JP4767004B2 - Method for forming printed circuit board conduction - Google Patents

Method for forming printed circuit board conduction Download PDF

Info

Publication number
JP4767004B2
JP4767004B2 JP2005346867A JP2005346867A JP4767004B2 JP 4767004 B2 JP4767004 B2 JP 4767004B2 JP 2005346867 A JP2005346867 A JP 2005346867A JP 2005346867 A JP2005346867 A JP 2005346867A JP 4767004 B2 JP4767004 B2 JP 4767004B2
Authority
JP
Japan
Prior art keywords
hole
substrate
wiring board
printed wiring
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005346867A
Other languages
Japanese (ja)
Other versions
JP2007157771A (en
Inventor
和司 東
義彦 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005346867A priority Critical patent/JP4767004B2/en
Publication of JP2007157771A publication Critical patent/JP2007157771A/en
Application granted granted Critical
Publication of JP4767004B2 publication Critical patent/JP4767004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

本発明は、プリント配線基板の導通構造とその導通形成方法に関するものであり、より詳しくは、金属線を用いて単層又は多層基板の配線層間の導通を形成する技術に関するものである。   The present invention relates to a conduction structure of a printed wiring board and a method for forming the conduction, and more particularly to a technique for forming conduction between wiring layers of a single layer or a multilayer board using a metal wire.

近年、電子機器の高密度化に伴い、集積回路の緻密化、高集積化が要求されるようになり、回路を形成したプリント配線基板としても、絶縁性基板の両面に配線層を形成したものや、複数の絶縁性基板と配線層とを交互に重ね合わせた状態とした高密度のものが広く使用されるようになった。   In recent years, with the increase in the density of electronic devices, there has been a demand for higher density and higher integration of integrated circuits. As a printed wiring board on which circuits are formed, wiring layers are formed on both sides of an insulating substrate. In addition, a high-density substrate in which a plurality of insulating substrates and wiring layers are alternately stacked has been widely used.

この種のプリント配線基板において、絶縁性基板を挟んで設けられている配線層同士や、配線層と電極との導通を形成する方法としては、絶縁性基板に通孔を開けて、その孔内部に導電性のメッキを施す方法や、通孔に金属線を通して導通を形成するものがあり、これらに関して種々の提案がなされている。   In this type of printed wiring board, as a method of forming electrical continuity between wiring layers provided between insulating boards or between a wiring layer and an electrode, through holes are formed in the insulating board, There are a method of applying conductive plating to the surface and a method of forming conduction through a metal wire in a through hole, and various proposals have been made for these.

それらの例を挙げれば、絶縁性基板に貫通孔を設けて当該貫通孔内壁に導電性のメッキを施す方法としては、例えば特許文献1に開示されている方法がある(例えば、特許文献1の図2等参照)。   For example, as a method of providing a through hole in an insulating substrate and conducting conductive plating on the inner wall of the through hole, there is a method disclosed in Patent Document 1 (for example, Patent Document 1). (See FIG. 2 etc.)

また、貫通孔に挿通した金属線で両側の配線層を電気的に接続する方法としては、例えば特許文献2に開示されているものがある(例えば、特許文献2の図1等参照)。   Moreover, as a method of electrically connecting the wiring layers on both sides with a metal wire inserted through the through hole, for example, there is one disclosed in Patent Document 2 (see, for example, FIG. 1 of Patent Document 2).

上記特許文献1には、ガラスエポキシ樹脂板の両面に電解銅箔が貼られた両面プリント基板にドリルで直径0.25mmの貫通孔を形成し、無電解銅メッキにより電解銅箔の表面及び貫通孔の内壁面に対して両面の電解銅箔を接続するスルーホールを形成する技術が記載されている(特許文献1の図2参照)。   In Patent Document 1, a through hole having a diameter of 0.25 mm is formed by a drill on a double-sided printed circuit board in which an electrolytic copper foil is pasted on both sides of a glass epoxy resin plate, and the surface and the penetration of the electrolytic copper foil are formed by electroless copper plating. A technique for forming a through-hole that connects electrolytic copper foils on both sides to the inner wall surface of a hole is described (see FIG. 2 of Patent Document 1).

また、上記特許文献2には、両面プリント基板の両側に形成した銅箔パターン同士を、貫通孔に挿通して端部を銅箔に半田付けしたピンを介して接続する技術が記載されている。このピンは、基板の厚みに半田付けに必要な寸法を加味した所定の寸法に一律に予め切断されたまっすぐな形状をしている(特許文献2の図1参照)。
特開平11−274698号公報 実開平4−26573号公報
Patent Document 2 describes a technique for connecting copper foil patterns formed on both sides of a double-sided printed circuit board through pins that are inserted into through holes and soldered to the copper foil at the ends. . This pin has a straight shape that is uniformly cut in advance to a predetermined dimension in which a dimension necessary for soldering is added to the thickness of the substrate (see FIG. 1 of Patent Document 2).
Japanese Patent Laid-Open No. 11-274698 Japanese Utility Model Publication No. 4-26573

しかしながら、上記特許文献1に開示されている従来のプリント配線基板は、貫通孔形成、表面処理等の他に、メッキ工程が必要であった。更に、貫通孔の形成により基板両面の配線パターンの接続を行うため、配線パターンの引き回しの制約などから、貫通孔の形成可能な範囲が限られており、導通設計の自由度が低いという課題があった。   However, the conventional printed wiring board disclosed in Patent Document 1 requires a plating process in addition to the formation of through holes and surface treatment. Furthermore, since the wiring patterns on both sides of the substrate are connected by forming the through holes, the range in which the through holes can be formed is limited due to restrictions on the routing of the wiring patterns, and there is a problem that the degree of freedom in conduction design is low. there were.

また、上記特許文献2に開示されている方法では、接続ピンを銅箔パターンからなる配線層に半田付けして固定するものであるから、所定のピン等を用意する必要があった。更に、特許文献1の場合と同様、配線パターンの引き回しの制約などから適用可能範囲が限られており、導通設計の自由度が低いという課題があった。   In the method disclosed in Patent Document 2, since the connection pins are soldered and fixed to the wiring layer made of a copper foil pattern, it is necessary to prepare predetermined pins and the like. Further, as in the case of Patent Document 1, the applicable range is limited due to restrictions on wiring pattern routing, and there is a problem that the degree of freedom in conduction design is low.

本発明は、上記従来のプリント配線基板のこの様な課題を考慮して、従来のメッキ工程や所定のピンが不要なプリント配線基板の導通形成方法を提供することを目的とする。 The present invention, in consideration of such problems of the conventional printed wiring board, conventional plating process and a predetermined pin and to provide a continuity method of forming unwanted print wiring board.

上記課題を解決するため、第1の本発明は、予め形成された貫通孔を有するプリント配線基板の表裏両面の電極又は配線パターン間の導通を得るプリント配線基板の導通形成方法であって、
前記貫通孔の前記基板表面側から、フレキシブルな金属線の先端部を挿入し、前記貫通孔の前記基板裏面から前記先端部を突き出させる工程と、
前記突き出させた前記金属線の先端部に金属塊を形成する工程と
前記金属塊を前記基板裏面の貫通孔の周辺の前記基板裏面に形成された前記電極又は配線パターン上に接続する工程と、
前記フレキシブルな金属線を前記貫通孔に対して上下方向にのみ移動させ、前記基板表面の貫通孔と、前記基板表面の貫通孔周辺の前記基板表面に形成された前記電極又は配線パターンと、に前記フレキシブルな金属線を接合する第1の接合工程と
前記金属塊を、前記基板裏面の貫通孔と、前記基板裏面の貫通孔の周辺の前記基板裏面に形成された前記電極又は配線パターンと、に圧接する第2の接合工程と、
を備えた、プリント配線基板の導通形成方法である。
In order to solve the above-mentioned problem, the first aspect of the present invention is a printed wiring board conduction forming method for obtaining conduction between electrodes or wiring patterns on both front and back surfaces of a printed wiring board having through holes formed in advance.
A step of inserting a distal end portion of a flexible metal wire from the substrate surface side of the through hole, and projecting the distal end portion from the back surface of the substrate of the through hole;
Forming a gold Shokukatamari the distal end of said protruded said metal wire,
Connecting the metal mass on the electrode or wiring pattern formed on the back surface of the substrate around the through hole on the back surface of the substrate ;
The flexible metal wire is moved only in the vertical direction with respect to the through hole, and the through hole on the substrate surface and the electrode or wiring pattern formed on the substrate surface around the through hole on the substrate surface, A first joining step for joining the flexible metal wires ;
A second bonding step of pressing the metal block to the through hole on the back surface of the substrate and the electrode or wiring pattern formed on the back surface of the substrate around the through hole on the back surface of the substrate;
It is the conduction | electrical_connection formation method of a printed wiring board provided with this.

又、第2の本発明は、上記第1の接合工程は、超音波振動による金属結合を生成する上記第1の本発明のプリント配線基板の導通形成方法である。 The second aspect of the present invention is the method for forming a continuity of a printed wiring board according to the first aspect of the present invention, wherein the first bonding step generates a metal bond by ultrasonic vibration .

又、第3の本発明は、上記金属塊を形成するとは、前記金属線の先端部に対し放電させて、前記金属線の先端部を前記貫通孔の直径より大きな球状構造に変形することである上記第2の本発明のプリント配線基板の導通形成方法である。 The third of the present invention, to form a upper Kikin Shokukatamari is discharged to the front end portion of the metal wire, deforming the distal portion of the metal wire in the larger spherical structure than the diameter of the through hole This is a conduction forming method for a printed wiring board according to the second aspect of the present invention.

又、第4の本発明は、前記金属線は、金線、アルミ線、銅線、又は半田線である上記第1の本発明のプリント配線基板の導通形成方法である。   According to a fourth aspect of the present invention, in the printed wiring board according to the first aspect of the present invention, the metal wire is a gold wire, an aluminum wire, a copper wire, or a solder wire.

本発明によれば、メッキ工程や所定のピンが不要であるという効果を発揮する。 According to the present invention, the effect that a plating process and a predetermined pin are unnecessary is exhibited.

以下、本発明の一実施の形態について具体的に説明する。
(実施の形態1)
ここでは、本発明のプリント配線基板、及びその導通形成方法の一実施の形態について、図1〜図4を中心に参照しながら同時に説明する。尚、図は本発明の実施形態を例示するもので、すべて模式的に表されている。
Hereinafter, an embodiment of the present invention will be described in detail.
(Embodiment 1)
Here, an embodiment of the printed wiring board of the present invention and the conduction forming method thereof will be described simultaneously with reference to FIGS. The drawings exemplify embodiments of the present invention, and all are schematically represented.

図1〜図4は、本発明のプリント配線基板の導通形成方法の一例としての工程を説明するための図であり、図4は、導通形成が完了した本発明のプリント配線基板の一例の概略断面図を示している。   1 to 4 are diagrams for explaining steps as an example of a method for forming a continuity of a printed wiring board according to the present invention, and FIG. 4 is an outline of an example of the printed wiring board according to the present invention in which continuity formation is completed. A cross-sectional view is shown.

まず図1〜図4を用いて、プリント配線基板の導通形成方法の一例について説明する。
図1に示す様に、公知のワイヤーボンディング用のツール10(以下、ボンディングツール10と呼ぶ)と、電気トーチとして使用する放電電極15、及び、貫通孔4を有する絶縁性基板2を準備する。但し、本発明と従来のボンディング方法との相違を一言で述べれば、貫通孔4を介して、いわゆるAuボールをプリント配線基板の裏側で形成する点である。
First, an example of a method for forming a continuity of a printed wiring board will be described with reference to FIGS.
As shown in FIG. 1, a known wire bonding tool 10 (hereinafter referred to as a bonding tool 10), a discharge electrode 15 used as an electric torch, and an insulating substrate 2 having a through hole 4 are prepared. However, if the difference between the present invention and the conventional bonding method is described in a word, a so-called Au ball is formed on the back side of the printed wiring board through the through hole 4.

図1に示す様に、このプリント配線基板1は、絶縁性基板2の両面に配線層(電極の場合も含む)3が形成されている。配線層3は、例えば銅箔で形成され、その表面にニッケルメッキが施されたものである。絶縁性基板2は、例えばポリイミド等の樹脂製であり、厚みは数十乃至数百ミクロンである。尚、プリント配線基板1は、絶縁性基板2の両面に銅箔を貼った後、エッチング処理により配線パターンを形成する。   As shown in FIG. 1, this printed wiring board 1 has wiring layers (including electrodes) 3 formed on both surfaces of an insulating substrate 2. The wiring layer 3 is made of, for example, copper foil, and the surface thereof is plated with nickel. The insulating substrate 2 is made of a resin such as polyimide, and has a thickness of several tens to several hundreds of microns. In the printed wiring board 1, a copper foil is pasted on both surfaces of the insulating substrate 2, and then a wiring pattern is formed by an etching process.

導通形成に際しては、まず所定の箇所に絶縁性基板2と配線層3とを貫通する貫通孔4をNCドリル(図示省略)などで穿孔する。尚、この場合、配線層3への穿孔は例えばエッチングにより、また絶縁性基板2への穿孔は、例えばレーザビーム加工等により行うことも可能である。   In forming the continuity, first, a through hole 4 penetrating the insulating substrate 2 and the wiring layer 3 is drilled at a predetermined location by using an NC drill (not shown). In this case, the hole in the wiring layer 3 can be formed by, for example, etching, and the hole in the insulating substrate 2 can be formed by, for example, laser beam processing.

貫通孔4の口径は、後述の線径9〜30ミクロン程度の金属線5が挿通できる大きさであればよく、通常は30〜50ミクロン程度である。   The diameter of the through-hole 4 should just be a magnitude | size which can insert the metal wire 5 of the below-mentioned wire diameter of about 9-30 microns, and is about 30-50 microns normally.

貫通孔4が穿孔されたら、図1に示すように、この貫通孔4に金属線5を挿通する。金属線5は、ボンディングツール10を用いて処理する。このボンディングツール10には、金属線5を通すキャピラリ10aと、金属線5をつかむクランパー10bが設けられており、長尺の金属線5を保持して、任意の長さに送り出すことができるようになっている。   When the through hole 4 is drilled, the metal wire 5 is inserted into the through hole 4 as shown in FIG. The metal wire 5 is processed using the bonding tool 10. The bonding tool 10 is provided with a capillary 10a for passing the metal wire 5 and a clamper 10b for holding the metal wire 5, so that the long metal wire 5 can be held and sent to an arbitrary length. It has become.

ボンディングツール10の先端部から配線層3までの距離dは、例えば50ミクロン程度である。金属線5としては、耐腐食性と電導性に優れた金線を用いるのが好ましい。なお、金線の太さは、9〜30ミクロン程度のものが好ましい。   The distance d from the tip of the bonding tool 10 to the wiring layer 3 is, for example, about 50 microns. As the metal wire 5, it is preferable to use a gold wire excellent in corrosion resistance and electrical conductivity. The thickness of the gold wire is preferably about 9 to 30 microns.

貫通孔4から図1の下側に約400ミクロン程度突出させた金線5の先端部を放電電極15によるスパークで球状化し、ボール(Auボール)5aを形成する。形成されるボール5aの直径は50〜70ミクロン程度とするのが好ましい。   The tip of the gold wire 5 that protrudes about 400 microns from the through hole 4 to the lower side in FIG. 1 is spheroidized by sparks from the discharge electrode 15 to form a ball (Au ball) 5a. The diameter of the formed ball 5a is preferably about 50 to 70 microns.

この様にボール5aを形成する工程が、本発明の「突き出させた前記金属線の先端部に所定の加工を施して金属塊を形成する工程、又は、前記金属線の先端部を折り曲げる工程」の「又は」の前の記載部分の一例である。   The step of forming the ball 5a in this way is the “step of forming a metal lump by applying a predetermined processing to the tip of the protruding metal wire, or the step of bending the tip of the metal wire” of the present invention. It is an example of the description part before "or".

つぎに、図2に示すように、ボンディングツール10を上方に移動させて、金線5の先端部に形成されたボール5aが貫通孔4の開口部に当接するまで金線を引っ張る。   Next, as shown in FIG. 2, the bonding tool 10 is moved upward, and the gold wire is pulled until the ball 5 a formed at the tip of the gold wire 5 contacts the opening of the through hole 4.

次に、図3に示すように、ボンディングツール10を絶縁性基板2の上面側の配線層3上にスライド移動させて導通を形成すべき箇所に金線5をボンディング接合(接合箇所をMで示す)する。この接合は、金線5に下向きの荷重を加えるとともに、超音波振動とプリント配線基板1への加熱(加熱が不要の場合もある)を付加して、金線5を配線層3に金属接合させるものである。   Next, as shown in FIG. 3, the bonding tool 10 is slid onto the wiring layer 3 on the upper surface side of the insulating substrate 2 so that the gold wire 5 is bonded and bonded to the position where conduction should be formed (the bonding position is M). Show) In this bonding, a downward load is applied to the gold wire 5, and ultrasonic vibration and heating to the printed wiring board 1 (heating may be unnecessary) are applied to the gold wire 5 to the wiring layer 3. It is something to be made.

このボンディング接合が完了すると、図4に示す様に、金線5を繰り出しながらボンディングツール10を上方に移動させ、次の工程の前準備のために、金線5がボンディングツール10の先端部から所定の寸法(約600ミクロン)出た時点で、クランパー10bで金線5を固定して、その状態のまま、ボンディングツール10を更に上方に移動させる。この時、金線5は、接合箇所から自動的に切断(切断箇所をSで示す)される。   When this bonding is completed, as shown in FIG. 4, the bonding tool 10 is moved upward while feeding out the gold wire 5, and the gold wire 5 is moved from the tip of the bonding tool 10 for preparation before the next process. When the predetermined dimension (about 600 microns) comes out, the gold wire 5 is fixed by the clamper 10b, and the bonding tool 10 is moved further upward in that state. At this time, the gold wire 5 is automatically cut from the joint portion (the cut portion is indicated by S).

これにより、図4に示すように、絶縁性基板2の両面に形成された配線層3,3が貫通孔4に挿通した金線5で電気的に接続される。   As a result, as shown in FIG. 4, the wiring layers 3 and 3 formed on both surfaces of the insulating substrate 2 are electrically connected by the gold wire 5 inserted into the through hole 4.

なお、金線5の下側端部に形成されたボール5aは、金線5が引き上げられるときに塑性変形するが、さらに、加圧用治具を用いて下側からボール5aを加圧(P)することにより、下側の配線層3に圧接される。尚、上記ボンディング接合の場合と同様に、超音波振動と基板加熱を付加しても良い。また、下側のボール5aは、圧接以外の方法で配線層3に接続してもよい。   The ball 5a formed on the lower end portion of the gold wire 5 is plastically deformed when the gold wire 5 is pulled up, but further pressurizes the ball 5a from the lower side using a pressing jig (P ) To be in pressure contact with the lower wiring layer 3. Note that ultrasonic vibration and substrate heating may be added in the same manner as in the case of bonding bonding. Further, the lower ball 5a may be connected to the wiring layer 3 by a method other than pressure contact.

以上の図1〜図4の工程及び操作を繰り返すことにより、所望の導通を能率的かつ連続的に形成することができるのである。   By repeating the steps and operations shown in FIGS. 1 to 4, desired conduction can be formed efficiently and continuously.

尚、図1〜図4では、金線の両端部をともに配線層に接続する例を示したが、例えば、プリント配線基板1の上面での接合は、ICチップの電極や配線層の電極に接続することも可能である。   1 to 4 show an example in which both ends of the gold wire are connected to the wiring layer. For example, the bonding on the upper surface of the printed wiring board 1 is performed on the electrode of the IC chip or the electrode of the wiring layer. It is also possible to connect.

本実施の形態によれば、簡単な導通形成構造でありながら、絶縁性基板の両側に形成されている配線層間の導通を確実に形成することができる。   According to the present embodiment, it is possible to reliably form conduction between the wiring layers formed on both sides of the insulating substrate while having a simple conduction forming structure.

さらに、金線は、線自体が柔軟性を有したフレキシブルな金属線であるので、図3の上側の配線層3への圧接は、その様なフレキシブルな金線を繰り出しながら所望の位置にツール10を自由に移動させて行うことができる。従って、貫通孔4から離れた任意の場所への接続も容易に行える。これにより、貫通孔の形成可能な範囲の制限が小さくなり、導通設計の自由度が高くなるという格別の効果を発揮する。同時に、配線層の余計な引き回しも不要となる。   Further, since the gold wire is a flexible metal wire having flexibility, the pressure contact with the wiring layer 3 on the upper side in FIG. 3 allows the tool to be placed at a desired position while feeding out such a flexible gold wire. 10 can be moved freely. Therefore, connection to an arbitrary place away from the through hole 4 can be easily performed. Thereby, the limitation of the range in which the through-hole can be formed is reduced, and a special effect that the degree of freedom of conduction design is increased is exhibited. At the same time, no extra wiring layer is required.

また、本発明の適用により、次の様な副次的効果が得られる。   In addition, the following secondary effects can be obtained by applying the present invention.

即ち、従来技術の説明で述べた特許文献1のケースでは、スルーホールの形成により基板両面の配線パターンの接続状態は、その機種固有のものとなっていたため、別機種への利用が不可能である。そのため、機種変更等に伴う回路設計変更時には、基板両面の配線パターンの接続自体を新たに設計しなおす必要があり、一品一様の設計を余儀なくされていた。   In other words, in the case of Patent Document 1 described in the description of the prior art, the connection state of the wiring patterns on both sides of the board is unique to the model due to the formation of the through hole, so that it cannot be used for another model. is there. For this reason, when the circuit design is changed due to a model change or the like, it is necessary to newly redesign the connection of the wiring patterns on both sides of the board, and it is necessary to design one product uniformly.

これに対し、本発明によれば、貫通孔の形成可能範囲の制限は従来より軽く、導通形成は、配線の引き回せる範囲であれば自由に行えるので、一つの基板において複数の機種に対応可能なユニバーサル基板を設計することが可能となる。そのため、複数機種の仕様に応じた導通形成に、本発明の方法を適用することで、機種毎に基板そのものの設計変更をする必要が無く、開発コストを削減することが出来るという効果を発揮し得る。   On the other hand, according to the present invention, the limit of the range in which the through hole can be formed is lighter than before, and the conductive formation can be freely performed as long as the wiring can be routed. It becomes possible to design a universal substrate. Therefore, by applying the method of the present invention to the formation of continuity according to the specifications of multiple models, there is no need to change the design of the board itself for each model, and the development cost can be reduced. obtain.

次に、図5は、本発明の一例ではあるが、上記と異なる導通形成方法とその様な方法により形成されたプリント配線基板を表すものである。   Next, although FIG. 5 is an example of the present invention, it represents a conduction forming method different from the above and a printed wiring board formed by such a method.

この方法では、絶縁性基板2の両面に設けられた配線層3を貫通する貫通孔4に挿通した金線5の先端部にはボール5aを形成することなく、その先端部を折り曲げて、下側の配線層3に上記ボンディング以外の接続方法として圧接による電気的な接続(図中、接続部分をNで表した)を達成するものである。   In this method, the tip portion of the gold wire 5 inserted through the through hole 4 penetrating the wiring layer 3 provided on both surfaces of the insulating substrate 2 is bent without forming the ball 5a, As a connecting method other than the bonding described above, electrical connection by pressure contact (in the drawing, the connection portion is represented by N) is achieved with the wiring layer 3 on the side.

尚、この変形例において、ボール5aを形成することなく、その先端部を折り曲げる工程は、本発明の「突き出させた前記金属線の先端部に所定の加工を施して金属塊を形成する工程、又は、前記金属線の先端部を折り曲げる工程」の「又は」の後の記載の一例である。   In this modified example, the step of bending the tip portion without forming the ball 5a is the step of forming a metal lump by applying predetermined processing to the tip portion of the protruding metal wire of the present invention. Or it is an example of the description after "or" of "the process of bending the tip of the metal wire".

又、この変形例により形成されたプリント配線基板は、本発明の「金属線の他方の端部が、上記貫通孔から折り曲げられた状態で上記電極又は配線パターン上に接続されている」場合の一例である。   Further, the printed wiring board formed according to this modification is the case of the present invention “when the other end of the metal wire is connected to the electrode or the wiring pattern in a state bent from the through hole”. It is an example.

この方法によると、ボール5a形成のためのスパーク用の放電電極15は不要となるので、その分だけ設備が少なくてすむという利点がある。   According to this method, since the spark discharge electrode 15 for forming the ball 5a is not necessary, there is an advantage that less equipment is required.

また、絶縁性基板2の上面側の接合位置は(図中、Mで表した)、上記の場合と同様に、柔軟性に富むフレキシブルな金線であるからボンディングツールにより自由に引き回し可能である。そのため、効果に関しても、上記の場合と同様、貫通孔4から離れた任意の箇所への接続も簡単であり、導通設計の自由度が向上するという格別の効果を発揮する。   Further, since the bonding position on the upper surface side of the insulating substrate 2 (represented by M in the figure) is a flexible gold wire having a high flexibility, it can be freely drawn by a bonding tool. . Therefore, as for the effect, as in the case described above, connection to an arbitrary location away from the through-hole 4 is easy, and an extraordinary effect that the degree of freedom of conduction design is improved is exhibited.

尚、言うまでもなく、従来技術のように、貫通孔4へのメッキや、貫通孔に挿通するピンは不要である。   Needless to say, as in the prior art, plating on the through hole 4 and pins inserted into the through hole are unnecessary.

更に、上記実施の形態の変形例として、図6に示す様な接合も可能である。図6の例では、図1,2の工程を経た後、ボンディングツール10を横方向に移動させることなく、そのまま貫通孔4側に向けて下降させて金線5に下向きの荷重を加えるとともに、超音波振動とプリント配線基板1への加熱(加熱が不要の場合もある)を付加して、金線5を配線層3に金属接合させるものである。   Furthermore, as a modification of the above embodiment, joining as shown in FIG. 6 is possible. In the example of FIG. 6, after passing through the steps of FIGS. 1 and 2, without moving the bonding tool 10 in the lateral direction, the bonding tool 10 is lowered toward the through hole 4 as it is and a downward load is applied to the gold wire 5. Ultrasonic vibration and heating to the printed wiring board 1 (heating may be unnecessary) are added, and the gold wire 5 is metal-bonded to the wiring layer 3.

また、プリント配線基板1の下側の接合は、加圧用治具を用いて下側からボール5aを加圧(図6において、加圧方向をPで表した)することにより、下側の配線層3に圧接される。尚、上記ボンディング接合の場合と同様に、超音波振動と基板加熱を付加しても良い。また、下側のボール5aは、圧接以外の方法で配線層3に接続してもよい。この変形例は、「金属線の他方の端部が、上記貫通孔を中心として上記電極又は配線パターン上に接続されている」場合の一例である。
(実施の形態2)
つぎに、本発明のプリント配線基板、及びその導通形成方法の一実施の形態について図7〜図9を参照しながら同時に説明する。
Further, the lower side of the printed wiring board 1 is joined by pressing the ball 5a from the lower side using a pressing jig (the pressing direction is represented by P in FIG. 6). Pressed against layer 3. Note that ultrasonic vibration and substrate heating may be added in the same manner as in the case of bonding bonding. Further, the lower ball 5a may be connected to the wiring layer 3 by a method other than pressure contact. This modification is an example of the case where “the other end of the metal wire is connected to the electrode or the wiring pattern with the through hole as the center”.
(Embodiment 2)
Next, an embodiment of the printed wiring board of the present invention and the conduction forming method thereof will be described simultaneously with reference to FIGS.

図7に示す様に、両面に配線層(電極の場合も含む)3,3が形成された絶縁性基板2の下側の配線層3には貫通孔を形成せず、絶縁性基板2の下面の位置、すなわち下側の配線層3の上側の面が露出する凹部40を形成する。尚、凹部40の形成に関しては、絶縁性基板2に対して貫通孔を形成後に銅箔を貼ってもよいし、絶縁性基板2に銅箔を貼った後で、エッチングやレーザ加工により凹部を形成しても良い。   As shown in FIG. 7, no through-hole is formed in the lower wiring layer 3 on which the wiring layers (including electrodes) 3 and 3 are formed on both sides, and the insulating substrate 2 A recess 40 is formed in which the position of the lower surface, that is, the upper surface of the lower wiring layer 3 is exposed. In addition, regarding formation of the recessed part 40, you may affix a copper foil after forming a through-hole with respect to the insulating substrate 2, and after affixing a copper foil to the insulating substrate 2, a recessed part is formed by an etching or laser processing. It may be formed.

そして、この凹部の底面に露出した配線層3の表面に対して、いわゆるボールボンディング接合を行う。図中では接合部分をMで示す。このボンディング接合の構成を更に詳細に説明する。   Then, so-called ball bonding is performed on the surface of the wiring layer 3 exposed on the bottom surface of the recess. In the figure, the joining portion is indicated by M. The structure of this bonding will be described in more detail.

即ち、前工程で予め所定の寸法だけ金線5が繰り出されており、その先端部を放電により球状化し(図示省略)、配線層3が露出した凹部40の底面に対して、ボンディングツール10を降下させて、金線5の球状先端部をボンディング接合する。   That is, the gold wire 5 is drawn out in advance by a predetermined dimension in the previous process, and the tip portion thereof is spheroidized by discharge (not shown), and the bonding tool 10 is applied to the bottom surface of the recess 40 where the wiring layer 3 is exposed. Then, the spherical tip of the gold wire 5 is bonded by bonding.

その後、次の工程の前準備のために所定寸法の金線5を繰り出しながら、ボンディングツール10を上方に移動させた後(図7参照)、図8に示すように、ボンディングツール10を横方向に移動させて上側の配線層3の所望の位置に金線に対し、いわゆるリードボンディング接合を行う。   Thereafter, the gold wire 5 having a predetermined size is drawn out for preparation for the next step, and the bonding tool 10 is moved upward (see FIG. 7). Then, as shown in FIG. So as to perform so-called lead bonding to the gold wire at a desired position on the upper wiring layer 3.

しかるのち、図9に示す様に、次の工程の前準備のために金線5を繰り出しながらボンディングツール10を引き上げる。金線5が所定の寸法に達した時点でクランパー10bで金線5を固定して、そのままボンディングツール10を上方へ移動させる。これにより、自動的に金線5が接合箇所Mから切断される。これによって、図9に示すような導通形成状態の完成したプリント配線基板100が得られる。   After that, as shown in FIG. 9, the bonding tool 10 is pulled up while the gold wire 5 is fed out for preparation before the next step. When the gold wire 5 reaches a predetermined dimension, the gold wire 5 is fixed by the clamper 10b, and the bonding tool 10 is moved upward as it is. As a result, the gold wire 5 is automatically cut from the joint M. As a result, a completed printed wiring board 100 in a conductive formation state as shown in FIG. 9 is obtained.

ここで、本実施の形態の「上側の配線層3の所望の位置」が、本発明の「プリント配線基板の表面若しくは裏面の電極又は配線パターン上」の一例である。   Here, the “desired position of the upper wiring layer 3” in the present embodiment is an example of “on the electrode or wiring pattern on the front or back surface of the printed wiring board” of the present invention.

本実施の形態によれば、単層基板に関して、基板表面に形成された凹部の底面に露出させた基板下面の配線層や電極と、基板表面の配線層や電極と間の導通を、公知のボンディングツールをそのまま利用出来る。   According to the present embodiment, with respect to a single-layer substrate, the connection between the wiring layer and the electrode on the lower surface of the substrate exposed on the bottom surface of the recess formed on the surface of the substrate and the wiring layer and the electrode on the substrate surface is known. Bonding tools can be used as they are.

また、メッキ処理が不要であることに加え、上記実施の形態1で述べた様に、導通設計の自由度が高いという効果を発揮する。そのためにユニバーサル基板の設計が可能となり、基板の開発コストを削減することが出来得るという副次的な効果も発揮し得る。   Moreover, in addition to the fact that the plating process is not necessary, as described in the first embodiment, the effect that the degree of freedom of the conduction design is high is exhibited. Therefore, it is possible to design a universal substrate, and it is possible to exert a secondary effect that the development cost of the substrate can be reduced.

(実施の形態3)
つぎに、本発明のプリント配線基板、及びその導通形成方法の一実施の形態について図10〜図11を参照しながら同時に説明する。
(Embodiment 3)
Next, an embodiment of the printed wiring board and the conduction forming method of the present invention will be described simultaneously with reference to FIGS.

上記の実施形態2では、単一の絶縁性基板2の両面に配線層3,3が形成されたプリント配線基板100について説明したが、図10以下に示す実施の形態では、複数の絶縁性基板と配線層が重なり合った構造の多層構造のプリント配線基板101に、上記実施の形態2と同様な処理を施す例を表している。   In the second embodiment, the printed wiring board 100 in which the wiring layers 3 and 3 are formed on both sides of the single insulating board 2 has been described. However, in the embodiment shown in FIG. In this example, the same processing as that of the second embodiment is performed on the printed wiring board 101 having a multilayer structure in which the wiring layers overlap each other.

図10に示すプリント配線基板101は、3枚の絶縁性基板2,…が配線層3を介して重ね合わされた構造となっており、最下層の絶縁性基板2と中間層の絶縁性基板2との間に形成された配線層3Aと、最上層の絶縁性基板2の上面に形成された電極又は配線層3Bとの間に導通を形成する例を表している。図中の6は接着剤層である。   A printed wiring board 101 shown in FIG. 10 has a structure in which three insulating boards 2,... Are stacked with a wiring layer 3 interposed therebetween, and the lowermost insulating board 2 and the intermediate insulating board 2. In this example, continuity is formed between the wiring layer 3A formed between the electrodes and the wiring layer 3B formed on the upper surface of the uppermost insulating substrate 2. 6 in the figure is an adhesive layer.

この導通形成に際しては、まず下側の配線層3Aの表面が露出する凹部41(絶縁性基板2を貫通するが、下側の配線層3は貫通しないので、有底の凹部となっている)を形成する。尚、凹部41の形成に関しては、積層された2枚の絶縁性基板2に対して貫通孔を形成後に、銅箔を貼った絶縁性基板2を積層してもよいし、3枚の絶縁性基板2を先に積層してから、エッチングやレーザ加工により凹部41を形成しても良い。   When this conduction is formed, first, the concave portion 41 in which the surface of the lower wiring layer 3A is exposed (through the insulating substrate 2, but the lower wiring layer 3 does not penetrate, so it has a bottomed concave portion). Form. In addition, regarding formation of the recessed part 41, after forming a through-hole with respect to the laminated | stacked 2 sheets of insulating board | substrates 2, you may laminate | stack the insulating board | substrate 2 which stuck copper foil, or 3 sheets of insulating properties. After the substrate 2 is laminated first, the recess 41 may be formed by etching or laser processing.

そして、表面が露出した配線層3Aの表面に金線5の先端部を実施の形態2で説明した場合と同様に、ボールボンディング接合する(図10では接合部分をMとした)。この場合、配線層3Aの表面に金メッキ層等の薄膜層を形成しておくのが好ましいことは上記のとおりである。   Then, the tip of the gold wire 5 is bonded to the surface of the wiring layer 3A whose surface is exposed in the same manner as described in the second embodiment (the bonding portion is M in FIG. 10). In this case, as described above, it is preferable to form a thin film layer such as a gold plating layer on the surface of the wiring layer 3A.

しかるのち、金線5を繰り出しながらボンディングツール10を上方に移動させ(図10参照)、さらに横方向にも移動させて、金線5を上側の配線層3Bの所定箇所上にリードボンディング接合する。   Thereafter, the bonding tool 10 is moved upward while feeding out the gold wire 5 (see FIG. 10), and is further moved in the lateral direction to bond the gold wire 5 to a predetermined portion of the upper wiring layer 3B. .

その後、図11に示す様に、ボンディングツール10を上方に引き上げることにより、金線5は自動的に接合箇所Mから切断される。これにより、図11に示すような導通形成状態のプリント配線基板101が得られる。   Thereafter, as shown in FIG. 11, the gold wire 5 is automatically cut from the joint portion M by pulling the bonding tool 10 upward. As a result, a printed wiring board 101 in a conductive formation state as shown in FIG. 11 is obtained.

本実施の形態によれば、多層基板に関しても、上記実施の形態2の場合と同様に、公知のボンディングツールが利用可能である。   According to the present embodiment, a known bonding tool can be used for the multilayer substrate as in the case of the second embodiment.

また、メッキ処理が不要であることに加え、上記実施の形態1で述べた様に、導通設計の自由度が高いという効果を発揮する。そのためにユニバーサル基板の設計が可能となり、基板の開発コストを削減することが出来得るという副次的な効果も発揮し得る。
(実施の形態4)
つぎに、本発明のプリント配線基板、及びその導通形成方法の一実施の形態について図12〜図13を参照しながら同時に説明する。
Moreover, in addition to the fact that the plating process is not necessary, as described in the first embodiment, the effect that the degree of freedom of the conduction design is high is exhibited. Therefore, it is possible to design a universal substrate, and it is possible to exert a secondary effect that the development cost of the substrate can be reduced.
(Embodiment 4)
Next, an embodiment of the printed wiring board of the present invention and its conduction forming method will be described simultaneously with reference to FIGS.

上記実施の形態3は、内層の配線層と外層の配線層との間の導通形成の例であったが、本実施の形態では、内層の配線層同士の導通形成の一例について述べる。   Although the third embodiment is an example of the formation of conduction between the inner wiring layer and the outer wiring layer, in the present embodiment, an example of the conduction formation between the inner wiring layers will be described.

具体的には、図12に示す様に、多層構造のプリント配線基板102において、最下層の絶縁性基板2と中間層の絶縁性基板2との間に形成されている配線層3Aと、中間層の絶縁性基板2と最上層の絶縁性基板2との間に形成されている配線層3Cとの間に導通を形成する例を表している。   Specifically, as shown in FIG. 12, in a printed wiring board 102 having a multilayer structure, a wiring layer 3A formed between the lowermost insulating substrate 2 and the intermediate insulating substrate 2, and an intermediate layer In this example, conduction is formed between the insulating substrate 2 of the upper layer and the wiring layer 3 </ b> C formed between the uppermost insulating substrate 2.

この場合も、上記実施の形態3と同様、最下層の絶縁性基板2上に形成されている配線層3Aの表面が露出する凹部42を形成する。   Also in this case, as in the third embodiment, the recess 42 is formed in which the surface of the wiring layer 3A formed on the lowermost insulating substrate 2 is exposed.

そして、上記実施の形態3と同様に、凹部42の底面に露出した配線層3Aの表面にボールボンディング接合する。   Then, similarly to the third embodiment, ball bonding is performed on the surface of the wiring layer 3 </ b> A exposed on the bottom surface of the recess 42.

一方、凹部42の上部は、中間層の絶縁性基板2の上面に形成されている配線層3Cが露出するように拡張部42aを有している。この拡張部42aの底面に露出した配線層3Cに対して、リードボンディング接合を行う。その後の動作は、上記実施の形態3と同様であるので記載を省略する。これにより、図13に示すような導通形成状態のプリント配線基板102が得られる。   On the other hand, the upper part of the recessed part 42 has an extended part 42a so that the wiring layer 3C formed on the upper surface of the insulating substrate 2 of the intermediate layer is exposed. Lead bonding is performed to the wiring layer 3C exposed on the bottom surface of the extended portion 42a. Since the subsequent operation is the same as that of the third embodiment, description thereof is omitted. As a result, a printed wiring board 102 in a conductive formation state as shown in FIG. 13 is obtained.

本実施の形態によれば、多層基板に関しても、上記実施の形態2の場合と同様に、公知のボンディングツールが利用可能である。   According to the present embodiment, a known bonding tool can be used for the multilayer substrate as in the case of the second embodiment.

また、メッキ処理が不要であることに加え、上記実施の形態1で述べた様に、導通設計の自由度が高いという効果を発揮する。そのためにユニバーサル基板の設計が可能となり、基板の開発コストを削減することが出来得るという副次的な効果も発揮し得る。   Moreover, in addition to the fact that the plating process is not necessary, as described in the first embodiment, the effect that the degree of freedom of the conduction design is high is exhibited. Therefore, it is possible to design a universal substrate, and it is possible to exert a secondary effect that the development cost of the substrate can be reduced.

図14は、上述したプリント配線基板の接続形成方法を適用して、上述したユニバーサル基板として作成されたプリント配線基板の一実施の形態の外観を表す斜視図である。   FIG. 14 is a perspective view showing an appearance of an embodiment of a printed wiring board produced as the above-described universal board by applying the above-described printed wiring board connection forming method.

同図のプリント配線基板103は、三層構造の多層基板である。プリント配線基板103上の中央部には、IC部品400が搭載されており、IC部品400の端子にボンディング接合された金線401が、凹部40の底面に露出した中間層の配線層3Cに接続されている。また、凹部40aの底面に露出した内層の配線層3Cと最上層のプリント配線パターン30との間に金線402がボンディング接合により接続されている。また、凹部42の底面に露出した最下層の配線層3Aと、凹部40bの底面に露出した中間層の配線層3Cとの間に金線403がボンディング接合により接続されている。これら金線402,403の例は、互いに異なる層に形成されたそれぞれ異なる凹部間で本発明の導通形成方法を適用した一例である。   The printed wiring board 103 in the figure is a multilayer board having a three-layer structure. An IC component 400 is mounted at the center of the printed wiring board 103, and a gold wire 401 bonded to the terminal of the IC component 400 is connected to the intermediate wiring layer 3 </ b> C exposed at the bottom surface of the recess 40. Has been. A gold wire 402 is connected by bonding bonding between the inner wiring layer 3C exposed on the bottom surface of the recess 40a and the uppermost printed wiring pattern 30. Also, a gold wire 403 is connected by bonding bonding between the lowermost wiring layer 3A exposed at the bottom surface of the recess 42 and the intermediate wiring layer 3C exposed at the bottom surface of the recess 40b. The examples of the gold wires 402 and 403 are examples in which the conduction forming method of the present invention is applied between different concave portions formed in different layers.

尚、凹部40cは、別の仕様の回路構成を形成する際に、導通形成を実施するために予め設けられた凹部であり、このプリント配線基板103では使用されない。   Note that the recess 40 c is a recess provided in advance for forming conduction when forming a circuit configuration of another specification, and is not used in the printed wiring board 103.

このように、本発明によれば、任意の配線層間の接続を簡単に形成することができるので、本発明を適用した、複数種類の機種仕様を盛り込んだユニバーサル基板を設計することが可能となる。これにより、例えばこのプリント配線基板を使用する機種の仕様を別の仕様に変更する場合でも、プリント配線基板自体の構成はそのままで、配線層同士の接続経路を変更することにより、当該機種の仕様変更に対応することも可能となる。   As described above, according to the present invention, it is possible to easily form a connection between arbitrary wiring layers, and therefore it is possible to design a universal board incorporating a plurality of types of model specifications to which the present invention is applied. . As a result, for example, even when changing the specification of a model using this printed wiring board to another specification, the configuration of the model can be changed by changing the connection path between the wiring layers without changing the configuration of the printed wiring board itself. It is also possible to respond to changes.

以上に説明したように、本発明に係るプリント配線基板の導通形成方法は、単層乃至多層構造のプリント配線基板における任意の配線層同士の導通を簡単かつ確実に得ることができるものである。ワイヤーボンディング法を効果的に採用することにより、生産工程において連続的な加工が可能となる。   As described above, the conduction forming method for a printed wiring board according to the present invention can easily and reliably obtain conduction between arbitrary wiring layers in a printed wiring board having a single layer or a multilayer structure. By adopting the wire bonding method effectively, continuous processing is possible in the production process.

尚、上記実施の形態では、絶縁性基板2が単層又は3層のプリント配線基板について説明したが、これ以外の多層構造のものについても本発明を同様に適用することができることは言うまでもない。   In the above-described embodiment, the printed wiring board having the insulating substrate 2 having a single layer or three layers has been described. However, it goes without saying that the present invention can be similarly applied to other multilayered structures.

また、上記実施の形態では、金属線を接続する対象が配線パターン上である場合を中心に説明したが、これに限らず例えば電極でも良い。   In the above-described embodiment, the case where the object to which the metal wire is connected is on the wiring pattern has been mainly described.

また、上記実施の形態1及びその変形例では、金属線の一方の端部(各図に示したプリント配線基板の上側の面に接続された端部)が、ボンディング接合されて、他方の端部が、圧接される場合について説明したが、これに限らず要するに電気的接続が出来さえすればどの様な接続であってもかまわない。従って、例えば、金属線の一方と他方の端部の双方が、あるいは、何れかの端部が、いわゆるかしめ接続や、半田付けによる接続や、通常のボンディング接合など、どの様な接続方法で接続されても良い。ここで、本発明のプリント配線基板において、「金属線の少なくとも一方の端部が、電極又は配線パターン上にボンディング接合されている、又は、折り曲げられた形状で接続されている」場合の「折り曲げられた形状で接続されている」場面は、金属線の一方の端部が、上記ボンディング接合以外の方法で接続されている場合を考慮したものである。   In the first embodiment and its modification, one end of the metal wire (the end connected to the upper surface of the printed wiring board shown in each drawing) is bonded to the other end. Although the case where the parts are press-contacted has been described, the present invention is not limited to this, and any connection may be used as long as electrical connection can be made. Therefore, for example, one or both ends of the metal wire, or any one of the ends, can be connected by any connection method such as so-called caulking, soldering, or normal bonding. May be. Here, in the printed wiring board of the present invention, “bending is performed when at least one end of the metal wire is bonded to the electrode or the wiring pattern or connected in a bent shape”. The “connected in the shape” is a case in which one end of the metal wire is connected by a method other than the above-described bonding.

また、上記実施の形態2〜4では、金属線の一方及び他方の端部が、ボンディング接合されている場合について説明したが、これに限らず要するに電気的接続が出来さえすればどの様な接続であってもかまわない。   Moreover, in the said Embodiment 2-4, although the case where one and the other edge part of a metal wire were bonded-joined was demonstrated, it will not be restricted to this, but what kind of connection will be just required if electrical connection can be performed? It doesn't matter.

また、上記実施の形態では、配線層3の材質が銅薄膜である場合について説明したが、これに限らず例えば、金薄膜等でもよい。   Moreover, although the case where the material of the wiring layer 3 was a copper thin film was demonstrated in the said embodiment, it is not restricted to this, For example, a gold thin film etc. may be sufficient.

また、実施の形態2〜4における凹部の底面に露出した面には、配線層3が金薄膜以外の場合、金あるいはアルミの薄膜を形成しておくのが好ましい。この薄膜の形成は、メッキやスパッタリング等で行うことができる。   In addition, when the wiring layer 3 is other than the gold thin film, a gold or aluminum thin film is preferably formed on the surface exposed to the bottom surface of the recess in the second to fourth embodiments. This thin film can be formed by plating or sputtering.

また、上記実施の形態では、金属線が金線の場合について説明したが、これに限らず例えば、貫通孔から離れた接続位置まで金属線を自由に導くことが出来る程度の柔軟性に富むフレキシブルな特性を有している金属線であれば、アルミニウム線、銅線、半田線等、他の金属線を用いることもできるし、その線径も問わない。半田線を用いると、安価で加工が容易であるほか、配線層への固着が容易であるという利点がある。   Moreover, although the said embodiment demonstrated the case where a metal wire was a gold wire, it is not restricted to this, For example, it is flexible with sufficient flexibility which can guide a metal wire freely to the connection position away from the through-hole. Other metal wires such as an aluminum wire, a copper wire, and a solder wire can be used as long as the metal wire has such characteristics, and the wire diameter is not limited. The use of solder wires is advantageous in that it is inexpensive and easy to process and can be easily fixed to the wiring layer.

本発明に係るプリント配線基板の導通形成方法は、メッキ工程や所定のピンが不要であるという効果を有し、プリント配線基板の導通形成方法等として有用である。 Conducting the method of forming the printed wiring board according to the present invention has an effect of the plating process and the predetermined pin is not required, is useful as a conductive forming method such as a print wiring board.

本発明の実施の形態1の導通形成方法を例示する断面図Sectional drawing which illustrates the conduction | electrical_connection formation method of Embodiment 1 of this invention 本発明の実施の形態1の導通形成方法を例示する断面図Sectional drawing which illustrates the conduction | electrical_connection formation method of Embodiment 1 of this invention 本発明の実施の形態1の導通形成方法を例示する断面図Sectional drawing which illustrates the conduction | electrical_connection formation method of Embodiment 1 of this invention 本発明の実施の形態1により形成された導通構造を表す断面図Sectional drawing showing the conduction | electrical_connection structure formed by Embodiment 1 of this invention 本発明の実施の形態1の変形例の導通構造を表す断面図Sectional drawing showing the conduction | electrical_connection structure of the modification of Embodiment 1 of this invention 本発明の実施の形態1の別の変形例の導通構造を表す断面図Sectional drawing showing the conduction | electrical_connection structure of another modification of Embodiment 1 of this invention 本発明の実施の形態2の導通形成方法を例示する断面図Sectional drawing which illustrates the conduction | electrical_connection formation method of Embodiment 2 of this invention 本発明の実施の形態2の導通形成方法を例示する断面図Sectional drawing which illustrates the conduction | electrical_connection formation method of Embodiment 2 of this invention 本発明の実施の形態2により形成された導通構造を表す断面図Sectional drawing showing the conduction | electrical_connection structure formed by Embodiment 2 of this invention 本発明の実施の形態3の導通形成方法を例示する断面図Sectional drawing which illustrates the conduction | electrical_connection formation method of Embodiment 3 of this invention 本発明の実施の形態3により形成された導通構造を表す断面図Sectional drawing showing the conduction | electrical_connection structure formed by Embodiment 3 of this invention 本発明の実施の形態4の導通形成方法を例示する断面図Sectional drawing which illustrates the conduction | electrical_connection formation method of Embodiment 4 of this invention 本発明の実施の形態4により形成された導通構造を表す断面図Sectional drawing showing the conduction | electrical_connection structure formed by Embodiment 4 of this invention 本発明の一実施の形態に係るプリント配線基板の斜視図The perspective view of the printed wiring board which concerns on one embodiment of this invention

符号の説明Explanation of symbols

1,100,101,102 プリント配線基板
2 絶縁性基板
3 配線層
4 貫通孔
5 金属線(金線)
10 ボンディングツール
10a キャピラリ
10b クランパー
40,41,42 凹部
1, 100, 101, 102 Printed wiring board 2 Insulating board 3 Wiring layer 4 Through hole 5 Metal wire (gold wire)
10 Bonding tool 10a Capillary 10b Clamper 40, 41, 42 Recess

Claims (4)

予め形成された貫通孔を有するプリント配線基板の表裏両面の電極又は配線パターン間の導通を得るプリント配線基板の導通形成方法であって、
前記貫通孔の前記基板表面側から、フレキシブルな金属線の先端部を挿入し、前記貫通孔の前記基板裏面から前記先端部を突き出させる工程と、
前記突き出させた前記金属線の先端部に金属塊を形成する工程と
前記金属塊を前記基板裏面の貫通孔の周辺の前記基板裏面に形成された前記電極又は配線パターン上に接続する工程と、
前記フレキシブルな金属線を前記貫通孔に対して上下方向にのみ移動させ、前記基板表面の貫通孔と、前記基板表面の貫通孔周辺の前記基板表面に形成された前記電極又は配線パターンと、に前記フレキシブルな金属線を接合する第1の接合工程と
前記金属塊を、前記基板裏面の貫通孔と、前記基板裏面の貫通孔の周辺の前記基板裏面に形成された前記電極又は配線パターンと、に圧接する第2の接合工程と、
を備えた、プリント配線基板の導通形成方法。
A printed wiring board conduction forming method for obtaining conduction between electrodes or wiring patterns on both front and back surfaces of a printed wiring board having through holes formed in advance,
A step of inserting a distal end portion of a flexible metal wire from the substrate surface side of the through hole, and projecting the distal end portion from the back surface of the substrate of the through hole;
Forming a gold Shokukatamari the distal end of said protruded said metal wire,
Connecting the metal mass on the electrode or wiring pattern formed on the back surface of the substrate around the through hole on the back surface of the substrate ;
The flexible metal wire is moved only in the vertical direction with respect to the through hole, and the through hole on the substrate surface and the electrode or wiring pattern formed on the substrate surface around the through hole on the substrate surface, A first joining step for joining the flexible metal wires ;
A second bonding step of pressing the metal block to the through hole on the back surface of the substrate and the electrode or wiring pattern formed on the back surface of the substrate around the through hole on the back surface of the substrate;
A method for forming a continuity of a printed wiring board, comprising:
前記第1の接合工程は、超音波振動による金属結合を生成する請求項1記載のプリント配線基板の導通形成方法。  The method of forming a printed wiring board conduction according to claim 1, wherein the first bonding step generates a metal bond by ultrasonic vibration. 記金属塊を形成するとは、前記金属線の先端部に対し放電させて、前記金属線の先端部を前記貫通孔の直径より大きな球状構造に変形することである請求項2に記載のプリント配線基板の導通形成方法。 Before the forming the Kikin Shokukatamari is discharged to the front end portion of the metal wire, according to the distal end portion of the metal wire to claim 2 is to deform the larger spherical structure than the diameter of the through hole A method for forming a printed wiring board. 前記金属線は、金線、アルミ線、銅線、又は半田線である請求項1に記載のプリント配線基板の導通形成方法。   The method of forming a printed wiring board according to claim 1, wherein the metal wire is a gold wire, an aluminum wire, a copper wire, or a solder wire.
JP2005346867A 2005-11-30 2005-11-30 Method for forming printed circuit board conduction Expired - Fee Related JP4767004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005346867A JP4767004B2 (en) 2005-11-30 2005-11-30 Method for forming printed circuit board conduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346867A JP4767004B2 (en) 2005-11-30 2005-11-30 Method for forming printed circuit board conduction

Publications (2)

Publication Number Publication Date
JP2007157771A JP2007157771A (en) 2007-06-21
JP4767004B2 true JP4767004B2 (en) 2011-09-07

Family

ID=38241796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346867A Expired - Fee Related JP4767004B2 (en) 2005-11-30 2005-11-30 Method for forming printed circuit board conduction

Country Status (1)

Country Link
JP (1) JP4767004B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957191B1 (en) * 2010-03-04 2012-12-28 Tronic S Microsystems ELECTRIC INTERCONNECTION SUPPORT STRUCTURE FOR INTEGRATED CIRCUITS, AND METHOD FOR MANUFACTURING SAME
EP2921833B1 (en) * 2014-03-18 2016-12-28 Mettler-Toledo GmbH Thermoanalytical sensor and method for its production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310589A (en) * 1988-06-08 1989-12-14 Seiko Instr Inc Front-rear continuity structure of laminated board
US4996629A (en) * 1988-11-14 1991-02-26 International Business Machines Corporation Circuit board with self-supporting connection between sides
JPH04322490A (en) * 1991-04-22 1992-11-12 Mitsubishi Cable Ind Ltd Multilayer metal-based substrate and manufacture thereof
JP3728918B2 (en) * 1998-03-25 2005-12-21 セイコーエプソン株式会社 Substrate, substrate manufacturing method and projection manufacturing apparatus

Also Published As

Publication number Publication date
JP2007157771A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
US20050195528A1 (en) Coined ground features for integrated lead suspensions
US7218530B2 (en) Enhanced blind hole termination of pin to PCB
JP2013157124A (en) Flat wiring material and mounting body using the same
US6963494B2 (en) Blind hole termination of pin to pcb
JP4767004B2 (en) Method for forming printed circuit board conduction
JP6673304B2 (en) Multilayer board
JP6778598B2 (en) Substrate manufacturing method and substrate
CN108389701A (en) Flexible inductor
JP2007258618A (en) Connection part reinforcing structure, printed wiring board and connection part reinforcing structure forming method
JP4635331B2 (en) Printed wiring board
JP2006100301A (en) Wiring circuit board device and connection structure
JP2011009271A (en) Printed wiring board and method for manufacturing the same
JP2007220873A (en) Semiconductor device and its manufacturing method
JP4770504B2 (en) Printed circuit board and printed circuit board manufacturing method
JP4016422B2 (en) FPC conversion adapter, electronic device using the same, and FPC conversion connection method
JP2005197295A (en) Connector and its manufacturing method
JP7351552B2 (en) Board, board manufacturing method, and board connection method
JP4389769B2 (en) Manufacturing method of flexible printed wiring board
JP2002124770A (en) Electric circuit board and production method therefor
JP2006165355A (en) Multilayer wiring board and manufacturing method thereof
JP2013197040A (en) Flat wiring material, and mounting body using the same
JP2017228644A (en) Wiring board, composite wiring board including the wiring board, and method for their manufacturing
JP4992635B2 (en) Manufacturing method of substrate for semiconductor device
JP2007165756A (en) Interlayer connecting sheet, and its manufacturing method, and multilayer flexible printed wiring board using the same
JP2002016330A (en) Substrate for mounting component and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees