrigerant at that time is calculated, and the operating state and the calculation result are stored and stored in the storage unit 33d. In the storage unit 33d, various types of information can be stored in and retrieved from an external storage medium 33d 'such as a memory card, and various setting information stored in the external storage medium 33d' can be loaded into the storage unit 33d.

表示部33eは操作端末を介し各種設定情報を入力するときの情報を表示したり、あるいはショーケースの各種冷却情報(庫内温度等)を表示させるための信号変換部であり、制御部33a上にあるいは独立した表示パネル(図示せず)に各種冷却情報を表示させることができる。そして制御信号出力部33cでは、各種冷却情報に基づき制御部33aで演算した最適な圧縮機5の冷媒吸入圧力を得るために圧縮機制御部39に出力信号を送信する。圧縮機制御部39では圧縮機5の冷媒吸入圧力が制御部33aで演算した値になるように、インバータにより圧縮機5の回転数が可変制御される。   The display unit 33e is a signal conversion unit for displaying information when various setting information is input via the operation terminal or displaying various cooling information (such as the inside temperature) of the showcase. Alternatively, various kinds of cooling information can be displayed on an independent display panel (not shown). The control signal output unit 33c transmits an output signal to the compressor control unit 39 in order to obtain the optimum refrigerant suction pressure of the compressor 5 calculated by the control unit 33a based on various cooling information. In the compressor control unit 39, the rotational speed of the compressor 5 is variably controlled by the inverter so that the refrigerant suction pressure of the compressor 5 becomes a value calculated by the control unit 33a.

圧縮機を駆動するためのエネルギー消費を極力抑えた効率の良いエコ運転するためには、圧縮機5の冷媒吸入圧力の最適値を見いださなければならない。即ち、圧縮機の消費電力量は、圧縮機の吐出圧力から吸入圧力を引いた圧力差に左右されるため、圧縮機5の冷媒吸入圧力が高い圧力値で運転することが望ましいが、運転状態にある各ショーケース1A,1B・・・の蒸発器15A,15B・・・に冷媒を確実に循環供給するためには、刻々と変動する各ショーケース単位の冷媒圧力と、各ショーケース1A,1B・・・有する固有の圧力損失値を求める必要がある。ここで言う固有の圧力損失値とは各ショーケース1A,1B・・・に内蔵した個々の蒸発器15A,15B・・が有する冷媒の流路抵抗と、各ショーケース1A,1B・・・が配置された位置から圧縮機5までの冷媒管路抵抗を圧力の損失値として換算したもので、各ショーケース1A,1B・・・毎に実測して求め、その実測値を制御部33aの記憶部33dに予め記憶させておく。   In order to perform an efficient eco-operation with the energy consumption for driving the compressor being suppressed as much as possible, the optimum value of the refrigerant suction pressure of the compressor 5 must be found. That is, since the power consumption of the compressor depends on the pressure difference obtained by subtracting the suction pressure from the discharge pressure of the compressor, it is desirable that the refrigerant suction pressure of the compressor 5 be operated at a high pressure value. In order to reliably circulate and supply the refrigerant to the evaporators 15A, 15B,... Of each showcase 1A, 1B,. It is necessary to determine the inherent pressure loss value of 1B. The unique pressure loss value referred to here is the refrigerant flow resistance of each evaporator 15A, 15B,... Built in each showcase 1A, 1B,. The refrigerant pipe resistance from the arranged position to the compressor 5 is converted as a pressure loss value, and is obtained by actual measurement for each showcase 1A, 1B,..., And the actual measurement value is stored in the control unit 33a. Stored in the unit 33d in advance.

図4は、庫内温度を2〜15°Cに保つ青果用ショーケース、−2〜2°Cに保つ精肉鮮魚用ショーケースが含まれる複数のショーケース毎の、ショーケースの種類、圧縮機からショーケースまでの距離、圧力損失値、圧縮機の冷媒吸入圧力を0.14MPaで吸引したある時点での運転状態にあるショーケースにおける冷媒の蒸発圧力を一部省略して示したものであり、ショーケースは圧縮機から一番近いもので5m離れ、一番遠いものでは12m以上離れた状態で設置してある。   FIG. 4 shows the types of showcases and compressors for each of a plurality of showcases including a showcase for fruits and vegetables that keeps the internal temperature at 2 to 15 ° C., and a showcase for fresh meat and fish that keeps the inside temperature at −2 to 2 ° C. To the showcase, the pressure loss value, and the refrigerant evaporating pressure in the showcase in the operating state at a certain point when the refrigerant suction pressure of the compressor is sucked at 0.14 MPa. The showcase is located 5m away from the compressor and 12m or more away from the compressor.

そして図4に示すように、ショーケース1Aについて言えば、蒸発圧力(A)0.29MPaからショーケース1Aの固有の圧力損失値(R)0.015MPaを引いた値、即ち、(A)−(R)=0.29―0.015=0.275MPaより低い吸入圧で吸引しなければ流路抵抗により冷媒の流れが停止してしまうことになる。同様にショーケース1Bでは(A)−(R)=0.28―0.018=0.262MPa以下の吸入圧で吸引する必要がある。このようにして運転されているショーケース全てに冷媒を循環供給するためには、(A)−(R)の値が最も小さな値となるショーケース1Dの0.234MPaが基準となり、圧縮機吸引圧が0.234MPa以下で運転されればよいことになるが、実際には圧縮機の冷媒吸入圧力が0.14MPaで運転されているので問題はない。しかし、圧縮機の冷媒吸入圧力が0.14MPaになるように運転するには圧縮機のインバータ制御による回転数の増減を絶えず行わなければならないので、制御特性の安定性から一般には、ディファレンシャル差圧として本実施例1では0.03MPaだけ幅を持たせて運転するようになっている。   As shown in FIG. 4, for the showcase 1A, the value obtained by subtracting the inherent pressure loss value (R) 0.015 MPa of the showcase 1A from the evaporation pressure (A) 0.29 MPa, that is, (A) − Unless the suction pressure is lower than (R) = 0.29−0.015 = 0.275 MPa, the flow of the refrigerant stops due to the flow path resistance. Similarly, in the showcase 1B, it is necessary to perform suction at a suction pressure of (A) − (R) = 0.28−0.018 = 0.262 MPa or less. In order to circulate and supply the refrigerant to all the showcases operated in this way, 0.234 MPa of the showcase 1D where the value of (A)-(R) is the smallest value is used as a reference, and the suction of the compressor Although it is only necessary to operate at a pressure of 0.234 MPa or less, there is no problem because the compressor is actually operated at a refrigerant suction pressure of 0.14 MPa. However, in order to operate the compressor so that the refrigerant suction pressure becomes 0.14 MPa, it is necessary to constantly increase and decrease the rotational speed by the inverter control of the compressor. In Example 1, the operation is performed with a width of 0.03 MPa.

図4に示した各ショーケースの蒸発圧力(A)の値は、ある時点での値であり、次の瞬間にはオフになっていた電磁弁が開放してショーケースが運転状態に入ったり、逆に今まで運転状態にあったショーケースがデフロスト状態に入ることもあり、時々刻々と各ショーケース単位で(A)−(R)の値が変化している。従って(A)−(R)の値の最も小さな値は絶えず変化しそのたびに最適な圧縮機の冷媒吸入圧力の設定範囲を変化させる必要がある。   The value of the evaporation pressure (A) of each showcase shown in FIG. 4 is a value at a certain point in time. At the next moment, the solenoid valve that has been turned off is opened and the showcase enters an operating state. On the contrary, the showcase that has been in the driving state until now may enter the defrost state, and the value of (A)-(R) changes from moment to moment in units of each showcase. Accordingly, the smallest value of (A)-(R) constantly changes, and it is necessary to change the optimum setting range of the refrigerant suction pressure of the compressor each time.

図5は本発明の冷凍・冷蔵設備の集中管理システムのエコ運転の状況を示した線図であり、最適な圧縮機の冷媒吸入圧力の設定範囲が自動設定されている。図5における線分Xは制御管理ユニット33の制御部33aで運転中のショーケースの蒸発圧力値(A)から圧力損失値(R)を引いた値(A)−(R)を設定値毎に演算し、その最低値を各秒ごとに14秒間プロットしたものである。圧縮機の冷媒吸入圧力のロードアップ圧PU(線分Y)は、線分Xよりも0.03MPaのオフセット圧だけ低く設定して冷凍能力に余裕を持たせている。そして前記ようにロードアップ圧PUとロードダウン圧PD(線分Z)の差圧であるディファレンシャル差圧を0.03MPaとすることで、圧縮機の風量制御の追従性が良くすると共に、圧縮機の短時間での容量の反転動作(いわゆるハンチング)を防ぎ、制御特性の安定化を図っている。   FIG. 5 is a diagram showing the state of eco-operation of the centralized management system for refrigeration / refrigeration equipment according to the present invention, in which the optimum refrigerant suction pressure setting range is automatically set. A line segment X in FIG. 5 is a value (A)-(R) obtained by subtracting the pressure loss value (R) from the evaporation pressure value (A) of the showcase being operated by the control unit 33a of the control management unit 33 for each set value. The minimum value is plotted for 14 seconds every second. The refrigerant suction pressure load-up pressure PU (segment Y) of the compressor is set to be lower than the segment X by an offset pressure of 0.03 MPa so as to allow a sufficient freezing capacity. As described above, the differential pressure difference between the load-up pressure PU and the load-down pressure PD (line segment Z) is set to 0.03 MPa, thereby improving the followability of the compressor air volume control and the compressor. Thus, the inversion operation (so-called hunting) of the capacitor in a short time is prevented, and the control characteristics are stabilized.

最適な圧縮機の冷媒吸入圧力の自動設定について詳述すると、線分Xに対しオフセット圧である0.03MPa低い、線分Xと平行な線分Yがロードアップ線分となり、線分Yより更にディファレンシャル差圧である0.03MPa低い線分がロードダウン線分Z となる。従って、圧縮機5の冷媒吸入圧は1秒ごとに線分Yと線分Z間で線分Xに対し追従推移するようにフィードバック制御される。   The automatic setting of the optimum refrigerant suction pressure of the compressor will be described in detail. A line segment Y parallel to the line segment X, which is 0.03 MPa lower than the line segment X, is a load-up line segment. Further, a line segment lower by 0.03 MPa, which is a differential pressure difference, becomes a load down line segment Z. Accordingly, the refrigerant suction pressure of the compressor 5 is feedback-controlled so as to follow and follow the line segment X between the line segment Y and the line segment Z every second.

自動調節の方法は圧縮機5の冷媒吸入圧力を圧力センサー37で設定値毎に計測し、その計測値を制御管理ユニット33の外部信号入力部33bに取り込み、制御部33aで計測値がロードアップ圧PUとロードダウン圧PDの範囲内にあるように、制御信号出力部33cより圧縮機制御部39に出力する。圧縮機5の冷媒吸入圧力がロードアップ圧PUより高くなろうとする時はインバータ制御により圧縮機5の回転速度を上げ出力容量を増加させ、逆にロードダウン圧PDより低くなろうとする時は圧縮機5の回転速度を下げて出力容量を減少させる制御を行っている。これにより、圧縮機5の冷媒吸入圧力が常にロードアップ圧PUとロードダウン圧PDの範囲内にある。   In the automatic adjustment method, the refrigerant suction pressure of the compressor 5 is measured for each set value by the pressure sensor 37, the measured value is taken into the external signal input unit 33b of the control management unit 33, and the measured value is loaded by the control unit 33a. The control signal output unit 33c outputs the pressure to the compressor control unit 39 so that it is within the range of the pressure PU and the load down pressure PD. When the refrigerant suction pressure of the compressor 5 is going to be higher than the load up pressure PU, the rotation speed of the compressor 5 is increased by the inverter control to increase the output capacity, and conversely when it is going to be lower than the load down pressure PD, the compressor 5 is compressed. Control is performed to reduce the output capacity by lowering the rotational speed of the machine 5. Thereby, the refrigerant | coolant suction pressure of the compressor 5 is always in the range of the load up pressure PU and the load down pressure PD.

しかし、デフロストが一斉に入り全てのショーケースの電磁弁が閉止すると冷媒が流れなくなり、圧縮機5の冷媒吸入圧力がロードアップ圧PUとロードダウン圧PDの範囲内にとどまらず低下していくので、ロードダウン圧PDより低い所定圧になった時、制御信号出力部33cより圧縮機制御部39に停止指令信号を出して圧縮機の運転を止め冷凍システムの保護を図るようになっている。   However, when the defrosts all at once and the solenoid valves of all the showcases are closed, the refrigerant stops flowing, and the refrigerant suction pressure of the compressor 5 does not stay within the range of the load up pressure PU and the load down pressure PD, but decreases. When the predetermined pressure lower than the load down pressure PD is reached, a stop command signal is output from the control signal output unit 33c to the compressor control unit 39 to stop the operation of the compressor and protect the refrigeration system.

このように、圧縮機の冷媒吸入圧力は、冷媒の流れ抵抗と、圧縮機の制御上の安定性を考慮した上で極力高い吸入圧を選択しているので、圧縮機の運転に要するエネルギー消費を低く維持でき、設定値に余裕を持たせて低く設定していた従来の圧縮機駆動制御に比べ省エネ運転が実現できる。   Thus, the refrigerant suction pressure of the compressor is selected as high as possible in consideration of the flow resistance of the refrigerant and the control stability of the compressor. Can be kept low, and energy-saving operation can be realized as compared with the conventional compressor drive control in which the set value is set low with a margin.

本発明の実施例2を図6に基づいて説明する。図6は、圧縮機の吸入圧力推移範囲を手設定した場合のエコ運転状況を示す線図である。   A second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a diagram showing an eco-operation state when the suction pressure transition range of the compressor is manually set.

本実施例では、運転中のショーケースの蒸発圧力値(A)から圧力損失値(R)を引いた値(A)−(R)を設定値毎に演算し、その最低値を各秒ごとに記憶しある期間統計を取り、各最低値のうちで最も低い値を基準にしてその値よりオフセット圧引いた値をロードアップ圧とし、更にその値よりディファレンシャル差圧引いた値をロードダウン圧とし、ロードアップ圧とロードダウン圧範囲を固定してこの範囲内で圧縮機の吸入圧力推移させている。   In this embodiment, a value (A)-(R) obtained by subtracting the pressure loss value (R) from the evaporation pressure value (A) of the showcase during operation is calculated for each set value, and the minimum value is calculated every second. The value obtained by subtracting the offset pressure from the lowest value of each lowest value as a reference is used as the load-up pressure, and the value obtained by subtracting the differential differential pressure from that value is used as the load-down pressure. The load up pressure range and the load down pressure range are fixed, and the suction pressure of the compressor is changed within this range.

図6に示すように、最も低い基準圧が0.17MPaであり、オフセット圧の0.03MPaを考慮してロードアップ圧が0.14MPa、ロードダウン圧をディファレンシャル差圧(0.03MPa)分低い0.11MPaとしたものであり、ショーケースの蒸発圧力値(A)から圧力損失値(R)を引いた値(A)−(R)の最低値を各秒ごとにプロットした線分Xが高い圧を示しても、圧縮機の吸入圧力推移範囲は不変である。したがって、実施例1に比べ、圧縮機の吸入圧力推移範囲が線分Xに追従しない分だけ、線分Xの値が大きいときにエネルギー消費が多少多くなるが、冷媒の流れ抵抗と、圧縮機の制御上の安定性を考慮した上で極力高い吸入圧を手動選択しているので、従来の圧縮機駆動に比べ省エネ運転が実現できる。   As shown in FIG. 6, the lowest reference pressure is 0.17 MPa, the offset pressure is 0.03 MPa, the load up pressure is 0.14 MPa, and the load down pressure is reduced by the differential pressure difference (0.03 MPa). A line segment X in which a minimum value of values (A)-(R) obtained by subtracting the pressure loss value (R) from the evaporation pressure value (A) of the showcase is plotted every second is 0.11 MPa. Even if a high pressure is indicated, the range of the suction pressure of the compressor remains unchanged. Therefore, as compared with the first embodiment, the amount of energy consumption is slightly increased when the value of the line segment X is larger by the amount that the suction pressure transition range of the compressor does not follow the line segment X, but the flow resistance of the refrigerant, the compressor In consideration of the control stability, the suction pressure as high as possible is manually selected, so energy-saving operation can be realized as compared with the conventional compressor drive.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.

例えば、実施例では、冷媒の蒸発温度情報よりそのときの冷媒の蒸発圧力を演算して求めているが、直接冷媒の蒸発圧力をセンサーで検出するようにしても良い。また、実施例では、オフセット圧を0.03MPa、ディファレンシャル差圧を0.03MPaとして固定しているが、ショーケースの数や、用途、圧縮機の性能、使用時節等によって適宜その値を変えることができる。   For example, in the embodiment, the refrigerant evaporating pressure at that time is calculated from the refrigerant evaporating temperature information, but the refrigerant evaporating pressure may be directly detected by a sensor. In the embodiment, the offset pressure is fixed at 0.03 MPa and the differential differential pressure is set at 0.03 MPa. However, the values may be changed as appropriate depending on the number of showcases, application, compressor performance, time of use, etc. Can do.

更に、前記実施例では、一系統30台のショーケースを1台の冷凍機ユニットで冷媒を循環供給して、圧縮機の運転を制御管理ユニットで制御しているが、ショーケースの数は30台に限定されるものではなく、また、冷凍機ユニットを複数用意し複数台のショーケースを有するグループ毎に冷凍機ユニットを設けて多グループ化し、これらを制御管理ユニットで管理制御することも可能である。また、圧縮機はインバータ式圧縮機に限らず容量制御により吸入圧が可変にできるものであれば他の形式の圧縮機を使用しても良い。   Furthermore, in the above-described embodiment, the refrigerant is circulated and supplied to 30 showcases in one system with one refrigerator unit, and the operation of the compressor is controlled by the control management unit. However, the number of showcases is 30. It is not limited to a stand, and it is also possible to prepare multiple refrigeration units and provide refrigeration units for each group with multiple showcases, and to control them with the control management unit It is. Further, the compressor is not limited to the inverter type compressor, and any other type of compressor may be used as long as the suction pressure can be varied by capacity control.

冷凍サイクルを説明するための本発明が適用される冷蔵又は冷凍ショーケースの一般的な構造説明図である。It is general structure explanatory drawing of the refrigerating or freezing showcase to which this invention for refrigeration cycle is applied. 本発明の第1実施例に係わる冷凍・冷蔵設備の集中管理システムの系統図である。It is a systematic diagram of the centralized management system of the freezing / refrigeration equipment concerning the 1st example of the present invention. 制御管理ユニットの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a control management unit. ショーケース単位の、種類や、圧力損失値等の各種情報を示した表である。It is the table | surface which showed various information, such as a kind and a pressure loss value, in a showcase unit. 圧縮機の吸入圧力推移範囲を自動設定した場合のエコ運転状況を示す線図である。It is a diagram which shows the eco-operation state at the time of automatically setting the suction pressure transition range of a compressor. 圧縮機の吸入圧力推移範囲を手動設定した場合のエコ運転状況を示す線図である。It is a diagram which shows the eco-operation condition at the time of setting manually the suction pressure transition range of a compressor.

符号の説明Explanation of symbols

1,1A,1B キャビネット
3 冷凍機ユニット
5 圧縮機
7 凝縮器
9 受液器
11,11A,11B 電磁弁
13,13A,13B 膨張弁
15,15A,15B 蒸発器
17 商品陳列棚
19 冷気循環通路
21 空気循環通路
23 送風機
25 冷気エアーカーテン
28 保護エアーカーテン
29 温度センサー
31A,31B コントローラ
33 制御管理ユニット
33a 制御部
33b 外部信号入力部
33c 制御信号出力部
33d 記憶部
33d’ 外部記憶媒体
33e 表示部
35A、35B 冷媒の入り口温度センサー
37 圧力センサー
39 圧縮機制御部
1, 1A, 1B Cabinet 3 Refrigerator unit 5 Compressor 7 Condenser 9 Receiver 11, 11 A, 11 B Solenoid valve 13, 13 A, 13 B Expansion valve 15, 15 A, 15 B Evaporator 17 Product display shelf 19 Cold air circulation passage 21 Air circulation passage 23 Blower 25 Cold air curtain 28 Protective air curtain 29 Temperature sensor 31A, 31B Controller 33 Control management unit 33a Control unit 33b External signal input unit 33c Control signal output unit 33d Storage unit 33d 'External storage medium 33e Display unit 35A, 35B Refrigerant inlet temperature sensor 37 Pressure sensor 39 Compressor control unit

Claims (4)

複数のショーケースにそれぞれ内蔵した蒸発器に対し共通の圧縮機から吐出した冷媒を凝縮器を介して供給する冷凍サイクルにおいて、前記複数のショーケースの個々の冷却状態を示す情報に基づき、前記圧縮機の冷媒吸入圧力を設定する冷凍・冷蔵設備の集中管理システムであって、前記圧縮機の冷媒吸入圧力を、各ショーケース単位の運転状況情報、冷媒圧力、固有の圧力損失値に基づき設定して冷凍機の容量制御を行うに際し、前記圧縮機の冷媒吸入圧力は、運転されている各ショーケース側の個々の蒸発圧力からそれぞれのショーケースに基づく固有の圧力損失値を引いた値を所要時間毎に算出し、最も低い圧力値に基づいて所要時間毎に設定されることを特徴とする冷凍・冷蔵設備の集中管理システム。 In the refrigeration cycle in which the refrigerant discharged from the common compressor is supplied to the evaporators incorporated in each of the plurality of showcases via the condenser, the compression is performed based on information indicating individual cooling states of the plurality of showcases. This is a centralized management system for refrigeration and refrigeration equipment that sets the refrigerant suction pressure of the compressor, and sets the refrigerant suction pressure of the compressor based on the operation status information for each showcase unit, the refrigerant pressure, and the inherent pressure loss value. When controlling the capacity of the refrigerator, the refrigerant suction pressure of the compressor needs to be a value obtained by subtracting the specific pressure loss value based on each showcase from the individual evaporating pressure on each showcase being operated. A centralized management system for refrigeration and refrigeration equipment, which is calculated every hour and set for each required time based on the lowest pressure value . 前記圧縮機の冷媒吸入圧力は所要時間毎に算出した最も低い圧力値から所定のオフセット量低い圧力とした請求項に記載の冷凍・冷蔵設備の集中管理システム。 The centralized management system for a refrigeration / refrigeration facility according to claim 1 , wherein the refrigerant suction pressure of the compressor is set to a pressure that is a predetermined offset amount lower than a lowest pressure value calculated every required time. 前記オフセット量低くした圧力値を上限値とし、該上限値より所定圧力更に低い圧力値を下限値とし、前記圧縮機の冷媒吸入圧力が前記上限値と下限値の範囲内に収まるように圧縮機が容量制御される請求項に記載の冷凍・冷蔵設備の集中管理システム。 The pressure value with the offset amount lowered is set as the upper limit value, the pressure value lower than the upper limit value by a predetermined pressure is set as the lower limit value, and the compressor is set so that the refrigerant suction pressure of the compressor falls within the range between the upper limit value and the lower limit value. The centralized management system for refrigeration / refrigeration equipment according to claim 2 , wherein the capacity is controlled. 前記ショーケースの冷却運転がすべて停止し、圧縮機の冷媒吸入圧力が前記下限値より所定値低下した場合に、冷凍機の運転を停止する請求項に記載の冷凍・冷蔵設備の集中管理システム。 The centralized management system for refrigeration / refrigeration equipment according to claim 3 , wherein the operation of the refrigerator is stopped when all the cooling operations of the showcase are stopped and the refrigerant suction pressure of the compressor is lower than the lower limit value by a predetermined value. .
JP2005343599A 2005-11-29 2005-11-29 Centralized management system for refrigeration equipment with multiple showcases Active JP4767670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343599A JP4767670B2 (en) 2005-11-29 2005-11-29 Centralized management system for refrigeration equipment with multiple showcases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343599A JP4767670B2 (en) 2005-11-29 2005-11-29 Centralized management system for refrigeration equipment with multiple showcases

Publications (2)

Publication Number Publication Date
JP2007147184A JP2007147184A (en) 2007-06-14
JP4767670B2 true JP4767670B2 (en) 2011-09-07

Family

ID=38208789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343599A Active JP4767670B2 (en) 2005-11-29 2005-11-29 Centralized management system for refrigeration equipment with multiple showcases

Country Status (1)

Country Link
JP (1) JP4767670B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403918B2 (en) * 2008-01-25 2014-01-29 株式会社岡村製作所 Centralized management system for freezing and refrigeration equipment
JP2009174803A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
JP2009174802A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
JP2009178255A (en) * 2008-01-29 2009-08-13 Okamura Corp Freezing/refrigerating showcase
JP2010071613A (en) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd Centralized control system of cooling storage
JP5537788B2 (en) * 2008-09-22 2014-07-02 三洋電機株式会社 Ice heat storage system
JP2010078198A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Cooling system
JP2010236729A (en) * 2009-03-30 2010-10-21 Okamura Corp Centralized control system for freezing-refrigeration facility
CN107490231A (en) * 2017-08-22 2017-12-19 珠海格力电器股份有限公司 Heat pump and its control method, freezer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816560B2 (en) * 1989-01-24 1996-02-21 ダイキン工業株式会社 Air conditioner
JP3438551B2 (en) * 1997-10-16 2003-08-18 株式会社日立製作所 Air conditioner
JP4474800B2 (en) * 2001-06-05 2010-06-09 三菱電機株式会社 Refrigeration apparatus and refrigeration system
JP4253537B2 (en) * 2003-07-14 2009-04-15 三菱電機株式会社 Refrigeration air conditioner
JP4497915B2 (en) * 2003-12-19 2010-07-07 三洋電機株式会社 Cooling system

Also Published As

Publication number Publication date
JP2007147184A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4767670B2 (en) Centralized management system for refrigeration equipment with multiple showcases
US11226145B2 (en) Refrigerator and method for controlling a compressor based on temperature of storage compartment
KR102370565B1 (en) A refrigerator
JP5758663B2 (en) Air conditioner
KR101517248B1 (en) Control method for refrigerator
JP2009047418A (en) Refrigeration and air-conditioning unit, and control method of refrigeration and air-conditioning unit
JP4502584B2 (en) Control device for cooling system
JP5389408B2 (en) Control device for cooling system
JP6143585B2 (en) Showcase cooling system
JP2009174802A (en) Central control system for freezing and refrigerating equipment
JP2009174803A (en) Central control system for freezing and refrigerating equipment
US10145607B2 (en) Method for operating a refrigeration system for a cargo container
CN104321599B (en) For the controller of vapor compression system with for the method controlling vapor compression system
JP5403918B2 (en) Centralized management system for freezing and refrigeration equipment
JP2008014545A (en) Cooling device
JP2006125843A (en) Cooling cycle and refrigerator
JP4183451B2 (en) Control device for cooling system
KR102157544B1 (en) Refrigerator
JP2010236729A (en) Centralized control system for freezing-refrigeration facility
JP4284262B2 (en) Refrigeration air conditioner
CN114556035A (en) Refrigerator and control method thereof
JP4201729B2 (en) Control device for cooling system
JP6343180B2 (en) Refrigeration system
KR102153056B1 (en) A refrigerator and a control method the same
JP6307846B2 (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Ref document number: 4767670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250