JP4759981B2 - Manufacturing method of electronic component built-in module - Google Patents

Manufacturing method of electronic component built-in module Download PDF

Info

Publication number
JP4759981B2
JP4759981B2 JP2004318919A JP2004318919A JP4759981B2 JP 4759981 B2 JP4759981 B2 JP 4759981B2 JP 2004318919 A JP2004318919 A JP 2004318919A JP 2004318919 A JP2004318919 A JP 2004318919A JP 4759981 B2 JP4759981 B2 JP 4759981B2
Authority
JP
Japan
Prior art keywords
layer
electronic component
forming
insulating resin
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004318919A
Other languages
Japanese (ja)
Other versions
JP2006134914A (en
Inventor
悟 倉持
義孝 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004318919A priority Critical patent/JP4759981B2/en
Publication of JP2006134914A publication Critical patent/JP2006134914A/en
Application granted granted Critical
Publication of JP4759981B2 publication Critical patent/JP4759981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Description

本発明は、キャパシタ、レジスタ(抵抗)、インダクタ等の受動部品、もしくは能動部品のような電子部品を内蔵した電子部品内蔵モジュールと、このような電子部品内蔵モジュールを製造するための製造方法に関する。   The present invention relates to an electronic component built-in module including an electronic component such as a passive component such as a capacitor, a resistor (resistor), an inductor, or an active component, and a manufacturing method for manufacturing such an electronic component built-in module.

近年、LSIチップ等を多層配線基板上に直接実装するベアチップ実装法が提案されている。ベアチップ実装法では、予め多層配線基板上に形成された配線の接続パッド部に、ボンディング・ワイヤ、ハンダや金属球等からなるバンプ、異方性導電膜、導電性接着剤、光収縮性樹脂等の接続手段を用いて半導体チップが実装される。
また、半導体チップ等では、IC、LSI等の集積回路素子の高密度化が進むとともに、動作速度が年々上昇し、半導体チップ内部で発生するスイッチングノイズが集積回路素子を誤動作させる要因になるという問題があった。スイッチングノイズを低減させるためには、電源バスラインと接地バスラインとの間にキャパシタを配置することが有効である。
In recent years, a bare chip mounting method in which an LSI chip or the like is directly mounted on a multilayer wiring board has been proposed. In the bare chip mounting method, bonding wires, bumps made of solder, metal balls, etc., anisotropic conductive films, conductive adhesives, light-shrinkable resins, etc., are formed on wiring connection pads formed on a multilayer wiring board in advance. A semiconductor chip is mounted using the connecting means.
In addition, in semiconductor chips and the like, integrated circuit elements such as ICs and LSIs are becoming higher in density, and the operating speed is increasing year by year, and switching noise generated inside the semiconductor chip becomes a factor that causes the integrated circuit elements to malfunction. was there. In order to reduce switching noise, it is effective to arrange a capacitor between the power supply bus line and the ground bus line.

このようなキャパシタやインダクター、レジスタ(抵抗)等の受動部品や能動部品のような電子部品が必要な場合、半導体チップと同様に、多層配線基板に外付けで実装することが行なわれている。しかし、キャパシタを外付け部品として配線基板上に配置すると、キャパシタと半導体チップの間の接続距離が長くなって配線インダクタンスが大きくなるため、キャパシタの効果が不充分となってしまう。また、多層配線基板上に形成された配線の接続パッド部は、半導体チップ等の実装部位とは別の部位に設けられるため、受動部品や能動部品のような電子部品を実装するためには多層配線基板の面方向の広がりが必要であった。このため、多層配線基板の小型化には限界があり、実装される電子部品の数が増えるにしたがって、小型化は更に困難となる傾向にあった。   When electronic components such as passive components and active components such as capacitors, inductors and resistors (resistors) are required, they are externally mounted on a multilayer wiring board as in the case of semiconductor chips. However, if the capacitor is arranged as an external component on the wiring board, the connection distance between the capacitor and the semiconductor chip becomes long and the wiring inductance becomes large, so that the effect of the capacitor becomes insufficient. In addition, since the connection pad portion of the wiring formed on the multilayer wiring board is provided in a part different from the mounting part such as a semiconductor chip, a multilayer part is required for mounting electronic parts such as passive parts and active parts. The expansion of the surface direction of the wiring board was necessary. For this reason, there is a limit to the miniaturization of the multilayer wiring board, and the miniaturization tends to become more difficult as the number of electronic components to be mounted increases.

これらの問題に対応するために、半導体チップを配線基板に実装する場合に用いられる中間基板(インターポーザ、あるいは半導体チップキャリア)に、キャパシタを内蔵させることが提案されている(特許文献1、2)。
特開平8−148595号公報 特開2001−326298号公報
In order to cope with these problems, it has been proposed to incorporate a capacitor in an intermediate substrate (interposer or semiconductor chip carrier) used when a semiconductor chip is mounted on a wiring board (Patent Documents 1 and 2). .
JP-A-8-148595 JP 2001-326298 A

しかしながら、特許文献1に示される半導体装置は、ベース基板上に厚膜キャパシタを有するガラスセラミックスからなるチップキャリアが接続される構造を有し、誘電体層を薄くすることが困難であるため、キャパシタの特性に限界があった。また、特許文献2には、キャパシタをもつセラミックスからなるインターポーザを備えた構成が開示されているが、インターポーザを用いる方法では、キャパシタの誘電体層の材料、厚さ、キャパシタの位置、大きさ等を予め決めておかなければならないという問題があった。   However, the semiconductor device disclosed in Patent Document 1 has a structure in which a chip carrier made of glass ceramics having a thick film capacitor is connected to a base substrate, and it is difficult to make the dielectric layer thin. There was a limit to the characteristics. Patent Document 2 discloses a configuration including an interposer made of ceramics having a capacitor. However, in the method using the interposer, the material, thickness, capacitor position, size, etc. of the capacitor dielectric layer are disclosed. There was a problem that had to be determined in advance.

また、多面付けのウエハ基板に受動部品や能動部品を載置するための凹部を形成し、この凹部に電子部品を内蔵させ、その後、所望の多層配線をウエハ基板上に形成した後、ダイシングすることにより電子部品内蔵モジュールを製造することが考えられる。しかし、電子部品上に多層配線を形成する工程では、電気絶縁層、導通ビア、配線層等を形成する工程が繰り返され、このため工程が複雑で長いものとなり、製造歩留まりの低下を来たすという問題があった。また、このような電子部品内蔵モジュールを複数重ねて使用する場合、重ねられた各電子部品内蔵モジュール間の接続、すなわち、電子部品内蔵モジュールにおける表裏導通が困難であった。   Further, a recess for mounting passive components and active components is formed on a multi-sided wafer substrate, and an electronic component is built in the recess, and then a desired multilayer wiring is formed on the wafer substrate and then diced. It is conceivable to manufacture an electronic component built-in module. However, in the process of forming a multilayer wiring on an electronic component, the process of forming an electrical insulating layer, a conductive via, a wiring layer, etc. is repeated, which makes the process complicated and long, resulting in a decrease in manufacturing yield. was there. Further, when a plurality of such electronic component built-in modules are used in a stacked manner, it is difficult to connect the stacked electronic component built-in modules, that is, to connect the front and back of the electronic component built-in modules.

本発明は、上記のような実情に鑑みてなされたものであり、単体での使用、あるいは複数積み重ねての使用が可能な小型で信頼性が高い電子部品内蔵モジュールを簡便に製造するための製造方法を提供することを目的とする。 The present invention has been made in view of the circumstances as described above, use of a single unit, or multiple stacked easily for the production of small and reliable electronic component built modules that can be used for An object is to provide a manufacturing method.

このような目的を達成するために、本発明の電子部品内蔵モジュールの製造方法は、基材の一方の面に絶縁層を形成し、次いで、該絶縁層を貫通する複数の外部端子を形成する工程と、シリコン基板の一方の面に薄膜素子形成層を有する電子部品チップを、前記シリコン基板が当接するように前記絶縁層上に固着する工程と、前記電子部品チップを被覆するように前記絶縁層上に絶縁樹脂層を形成し、電子部品チップの非配設部位において前記絶縁樹脂層を貫通し所望の前記外部端子が露出するように複数の微細孔を形成するとともに、前記薄膜素子形成層の端子が露出する端子ビア用孔部を前記絶縁樹脂層に形成する工程と、前記微細孔と前記端子ビア用孔部に導電材料を充填して上下導通ビアと端子ビアを形成するとともに、該端子ビアと所望の前記上下導通ビアとを接続するための配線を形成する工程と、前記端子ビアと配線を被覆し、前記上下導通ビアを露出するように被覆層としての絶縁樹脂層を形成する工程と、前記基材を除去する工程と、を有するような構成とした。 In order to achieve such an object, the method for manufacturing an electronic component built-in module according to the present invention forms an insulating layer on one surface of a substrate, and then forms a plurality of external terminals penetrating the insulating layer. A step of fixing an electronic component chip having a thin film element forming layer on one surface of a silicon substrate on the insulating layer so that the silicon substrate is in contact; and the insulation so as to cover the electronic component chip Forming an insulating resin layer on the layer, forming a plurality of fine holes so as to penetrate the insulating resin layer and expose the desired external terminals at the non-arranged portion of the electronic component chip, and the thin film element forming layer Forming a terminal via hole in which the terminal is exposed in the insulating resin layer, filling the fine hole and the terminal via hole with a conductive material to form a vertical conductive via and a terminal via, Terminal via Forming a wiring for connecting the desired vertical conduction via, covering the terminal via and wiring, and forming an insulating resin layer as a coating layer so as to expose the vertical conduction via; And a step of removing the substrate.

本発明の他の態様として、前記外部端子を形成する工程にて、所望の前記外部端子を接続するための配線層を前記絶縁層に形成し、前記微細孔を形成する工程では、所望の外部端子または配線層が露出するように前記微細孔を形成するような構成とした。
本発明の他の態様として、被覆層としての絶縁樹脂層に露出している上下導通ビアに、絶縁樹脂層と同一面をなすように導電材料を充填する工程、あるいは、はんだボール、金めっきバンプ、金スタッドバンプのいずれかを形成する工程を有するような構成とした。
本発明の他の態様として、前記基材が金属またはシリコンであるような構成とした。
As another aspect of the present invention, in the step of forming the external terminal, a wiring layer for connecting the desired external terminal is formed on the insulating layer, and in the step of forming the microhole, a desired external The fine hole is formed so that the terminal or the wiring layer is exposed.
As another aspect of the present invention, a step of filling a conductive material so that a vertical conductive via exposed in an insulating resin layer as a coating layer is flush with the insulating resin layer, or a solder ball, a gold plating bump The structure is such that it has a step of forming any one of the gold stud bumps.
As another aspect of the present invention, the base material is a metal or silicon.

このような本発明の電子部品内蔵モジュールは、基板を備えておらず、絶縁樹脂層内に電子部品チップが内蔵されているので小型、薄型化が可能であり、また、上下導通ビアを絶縁樹脂層中に備えているので、本発明の電子部品内蔵モジュールどうしの積層、あるいは、他の電子部品内蔵モジュール等との積層時に容易に各モジュール間の導通をとることができる。
また、本発明の電子部品内蔵モジュールの製造方法は、電子部品上に多層配線を形成する煩雑な工程が不要であるため、製造歩留まりが向上し、信頼性の高い電子部品内蔵モジュールを製造することができる。
Such an electronic component built-in module of the present invention does not include a substrate, and an electronic component chip is built in an insulating resin layer, so that it can be reduced in size and thickness. Since it is provided in the layer, it is possible to easily establish conduction between the modules when the electronic component built-in modules of the present invention are stacked or stacked with other electronic component built-in modules.
In addition, since the method for manufacturing an electronic component built-in module according to the present invention does not require a complicated process of forming multilayer wiring on the electronic component, the manufacturing yield is improved and a highly reliable electronic component built-in module is manufactured. Can do.

以下、本発明の実施の形態について図面を参照して説明する。
[電子部品内蔵モジュール]
図1は、本発明の電子部品内蔵モジュールの一実施形態を示す平面図であり、図2は図1に示される電子部品内蔵モジュールのA−A線矢視縦断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Electronic component built-in module]
FIG. 1 is a plan view showing an embodiment of the electronic component built-in module of the present invention, and FIG. 2 is a vertical cross-sectional view of the electronic component built-in module shown in FIG.

図1及び図2において、本発明の電子部品内蔵モジュール11は、所望の部位に複数の外部端子13、配線層14を有する絶縁層12と、この絶縁層12の一方の面に配設された電子部品チップ21と、この電子部品チップ21を被覆するように絶縁層12上に配設された絶縁樹脂層16と、備えている。尚、図1は、電子部品内蔵モジュール11を絶縁層12側から見た平面図である。
外部端子13は、絶縁層12を貫通するように配設されており、所望の外部端子13間を接続するように配線層14が絶縁層12に配設されている。
また、絶縁樹脂層16には、この絶縁樹脂層16を貫通し所望の外部端子13または配線層14と接続(図示例では外部端子13と接続)する上下導通ビア18が配設されている。
1 and 2, an electronic component built-in module 11 according to the present invention is disposed on an insulating layer 12 having a plurality of external terminals 13 and a wiring layer 14 at a desired site, and on one surface of the insulating layer 12. An electronic component chip 21 and an insulating resin layer 16 disposed on the insulating layer 12 so as to cover the electronic component chip 21 are provided. FIG. 1 is a plan view of the electronic component built-in module 11 as viewed from the insulating layer 12 side.
The external terminal 13 is disposed so as to penetrate the insulating layer 12, and the wiring layer 14 is disposed on the insulating layer 12 so as to connect the desired external terminals 13.
The insulating resin layer 16 is provided with vertical conductive vias 18 that penetrate the insulating resin layer 16 and are connected to a desired external terminal 13 or wiring layer 14 (connected to the external terminal 13 in the illustrated example).

上記の電子部品チップ21は、シリコン基板22と、このシリコン基板22の一方の面に形成された薄膜素子形成層23を有し、薄膜素子形成層23の端子24が外部端子13または配線層14に接続(図示例では外部端子13と接続)している。このような電子部品チップ21は、シリコン基板22の厚みが20〜500μm、薄膜素子形成層23の厚みが5〜50μm、全体の厚みが25〜550μmの範囲となるように設定することが好ましい。また、1個の電子部品チップ21の外形寸法は、一辺の長さが0.5〜20mmの範囲となるように設定することが好ましい。
尚、薄膜素子形成層23が備える電子部品としては、キャパシタ、レジスタ(抵抗)、インダクタ、トランス、LCR回路等の受動部品、オペアンプ等のアクティブフィルタ素子、ロジック、メモリ素子等の能動部品である。
The electronic component chip 21 has a silicon substrate 22 and a thin film element forming layer 23 formed on one surface of the silicon substrate 22, and the terminals 24 of the thin film element forming layer 23 are external terminals 13 or wiring layers 14. (In the illustrated example, connected to the external terminal 13). Such an electronic component chip 21 is preferably set so that the silicon substrate 22 has a thickness of 20 to 500 μm, the thin film element forming layer 23 has a thickness of 5 to 50 μm, and the total thickness of 25 to 550 μm. Moreover, it is preferable to set the external dimension of one electronic component chip 21 so that the length of one side is in the range of 0.5 to 20 mm.
The electronic parts included in the thin film element forming layer 23 are passive parts such as capacitors, resistors (resistors), inductors, transformers, and LCR circuits, active parts such as operational amplifiers, logic, and memory elements.

本発明の電子部品内蔵モジュール11を構成する絶縁層12は、エポキシ樹脂、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂等の有機材料、あるいは、これらの有機材料とガラス繊維等を組み合せたもの等からなるものとすることができ、厚みは30〜550μmの範囲で設定することができる。
本発明の電子部品内蔵モジュール11を構成する外部端子13、配線層14は、銅、銀、金、クロム、アルミニウム、ニッケル等の導電材料からなるものとすることができ、また、金/ニッケル/金の3層構造、ニッケル/金の2層構造等としてもよい。このような外部端子13は、絶縁層12と同じ厚みを有し、絶縁層12を貫通するものである。また、配線層14は、所望の外部端子13を接続するように絶縁層12内に配設されており、絶縁層12内に完全に埋設されたものであってもよく、また、絶縁層12のいずれか一方の面、あるいは両面に露出するものであってもよい。
The insulating layer 12 constituting the electronic component built-in module 11 of the present invention is made of an organic material such as an epoxy resin, a benzocyclobutene resin, a cardo resin, or a polyimide resin, or a combination of these organic materials and glass fibers. The thickness can be set in the range of 30 to 550 μm.
The external terminal 13 and the wiring layer 14 constituting the electronic component built-in module 11 of the present invention can be made of a conductive material such as copper, silver, gold, chromium, aluminum, nickel, etc., and gold / nickel / A three-layer structure of gold or a two-layer structure of nickel / gold may be used. Such external terminals 13 have the same thickness as the insulating layer 12 and penetrate the insulating layer 12. The wiring layer 14 is disposed in the insulating layer 12 so as to connect a desired external terminal 13, and may be completely embedded in the insulating layer 12. It may be exposed on either one or both surfaces.

本発明の電子部品内蔵モジュール11を構成する絶縁樹脂層16は、エポキシ樹脂、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂等の有機材料等とすることができる。絶縁樹脂層16の厚みは、電子部品チップ21を完全に被覆するように設定することができ、例えば、電子部品チップ21の厚みよりも1〜20μm程度厚くなるように設定することができる。
また、本発明の電子部品内蔵モジュール11を構成する上下導通ビア18は、銅、銀、金、クロム、アルミニウム等の導電材料からなるものとすることができ、太さは、例えば、25〜570μmの範囲で設定することができる。尚、本発明の電子部品内蔵モジュール11は、この上下導通ビア18の露出面に、はんだボール、金めっきバンプ、金スタッドバンプのいずれかを備えるものであってもよい。
The insulating resin layer 16 constituting the electronic component built-in module 11 of the present invention can be made of an organic material such as epoxy resin, benzocyclobutene resin, cardo resin, or polyimide resin. The thickness of the insulating resin layer 16 can be set so as to completely cover the electronic component chip 21, for example, can be set to be about 1 to 20 μm thicker than the thickness of the electronic component chip 21.
Further, the vertical conduction via 18 constituting the electronic component built-in module 11 of the present invention can be made of a conductive material such as copper, silver, gold, chromium, aluminum, and the thickness is, for example, 25 to 570 μm. Can be set within the range. The electronic component built-in module 11 of the present invention may be provided with any one of a solder ball, a gold plating bump, and a gold stud bump on the exposed surface of the vertical conduction via 18.

図3は、本発明の電子部品内蔵モジュールの他の実施形態を示す平面図であり、図4は図3に示される電子部品内蔵モジュールのB−B線矢視縦断面図である。
図3及び図4において、本発明の電子部品内蔵モジュール31は、所望の部位に複数の外部端子33を有する絶縁層32と、この絶縁層32の一方の面に配設された電子部品チップ41と、この電子部品チップ41を被覆するように絶縁層32上に配設された絶縁樹脂層36と、備えている。尚、図3は、電子部品内蔵モジュール31を絶縁樹脂層36側から見た平面図である。
FIG. 3 is a plan view showing another embodiment of the electronic component built-in module of the present invention, and FIG. 4 is a vertical cross-sectional view of the electronic component built-in module shown in FIG.
3 and 4, an electronic component built-in module 31 according to the present invention includes an insulating layer 32 having a plurality of external terminals 33 at a desired site, and an electronic component chip 41 disposed on one surface of the insulating layer 32. And an insulating resin layer 36 disposed on the insulating layer 32 so as to cover the electronic component chip 41. FIG. 3 is a plan view of the electronic component built-in module 31 as viewed from the insulating resin layer 36 side.

上記の外部端子33は、絶縁層32を貫通するように配設されている。尚、上述の電子部品内蔵モジュール11と同様に、所望の外部端子33を接続する配線層を絶縁層32内に備えるものであってもよい。
また、絶縁樹脂層36は、電子部品チップ41を被覆するように絶縁層32上に配設された絶縁樹脂層36aと、この絶縁樹脂層36aに配設された端子ビア34と配線35を被覆するように絶縁樹脂層36aに積層された絶縁樹脂層36bからなっている。そして、この絶縁樹脂層36には、この絶縁樹脂層36を貫通し所望の外部端子33と接続する上下導通ビア38が配設されている。
The external terminal 33 is disposed so as to penetrate the insulating layer 32. Similar to the electronic component built-in module 11 described above, a wiring layer for connecting a desired external terminal 33 may be provided in the insulating layer 32.
The insulating resin layer 36 covers the insulating resin layer 36a disposed on the insulating layer 32 so as to cover the electronic component chip 41, and the terminal via 34 and the wiring 35 disposed on the insulating resin layer 36a. Thus, the insulating resin layer 36b is laminated on the insulating resin layer 36a. The insulating resin layer 36 is provided with a vertical conduction via 38 that penetrates the insulating resin layer 36 and connects to a desired external terminal 33.

上記の電子部品チップ41は、シリコン基板42と、このシリコン基板42の一方の面に形成された薄膜素子形成層43を有し、シリコン基板42が絶縁層32に固着されている。そして、薄膜素子形成層43の端子44は、上記の絶縁樹脂層36aに配設された端子ビア34と配線35を介して所望の上下導通ビア38に接続している。
このような電子部品チップ41は、上述の電子部品チップ21と同様のものとすることができ、ここでの説明は省略する。
また、本発明の電子部品内蔵モジュール31を構成する絶縁層32、外部端子33は、上述の電子部品内蔵モジュール11を構成する絶縁層12、外部端子13と同様のものとすることができる。
The electronic component chip 41 includes a silicon substrate 42 and a thin film element forming layer 43 formed on one surface of the silicon substrate 42, and the silicon substrate 42 is fixed to the insulating layer 32. The terminal 44 of the thin film element formation layer 43 is connected to a desired vertical conduction via 38 via a terminal via 34 and a wiring 35 disposed in the insulating resin layer 36a.
Such an electronic component chip 41 can be the same as the electronic component chip 21 described above, and a description thereof is omitted here.
Further, the insulating layer 32 and the external terminal 33 constituting the electronic component built-in module 31 of the present invention can be the same as the insulating layer 12 and the external terminal 13 constituting the electronic component built-in module 11 described above.

本発明の電子部品内蔵モジュール31を構成する絶縁樹脂層36(36a、36b)の材質は、上述の絶縁樹脂層16と同様のものとすることができる。また、絶縁樹脂層36aの厚みは、電子部品チップ41を完全に被覆するように設定することができ、例えば、電子部品チップ41の厚みよりも1〜20μm程度厚くなるように設定することができる。さらに、絶縁樹脂層36bの厚みは、絶縁樹脂層36aに配設された端子ビア34と配線35を完全に被覆するように設定することができ、例えば、3〜20μm程度の範囲で設定することができる。   The material of the insulating resin layer 36 (36a, 36b) constituting the electronic component built-in module 31 of the present invention can be the same as that of the insulating resin layer 16 described above. Further, the thickness of the insulating resin layer 36a can be set so as to completely cover the electronic component chip 41, and can be set to be, for example, about 1 to 20 μm thicker than the thickness of the electronic component chip 41. . Furthermore, the thickness of the insulating resin layer 36b can be set so as to completely cover the terminal via 34 and the wiring 35 disposed in the insulating resin layer 36a, and for example, set in the range of about 3 to 20 μm. Can do.

また、本発明の電子部品内蔵モジュール31を構成する端子ビア34、配線35、上下導通ビア38は、銅、銀、金、クロム、アルミニウム等の導電材料からなるものとすることができる。また、端子ビア34の太さは、例えば、10〜100μmの範囲で設定することができ、上下導通ビア38の太さは、例えば、10〜500μmの範囲で設定することができる。尚、本発明の電子部品内蔵モジュール31は、上下導通ビア38の露出面にはんだボール、金めっきバンプ、金スタッドバンプのいずれかを備えるものであってもよい。   Further, the terminal via 34, the wiring 35, and the vertical conduction via 38 constituting the electronic component built-in module 31 of the present invention can be made of a conductive material such as copper, silver, gold, chromium, and aluminum. Further, the thickness of the terminal via 34 can be set in a range of 10 to 100 μm, for example, and the thickness of the vertical conduction via 38 can be set in a range of 10 to 500 μm, for example. The electronic component built-in module 31 of the present invention may be provided with any one of a solder ball, a gold plating bump, and a gold stud bump on the exposed surface of the vertical conduction via 38.

このような本発明の電子部品内蔵モジュールは、基板を備えておらず、絶縁樹脂層内に電子部品チップが内蔵されているので小型、薄型化が可能である。また、上下導通ビアが絶縁樹脂層中に配設されているので、例えば、本発明の電子部品内蔵モジュールを複数重ねて積層構造とした場合、あるいは、他の電子部品内蔵モジュール等と重ねて積層構造とした場合に、各モジュール間の導通を容易にとることができる。
尚、上述の実施形態では、電子部品内蔵モジュールは2個の電子部品チップを内蔵するものであるが、本発明の電子部品内蔵モジュールでは、内蔵する電子部品チップの個数に限定はなく、また、配設位置、配設間隔等も任意に設定することができる。
上述の実施形態では、上下導通ビアが電子部品チップの各辺に対応して2個づつ配設され、各電子部品チップが有する端子の数が4個であるが、これは本発明を説明するために便宜的に設定した個数であり、これらに限定されるものではない。
Such an electronic component built-in module of the present invention does not include a substrate, and an electronic component chip is built in the insulating resin layer, so that it can be reduced in size and thickness. In addition, since the vertical conductive vias are arranged in the insulating resin layer, for example, when a plurality of electronic component built-in modules of the present invention are stacked to form a laminated structure, or stacked with other electronic component built-in modules, etc. In the case of the structure, conduction between the modules can be easily obtained.
In the above-described embodiment, the electronic component built-in module contains two electronic component chips. However, in the electronic component built-in module of the present invention, the number of built-in electronic component chips is not limited. Arrangement positions, arrangement intervals and the like can be arbitrarily set.
In the above-described embodiment, two vertical conductive vias are provided corresponding to each side of the electronic component chip, and each electronic component chip has four terminals. This explains the present invention. Therefore, the number is set for convenience, and is not limited thereto.

[電子部品内蔵モジュールの製造方法]
図5は、本発明の電子部品内蔵モジュールの製造方法の一実施形態を説明するための工程図である。
本発明の電子部品内蔵モジュールの製造方法では、まず、基材1の一方の面に絶縁層12を形成し、この絶縁層12の所望の部位に外部端子13と配線層14を形成する(図5(A))。基材1としては、銅、銅合金等の金属材料、シリコン等を使用することができ、厚みは、例えば、0.05〜1mm程度とすることができる。
[Method of manufacturing electronic component built-in module]
FIG. 5 is a process diagram for explaining an embodiment of a method for producing an electronic component built-in module according to the present invention.
In the method for manufacturing an electronic component built-in module according to the present invention, first, the insulating layer 12 is formed on one surface of the substrate 1, and the external terminals 13 and the wiring layer 14 are formed at desired portions of the insulating layer 12 (see FIG. 5 (A)). As the base material 1, metal materials, such as copper and a copper alloy, silicon | silicone, etc. can be used, and thickness can be about 0.05-1 mm, for example.

絶縁層12の形成は、エポキシ樹脂、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂等の電気絶縁性樹脂材料を含有する塗布液、あるいは、これらの電気絶縁性樹脂材料とガラス繊維とを組み合わせたものを含有する塗布液を公知の塗布方法で塗布し、その後、加熱、紫外線照射、電子線照射等の所定の硬化処理を施すことにより行うことができる。   The insulating layer 12 is formed by applying a coating solution containing an electrically insulating resin material such as epoxy resin, benzocyclobutene resin, cardo resin, polyimide resin, or a combination of these electrically insulating resin materials and glass fibers. Can be performed by applying a predetermined curing treatment such as heating, ultraviolet irradiation, electron beam irradiation, and the like.

上記の外部端子13と配線層14の形成は、例えば、以下のように行うことができる。まず、感光性の絶縁樹脂材料を用いて絶縁層12となる感光性絶縁樹脂層を形成し、この感光性絶縁樹脂層を所定のマスクを介して露光し、現像することにより、外部端子13用の孔部と、配線層14用の溝部を絶縁層12に形成する。そして、洗浄後、上記の孔部、溝部と、絶縁層12上に真空成膜法により導電層を形成し、絶縁層12上の導電層にレジスト層を形成し、所望のパターン露光、現像を行うことによりレジストパターンを形成する。次に、このレジストパターンをマスクとして、上記の孔部と溝部の内部に電解めっきにより導電材料を析出させて外部端子13、配線層14を形成し、その後、レジストパターンと導電層を除去する。また、基材1の材質が導電体(金属)の場合は、絶縁層12の周縁部を露出し、あるいは基材1の側面や裏面に電極を立て、上記の孔部、溝部に電解めっきにて導電材料を直接析出させて外部端子13、配線層14を形成してもよい。   The external terminal 13 and the wiring layer 14 can be formed as follows, for example. First, a photosensitive insulating resin layer to be the insulating layer 12 is formed using a photosensitive insulating resin material, and the photosensitive insulating resin layer is exposed through a predetermined mask and developed, whereby the external terminals 13 are used. And a groove for the wiring layer 14 are formed in the insulating layer 12. Then, after cleaning, a conductive layer is formed on the hole, groove, and insulating layer 12 by a vacuum film forming method, a resist layer is formed on the conductive layer on the insulating layer 12, and desired pattern exposure and development are performed. By doing so, a resist pattern is formed. Next, using this resist pattern as a mask, a conductive material is deposited by electrolytic plating inside the hole and groove to form the external terminal 13 and the wiring layer 14, and then the resist pattern and the conductive layer are removed. Further, when the material of the base material 1 is a conductor (metal), the peripheral edge of the insulating layer 12 is exposed, or an electrode is placed on the side surface or the back surface of the base material 1, and the above hole and groove are subjected to electrolytic plating. Alternatively, the external terminal 13 and the wiring layer 14 may be formed by directly depositing a conductive material.

また、外部端子13と配線層14の形成は、以下のように行うこともできる。すなわち、炭酸ガスレーザー、UV−YAGレーザー等を用いて絶縁層12に外部端子13用の孔部、配線層14用の溝部を形成する。そして、洗浄後、上記の孔部、溝部の内部、および絶縁層12に無電解めっきにより導電層を形成し、この導電層上にドライフィルムレジストをラミネートして所望のパターン露光、現像を行うことによりレジストパターンを形成する。次いで、このレジストパターンをマスクとして、上記の孔部と溝部の内部に電解めっきにより導電材料を析出させて外部端子13、配線層14を形成し、その後、レジストパターンと導電層を除去する。   Further, the formation of the external terminals 13 and the wiring layer 14 can also be performed as follows. That is, a hole for the external terminal 13 and a groove for the wiring layer 14 are formed in the insulating layer 12 using a carbon dioxide laser, a UV-YAG laser, or the like. Then, after cleaning, a conductive layer is formed by electroless plating on the hole, groove, and insulating layer 12, and a dry film resist is laminated on the conductive layer to perform desired pattern exposure and development. Thus, a resist pattern is formed. Next, using the resist pattern as a mask, a conductive material is deposited by electrolytic plating inside the hole and groove to form the external terminal 13 and the wiring layer 14, and then the resist pattern and the conductive layer are removed.

上記の導電材料としては、例えば、銅、銀、金、クロム、アルミニウム、ニッケル等を挙げることができ、外部端子13、配線層14を多層構造、例えば、ニッケル/銅/ニッケルの3層構造、ニッケル/金/ニッケルの3層構造、ニッケル/銀/ニッケルの3層構造、これらの3層構造のニッケルの代わりに、クロム、チタン等を用いた3層構造、あるいは、ニッケル/金、チタン/銅等の2層構造とすることができる。
次に、シリコン基板22の一方の面に薄膜素子形成層23を有する電子部品チップ21を、薄膜素子形成層23の端子24が外部端子13または配線層14に接続するように、絶縁層12上にフリップチップ実装する(図5(B))。電子部品チップ21を構成する薄膜素子形成層23は、キャパシタ、レジスタ(抵抗)、インダクタ、トランス、LCR回路等の所望の薄膜受動素子、オペアンプ等のアクティブフィルタ素子、ロジック、メモリ素子等の所望の薄膜能動素子が形成されたものである。この薄膜素子形成層23の厚みは3〜30μm程度、電子部品チップ21の厚みは10〜50μm程度とすることができる。
Examples of the conductive material include copper, silver, gold, chromium, aluminum, nickel, and the like. The external terminal 13 and the wiring layer 14 have a multilayer structure, for example, a three-layer structure of nickel / copper / nickel, Three-layer structure of nickel / gold / nickel, three-layer structure of nickel / silver / nickel, three-layer structure using chromium, titanium, etc. instead of nickel of these three-layer structures, or nickel / gold, titanium / A two-layer structure such as copper can be used.
Next, the electronic component chip 21 having the thin film element forming layer 23 on one surface of the silicon substrate 22 is placed on the insulating layer 12 so that the terminal 24 of the thin film element forming layer 23 is connected to the external terminal 13 or the wiring layer 14. Flip chip mounting is performed (FIG. 5B). The thin film element forming layer 23 constituting the electronic component chip 21 includes desired thin film passive elements such as capacitors, resistors (resistors), inductors, transformers, and LCR circuits, active filter elements such as operational amplifiers, logic, and memory elements. A thin film active element is formed. The thin film element forming layer 23 can have a thickness of about 3 to 30 μm, and the electronic component chip 21 can have a thickness of about 10 to 50 μm.

次いで、実装した電子部品チップ21を被覆するように、絶縁層12上に絶縁樹脂層16を形成し、電子部品チップ21の非配設部位において絶縁樹脂層16を貫通し所望の外部端子13または配線層14(図示例では外部端子13)が露出するように複数の微細孔17を形成する(図5(C))。
絶縁樹脂層16は、エポキシ樹脂、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂等の絶縁樹脂材料を用いて形成することができる。
Next, an insulating resin layer 16 is formed on the insulating layer 12 so as to cover the mounted electronic component chip 21, and penetrates the insulating resin layer 16 at a non-arranged portion of the electronic component chip 21, so that a desired external terminal 13 or A plurality of fine holes 17 are formed so that the wiring layer 14 (external terminal 13 in the illustrated example) is exposed (FIG. 5C).
The insulating resin layer 16 can be formed using an insulating resin material such as an epoxy resin, a benzocyclobutene resin, a cardo resin, or a polyimide resin.

微細孔17の形成は、例えば、絶縁樹脂層16上にマスクパターンを形成し、露出している絶縁樹脂層16に対して、プラズマを利用したドライエッチング法であるICP−RIE(Inductively Coupled Plasma − Reactive Ion Etching:誘導結合プラズマ−反応性イオンエッチング)法で穿孔することにより形成することができる。この微細孔17の開口寸法は、次工程で形成する上下導通ビアの寸法に応じて適宜設定することができる。また、微細孔17は、炭酸ガスレーザー、UV−YAGレーザー等を用いて形成することができる。さらに、感光性の絶縁樹脂材料を用いて絶縁樹脂層16となる感光性絶縁樹脂層を形成し、この感光性絶縁樹脂層を所定のマスクを介して露光、現像することにより微細孔17を形成することもできる。   The fine holes 17 are formed by, for example, forming a mask pattern on the insulating resin layer 16 and applying ICP-RIE (Inductively Coupled Plasma −), which is a dry etching method using plasma to the exposed insulating resin layer 16. It can be formed by perforating by the Reactive Ion Etching method. The opening size of the fine hole 17 can be appropriately set according to the size of the vertical conduction via formed in the next process. The fine holes 17 can be formed using a carbon dioxide laser, a UV-YAG laser, or the like. Further, a photosensitive insulating resin layer to be the insulating resin layer 16 is formed using a photosensitive insulating resin material, and the fine holes 17 are formed by exposing and developing the photosensitive insulating resin layer through a predetermined mask. You can also

次に、微細孔17内に導電材料を充填して上下導通ビア18を形成する(図5(D))。微細孔17内への導電材料の充填は、例えば、微細孔17内と絶縁樹脂層16上に真空成膜法により導電層を形成し、この導電層上にレジスト層を形成し、所望のパターン露光、現像を行うことによりレジストパターンを形成する。次いで、このレジストパターンをマスクとして、微細孔17内に電解めっきにより導電材料を析出させ、その後、レジストパターンと導電層を除去する。
尚、本発明では、電子部品チップ21の実装前に、予め、めっきビアポストを外部端子13上に設けておき、電子部品チップ21の実装後に、絶縁樹脂層16で電子部品21を被覆し、次いで、CMP(化学的機械研磨)等により表面平坦化を行うと同時に、めっきビアポストを露出させて上下導通ビア18としてもよい。
Next, a conductive material is filled in the micro holes 17 to form the vertical conduction vias 18 (FIG. 5D). The conductive material is filled into the micro holes 17 by, for example, forming a conductive layer in the micro holes 17 and the insulating resin layer 16 by a vacuum film forming method, forming a resist layer on the conductive layer, and then forming a desired pattern. A resist pattern is formed by performing exposure and development. Next, using this resist pattern as a mask, a conductive material is deposited in the fine holes 17 by electrolytic plating, and then the resist pattern and the conductive layer are removed.
In the present invention, a plating via post is provided on the external terminal 13 in advance before mounting the electronic component chip 21, and after mounting the electronic component chip 21, the electronic component 21 is covered with the insulating resin layer 16, and then The surface via planarization may be performed by CMP (Chemical Mechanical Polishing) or the like, and at the same time, the plated via post may be exposed to form the vertical conductive via 18.

上下導通ビア18を構成する導電材料としては、例えば、銅、銀、金、クロム、アルミニウム等を挙げることができる。
次いで、基材1を除去することにより、本発明の電子部品内蔵モジュール11を得ることができる(図5(E))。基材1の除去は、例えば、選択エッチング、基材1の裏面側からの研磨等により行うことができる。
Examples of the conductive material constituting the vertical conduction via 18 include copper, silver, gold, chromium, and aluminum.
Next, by removing the substrate 1, the electronic component built-in module 11 of the present invention can be obtained (FIG. 5E). The removal of the base material 1 can be performed by, for example, selective etching, polishing from the back surface side of the base material 1 or the like.

図6及び図7は、本発明の電子部品内蔵モジュールの製造方法の他の実施形態を説明するための工程図である。
本発明の電子部品内蔵モジュールの製造方法では、まず、基材10の一方の面に絶縁層32を形成し、この絶縁層32の所望の部位に外部端子33を形成する(図6(A))。基材10としては、上述の基材1と同様のものを使用することができる。また、絶縁層32、外部端子33の形成は、上述の絶縁層12、外部端子13の形成と同様に行うことができる。尚、所望の外部端子33を接続する配線層を絶縁層32内に形成する場合には、上述の配線層14の形成と同様に行うことができる。
6 and 7 are process diagrams for explaining another embodiment of the method for manufacturing the electronic component built-in module of the present invention.
In the method for manufacturing an electronic component built-in module according to the present invention, first, the insulating layer 32 is formed on one surface of the substrate 10, and the external terminal 33 is formed at a desired portion of the insulating layer 32 (FIG. 6A). ). As the base material 10, the same material as the base material 1 described above can be used. The insulating layer 32 and the external terminal 33 can be formed in the same manner as the insulating layer 12 and the external terminal 13 described above. In addition, when forming the wiring layer which connects the desired external terminal 33 in the insulating layer 32, it can carry out similarly to formation of the above-mentioned wiring layer 14. FIG.

次に、シリコン基板42の一方の面に薄膜素子形成層43を有する電子部品チップ41を、シリコン基板42側において絶縁層32上に固着する(図6(B))。電子部品チップ41を構成する薄膜素子形成層43は、キャパシタ、レジスタ(抵抗)、インダクタ、トランス、LCR回路等の受動部品、オペアンプ等のアクティブフィルタ素子、ロジック、メモリ素子等の能動部品のような所望の薄膜素子が形成されたものである。この薄膜素子形成層43の厚みは1〜30μm程度、電子部品チップ41の厚みは20〜100μm程度とすることができる。   Next, the electronic component chip 41 having the thin film element formation layer 43 on one surface of the silicon substrate 42 is fixed on the insulating layer 32 on the silicon substrate 42 side (FIG. 6B). The thin film element forming layer 43 constituting the electronic component chip 41 is a passive component such as a capacitor, a resistor (resistance), an inductor, a transformer, or an LCR circuit, an active filter element such as an operational amplifier, an active component such as a logic or a memory element. A desired thin film element is formed. The thin film element formation layer 43 can have a thickness of about 1 to 30 μm, and the electronic component chip 41 can have a thickness of about 20 to 100 μm.

次いで、実装した電子部品チップ41を被覆するように、絶縁層32上に絶縁樹脂層36aを形成する。そして、電子部品チップ41の非配設部位において絶縁樹脂層36aを貫通し所望の外部端子33が露出するように複数の微細孔37を形成するとともに、薄膜素子形成層43の端子44が露出するように端子ビア用孔部39を形成する(図6(C))。   Next, an insulating resin layer 36 a is formed on the insulating layer 32 so as to cover the mounted electronic component chip 41. Then, a plurality of fine holes 37 are formed so as to penetrate the insulating resin layer 36a and expose the desired external terminals 33 at the non-arranged portion of the electronic component chip 41, and the terminals 44 of the thin film element forming layer 43 are exposed. Thus, a terminal via hole 39 is formed (FIG. 6C).

絶縁樹脂層36aは、エポキシ樹脂、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂等の絶縁樹脂材料を用いて形成することができる。
微細孔37、端子ビア用孔部39は、例えば、感光性の絶縁樹脂材料を用いて絶縁樹脂層36aとなる感光性絶縁樹脂層を形成し、この感光性絶縁樹脂層を所定のマスクを介して露光、現像することにより形成することができる。また、炭酸ガスレーザー、UV−YAGレーザー等を用いて微細孔37、端子ビア用孔部39を形成することもできる。微細孔37の開口寸法は、次工程で形成する上下導通ビアの寸法に応じて適宜設定することができる。また、端子ビア用孔部39の開口寸法は、例えば、5〜100μmの範囲で設定することができる。
The insulating resin layer 36a can be formed using an insulating resin material such as an epoxy resin, a benzocyclobutene resin, a cardo resin, or a polyimide resin.
The fine holes 37 and the terminal via holes 39 are formed, for example, by forming a photosensitive insulating resin layer to be the insulating resin layer 36a using a photosensitive insulating resin material, and passing the photosensitive insulating resin layer through a predetermined mask. It can be formed by exposing and developing. Further, the fine holes 37 and the terminal via holes 39 can be formed using a carbon dioxide laser, a UV-YAG laser, or the like. The opening size of the fine hole 37 can be appropriately set according to the size of the vertical conduction via formed in the next step. Moreover, the opening dimension of the hole part 39 for terminal vias can be set in the range of 5-100 micrometers, for example.

次に、微細孔37、端子ビア用孔部39内に導電材料を充填して上下導通ビア38と端子ビア34を形成するとともに、端子ビア34と所望の上下導通ビア38とを接続するための配線35を形成する(図6(D))。微細孔37、端子ビア用孔部39内への導電材料の充填と、配線35の形成は、例えば、以下のように行うことができる。すなわち、微細孔37、端子ビア用孔部39内と絶縁樹脂層36a上に真空成膜法により導電層を形成し、この導電層上に感光性レジスト層を形成し、所望のパターン露光、現像を行うことにより配線35を形成するためのレジストパターンを形成する。次いで、このレジストパターンをマスクとして、微細孔37、端子ビア用孔部39内と、露出している導電層上に電解めっきにより導電材料を析出させ、その後、レジストパターンと導電層を除去する。
上下導通ビア38、端子ビア34、および配線35を構成する導電材料としては、例えば、銅、銀、金、クロム、アルミニウム等を挙げることができる。
Next, the fine hole 37 and the terminal via hole 39 are filled with a conductive material to form the vertical conduction via 38 and the terminal via 34, and for connecting the terminal via 34 and the desired vertical conduction via 38. A wiring 35 is formed (FIG. 6D). The filling of the conductive material into the fine hole 37 and the terminal via hole 39 and the formation of the wiring 35 can be performed, for example, as follows. That is, a conductive layer is formed in the fine hole 37, the terminal via hole 39 and on the insulating resin layer 36a by a vacuum film forming method, a photosensitive resist layer is formed on the conductive layer, and desired pattern exposure and development are performed. To form a resist pattern for forming the wiring 35. Next, using this resist pattern as a mask, a conductive material is deposited by electrolytic plating on the fine holes 37 and the terminal via holes 39 and on the exposed conductive layer, and then the resist pattern and the conductive layer are removed.
Examples of the conductive material constituting the vertical conduction via 38, the terminal via 34, and the wiring 35 include copper, silver, gold, chromium, and aluminum.

次に、端子ビア34と配線35を被覆し、上下導通ビア38を露出するように被覆層としての絶縁樹脂層36bを形成する(図7(A))。絶縁樹脂層36bの形成は、例えば、以下のように行うことができる。まず、エポキシ樹脂、ベンゾシクロブテン樹脂、カルド樹脂、ポリイミド樹脂等の感光性の絶縁樹脂材料を用いて感光性絶縁樹脂層を形成する。次いで、この感光性絶縁樹脂層を所定のマスクを介して露光、現像することにより、上下導通ビア38を露出させるための開口部36b′を備えた絶縁樹脂層36bを形成する。   Next, the terminal via 34 and the wiring 35 are covered, and an insulating resin layer 36b as a covering layer is formed so as to expose the vertical conduction via 38 (FIG. 7A). The insulating resin layer 36b can be formed as follows, for example. First, a photosensitive insulating resin layer is formed using a photosensitive insulating resin material such as an epoxy resin, a benzocyclobutene resin, a cardo resin, or a polyimide resin. Next, this photosensitive insulating resin layer is exposed and developed through a predetermined mask to form an insulating resin layer 36b having an opening 36b 'for exposing the vertical conductive via 38.

次に、開口部36b′に露出している上下導通ビア38上に、絶縁樹脂層36bと同一面となるように(例えば、上記の上下導通ビア38の形成と同様の手法により)導電材料を充填して上下導通ビア38′を形成する(図7(B))。
次いで、基材10を除去することにより、本発明の電子部品内蔵モジュール31を得ることができる(図7(C))。基材10の除去は、例えば、選択エッチング、基材10の裏面側からの研磨等により行うことができる。
上述の電子部品内蔵モジュールの製造方法は例示であり、これに限定されるものではない。
Next, a conductive material is formed on the vertical conduction via 38 exposed in the opening 36b 'so as to be flush with the insulating resin layer 36b (for example, by the same method as the formation of the vertical conduction via 38). The upper and lower conductive vias 38 'are formed by filling (FIG. 7B).
Next, by removing the substrate 10, the electronic component built-in module 31 of the present invention can be obtained (FIG. 7C). The removal of the base material 10 can be performed by, for example, selective etching, polishing from the back surface side of the base material 10, or the like.
The method for manufacturing the electronic component built-in module described above is an example, and the present invention is not limited to this.

次に、具体的実施例を挙げて本発明を更に詳細に説明する。
厚み30μmのシリコン基板の一方の面に、受動部品として薄膜キャパシタを具備する薄膜素子形成層(厚み10μm)を設けた。その後、シリコン基板と薄膜素子形成層からなる積層体をダイシングして、5mm×5mmの大きさの電子部品チップを作製した。
一方、厚み100μmのシリコン基板を基材として準備し、この基材の片面に、ベンゾシクロブテン樹脂組成物(ダウ・ケミカル社製サイクロテン4024)をスピンコーターにより塗布、乾燥して、感光性絶縁層(厚み8μm)を形成した。
次に、外部端子形成用のマスクを介して上記の感光性絶縁層を露光し、現像を行った。これにより、絶縁層を形成するとともに、外部端子形成用の孔部(内径30μm)と、配線層形成用の溝部(幅10μm)を絶縁層の所定位置に形成した。
Next, the present invention will be described in more detail with specific examples.
A thin film element forming layer (thickness 10 μm) having a thin film capacitor as a passive component was provided on one surface of a 30 μm thick silicon substrate. Thereafter, the laminate composed of the silicon substrate and the thin film element formation layer was diced to produce an electronic component chip having a size of 5 mm × 5 mm .
On the other hand, a silicon substrate having a thickness of 100 μm was prepared as a base material, and a benzocyclobutene resin composition (Cycloten 4024 manufactured by Dow Chemical Co., Ltd.) was applied to one side of the base material with a spin coater and dried. A layer (thickness 8 μm) was formed.
Next, the photosensitive insulating layer was exposed through a mask for forming external terminals and developed. Thus, an insulating layer was formed, and a hole for forming an external terminal (inner diameter: 30 μm) and a groove for forming a wiring layer (width: 10 μm) were formed at predetermined positions of the insulating layer.

次いで、洗浄した後、外部端子形成用の孔部内、配線層形成用の溝部内、および絶縁層上に、スパッタリング法によりチタン/銅からなる導電層を形成し、この導電層上に液状レジスト(東京応化工業(株)製LA900)を塗布した。次いで、フォトマスクを介し露光、現像して、外部端子と配線層とを形成するためのレジストパターン(外部端子形成用の孔部、配線層形成用の溝部が露出する)を形成した。このレジストパターンをマスクとし、上記の導電層を給電層として、チタン、銅、チタンの順に電解めっきで析出した。これにより、チタン/銅/チタンの積層構造からなる外部端子と配線層を形成し、その後、レジストパターンと導電層を除去した。   Next, after cleaning, a conductive layer made of titanium / copper is formed by sputtering in the hole for forming the external terminal, the groove for forming the wiring layer, and the insulating layer, and a liquid resist ( Tokyo Ohka Kogyo Co., Ltd. LA900) was applied. Next, exposure and development were performed through a photomask to form a resist pattern (external terminal forming hole portions and wiring layer forming groove portions were exposed) for forming external terminals and wiring layers. Using this resist pattern as a mask and the above conductive layer as a power feeding layer, titanium, copper and titanium were deposited in this order by electrolytic plating. Thus, external terminals and wiring layers having a laminated structure of titanium / copper / titanium were formed, and then the resist pattern and the conductive layer were removed.

次に、電子部品チップのシリコン基板側を絶縁層上に固着して複数の電子部品チップを配設した。このように配設された各電子部品チップの間隔は1mmであった。
次に、電子部品チップを被覆するようにベンゾシクロブテン樹脂組成物(ダウ・ケミカル社製サイクロテン4024)をスピンコーターにより塗布し、乾燥して感光性絶縁樹脂層を形成した。次いで、この感光性絶縁樹脂層をマスクを介して露光し、現像を行った。これにより、絶縁樹脂層(電子部品チップの非配設部位での厚み50μm)を形成し、また、電子部品チップの非配設部位に、各電子部品チップを囲むように開口径50μmの微細孔を0.3mmピッチで複数形成するとともに、電子部品チップの薄膜素子形成層の端子が露出するように端子ビア用孔部を複数形成した。尚、上記の微細孔は、奥部に外部端子が露出したものであった。
Next, a plurality of electronic component chips were disposed by fixing the silicon substrate side of the electronic component chips on the insulating layer. The interval between the electronic component chips thus arranged was 1 mm.
Next, a benzocyclobutene resin composition (Cycloten 4024 manufactured by Dow Chemical Co., Ltd.) was applied by a spin coater so as to cover the electronic component chip, and dried to form a photosensitive insulating resin layer. Next, this photosensitive insulating resin layer was exposed through a mask and developed. As a result, an insulating resin layer (thickness of 50 μm at the non-arranged part of the electronic component chip) is formed, and fine holes with an opening diameter of 50 μm are encircled in the non-arranged part of the electronic component chip. Are formed at a pitch of 0.3 mm, and a plurality of terminal via holes are formed so that the terminals of the thin film element forming layer of the electronic component chip are exposed. In addition, said fine hole was an external terminal exposed in the inner part.

次いで、洗浄した後、微細孔の内部、端子ビア用孔部の内部、および絶縁樹脂層上に、スパッタリング法によりチタンと銅からなる導電層を形成し、この導電層上に感光性のフィルムレジスト(東京応化工業(株)製 BF405)をラミネートした。その後、フォトマスクを介して露光、現像して、上下導通ビアと端子ビアと配線を形成するためのレジストパターンを形成した。次に、上記のレジストパターンをマスクとして電解銅めっきにより微細孔の内部、端子ビア用孔部の内部を銅で充填するとともに、配線を形成した。その後、レジストパターンと導電層を除去した。これにより、絶縁樹脂層を貫通し、外部端子に接続された上下導通ビアを形成し、この上下導通ビアは配線、端子ビアを介して薄膜素子形成層の端子に接続されるものであった。   Next, after washing, a conductive layer made of titanium and copper is formed by sputtering on the inside of the fine hole, the inside of the terminal via hole, and the insulating resin layer, and a photosensitive film resist is formed on this conductive layer. (BF405 manufactured by Tokyo Ohka Kogyo Co., Ltd.) was laminated. Thereafter, exposure and development were performed through a photomask to form a resist pattern for forming vertical conductive vias, terminal vias, and wiring. Next, the inside of the fine hole and the inside of the terminal via hole were filled with copper by electrolytic copper plating using the resist pattern as a mask, and wiring was formed. Thereafter, the resist pattern and the conductive layer were removed. Thus, a vertical conduction via that penetrates the insulating resin layer and is connected to the external terminal is formed, and this vertical conduction via is connected to the terminal of the thin film element formation layer via the wiring and the terminal via.

次に、端子ビアと配線35を被覆するようにベンゾシクロブテン樹脂組成物(ダウ・ケミカル社製サイクロテン4024)をスピンコーターにより塗布し、乾燥して感光性絶縁樹脂層を形成した。次いで、この感光性絶縁樹脂層をマスクを介して露光し、現像を行った。これにより、上下導通ビアを露出させるための開口部を備えた絶縁樹脂層(厚み65μm)を形成した。次いで、開口部に露出している上下導通ビア上に、絶縁樹脂層36bと同一面となるように、上記の上下導通ビアの形成と同様の手法により、導電材料を充填して上下導通ビアを形成した。
次に、基材であるシリコン基板を水酸化カリウム水溶液を用いてエッチングした。その後、ダイシングして、電子部品チップ2個を内蔵した本発明の電子部品内蔵モジュール(15mm×15mm、厚み60μm)を得た。
Next, a benzocyclobutene resin composition (Cycloten 4024 manufactured by Dow Chemical Co., Ltd.) was applied by a spin coater so as to cover the terminal via and the wiring 35, and dried to form a photosensitive insulating resin layer. Next, this photosensitive insulating resin layer was exposed through a mask and developed. As a result, an insulating resin layer (thickness: 65 μm) having an opening for exposing the vertical conduction via was formed. Next, a conductive material is filled into the vertical conductive via so as to be flush with the insulating resin layer 36b on the vertical conductive via exposed at the opening by the same method as the formation of the vertical conductive via. Formed.
Next, the silicon substrate as a base material was etched using a potassium hydroxide aqueous solution. Thereafter, dicing was performed to obtain an electronic component built-in module (15 mm × 15 mm, thickness 60 μm) of the present invention incorporating two electronic component chips.

小型で高信頼性が要求される半導体装置や各種電子機器への用途にも適用できる。   The present invention can also be applied to small semiconductor devices and various electronic devices that require high reliability.

本発明の電子部品内蔵モジュールの一実施形態を示す平面図である。It is a top view which shows one Embodiment of the electronic component built-in module of this invention. 図1に示される電子部品内蔵モジュールのA−A線矢視縦断面図である。It is an AA arrow longitudinal cross-sectional view of the electronic component built-in module shown by FIG. 本発明の電子部品内蔵モジュールの他の実施形態を示す平面図である。It is a top view which shows other embodiment of the electronic component built-in module of this invention. 図3に示される電子部品内蔵モジュールのB−B線矢視縦断面図である。FIG. 4 is a longitudinal sectional view of the electronic component built-in module shown in FIG. 本発明の電子部品内蔵モジュールの製造方法の一実施形態を説明する工程図である。It is process drawing explaining one Embodiment of the manufacturing method of the electronic component built-in module of this invention. 本発明の電子部品内蔵モジュールの製造方法の他の実施形態を説明する工程図である。It is process drawing explaining other embodiment of the manufacturing method of the electronic component built-in module of this invention. 本発明の電子部品内蔵モジュールの製造方法の他の実施形態を説明する工程図である。It is process drawing explaining other embodiment of the manufacturing method of the electronic component built-in module of this invention.

符号の説明Explanation of symbols

1,10…基材
11,31…電子部品内蔵モジュール
12,32…絶縁層
13,33…外部端子
14…配線層
16,36(36a,36b)…絶縁樹脂層
17,37…微細孔
18,38…上下導通ビア
34…端子ビア
35…配線
21,41…電子部品チップ
22,42…シリコン基板
23,43…薄膜素子形成層
24,44…端子
DESCRIPTION OF SYMBOLS 1,10 ... Base material 11, 31 ... Electronic component built-in module 12, 32 ... Insulating layer 13, 33 ... External terminal 14 ... Wiring layer 16, 36 (36a, 36b) ... Insulating resin layer 17, 37 ... Fine hole 18, 38 ... Vertical conduction via 34 ... Terminal via 35 ... Wiring 21, 41 ... Electronic component chip 22, 42 ... Silicon substrate 23, 43 ... Thin film element formation layer 24, 44 ... Terminal

Claims (4)

基材の一方の面に絶縁層を形成し、次いで、該絶縁層を貫通する複数の外部端子を形成する工程と、
シリコン基板の一方の面に薄膜素子形成層を有する電子部品チップを、前記シリコン基板が当接するように前記絶縁層上に固着する工程と、
前記電子部品チップを被覆するように前記絶縁層上に絶縁樹脂層を形成し、電子部品チップの非配設部位において前記絶縁樹脂層を貫通し所望の前記外部端子が露出するように複数の微細孔を形成するとともに、前記薄膜素子形成層の端子が露出する端子ビア用孔部を前記絶縁樹脂層に形成する工程と、
前記微細孔と前記端子ビア用孔部に導電材料を充填して上下導通ビアと端子ビアを形成するとともに、該端子ビアと所望の前記上下導通ビアとを接続するための配線を形成する工程と、
前記端子ビアと配線を被覆し、前記上下導通ビアを露出するように被覆層としての絶縁樹脂層を形成する工程と、
前記基材を除去する工程と、を有することを特徴とする電子部品内蔵モジュールの製造方法。
Forming an insulating layer on one surface of the substrate, and then forming a plurality of external terminals penetrating the insulating layer;
Fixing an electronic component chip having a thin film element forming layer on one surface of a silicon substrate on the insulating layer so that the silicon substrate contacts;
An insulating resin layer is formed on the insulating layer so as to cover the electronic component chip, and a plurality of fine patterns are formed so that a desired external terminal is exposed through the insulating resin layer at a non-arranged portion of the electronic component chip. Forming a hole in the insulating resin layer while forming a hole and exposing a terminal via hole through which a terminal of the thin film element forming layer is exposed;
Filling the fine hole and the terminal via hole with a conductive material to form a vertical conduction via and a terminal via, and forming a wiring for connecting the terminal via and a desired vertical conduction via; ,
Covering the terminal via and wiring, and forming an insulating resin layer as a covering layer so as to expose the vertical conduction via; and
And a step of removing the base material.
前記外部端子を形成する工程にて、所望の前記外部端子を接続するための配線層を前記絶縁層に形成し、前記微細孔を形成する工程では、所望の外部端子または配線層が露出するように前記微細孔を形成することを特徴とする請求項1に記載の電子部品内蔵モジュールの製造方法。 In the step of forming the external terminal, a wiring layer for connecting the desired external terminal is formed on the insulating layer, and in the step of forming the fine hole, the desired external terminal or the wiring layer is exposed. The method for manufacturing an electronic component built-in module according to claim 1 , wherein the fine hole is formed in the electronic component. 被覆層としての絶縁樹脂層に露出している上下導通ビアに、絶縁樹脂層と同一面をなすように導電材料を充填する工程、あるいは、はんだボール、金めっきバンプ、金スタッドバンプのいずれかを形成する工程を有することを特徴とする請求項1または請求項2に記載の電子部品内蔵モジュールの製造方法。 Filling the vertical conductive via exposed in the insulating resin layer as a coating layer with a conductive material so that it is flush with the insulating resin layer, or any of solder balls, gold plating bumps, and gold stud bumps method of manufacturing an electronic component built-in module according to claim 1 or claim 2 characterized by having a step of forming. 前記基材は、金属またはシリコンであることを特徴とする請求項1乃至請求項3のいずれかに記載の電子部品内蔵モジュールの製造方法。 The substrate is a method of manufacturing an electronic component built-in module according to any one of claims 1 to 3, characterized in that a metal or silicon.
JP2004318919A 2004-11-02 2004-11-02 Manufacturing method of electronic component built-in module Expired - Fee Related JP4759981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318919A JP4759981B2 (en) 2004-11-02 2004-11-02 Manufacturing method of electronic component built-in module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318919A JP4759981B2 (en) 2004-11-02 2004-11-02 Manufacturing method of electronic component built-in module

Publications (2)

Publication Number Publication Date
JP2006134914A JP2006134914A (en) 2006-05-25
JP4759981B2 true JP4759981B2 (en) 2011-08-31

Family

ID=36728217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318919A Expired - Fee Related JP4759981B2 (en) 2004-11-02 2004-11-02 Manufacturing method of electronic component built-in module

Country Status (1)

Country Link
JP (1) JP4759981B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916241B2 (en) * 2006-07-28 2012-04-11 パナソニック株式会社 Semiconductor device and manufacturing method thereof
JPWO2008093531A1 (en) * 2007-01-29 2010-05-20 日本電気株式会社 Semiconductor device and manufacturing method thereof
US7960210B2 (en) 2007-04-23 2011-06-14 Cufer Asset Ltd. L.L.C. Ultra-thin chip packaging
JP5601751B2 (en) * 2007-04-26 2014-10-08 スパンション エルエルシー Semiconductor device
JP5732839B2 (en) * 2010-12-13 2015-06-10 住友ベークライト株式会社 Manufacturing method of semiconductor element sealing body and manufacturing method of semiconductor package
JP5411981B2 (en) * 2012-12-05 2014-02-12 スパンション エルエルシー Manufacturing method of semiconductor device
TWI517343B (en) * 2014-03-25 2016-01-11 恆勁科技股份有限公司 Flip-chip package-on-package structure and its fabrication method
KR101963182B1 (en) * 2016-02-24 2019-07-31 주식회사 에스에프에이반도체 Method for manufacturing semiconductor package
CN110268510B (en) * 2016-12-22 2021-11-23 厦门四合微电子有限公司 Packaging method of discrete device and discrete device
CN106601699A (en) * 2016-12-22 2017-04-26 深圳中科四合科技有限公司 Discrete device packaging method and discrete device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134653A (en) * 2000-10-23 2002-05-10 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2003218282A (en) * 2002-01-18 2003-07-31 Ibiden Co Ltd Semiconductor element built-in board and multi-layer circuit board
JP2005217225A (en) * 2004-01-30 2005-08-11 Shinko Electric Ind Co Ltd Semiconductor device and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135390B2 (en) * 2002-04-19 2008-08-20 カシオ計算機株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134653A (en) * 2000-10-23 2002-05-10 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2003218282A (en) * 2002-01-18 2003-07-31 Ibiden Co Ltd Semiconductor element built-in board and multi-layer circuit board
JP2005217225A (en) * 2004-01-30 2005-08-11 Shinko Electric Ind Co Ltd Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006134914A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP3670917B2 (en) Semiconductor device and manufacturing method thereof
JP5280309B2 (en) Semiconductor device and manufacturing method thereof
JP4271590B2 (en) Semiconductor device and manufacturing method thereof
JP4790297B2 (en) Semiconductor device and manufacturing method thereof
JP5331958B2 (en) Wiring board and semiconductor package
JP5026400B2 (en) Wiring board and manufacturing method thereof
JP5221315B2 (en) Wiring board and manufacturing method thereof
US8304664B2 (en) Electronic component mounted structure
JP6124513B2 (en) Semiconductor device and manufacturing method thereof
JP2011501410A (en) Robust multilayer wiring elements and assembly with embedded microelectronic elements
JP2011151185A (en) Wiring board and semiconductor device
JP2005217225A (en) Semiconductor device and method for manufacturing the same
JP2001217337A (en) Semiconductor device and manufacturing method therefor
JP5249132B2 (en) Wiring board
KR20100065635A (en) Integrated circuit package and method for fabricating the same
JP2008282842A (en) Wiring board, and manufacturing method therefor
US9935053B2 (en) Electronic component integrated substrate
TWI505756B (en) Printed circuit board and method for manufacturing the same
JP2010021516A (en) Manufacturing method of electronic-element-incorporated printed circuit board
JP2005294451A (en) Semiconductor integrated circuit, method for manufacturing the same, and semiconductor integrated circuit device
JP4759981B2 (en) Manufacturing method of electronic component built-in module
JP2007027706A (en) Wiring board, manufacturing method therefor and semiconductor package
KR101696705B1 (en) Chip embedded type printed circuit board and method of manufacturing the same and stack package using the same
JP4268560B2 (en) Electronic component built-in module and manufacturing method thereof
JP2005064446A (en) Method of manufacturing laminating module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4759981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees