JP4758568B2 - Tunnel shape three-dimensional measuring apparatus and three-dimensional measuring method - Google Patents

Tunnel shape three-dimensional measuring apparatus and three-dimensional measuring method Download PDF

Info

Publication number
JP4758568B2
JP4758568B2 JP2001182882A JP2001182882A JP4758568B2 JP 4758568 B2 JP4758568 B2 JP 4758568B2 JP 2001182882 A JP2001182882 A JP 2001182882A JP 2001182882 A JP2001182882 A JP 2001182882A JP 4758568 B2 JP4758568 B2 JP 4758568B2
Authority
JP
Japan
Prior art keywords
tunnel
data
point
cross
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001182882A
Other languages
Japanese (ja)
Other versions
JP2003004422A (en
Inventor
高弘 近藤
裕道 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2001182882A priority Critical patent/JP4758568B2/en
Publication of JP2003004422A publication Critical patent/JP2003004422A/en
Application granted granted Critical
Publication of JP4758568B2 publication Critical patent/JP4758568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トンネル形状の三次元測定装置及び三次元測定方法に関する。
【0002】
【従来の技術】
従来、トンネル形状の測定方法としては、トンネル内に設置した測距手段の原点から発生されるレーザ光をトンネルの内周面に所定の角度毎に順次照射し、照射したレーザ光とトンネルの内周面上の照射点で反射されたレーザ光との位相差を検知することで、角度毎に原点から照射点までの距離を測定し、この測定した距離及び角度に基づいて各照射点を位置データに変換することで、トンネルの断面形状を示すものがある。
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来のレーザ光による測距手段を用いたトンネル形状の測定方法では、トンネルの断面形状のみが作成されるため、トンネル全体の形状を立体的に把握することができないという問題がある。
また、従来のレーザ光による測距手段を用いたトンネル形状の測定方法では、測距手段に設けた原点を基準としてトンネルの断面形状を示すため、基準となる測距手段のトンネル内における位置や傾きによって、トンネルの断面形状に誤差が生じる。特に、測距手段を車両等の移動手段に設置し、トンネル内で移動させた場合は、トンネル内における移動手段の位置を把握することが困難であるとともに、移動手段に傾きが生じ易いため、トンネルの断面形状が正確に示されないという問題がある。
【0004】
そこで本発明は、前記問題を解決するためになされたものであり、移動手段に設置した測距手段が、トンネル内における移動手段の位置及び傾きに影響されることなく、トンネル内を移動してトンネルの断面形状を順次測定し、この測定した断面形状を用いて迅速かつ正確にトンネルの三次元形状を作成することができるトンネル形状の三次元測定装置及び三次元測定方法を提供することを課題としている。
【0005】
【課題を解決するための手段】
本発明は、前記課題を解決すべく構成されるものであり、請求項1に記載の発明は、トンネル形状の三次元測定装置であって、原点から発生されるレーザ光をトンネルの内周面に所定の角度毎に順次照射し、トンネルの内周面上の照射点で反射されたレーザ光を原点において検知することで、原点と照射点との距離を所定の角度毎に順次測定する測距手段と、測距手段を設置した移動手段と、隣り合う照射点の間のベクトルを作成し、連続した2つのベクトルの方向変化が最大となる2つのベクトルが経由する照射点基準点として検出する基準点検出手段と、複数の照射点を、基準点を基準とする位置データに変換することで、トンネル形状の断面データを作成する断面データ作成手段と、移動手段の移動量を検出する移動量検出手段と、移動手段をトンネルの延長方向に移動させて順次作成した断面データ及び移動手段の移動量に基づいて、トンネル形状の三次元データを作成する三次元データ作成手段とから構成されることを特徴とする。
【0006】
また、請求項3に記載の発明は、トンネル形状の三次元測定方法であって、移動手段に設置した測距手段が、原点から発生されるレーザ光をトンネルの内周面に所定の角度毎に順次照射し、トンネルの内周面上の照射点で反射されたレーザ光を原点において検知することで、原点と照射点との距離を所定の角度毎に順次測定する測距段階と、隣り合う照射点の間のベクトルを作成し、連続した2つのベクトルの方向変化が最大となる2つのベクトルが経由する照射点基準点として検出する基準点検出段階と、複数の照射点を、基準点を基準とする位置データに変換することで、トンネル形状の断面データを作成する断面データ作成段階と、移動手段をトンネルの延長方向に移動させて順次作成した断面データ及び移動手段の移動量に基づいて、トンネル形状の三次元データを作成する三次元データ作成段階とから構成されることを特徴とする。
【0007】
ここで、移動手段とは、自動車、電車等の走行手段を備えたものであり、測距手段を設置してトンネル内を走行することができるものであれば、駆動方式及び構造は限定されない。
なお、トンネルの内周面とは、トンネルの内壁及び路面であり、トンネルの内壁に設けられた送風機や標識等の突起物の表面を含む。さらに、トンネル形状とは、トンネル内に設置された前記突起物の形状を含む。
【0008】
また、基準点とは、測距手段の外部に設けられた点であり、この点を基準として照射点の位置を測定することで、測距手段を設置した移動手段の変位に影響されることなく、正確に照射点の位置を測定することができる。なお、基準点は、トンネルの内壁と路面の境界に設けることで、トンネル内における基準点の位置を正確に特定することが、実用上において好適である。
【0009】
請求項1及び請求項3に記載の発明によれば、移動手段に設置した測距手段のレーザ光によるトンネルの内周面上の照射点を、トンネルの内周面上に設けた基準点を基準とする位置データに変換することで、トンネル形状の断面データを作成するため、測距手段のトンネル内における位置及び傾斜に影響されることなく、トンネル形状の断面データを順次作成し、この断面データに移動手段の移動量を付加することで、トンネル形状の三次元データを迅速かつ正確に作成することができる。
【0010】
また、請求項2に記載の発明は、請求項1に記載のトンネル形状の三次元測定装置であって、測距手段を移動手段の前部及び後部に各々設けることを特徴とする。
【0011】
この発明によれば、移動手段の前部と後部に設けた測距手段の各測定値を比較することで、トンネルの延長方向における移動手段の傾きを容易に把握することができるため、その傾きを補正し、より正確にトンネル形状の三次元データを作成することができる。
【0012】
したがって、本発明のトンネル形状の三次元測定装置及び三次元測定方法では、移動手段に設置した測距手段を用いて順次作成された正確なトンネル形状の断面データに基づいて、トンネル形状の三次元データを作成するため、トンネル全体の形状を迅速かつ正確に把握することができる。
【0013】
【発明の実施の形態】
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。
【0014】
図1は本発明の実施形態に係る三次元測定装置を示した側面図である。図2は本発明の実施形態に係る三次元測定装置を示した背面図である。図3は本発明の実施形態に係る三次元測定装置を示した平面図である。図4は測距手段によってレーザ光を照射した際を示した図で、(a)はレーザ光の照射点を示した図、(b)は基準点検出方法を示した図である。図5は基準点検出方法におけるベクトル同士のなす角の比較図である。図6は測距手段によって内壁にレーザ光を照射した際の他の例を示した図で、(a)はレーザ光の照射点を示した図、(b)は基準点検出方法におけるベクトル同士のなす角の比較図である。図7は基準点検出方法の他の例を示した図である。図8は形状データ作成手段を示した構成図である。
【0015】
まず、本発明の実施形態に係るトンネル形状の三次元測定装置における構成を説明する。
三次元測定装置1は、図1,図2に示すように、トンネルT内を走行可能な移動手段であるトラック4と、トラック4に設置された測距手段2、傾斜角検出手段6(図示せず)及び形状データ作成手段5(図示せず)、移動量検出手段3とから構成されている。
ここで、三次元データは、トンネルの鉛直断面における後記基準点を絶対基準としてX,Y座標を設け、トンネルの延長方向にZ軸を設けることにより、三次元形状を示すものである。
【0016】
次に、各構成要素について説明する。
測距手段2は、図1,図3に示すように、トラック4の荷台4aに設置されたレーザ光による測距装置であって、荷台4aの前部4bに設置した前部測距手段2aと後部4cに設置した後部測距手段2bとから構成され、レーザ光を発生させる原点Oが鉛直方向に回転可能であり、測距手段2の原点OからトンネルTの内周面にレーザ光を照射し、照射したレーザ光とトンネルTの内周面上の照射点Sで反射されたレーザ光との位相差を検出することで、原点OからトンネルTの内周面上の照射点Sまでの距離を測定する。
【0017】
傾斜角検出手段6は、図8に示すように、測距手段2の傾斜角を検出する自動角度検出装置であり、測距手段2がトラック4の荷台4aに水平状態で固定されているのであれば、トラック4の荷台4aの傾斜角を検出するものでもよい。
【0018】
移動量検出手段3は、図1,図2に示すように、トラック4の移動量を検出することで、トラック4に設置した測距手段2の移動量を検出するものであり、トラック4の下部に所定の間隔(1スパン)で設けた2組の車輪の回転をロータリエンコーダによって検出することで、トラック4の移動量を検出する。なお、トラック4の荷台4aに設置した前部測距手段2a及び後部測距手段2bが2組の車輪による1スパン内に配置されるようにしている。
【0019】
ここで、測距手段2、傾斜角検出手段6及び移動量検出手段3は、既存の測定装置であり、小型で正確に測定することができるものであれば、前記の構成に限定されるものではない。
【0020】
形状データ作成手段5は、図8に示すように、基準点検出手段5aと、車両姿勢検出手段5bと、断面データ作成手段5cと、三次元データ作成手段5dと、データ記憶手段5eとを備えたコンピュータであり、前部測距手段2a、後部測距手段2b、傾斜角検出手段6及び移動量検出手段3から出力された各測定値を入力して処理する。
【0021】
以下、形状データ作成手段5における各手段について説明する。
基準点検出手段5aは、トンネルTの断面データの基準点を、トンネルTの内周面上の照射点Sから検出する手段である。
車両姿勢検出手段5bは、トラック4に設置した前部測距手段2aと後部測距手段2bの各原点から内壁までの距離を比較することで、トンネルTの延長方向におけるトラック4の傾きを検出する手段である。
断面データ作成手段5cは、測距手段2によって測定した照射点Sの位置を、基準点検出手段5aによって検出した基準点を基準とする絶対座標に変換することで、トンネル形状の断面データを作成するとともに、傾斜角検出手段6によって検出した傾斜角に基づいて、絶対座標に変換した照射点Sの絶対座標を補正する手段である。
三次元データ作成手段5dは、トンネルTの延長方向において順次作成された断面データに、測距手段2を設置したトラック4の移動量を付加することで、トンネルTの三次元データを作成する手段である。
【0022】
また、トラック4は、図1に示すように、既存の小型トラックであり、トラック4に設置される測距手段2、傾斜角検出手段6(図示せず)、形状データ作成手段5(図示せず)及び移動量検出手段3は小型の装置であるため、トラック4を三次元測定装置1用に製作する必要はなく、例えば、トンネル構築における作業車を用いてもよい。
【0023】
次に、本発明の実施形態に係る三次元測定装置1を用いたトンネル形状の三次元測定方法について説明する。
(1)測距段階
まず、図1,図2,図4(a)に示すように、測距手段2の原点Oから発生されるレーザ光を、トンネルTの片側の内壁Ta及び路面Tbに所定の角度(n度)毎に順次照射し、照射したレーザ光と内壁Ta及び路面Tb上の照射点Sで反射されたレーザ光の位相差を検出することで、原点Oから内壁Ta及び路面Tbまでの距離をn度毎に検出する。
ここで、測距手段2はトラック4の荷台4aに設置されており、レーザ光がトラック4の下方を照射する際に、荷台4aの上面によって遮られてしまうため、トンネルT内における特定の場所からトンネルTの内周面全体にレーザ光を照射することができない。したがって、この実施形態では、トンネルTの断面データを片側ずつ作成し、各断面データを合成することでトンネルT全体の断面データを作成する。
【0024】
(2)車両姿勢検出段階
次に、図3,図8に示すように、形状データ作成手段5の車両姿勢検出手段5bによって、前部測距手段2a及び後部測距手段2bによって測定した同一角度における原点Oから内壁Taまでの各距離を比較する。このとき、前部測距手段2aと後部測距手段2bの測定値に誤差が生じている場合は、トラック4がトンネルTの延長方向において傾いた状態であることから、照射点Sの位置を正確に測定することができないため、トラック4の位置を補正する。なお、トンネルTの内壁Taに標識や配管等の突起物がある場合も、前部測距手段2aと後部測距手段2bの測定値に誤差が生じるため、内壁Taに突起物がない部分を選択して測定する。
【0025】
(3)基準点検出段階
次に、図4,図8に示すように、形状データ作成手段5の基準点検出手段5aによって、トンネルTの断面データの基準点を、レーザ光の照射点Sから検出する。
ここで、トンネルTの断面データは、トンネルTの片側の断面データを合成して作成されるため、各片側の断面データにおける基準点同士の位置関係を正確に把握し、この位置関係に基づいて各基準点を基準とする片側の断面データ同士を合成する必要がある。
【0026】
この実施形態では、位置関係が明確な2点をトンネルT自体に設け、この各点を基準として片側の断面データを示すことで、正確にトンネルTの片側の断面データ同士を合成する。
ここで、トンネルT内における位置関係が明確な2点は、トンネルTの路面Tbにおける幅員の両端Tc,Tcとすることが好ましい。トンネルTの路面Tbの幅員は、トンネルT内において一定の大きさであるとともに、幅員は容易に計測することができるため、路面Tbにおける幅員の両端Tc,Tc、すなわち、トンネルTの内壁Taと路面Tbの境界を基準点とすることで、基準点同士の距離を容易に把握することができる。
【0027】
以下、基準点検出手段5aによって、基準点となるトンネルTの内壁Taと路面Tbの境界を検出する方法を説明する。なお、前部測距手段2aと後部測距手段2bとは同様の構成であるため、ここでは、後部測距手段2bについて説明する。
まず、図4(a)に示すように、後部測距手段2bによって、トンネルTの内周面上に照射されたレーザ光の照射点Sを点Aから点Eとする。
次に、図4(b)に示すように、点AB間をベクトルa、点BC間をベクトルb、点CD間をベクトルc、点DE間をベクトルdとする。
ここで、トンネルTの内壁Taは路面Tbに対して立設した状態であり、内壁Taと路面Tbの境界である点Cを経由するベクトルbとベクトルcの方向変化が最大となる。すなわち、トンネルTの片側の断面形状において連続する2つのベクトルのなす角が最小となるベクトル同士が経由する点を求めることで、基準点となる内壁Taと路面Tbの境界である点Cを検出することができる。
【0028】
次に、各ベクトル同士のなす角の比較方法について説明する。
まず、図5に示すように、点Cを経由するベクトルbとベクトルcのなす角を角βとした場合、角βは、次式(数1)によって求まる。
【0029】
【数1】

Figure 0004758568
【0030】
同様にして、内壁Ta上の点Bを経由するベクトルaとベクトルbのなす角を角α、路面Tb上の点Dを経由するベクトルcとベクトルdのなす角を角γとして角度を求め、各角度を比較する。この結果、内壁Taと路面Tbの境界である点Cを経由するベクトルbとベクトルcのなす角βが最小となることから、トンネルTの片側の断面形状において連続する2つのベクトルのなす角が最小となるベクトル同士が経由する点が内壁Taと路面Tbの境界であることが確認された。
【0031】
ここで、図6(a)に示すように、測距手段2をトラック4の荷台4aに、前記基準点検出段階の場合と反対側に配置して、反対側のトンネルTの内壁Taにレーザ光を照射した場合は、各ベクトルの方向が前記基準点検出段階の場合と反対になることから、図6(b)に示すように、内壁Taと路面Tbの境界である点C’を経由するベクトルb’とベクトルc’のなす角β’は、各角度α’、β’、γ’の中で最大となる。したがって、この場合は、トンネルTの片側の断面形状において連続する2つのベクトルのなす角が最大となるベクトル同士が経由する点が内壁Taと路面Tbの境界となる。
【0032】
(4)断面データ作成段階
次に、図8に示すように、形状データ作成手段5の断面データ作成手段5cが、測距手段2によって測定した照射点Sの位置を、点Cを基準とする絶対座標に変換することで、トンネルTの片側の断面データを作成する。
ここで、図4(a)に示すように、トラック4が傾斜角θで傾いている場合は、照射点Sの位置を変換した絶対座標に傾斜角θによる誤差が生じ、正確な断面データが作成されないため、各照射点Sの座標を補正する必要がある。なお、傾斜角θは、傾斜角検出手段6によって検出された測定値である。
以下、照射点Sの絶対座標の補正について説明する。
照射点Cの座標を(Xc,Yc)とし、傾斜角θを補正することなく示された照射点nの座標を(Xn,Yn)とすると、傾斜角θを補正した照射点nの座標(Xcn,Ycn)は次式(数2)によって示される。
【0033】
【数2】
Figure 0004758568
【0034】
次に、トラック4を移動量検出手段3の1スパンだけ移動させ、同様にして断面データを作成する。ここで、前部測距手段2a及び後部測距手段2bは、図1に示すように、移動量検出手段3の1スパン内に配置されているため、1スパンにおいて2つの断面データが同時に作成される。この作業をトンネルの延長方向において順次繰り返すことで、各スパンにおけるトンネルTの片側の断面データを作成する。
次に、同様にして反対側においてもトンネルTの片側の断面データを作成し、1スパン毎の各片側の断面データを、各基準点の位置関係に基づいて合成することで、各スパンにおけるトンネルTの断面データを作成する。
【0035】
(5)三次元データ作成段階
次に、図8に示すように、形状データ作成手段5の三次元データ作成手段5dによって、1スパン毎のトンネルTの断面データに、移動量検出手段3によるトラック4の移動量のデータを付加して各断面データをトンネルTの延長方向に配置し、この各断面データ間を連続させることで、トンネルT形状の三次元データを作成する。
最後に、図8に示すように、形状データ作成手段5のデータ記憶手段5eに、三次元データを記憶し、磁気記録媒体等を介してデータの表示手段を備えるパソコン等を用いてトンネルT全体の三次元形状を表示する。なお、測距手段2による測定値をデータ記憶手段5eに記憶し、磁気記録媒体等を介して断面データ作成手段5c及び三次元データ作成手段5dを備えるパソコン等によってトンネルT形状の三次元データを作成してもよい。
【0036】
したがって、本発明のトンネル形状の三次元測定装置及び三次元測定方法では、トラック4に設置した測距手段2を用いてトンネルT形状の三次元データを作成するため、トンネルT全体の形状を迅速かつ正確に把握することができる。
【0037】
以上、本発明を前記実施の形態によって説明したが、本発明は前記実施形態に限定されるものではない。前記本発明のトンネル形状の三次元測定装置1及び三次元測定方法と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される
【0038】
例えば、測距手段2の傾斜角θを、傾斜角検出手段6等の装置を用いることなく求めることも可能である。例えば、基準点検出段階において、図7に示すように、ベクトルcは路面Tbを示しており、トンネルTの路面Tbは水平状態であるため、ベクトルcは水平状態を示さなければならないが、傾斜角θで傾いている測距手段2を用いた場合は、ベクトルcが水平に対して角度θの傾きを有する状態となる。すなわち、この角度θは傾斜角θと同一であるため、角度θを求めることで、測距手段2の傾斜角θを検出することができる。
【0039】
【発明の効果】
本発明のトンネル形状の三次元測定装置及び三次元測定方法によれば、移動手段に設置した測距手段による測定値を、トンネルの内周面上に設けた基準点を基準とする位置データに変換することで、トンネル内における測距手段の位置や傾きに影響されることなく、トンネル形状の断面データが作成されるため、移動手段をトンネル内で移動させて正確な断面データを順次作成し、この断面データに車両の移動量を付加することで、トンネル形状の三次元データを作成するため、トンネル全体の形状を迅速かつ正確に把握することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るトンネル形状の三次元測定装置を示した側面図である。
【図2】本発明の実施形態に係るトンネル形状の三次元測定装置を示した背面図である。
【図3】本発明の実施形態に係るトンネル形状の三次元測定装置を示した平面図である。
【図4】本発明の実施形態に係る測距手段によってレーザ光を照射した際を示した図で、(a)はレーザ光の照射点を示した図、(b)は基準点検出方法を示した図である。
【図5】基準点検出方法におけるベクトル同士のなす角の比較図である。
【図6】本発明の実施形態に係る測距手段によって内壁にレーザ光を照射した際の他の例を示した図で、(a)はレーザ光の照射点を示した図、(b)は基準点検出方法におけるベクトル同士のなす角の比較図である。
【図7】本発明の実施形態に係る基準点検出方法の他の例を示した図である。
【図8】本発明の実施形態に係る形状データ作成手段を示した構成図である。
【符号の説明】
1・・・・三次元測定装置
2・・・・測距手段
2a・・・・前部測距手段
2b・・・・後部測距手段
3・・・・移動量検出手段
4・・・・トラック
4a・・・・トラックの荷台
4b・・・・トラックの荷台の前部
4c・・・・トラックの荷台の後部
5・・・・形状データ作成手段
5a・・・・基準点検出手段(形状データ作成手段)
5b・・・・車両姿勢検出手段(形状データ作成手段)
5c・・・・断面データ作成手段(形状データ作成手段)
5d・・・・三次元データ作成手段(形状データ作成手段)
5e・・・・データ記憶手段(形状データ作成手段)
6・・・・傾斜角検出手段
O・・・・原点
T・・・・トンネル
Ta・・・・トンネルの内壁
Tb・・・・トンネルの路面
Tc・・・・トンネルの路面における幅員の両端[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tunnel-shaped three-dimensional measuring apparatus and a three-dimensional measuring method.
[0002]
[Prior art]
Conventionally, as a tunnel shape measuring method, laser light generated from the origin of a distance measuring means installed in the tunnel is sequentially irradiated to the inner peripheral surface of the tunnel at a predetermined angle, and the irradiated laser light and the inside of the tunnel are By detecting the phase difference with the laser beam reflected at the irradiation point on the peripheral surface, the distance from the origin to the irradiation point is measured for each angle, and each irradiation point is positioned based on the measured distance and angle. Some of them show the cross-sectional shape of the tunnel by converting to data.
[0003]
[Problems to be solved by the invention]
However, in the tunnel shape measuring method using the conventional laser beam distance measuring means, only the cross-sectional shape of the tunnel is created, so that there is a problem that the shape of the entire tunnel cannot be grasped in three dimensions.
Further, in the conventional tunnel shape measurement method using the distance measuring means by laser light, the cross-sectional shape of the tunnel is shown with reference to the origin provided in the distance measuring means. The inclination causes an error in the cross-sectional shape of the tunnel. In particular, when the distance measuring means is installed in a moving means such as a vehicle and moved in a tunnel, it is difficult to grasp the position of the moving means in the tunnel, and the moving means tends to be inclined, There is a problem that the cross-sectional shape of the tunnel is not accurately shown.
[0004]
Accordingly, the present invention has been made to solve the above problem, and the distance measuring means installed in the moving means moves within the tunnel without being affected by the position and inclination of the moving means in the tunnel. PROBLEM TO BE SOLVED: To provide a tunnel shape three-dimensional measuring apparatus and a three-dimensional measurement method capable of sequentially measuring a cross-sectional shape of a tunnel and quickly and accurately creating a three-dimensional shape of the tunnel using the measured cross-sectional shape. It is said.
[0005]
[Means for Solving the Problems]
The present invention is configured to solve the above-mentioned problems, and the invention according to claim 1 is a tunnel-shaped three-dimensional measuring apparatus, wherein the laser beam generated from the origin is transmitted to the inner peripheral surface of the tunnel. Is measured sequentially to measure the distance between the origin and the irradiation point at each predetermined angle by detecting the laser beam reflected at the irradiation point on the inner peripheral surface of the tunnel at the origin. a distance means, moving means installed the distance measuring device, to create a vector between the radiation point adjacent, as a reference point the irradiation point of direction change of two consecutive vectors goes through the two vectors having the maximum A reference point detection unit for detecting, a plurality of irradiation points are converted into position data based on the reference point, thereby detecting a cross-section data generation unit for generating tunnel-shaped cross-section data, and a moving amount of the moving unit. Movement amount detection means; It is characterized by comprising three-dimensional data creating means for creating tunnel-shaped three-dimensional data based on the cross-sectional data sequentially created by moving the moving means in the extending direction of the tunnel and the movement amount of the moving means. .
[0006]
The invention according to claim 3 is a tunnel-shaped three-dimensional measuring method, wherein the distance measuring means installed in the moving means transmits the laser beam generated from the origin to the inner peripheral surface of the tunnel at a predetermined angle. sequentially irradiated, by detecting the laser beam reflected by the irradiated point on the inner peripheral surface of the tunnel at the origin, a distance measuring step of sequentially measuring a distance between the origin and the irradiation point at every predetermined angle, next to fit to create a vector between the irradiation point, the reference point detection step of direction change of two consecutive vectors is detected as a reference point the irradiation point through which the two vectors having the maximum a plurality of irradiation points, the reference By converting to point-based position data, the cross-section data creation stage for creating tunnel-shaped cross-section data, and the cross-section data created by moving the moving means in the tunnel extension direction and the moving amount of the moving means Based on , Characterized in that it is composed of a three-dimensional data generation step of generating a three-dimensional data of the tunnel-shaped.
[0007]
Here, the moving means is provided with traveling means such as an automobile and a train, and the driving method and structure are not limited as long as the distance measuring means can be installed to travel in the tunnel.
The inner peripheral surface of the tunnel is the inner wall and road surface of the tunnel, and includes the surfaces of protrusions such as a blower and a sign provided on the inner wall of the tunnel. Further, the tunnel shape includes the shape of the protrusions installed in the tunnel.
[0008]
In addition, the reference point is a point provided outside the distance measuring means, and by measuring the position of the irradiation point with this point as a reference, it is affected by the displacement of the moving means in which the distance measuring means is installed. The position of the irradiation point can be accurately measured. The reference point is, by providing the inner wall and the road surface of the boundary of the tunnel, it is preferred in practice to accurately identify the position of the reference point in the tunnel.
[0009]
According to the first and third aspects of the present invention, the irradiation point on the inner peripheral surface of the tunnel by the laser beam of the distance measuring unit installed in the moving unit is the reference point provided on the inner peripheral surface of the tunnel. By creating the cross-sectional data of the tunnel shape by converting to the reference position data, the cross-sectional data of the tunnel shape is sequentially created without being affected by the position and inclination of the distance measuring means in the tunnel. By adding the moving amount of the moving means to the data, it is possible to create the tunnel-shaped three-dimensional data quickly and accurately.
[0010]
According to a second aspect of the present invention, there is provided the tunnel-shaped three-dimensional measuring apparatus according to the first aspect, wherein the distance measuring means is provided at the front part and the rear part of the moving means.
[0011]
According to this invention, by comparing the measured values of the distance measuring means provided at the front and rear of the moving means, it is possible to easily grasp the inclination of the moving means in the tunnel extension direction. The three-dimensional data of the tunnel shape can be created more accurately.
[0012]
Therefore, in the tunnel shape three-dimensional measuring apparatus and the three-dimensional measurement method of the present invention, based on the accurate tunnel shape cross-sectional data sequentially created by using the distance measuring means installed in the moving means, the tunnel shape three-dimensional Since the data is created, the shape of the entire tunnel can be grasped quickly and accurately.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0014]
FIG. 1 is a side view showing a three-dimensional measuring apparatus according to an embodiment of the present invention. FIG. 2 is a rear view showing the three-dimensional measuring apparatus according to the embodiment of the present invention. FIG. 3 is a plan view showing the three-dimensional measuring apparatus according to the embodiment of the present invention. 4A and 4B are diagrams showing a case where the laser light is irradiated by the distance measuring means. FIG. 4A is a diagram showing a laser light irradiation point, and FIG. 4B is a diagram showing a reference point detecting method. FIG. 5 is a comparison diagram of angles formed by vectors in the reference point detection method. 6A and 6B are diagrams showing another example when the inner wall is irradiated with laser light by the distance measuring means, FIG. 6A is a diagram showing the irradiation point of the laser light, and FIG. 6B is a diagram of vectors in the reference point detection method. FIG. FIG. 7 is a diagram showing another example of the reference point detection method. FIG. 8 is a block diagram showing the shape data creation means.
[0015]
First, the configuration of a tunnel-shaped three-dimensional measuring apparatus according to an embodiment of the present invention will be described.
As shown in FIGS. 1 and 2, the three-dimensional measuring apparatus 1 includes a track 4 which is a moving means capable of traveling in the tunnel T, a distance measuring means 2 installed on the track 4, and an inclination angle detecting means 6 (see FIG. 1). (Not shown), shape data creation means 5 (not shown), and movement amount detection means 3.
Here, the three-dimensional data indicates a three-dimensional shape by providing X and Y coordinates with an after-mentioned reference point in the vertical section of the tunnel as an absolute reference, and providing a Z axis in the extending direction of the tunnel.
[0016]
Next, each component will be described.
As shown in FIGS. 1 and 3, the distance measuring means 2 is a distance measuring device using a laser beam installed on the loading platform 4a of the truck 4, and the front ranging means 2a installed on the front portion 4b of the loading platform 4a. And the rear distance measuring means 2b installed in the rear part 4c, the origin O for generating the laser light is rotatable in the vertical direction, and the laser light is transmitted from the origin O of the distance measuring means 2 to the inner peripheral surface of the tunnel T. By detecting the phase difference between the irradiated laser beam and the laser beam reflected at the irradiation point S on the inner peripheral surface of the tunnel T, from the origin O to the irradiation point S on the inner peripheral surface of the tunnel T Measure the distance.
[0017]
As shown in FIG. 8, the inclination angle detection means 6 is an automatic angle detection device that detects the inclination angle of the distance measurement means 2, and the distance measurement means 2 is fixed to the loading platform 4 a of the track 4 in a horizontal state. If there is, the inclination angle of the loading platform 4a of the truck 4 may be detected.
[0018]
The movement amount detection means 3 detects the movement amount of the distance measurement means 2 installed on the track 4 by detecting the movement amount of the track 4 as shown in FIGS. The amount of movement of the track 4 is detected by detecting the rotation of two sets of wheels provided at a predetermined interval (one span) in the lower part by a rotary encoder. The front distance measuring means 2a and the rear distance measuring means 2b installed on the loading platform 4a of the truck 4 are arranged in one span by two sets of wheels.
[0019]
Here, the distance measuring means 2, the inclination angle detecting means 6 and the movement amount detecting means 3 are existing measuring devices, and are limited to the above-described configuration as long as they are small and can be measured accurately. is not.
[0020]
As shown in FIG. 8, the shape data creation means 5 includes a reference point detection means 5a, a vehicle attitude detection means 5b, a cross-section data creation means 5c, a three-dimensional data creation means 5d, and a data storage means 5e. Each of the measurement values output from the front distance measuring means 2a, the rear distance measuring means 2b, the tilt angle detecting means 6 and the movement amount detecting means 3 is input and processed.
[0021]
Hereinafter, each means in the shape data creation means 5 will be described.
The reference point detection means 5 a is a means for detecting the reference point of the cross-sectional data of the tunnel T from the irradiation point S on the inner peripheral surface of the tunnel T.
The vehicle posture detection means 5b detects the inclination of the track 4 in the extending direction of the tunnel T by comparing the distances from the respective origins of the front distance measuring means 2a and the rear distance measuring means 2b installed on the truck 4 to the inner wall. It is means to do.
The cross-section data creation means 5c creates tunnel-shaped cross-section data by converting the position of the irradiation point S measured by the distance measurement means 2 into absolute coordinates based on the reference point detected by the reference point detection means 5a. In addition, based on the inclination angle detected by the inclination angle detection means 6, the absolute coordinates of the irradiation point S converted into absolute coordinates are corrected.
The three-dimensional data creation means 5d is a means for creating the three-dimensional data of the tunnel T by adding the movement amount of the track 4 on which the distance measuring means 2 is installed to the cross-sectional data sequentially created in the extending direction of the tunnel T. It is.
[0022]
As shown in FIG. 1, the track 4 is an existing small truck, and includes a distance measuring means 2, an inclination angle detecting means 6 (not shown), and a shape data creating means 5 (not shown) installed on the track 4. And the movement amount detecting means 3 is a small device, and therefore, it is not necessary to manufacture the truck 4 for the three-dimensional measuring device 1, and for example, a work vehicle in tunnel construction may be used.
[0023]
Next, a tunnel-shaped three-dimensional measuring method using the three-dimensional measuring apparatus 1 according to the embodiment of the present invention will be described.
(1) Ranging Stage First, as shown in FIGS. 1, 2, and 4A, laser light generated from the origin O of the distance measuring means 2 is applied to the inner wall Ta and the road surface Tb on one side of the tunnel T. By sequentially irradiating at predetermined angles (n degrees) and detecting the phase difference between the irradiated laser beam and the laser beam reflected at the irradiation point S on the inner wall Ta and the road surface Tb, the inner wall Ta and the road surface from the origin O are detected. The distance to Tb is detected every n degrees.
Here, the distance measuring means 2 is installed on the loading platform 4a of the truck 4, and when the laser beam is irradiated below the truck 4, it is blocked by the upper surface of the loading platform 4a. Therefore, the entire inner peripheral surface of the tunnel T cannot be irradiated with laser light. Therefore, in this embodiment, the cross-sectional data of the tunnel T is created by creating the cross-sectional data of the tunnel T one by one and combining the cross-sectional data.
[0024]
(2) Vehicle attitude detection stage Next, as shown in FIGS. 3 and 8, the same angle measured by the front distance measuring means 2a and the rear distance measuring means 2b by the vehicle attitude detecting means 5b of the shape data creating means 5 Each distance from the origin O to the inner wall Ta is compared. At this time, if there is an error in the measured values of the front distance measuring means 2a and the rear distance measuring means 2b, the position of the irradiation point S is determined because the track 4 is inclined in the extension direction of the tunnel T. Since it cannot be measured accurately, the position of the track 4 is corrected. Even when there is a protrusion such as a sign or a pipe on the inner wall Ta of the tunnel T, an error occurs in the measured values of the front distance measuring means 2a and the rear distance measuring means 2b. Select and measure.
[0025]
(3) Reference Point Detection Stage Next, as shown in FIGS. 4 and 8, the reference point of the sectional data of the tunnel T is determined from the laser light irradiation point S by the reference point detection means 5a of the shape data creation means 5. To detect.
Here, since the cross-sectional data of the tunnel T is created by combining the cross-sectional data on one side of the tunnel T, the positional relationship between the reference points in the cross-sectional data on each side is accurately grasped, and based on this positional relationship It is necessary to synthesize cross-sectional data on one side based on each reference point.
[0026]
In this embodiment, two points having a clear positional relationship are provided in the tunnel T itself, and the cross-sectional data on one side of the tunnel T is accurately synthesized by indicating the cross-sectional data on one side with reference to each point.
Here, it is preferable that the two points having a clear positional relationship in the tunnel T are the width ends Tc and Tc on the road surface Tb of the tunnel T. The width of the road surface Tb of the tunnel T is constant in the tunnel T, and the width can be easily measured. Therefore, both ends Tc and Tc of the width on the road surface Tb, that is, the inner wall Ta of the tunnel T By using the boundary of the road surface Tb as a reference point, the distance between the reference points can be easily grasped.
[0027]
Hereinafter, a method for detecting the boundary between the inner wall Ta of the tunnel T serving as the reference point and the road surface Tb by the reference point detection means 5a will be described. Since the front distance measuring means 2a and the rear distance measuring means 2b have the same configuration, only the rear distance measuring means 2b will be described here.
First, as shown in FIG. 4A, the irradiation point S of the laser beam irradiated on the inner peripheral surface of the tunnel T by the rear distance measuring means 2b is set from point A to point E.
Next, as shown in FIG. 4B, a point a is a vector a, a point b is a vector b, a point CD is a vector c, and a point DE is a vector d.
Here, the inner wall Ta of the tunnel T is erected with respect to the road surface Tb, and the direction change of the vector b and the vector c passing through the point C which is the boundary between the inner wall Ta and the road surface Tb becomes the maximum. That is, the point C that is the boundary between the inner wall Ta serving as the reference point and the road surface Tb is detected by obtaining the point through which the vectors having the smallest angle formed by two consecutive vectors in the cross-sectional shape on one side of the tunnel T pass. can do.
[0028]
Next, a method for comparing the angles formed by the vectors will be described.
First, as shown in FIG. 5, when the angle formed by the vector b and the vector c passing through the point C is an angle β, the angle β is obtained by the following equation (Equation 1).
[0029]
[Expression 1]
Figure 0004758568
[0030]
Similarly, an angle is obtained with an angle formed by the vector a and the vector b passing through the point B on the inner wall Ta as an angle α, and an angle formed by the vector c and the vector d passing through the point D on the road surface Tb as an angle γ, Compare each angle. As a result, the angle β formed by the vector b and the vector c passing through the point C that is the boundary between the inner wall Ta and the road surface Tb is minimized, so that the angle formed by two consecutive vectors in the cross-sectional shape on one side of the tunnel T is It was confirmed that the point through which the smallest vectors pass was the boundary between the inner wall Ta and the road surface Tb.
[0031]
Here, as shown in FIG. 6 (a), the distance measuring means 2 is arranged on the loading platform 4a of the track 4 on the opposite side to the reference point detection stage, and the laser is applied to the inner wall Ta of the tunnel T on the opposite side. When the light is irradiated, the direction of each vector is opposite to that in the reference point detection stage, and therefore, as shown in FIG. 6B, it passes through a point C ′ that is a boundary between the inner wall Ta and the road surface Tb. The angle β ′ formed between the vector b ′ and the vector c ′ to be maximized among the angles α ′, β ′, and γ ′. Therefore, in this case, the point through which the vectors having the maximum angle formed by two consecutive vectors in the cross-sectional shape on one side of the tunnel T passes through the inner wall Ta and the road surface Tb.
[0032]
(4) Section Data Creation Stage Next, as shown in FIG. 8, the position of the irradiation point S measured by the distance measurement means 2 by the section data creation means 5 c of the shape data creation means 5 is based on the point C. By converting to absolute coordinates, cross-sectional data on one side of the tunnel T is created.
Here, as shown in FIG. 4A, when the track 4 is inclined at the inclination angle θ, an error due to the inclination angle θ occurs in the absolute coordinates obtained by converting the position of the irradiation point S, and accurate cross-sectional data is obtained. Since it is not created, it is necessary to correct the coordinates of each irradiation point S. Note that the inclination angle θ is a measured value detected by the inclination angle detection means 6.
Hereinafter, correction of the absolute coordinates of the irradiation point S will be described.
If the coordinates of the irradiation point C are (Xc, Yc) and the coordinates of the irradiation point n shown without correcting the tilt angle θ are (Xn, Yn), the coordinates of the irradiation point n with the corrected tilt angle θ ( Xcn, Ycn) is expressed by the following equation (Equation 2).
[0033]
[Expression 2]
Figure 0004758568
[0034]
Next, the track 4 is moved by one span of the movement amount detection means 3, and cross-sectional data is created in the same manner. Here, as shown in FIG. 1, the front distance measuring means 2a and the rear distance measuring means 2b are arranged in one span of the movement amount detecting means 3, so that two cross-sectional data are simultaneously generated in one span. Is done. By repeating this operation sequentially in the direction of tunnel extension, cross-sectional data on one side of the tunnel T in each span is created.
Next, similarly, the cross-sectional data of one side of the tunnel T is created also on the opposite side, and the cross-sectional data of each one side for each span is synthesized based on the positional relationship of each reference point, so that the tunnel in each span Create T cross-section data.
[0035]
(5) Three-dimensional data creation stage Next, as shown in FIG. 8, the three-dimensional data creation unit 5d of the shape data creation unit 5 converts the cross-sectional data of the tunnel T for each span into the track by the movement amount detection unit 3. 4 movement amount data is added, each cross-section data is arranged in the extending direction of the tunnel T, and the three-dimensional data of the tunnel T shape is created by making the cross-section data continuous.
Finally, as shown in FIG. 8, the entire tunnel T is stored using a personal computer or the like that stores three-dimensional data in the data storage means 5e of the shape data creation means 5 and has a data display means via a magnetic recording medium or the like. The three-dimensional shape of is displayed. Note that the measurement value obtained by the distance measuring means 2 is stored in the data storage means 5e, and the tunnel T-shaped three-dimensional data is obtained by a personal computer or the like provided with the cross-sectional data creation means 5c and the three-dimensional data creation means 5d via a magnetic recording medium or the like. You may create it.
[0036]
Therefore, in the tunnel shape three-dimensional measuring apparatus and the three-dimensional measurement method of the present invention, since the three-dimensional data of the tunnel T shape is created using the distance measuring means 2 installed on the track 4, the shape of the entire tunnel T can be quickly changed. And it can be grasped accurately.
[0037]
As mentioned above, although this invention was demonstrated by the said embodiment, this invention is not limited to the said embodiment. Any device that has substantially the same configuration as the tunnel-shaped three-dimensional measuring device 1 and the three-dimensional measuring method of the present invention and that exhibits the same operational effects is within the technical scope of the present invention. Is included .
[0038]
For example, the inclination angle θ of the distance measuring means 2 can be obtained without using a device such as the inclination angle detecting means 6. For example, in the reference point detection stage, as shown in FIG. 7, since the vector c indicates the road surface Tb and the road surface Tb of the tunnel T is in the horizontal state, the vector c must indicate the horizontal state. When the distance measuring means 2 inclined at the angle θ is used, the vector c is in a state having an inclination of the angle θ with respect to the horizontal. That is, since this angle θ is the same as the inclination angle θ, the inclination angle θ of the distance measuring means 2 can be detected by obtaining the angle θ.
[0039]
【The invention's effect】
According to the tunnel-shaped three-dimensional measuring apparatus and the three-dimensional measuring method of the present invention, the measurement value obtained by the distance measuring means installed in the moving means is converted into position data based on the reference point provided on the inner peripheral surface of the tunnel. By converting, tunnel-shaped cross-section data is created without being affected by the position and inclination of the distance measurement means in the tunnel, so accurate cross-section data is created sequentially by moving the movement means in the tunnel. By adding the moving amount of the vehicle to the cross-sectional data, three-dimensional data of the tunnel shape is created, so that the shape of the entire tunnel can be grasped quickly and accurately.
[Brief description of the drawings]
FIG. 1 is a side view showing a tunnel-shaped three-dimensional measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a rear view showing a tunnel-shaped three-dimensional measuring apparatus according to an embodiment of the present invention.
FIG. 3 is a plan view showing a tunnel-shaped three-dimensional measuring apparatus according to an embodiment of the present invention.
4A and 4B are diagrams illustrating a case where laser light is irradiated by a distance measuring unit according to an embodiment of the present invention, in which FIG. 4A illustrates a laser light irradiation point, and FIG. 4B illustrates a reference point detection method; FIG.
FIG. 5 is a comparison diagram of angles formed by vectors in a reference point detection method.
6A and 6B are diagrams showing another example when the inner wall is irradiated with laser light by the distance measuring unit according to the embodiment of the present invention. FIG. 6A is a diagram showing the irradiation point of the laser light, and FIG. FIG. 6 is a comparison diagram of angles formed by vectors in a reference point detection method.
FIG. 7 is a diagram showing another example of the reference point detection method according to the embodiment of the present invention.
FIG. 8 is a configuration diagram showing shape data creation means according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ...... Three-dimensional measuring apparatus 2 ... Distance measuring means 2a ... Front distance measuring means 2b ... Rear distance measuring means 3 ... Movement amount detecting means 4 ... Truck 4a... Truck carrier 4b... Truck front 4c... Truck rear 5... Shape data creation means 5a .. Reference point detection means (shape Data creation means)
5b... Vehicle attitude detection means (shape data creation means)
5c... Section data creation means (shape data creation means)
5d ··· Three-dimensional data creation means (shape data creation means)
5e ··· Data storage means (shape data creation means)
6 .... Inclination angle detection means O ... Origin point T ... Tunnel Ta ... Tunnel inner wall Tb ... Tunnel road surface Tc

Claims (3)

原点から発生されるレーザ光をトンネルの内周面に所定の角度毎に順次照射し、前記トンネルの内周面上の照射点で反射された前記レーザ光を前記原点において検知することで、前記原点と前記照射点との距離を所定の角度毎に順次測定する測距手段と、
前記測距手段を設置した移動手段と、
隣り合う前記照射点の間のベクトルを作成し、連続した2つの前記ベクトルの方向変化が最大となる2つの前記ベクトルが経由する照射点基準点として検出する基準点検出手段と、
前記複数の照射点を、前記基準点を基準とした位置データに変換することで、トンネル形状の断面データを作成する断面データ作成手段と、
前記移動手段の移動量を検出する移動量検出手段と、
前記移動手段をトンネルの延長方向に移動させて順次作成した前記断面データ及び前記移動手段の移動量に基づいて、トンネル形状の三次元データを作成する三次元データ作成手段とから構成されることを特徴とするトンネル形状の三次元測定装置。
By sequentially irradiating the inner peripheral surface of the tunnel with laser light generated from the origin at predetermined angles, and detecting the laser light reflected at the irradiation point on the inner peripheral surface of the tunnel at the origin, Ranging means for sequentially measuring the distance between the origin and the irradiation point for each predetermined angle;
Moving means provided with the distance measuring means;
Create a vector between the radiation point adjacent, and the reference point detection means for detecting a reference point irradiation point of direction change of the consecutive two of the vectors goes through two of said vector having the maximum
By converting the plurality of irradiation points into position data with the reference point as a reference, cross-sectional data creating means for creating tunnel-shaped cross-sectional data,
A moving amount detecting means for detecting a moving amount of the moving means;
3D data creating means for creating 3D data of a tunnel shape based on the cross-sectional data sequentially created by moving the moving means in the tunnel extension direction and the moving amount of the moving means. Characteristic tunnel shape three-dimensional measuring device.
前記測距手段を前記移動手段の前部及び後部に各々設けることを特徴とする請求項1に記載のトンネル形状の三次元測定装置。2. The tunnel-shaped three-dimensional measuring apparatus according to claim 1, wherein the distance measuring means is provided at each of a front portion and a rear portion of the moving means. 移動手段に設置した測距手段が、原点から発生されるレーザ光をトンネルの内周面に所定の角度毎に順次照射し、前記トンネルの内周面上の照射点で反射された前記レーザ光を前記原点において検知することで、前記原点と前記照射点との距離を所定の角度毎に順次測定する測距段階と、
隣り合う前記照射点の間のベクトルを作成し、連続した2つの前記ベクトルの方向変化が最大となる2つの前記ベクトルが経由する照射点基準点として検出する基準点検出段階と、
前記複数の照射点を、前記基準点を基準とする位置データに変換することで、トンネル形状の断面データを作成する断面データ作成段階と、
前記移動手段をトンネルの延長方向に移動させて順次作成した前記断面データ及び前記移動手段の移動量に基づいて、トンネル形状の三次元データを作成する三次元データ作成段階とから構成されることを特徴とするトンネル形状の三次元測定方法。
The distance measuring means installed in the moving means sequentially irradiates the inner peripheral surface of the tunnel with the laser beam generated from the origin at a predetermined angle, and the laser beam reflected at the irradiation point on the inner peripheral surface of the tunnel Detecting at the origin, a distance measuring step for sequentially measuring the distance between the origin and the irradiation point for each predetermined angle;
Create a vector between the radiation point adjacent, and the reference point detection step of detecting a reference point irradiation point of direction change of the consecutive two of the vectors goes through two of said vector having the maximum
By converting the plurality of irradiation points into position data with the reference point as a reference, a cross-section data creation stage for creating tunnel-shaped cross-section data,
A three-dimensional data creation step of creating tunnel-shaped three-dimensional data based on the cross-sectional data sequentially created by moving the moving means in the tunnel extension direction and the amount of movement of the moving means; A three-dimensional measuring method of the characteristic tunnel shape.
JP2001182882A 2001-06-18 2001-06-18 Tunnel shape three-dimensional measuring apparatus and three-dimensional measuring method Expired - Fee Related JP4758568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182882A JP4758568B2 (en) 2001-06-18 2001-06-18 Tunnel shape three-dimensional measuring apparatus and three-dimensional measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182882A JP4758568B2 (en) 2001-06-18 2001-06-18 Tunnel shape three-dimensional measuring apparatus and three-dimensional measuring method

Publications (2)

Publication Number Publication Date
JP2003004422A JP2003004422A (en) 2003-01-08
JP4758568B2 true JP4758568B2 (en) 2011-08-31

Family

ID=19022901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182882A Expired - Fee Related JP4758568B2 (en) 2001-06-18 2001-06-18 Tunnel shape three-dimensional measuring apparatus and three-dimensional measuring method

Country Status (1)

Country Link
JP (1) JP4758568B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966616B2 (en) * 2006-09-19 2012-07-04 大成建設株式会社 Shape variation monitoring method and shape variation monitoring system
JP2009192272A (en) * 2008-02-12 2009-08-27 Univ Of Miyazaki Position measuring device and method
JP5558063B2 (en) * 2009-09-26 2014-07-23 株式会社創発システム研究所 Tunnel data processing system and tunnel data processing method
JP2011247872A (en) * 2010-04-27 2011-12-08 Denso Corp Distance measurement device, distance measurement method, and distance measurement program
JP5648831B2 (en) * 2010-06-21 2015-01-07 国立大学法人 宮崎大学 Inner surface shape measuring apparatus and inner surface shape measuring method
JP5912234B2 (en) * 2010-07-16 2016-04-27 株式会社トプコン measuring device
CN101943577B (en) * 2010-08-16 2012-07-11 上海地铁盾构设备工程有限公司 Metro tunnel fracture surface deformation detection system
KR101480729B1 (en) * 2014-05-13 2015-01-09 주식회사 위드이앤오 The measuring device to cross-sectional shape and displacement convergence of structure
CN104792261B (en) * 2015-04-10 2018-05-29 清华大学 The fine measuring system of underground chamber three dimensions
CN105946897A (en) * 2016-07-07 2016-09-21 沈阳铁路局科学技术研究所 Railway tunnel limit dynamic detecting system and method based on laser-scanning range finders
CN106152950B (en) * 2016-07-29 2018-12-25 上海岩土工程勘察设计研究院有限公司 One kind being based on lining section geometrical characteristic motion scan data mileage localization method
CN110660094A (en) * 2019-09-23 2020-01-07 上海市建筑科学研究院 Subway tunnel mobile scanning point cloud fine division method based on image recognition
CN113074694B (en) * 2021-03-31 2022-11-04 中煤科工集团重庆研究院有限公司 Automatic monitoring device for tunnel section deformation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537354A (en) * 1976-07-09 1978-01-23 Pacific Kogyo Kk Apparatus for measuring surface shape of construction
JPH03282305A (en) * 1990-03-30 1991-12-12 Penta Ocean Constr Co Ltd In-tunnel air sectional area measuring instrument
JP2883236B2 (en) * 1991-12-16 1999-04-19 東海旅客鉄道株式会社 Three-dimensional shape measurement device for structures around railway tracks
JPH06307863A (en) * 1993-04-23 1994-11-04 Mitsui Constr Co Ltd Tunnel cavity section shape measuring device
JP3018943B2 (en) * 1995-06-30 2000-03-13 住友金属工業株式会社 Blast furnace wall profile measurement method and apparatus
JP4342649B2 (en) * 1999-09-03 2009-10-14 大成建設株式会社 Method for measuring cross-sectional shape in hollow tube

Also Published As

Publication number Publication date
JP2003004422A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP4758568B2 (en) Tunnel shape three-dimensional measuring apparatus and three-dimensional measuring method
US9239580B2 (en) Autonomous mobile robot, self position estimation method, environmental map generation method, environmental map generation apparatus, and data structure for environmental map
US6753902B1 (en) Image processing apparatus, image processing method, navigation apparatus, program storage device and computer data signal embodied in carrier wave
US10175049B2 (en) Target recognition and localization methods using a laser sensor for wheeled mobile robots
WO2019026114A1 (en) Structure measurement device, measurement point correction device, and measurement point correction method
ES2870777T3 (en) Rail vehicle and method for non-contact detection of a track geometry
WO2016021224A1 (en) Rail position measurement device
JP2005069700A (en) Three-dimensional data acquisition device
CN101765689A (en) Be used to measure the method for orbital position
JP2009096306A (en) Parking assist method
JP2007156576A (en) Method and device for adjusting odometry(wheel range finder) parameter for traveling carrier
JPH10168810A (en) Road vertically sectional profile measuring device
CN107228663A (en) The alignment system and method for a kind of automatical pilot transportation vehicle
JP5422322B2 (en) Rail detection method and rail displacement measurement device in rail displacement measurement
JP6548452B2 (en) Map generation apparatus and map generation method
JPWO2018020680A1 (en) Measuring device, measuring method, and program
JPH09163502A (en) Method for correcting dynamic deflection amount of trolley line
JP5954861B2 (en) Road surface profile measuring device and measuring method
JP2020153809A (en) Information processing device, information processing method, and information processing system
JP3442171B2 (en) Railway surveying equipment
JP3219204B2 (en) Road surface unevenness measurement vehicle
JP6829747B2 (en) Building limit measuring device and building limit measuring method
CN206959855U (en) A kind of alignment system of automatical pilot transportation vehicle
TWI393853B (en) Three-dimensional space measurement of coordinates apparatus and method thereof
JP7284011B2 (en) moving body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170610

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees