JP4761383B2 - Clathrate compounds and thermoelectric conversion materials - Google Patents

Clathrate compounds and thermoelectric conversion materials Download PDF

Info

Publication number
JP4761383B2
JP4761383B2 JP2006219982A JP2006219982A JP4761383B2 JP 4761383 B2 JP4761383 B2 JP 4761383B2 JP 2006219982 A JP2006219982 A JP 2006219982A JP 2006219982 A JP2006219982 A JP 2006219982A JP 4761383 B2 JP4761383 B2 JP 4761383B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
present
seebeck coefficient
clathrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006219982A
Other languages
Japanese (ja)
Other versions
JP2008047625A (en
Inventor
拓志 木太
剛 小柳
堅剛 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Toyota Motor Corp
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY, Toyota Motor Corp filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2006219982A priority Critical patent/JP4761383B2/en
Publication of JP2008047625A publication Critical patent/JP2008047625A/en
Application granted granted Critical
Publication of JP4761383B2 publication Critical patent/JP4761383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、クラスレート化合物およびそれを含む熱電変換材料に関する。   The present invention relates to a clathrate compound and a thermoelectric conversion material containing the same.

従来から、ゼーベック効果を利用して熱を電気に変換する熱電変換素子(熱電素子)が知られており、駆動部が不要で小型軽量であるといった大きな利点がある。   Conventionally, a thermoelectric conversion element (thermoelectric element) that converts heat into electricity using the Seebeck effect is known, and has a great advantage that a driving unit is unnecessary and is small and lightweight.

熱電変換素子を構成する熱電変換材料として特に必要な性質は、熱起電力と電気伝導率が大きく、熱伝導率が小さいことである。これらの性質を備え、性能指数の大きな材料として、クラスレート化合物が着目されている。代表的なクラスレート熱電材料として、例えば非特許文献1には、一般式BaGaGe(46−X)で表される組成を有するものが提案されている。これはGaとGeで構成される篭格子(ホスト格子)の中にBaがゲスト原子として取り込まれている構造の化合物である。ホスト格子原子とゲスト原子との結合が緩いため、局所的に熱振動が起きて効果的にフォノンを散乱させるラトリング効果により、ホスト格子の振動伝搬をゲスト原子が妨げ、小さい熱伝導率を実現している。 The properties that are particularly necessary for the thermoelectric conversion material constituting the thermoelectric conversion element are that the thermoelectromotive force and electric conductivity are large and the thermal conductivity is small. As a material having these properties and a large figure of merit, a clathrate compound has attracted attention. As a typical clathrate thermoelectric material, for example, Non-Patent Document 1 proposes a material having a composition represented by the general formula Ba 8 Ga X Ge (46-X) . This is a compound having a structure in which Ba is incorporated as a guest atom in a lattice (host lattice) composed of Ga and Ge. Because the host lattice atoms and guest atoms are loosely bonded, the guest atoms hinder the propagation of vibrations in the host lattice due to the rattling effect that locally causes thermal vibrations and effectively scatters phonons, realizing low thermal conductivity. ing.

熱電変換素子はn型熱電変換材料(n型半導体素子)とp型熱電変換材料(p型半導体素子)とを一対にして構成される。   The thermoelectric conversion element is formed by pairing an n-type thermoelectric conversion material (n-type semiconductor element) and a p-type thermoelectric conversion material (p-type semiconductor element).

熱電変換材料の起電力は、材料固有の値であるゼーベック係数によって決まり、大きな起電力を得るにはゼーベック係数を大きくする必要がある。これまでに開発されている熱電変換材料は、n型材料に比べてp型材料にゼーベック係数の値が不十分であった。特に、自動車エンジンの廃熱を利用した発電には温度700〜900K(≒400〜600℃)付近でのゼーベック係数が大きいことが必要である。   The electromotive force of the thermoelectric conversion material is determined by the Seebeck coefficient, which is a value unique to the material, and it is necessary to increase the Seebeck coefficient in order to obtain a large electromotive force. The thermoelectric conversion materials that have been developed so far have insufficient values for the Seebeck coefficient for p-type materials compared to n-type materials. In particular, in order to generate power using the waste heat of an automobile engine, it is necessary that the Seebeck coefficient is large near a temperature of 700 to 900 K (≈400 to 600 ° C.).

特許文献1には、BaGex1Alx2、x1+x2=46から成るクラスレート化合物が開示されており、x2が14〜16のときにp型熱電変換材料となるが、400〜600K付近の温度域でのゼーベック係数が高々200μV/K程度であり、更に高める必要がある。 Patent Document 1 discloses a clathrate compound composed of Ba 8 Ge x1 Al x2 , x1 + x2 = 46, and becomes a p-type thermoelectric conversion material when x2 is 14 to 16, but has a temperature around 400 to 600K. The Seebeck coefficient in the region is at most about 200 μV / K and needs to be further increased.

また、特許文献2にはBaPdGe46−x、(1≦x≦5)なるクラスレート化合物が、特許文献3にはBaAuGe46−a、(16/3≦a≦6)なるクラスレート化合物が、それぞれp型熱電変換材料として開示されているが、いずれも特許文献1と同等かそれより小さいゼーベック係数しか得られない。 Patent Document 2 discloses a clathrate compound of Ba 8 Pd x Ge 46-x (1 ≦ x ≦ 5), and Patent Document 3 discloses Ba 8 Au a Ge 46-a (16/3 ≦ a ≦ 6) Although the clathrate compound is disclosed as a p-type thermoelectric conversion material, only a Seebeck coefficient equivalent to or smaller than that of Patent Document 1 can be obtained.

特開2005−86173号公報JP 2005-86173 A 特開2005−116741号公報Japanese Patent Laid-Open No. 2005-116741 特開2005−217310号公報JP-A-2005-217310 H. Anno et al., Proc. of 21st Int. Conf. on Thermoelectrics, (2002), 78.H. Anno et al., Proc. Of 21st Int. Conf. On Thermoelectrics, (2002), 78.

本発明は、ゼーベック係数を向上させたp型熱電変換材料として有用なクラスレート化合物およびそれを用いた熱電変換材料を提供することを目的とする。   An object of the present invention is to provide a clathrate compound useful as a p-type thermoelectric conversion material having an improved Seebeck coefficient and a thermoelectric conversion material using the same.

上記の目的を達成するために、本発明によれば、下式:
TeSi(46−X)
ただし、12≦X≦16
で表される組成を有するクラスレート化合物が提供される。
In order to achieve the above object, according to the present invention, the following formula:
Te 8 P X Si (46-X)
However, 12 ≦ X ≦ 16
A clathrate compound having the composition represented by:

更に、上記クラスレート化合物を含む熱電変換材料も提供される。   Furthermore, the thermoelectric conversion material containing the said clathrate compound is also provided.

本発明のクラスレート化合物は、PSi(46−X)から成るホスト格子にゲスト原子として8原子のTeを組み合せたことにより、従来の値を大幅に超える大きなゼーベック係数を有するp型熱電変換を実現した。 The clathrate compound of the present invention is a p-type thermoelectric conversion having a large Seebeck coefficient that greatly exceeds the conventional value by combining Te of 8 atoms as a guest atom with a host lattice made of P X Si (46-X). Realized.

本発明のクラスレート化合物の化学組成を、
TeSi(46−X)
ただし、12≦X≦16
に限定した理由は下記のとおりである。
The chemical composition of the clathrate compound of the present invention is
Te 8 P X Si (46-X) ,
However, 12 ≦ X ≦ 16
The reason for limiting to is as follows.

x<12であると、SiTe、Siなどの異相が多量に析出してしまい、熱電変換特性に必須なタイプIのクラスレート化合物がほとんど存在しなくなる。 When x <12, a large amount of different phases such as Si 2 Te 3 and Si are precipitated, and there is almost no type I clathrate compound essential for thermoelectric conversion characteristics.

x>16であると、キャリアが過剰になり、ゼーベック係数が大きく低下する。   When x> 16, the carrier becomes excessive and the Seebeck coefficient is greatly reduced.

したがって、12≦X≦16に限定する。   Therefore, it is limited to 12 ≦ X ≦ 16.

表1に示す化学組成のクラスレート化合物を製造した。試料No.3〜7がTeSi(46−X)、12≦X≦16の本発明組成であり、試料No.1、2、8は本発明の範囲外の比較組成である。 Clathrate compounds having the chemical composition shown in Table 1 were produced. Sample Nos. 3 to 7 are the present invention compositions of Te 8 P X Si (46-X) , 12 ≦ X ≦ 16, and sample Nos. 1, 2, and 8 are comparative compositions outside the scope of the present invention.

Figure 0004761383
Figure 0004761383

各試料を下記の手順および条件で作成した。   Each sample was prepared according to the following procedure and conditions.

(1)原料
各元素源として下記の原料を用いた。
(1) Raw materials The following raw materials were used as each element source.

Te…純度:5N、銘柄:フルウチ化学 TEM71006A
状態:塊状で入手し、めのう乳鉢で粒径500μm以下に粉砕して使用。
Te: Purity: 5N, Brand: Furuuchi Chemical TEM71006A
State: Obtained in the form of a lump and pulverized to a particle size of 500 μm or less with an agate mortar.

P……純度:5N、銘柄:高純度化学 36748E
状態:粉末で入手し、使用。
P: Purity: 5N, Brand: High purity chemistry 36748E
Condition: Obtained as powder and used.

Si…純度:5N、銘柄:高純度化学 94219E
状態:300μm以下で入手し、使用。
Si: Purity: 5N, Brand: High purity chemical 94219E
State: Obtained at 300 μm or less and used.

(2)混練
表1に示した各配合量を秤量し、遊星ボールミルにより下記条件にて混練した。
(2) Kneading Each blending amount shown in Table 1 was weighed and kneaded with a planetary ball mill under the following conditions.

容器:ステンレス鋼製、容量45cc、Oリング付き
ボール:窒化珪素製、ニッカトー SUN-11
容器内雰囲気:アルゴン(グローブボックス中で容器蓋を閉じた)
粉砕器:フリッチュP−7
運転条件:回転数800rpm、時間24h
(3)焼結
上記混練材を成形した後、下記条件にて焼結した。
Container: Stainless steel, capacity 45cc, with O-ring Ball: Silicon nitride, Nikkato SUN-11
Atmosphere in the container: Argon (the container lid was closed in the glove box)
Crusher: Fritsch P-7
Operating conditions: Rotational speed 800rpm, time 24h
(3) Sintering After molding the kneaded material, it was sintered under the following conditions.

1回の焼結量:4.00g
焼結装置:放電プラズマ焼結機(住友石炭鉱業SPS−510L)
焼結時印加圧力:40MPa
焼結温度:850〜1000℃
焼結雰囲気:アルゴン(40cmHg)
保持時間:5〜30min
得られた各焼結体について、300K〜940Kの温度範囲でゼーベック係数、パワーファクター、電気伝導率を測定した結果を、それぞれ図1、2、3に示す。
Sintering amount at one time: 4.00 g
Sintering device: spark plasma sintering machine (Sumitomo Coal Mining SPS-510L)
Applied pressure during sintering: 40 MPa
Sintering temperature: 850-1000 ° C
Sintering atmosphere: Argon (40 cmHg)
Holding time: 5-30min
About the obtained each sintered compact, the result of having measured the Seebeck coefficient, the power factor, and the electrical conductivity in the temperature range of 300K-940K is shown to FIG.1, 2,3, respectively.

先ず、図1に示したように、試料No.1〜8のいずれも、測定温度範囲全体に亘って正のゼーベック係数を有しており、p型熱電変換材料である。   First, as shown in FIG. 1, all of sample Nos. 1 to 8 have a positive Seebeck coefficient over the entire measurement temperature range, and are p-type thermoelectric conversion materials.

そして、本発明の組成範囲TeSi(46−X)、12≦X≦16の試料No.3〜7は、温度700〜900K程度の高温領域において、200〜300μV/Kという大きな値のゼーベック係数が得られている。これは、特許文献1等に開示されているように200μV/K未満であった従来レベルを超える大きな値である。 The scope compositions of the present invention Te 8 P X Si (46- X), the sample No.3~7 of 12 ≦ X ≦ 16, in a high temperature region of about temperature 700~900K, high as 200~300μV / K The Seebeck coefficient is obtained. This is a large value exceeding the conventional level which was less than 200 μV / K as disclosed in Patent Document 1 and the like.

同時に、図2、図3に示したように、本発明の組成範囲TeSi(46−X)、12≦X≦16の試料No.3〜7は、特許文献1等に開示されている従来レベルと同等の値のパワーファクター、電気伝導率が得られている。 At the same time, as shown in FIG. 2 and FIG. 3, sample Nos. 3 to 7 having the composition range Te 8 P X Si (46-X) and 12 ≦ X ≦ 16 of the present invention are disclosed in Patent Document 1 and the like. The power factor and electric conductivity equivalent to the conventional level are obtained.

また、本発明の試料No.7と比較試料1、2について熱伝導率を測定した結果を表2に示す。本発明の試料No.7について得られた4.46W/m/Kの熱伝導率は、特許文献1等に開示された従来レベルと同等の値である。   Table 2 shows the results of measuring the thermal conductivity of Sample No. 7 and Comparative Samples 1 and 2 of the present invention. The thermal conductivity of 4.46 W / m / K obtained for Sample No. 7 of the present invention is a value equivalent to the conventional level disclosed in Patent Document 1 and the like.

Figure 0004761383
Figure 0004761383

このように本発明の組成によれば、他の特性値について従来レベルを維持しつつ、ゼーベック係数が大幅に向上するので、起電力を著しく高めることができる。   As described above, according to the composition of the present invention, the Seebeck coefficient is greatly improved while maintaining the conventional level for other characteristic values, so that the electromotive force can be remarkably increased.

上記各焼結体について、X線回折(XRD)にて存在相を同定した。図4にXRDチャートを示す。同図中、右側のチャートは回折角(2θ)=15〜30°の範囲を拡大して示したものである。上から順に試料No.1〜8の回折結果、シミュレーション結果(1)〜(4)であり、測定プロファイルの回折ピークに付した数字はシミュレーションを行った相との対応を示す。シミュレーション相のうち、Te16Si30simulated(1)は通常のタイプIのクラスレートであり、Te16Si30simulated(2)は空隙2aサイトにはTeが入っていないと仮定したものである。 About each said sintered compact, the existing phase was identified by X-ray diffraction (XRD). FIG. 4 shows an XRD chart. In the drawing, the chart on the right side shows an enlarged view of the diffraction angle (2θ) = 15 to 30 °. The diffraction results of sample Nos. 1 to 8 and simulation results (1) to (4) are shown in order from the top, and the numbers given to the diffraction peaks of the measurement profile indicate the correspondence with the simulated phase. Among the simulation phases, Te 8 P 16 Si 30 simulated (1) is a normal type I class rate, and Te 6 P 16 Si 30 simulated (2) assumes that Te does not enter the void 2a site. Is.

本発明の組成範囲TeSi(46−X)、12≦X≦16においては、タイプIのクラスレート(Te16Si30simulated(1))に対応するピーク1が出現しており、その存在が確認できる。X=9、11の場合、すなわちX<12の場合には、Te16Si30相、SiTe相、Si相に対応するピーク2、3、4が顕著になり、タイプIのクラスレートに対応するピーク1が存在していない。 In the composition range Te 8 P X Si (46-X) and 12 ≦ X ≦ 16 of the present invention, a peak 1 corresponding to the type I clathrate (Te 8 P 16 Si 30 simulated (1)) appears. And its existence can be confirmed. In the case of X = 9, 11, that is, in the case of X <12, peaks 2, 3, and 4 corresponding to Te 6 P 16 Si 30 phase, Si 2 Te 3 phase, and Si phase become prominent. There is no peak 1 corresponding to the clathrate.

このように、TeSi(46−X)においてP量が本発明の組成範囲の下限未満すなわちX<12であると、上に列挙したTe16Si30相、SiTe相、Si相などの異相の多量出現により、タイプIのクラスレートがほとんど存在しなくなるため、ゼーベック係数が低下する。 Thus, in Te 8 P X Si (46-X) , when the amount of P is less than the lower limit of the composition range of the present invention, that is, X <12, the Te 6 P 16 Si 30 phase and Si 2 Te 3 listed above are listed. Due to the appearance of a large amount of heterogeneous phases such as phases and Si phases, almost no type I clathrate exists, and the Seebeck coefficient decreases.

逆に、P量が本発明の組成範囲の上限を超えてX>16であると、タイプIのクラスレートは存在するが、キャリア過剰になるため、ゼーベック係数が大きく低下してしまう。   On the contrary, if the amount of P exceeds the upper limit of the composition range of the present invention and X> 16, the type I clathrate exists but the carrier is excessive, so the Seebeck coefficient is greatly reduced.

本発明によれば、ゼーベック係数を大幅に向上させたp型熱電変換材料として有用なクラスレート化合物およびそれを用いた熱電変換材料が提供される。   ADVANTAGE OF THE INVENTION According to this invention, a clathrate compound useful as a p-type thermoelectric conversion material which improved the Seebeck coefficient significantly, and a thermoelectric conversion material using the same are provided.

本発明の範囲内および範囲外の組成を有するTeSi(46−X)焼結サンプルについて測定したゼーベック係数を、測定温度に対してプロットしたグラフである。The Seebeck coefficient measured for Te 8 P X Si (46- X) sintered sample having a composition within and outside the scope of the present invention, is a graph plotting the measurement temperature. 本発明の範囲内および範囲外の組成を有するTeSi(46−X)焼結サンプルについて測定したパワーファクターを、測定温度に対してプロットしたグラフである。The power factor measured for Te 8 P X Si (46- X) sintered sample having a composition within and outside the scope of the present invention, is a graph plotting the measurement temperature. 本発明の範囲内および範囲外の組成を有するTeSi(46−X)焼結サンプルについて測定した電気伝導率を、測定温度に対してプロットしたグラフである。The range and Te 8 P X Si (46- X) electrical conductivity measured for the sintered samples with outside of the composition of the present invention, is a graph plotting the measurement temperature. 本発明の範囲内および範囲外の組成を有するTeSi(46−X)焼結サンプルについてのX線回折(XRD)チャートを、シミュレーション結果と対比して示したグラフである。The X-ray diffraction (XRD) chart of Te 8 P X Si (46- X) sintered sample having a composition outside the range and scope of the present invention, is a graph showing, in comparison with the simulation results.

Claims (2)

下式:
TeSi(46−X)
ただし、12≦X≦16
で表される組成を有するクラスレート化合物。
The following formula:
Te 8 P X Si (46-X)
However, 12 ≦ X ≦ 16
A clathrate compound having a composition represented by:
請求項1記載のクラスレート化合物を含む熱電変換材料。   A thermoelectric conversion material comprising the clathrate compound according to claim 1.
JP2006219982A 2006-08-11 2006-08-11 Clathrate compounds and thermoelectric conversion materials Active JP4761383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219982A JP4761383B2 (en) 2006-08-11 2006-08-11 Clathrate compounds and thermoelectric conversion materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219982A JP4761383B2 (en) 2006-08-11 2006-08-11 Clathrate compounds and thermoelectric conversion materials

Publications (2)

Publication Number Publication Date
JP2008047625A JP2008047625A (en) 2008-02-28
JP4761383B2 true JP4761383B2 (en) 2011-08-31

Family

ID=39181095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219982A Active JP4761383B2 (en) 2006-08-11 2006-08-11 Clathrate compounds and thermoelectric conversion materials

Country Status (1)

Country Link
JP (1) JP4761383B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155141B2 (en) * 2013-08-30 2017-06-28 古河電気工業株式会社 Thermoelectric conversion material and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4372276B2 (en) * 1999-08-03 2009-11-25 株式会社Ihi Clathrate compound, high-efficiency thermoelectric material, manufacturing method thereof, and thermoelectric module using high-efficiency thermoelectric material
JP4474878B2 (en) * 2003-09-17 2010-06-09 株式会社Ihi X-ray contrast medium and method for producing X-ray contrast medium
JP2005170764A (en) * 2003-12-15 2005-06-30 Toyota Motor Corp Clathrate compound and thermoelectric transducer therewith

Also Published As

Publication number Publication date
JP2008047625A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
Song et al. Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg 3 Sb 2 thermoelectric materials
Tan et al. Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS
Li et al. Enhanced thermoelectric performance of Yb-single-filled skutterudite by ultralow thermal conductivity
Li et al. The manipulation of substitutional defects for realizing high thermoelectric performance in Mg 3 Sb 2-based Zintl compounds
Chen et al. Effects of (Al, Ge) double doping on the thermoelectric properties of higher manganese silicides
Isoda et al. Thermoelectric properties of p-type Mg 2.00 Si 0.25 Sn 0.75 with Li and Ag double doping
Zevalkink et al. Thermoelectric properties of Zn-doped Ca 5 In 2 Sb 6
Nakayama et al. Thermoelectric properties of metal-doped β-rhombohedral boron
Prytuliak et al. Anomalous effect of vanadium boride seeding on thermoelectric properties of YB22C2N
JP4858976B2 (en) Composite thermoelectric conversion material
Wang et al. Optimization of peak and average figures of merits for In & Se co-doped SnTe alloys
KR101673315B1 (en) Thermoelectric materials and their manufacturing method
CN108242500B (en) Copper-selenium-based nano composite thermoelectric material and preparation method thereof
CN105612625A (en) Thermoelectric material and method for manufacturing same
Tang et al. Crystal structure and bonding characteristics of In-doped β-Zn4Sb3
JP4761383B2 (en) Clathrate compounds and thermoelectric conversion materials
JP2008147261A (en) P-type thermoelectric material, and its manufacturing method
Khaliq et al. Utilizing the phonon glass electron crystal concept to improve the thermoelectric properties of combined Yb-stuffed and Te-substituted CoSb3
JP2006253291A (en) Thermoelectric material
CN101118946B (en) Barium zinc antimony based p type thermoelectric material and method for making same
JP2008007825A (en) Yb-Fe-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
Kim et al. Control of Cu-doping behavior in n-type Cu0. 01Bi1. 99Te2. 7Se0. 3 polycrystalline bulk via fabrication technique change
JP2009040649A (en) Clathrate compound and thermoelectric conversion element using the same
Tsujii et al. Stability and thermoelectric property of Cu 9 Fe 9 S 16: Sulfide mineral as a promising thermoelectric material
Zhu et al. Thermoelectric properties of Zintl compound YbZn 2 Sb 2 with Mn substitution in anionic framework

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350