JP4753888B2 - Substrate holding mechanism and plasma processing apparatus - Google Patents

Substrate holding mechanism and plasma processing apparatus Download PDF

Info

Publication number
JP4753888B2
JP4753888B2 JP2007006321A JP2007006321A JP4753888B2 JP 4753888 B2 JP4753888 B2 JP 4753888B2 JP 2007006321 A JP2007006321 A JP 2007006321A JP 2007006321 A JP2007006321 A JP 2007006321A JP 4753888 B2 JP4753888 B2 JP 4753888B2
Authority
JP
Japan
Prior art keywords
substrate
processed
gas
substrate holding
mounting table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007006321A
Other languages
Japanese (ja)
Other versions
JP2008172170A (en
Inventor
寛 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007006321A priority Critical patent/JP4753888B2/en
Priority to TW097101385A priority patent/TWI421970B/en
Priority to KR1020080004033A priority patent/KR100929448B1/en
Priority to CN2008100034479A priority patent/CN101226894B/en
Publication of JP2008172170A publication Critical patent/JP2008172170A/en
Application granted granted Critical
Publication of JP4753888B2 publication Critical patent/JP4753888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は,液晶ディスプレイ(Liquid Crystal Display)やエレクトロルミネセンスディスプレイ(Electro−Luminescence Display)などのフラットパネルディスプレイ(Flat Panel Display)用基板を保持する基板保持機構及びプラズマ処理装置に関する。   The present invention relates to a substrate holding mechanism and a plasma processing apparatus for holding a flat panel display (Flat Panel Display) substrate such as a liquid crystal display and an electro-luminescence display (Electro-Luminescence Display).

フラットパネルディスプレイ(FPD)のパネル製造においては,一般にガラスなどの絶縁体からなる基板上に画素のデバイスまたは電極や配線等が形成される。このようなパネル製造の様々な工程のうち,エッチング,CVD,アッシング,スパッタリング等の微細加工は,プラズマ処理装置によって行われる。プラズマ処理装置は,例えば減圧可能な処理容器内で基板を下部電極を構成するサセプタを備える載置台の上に載置し,サセプタに高周波電力を供給することによって,基板上に処理ガスのプラズマを形成し,このプラズマによって基板上にエッチングなどの所定の処理を行うようになっている。   In the manufacture of flat panel display (FPD) panels, pixel devices or electrodes, wirings, and the like are generally formed on a substrate made of an insulator such as glass. Of these various panel manufacturing processes, fine processing such as etching, CVD, ashing, and sputtering is performed by a plasma processing apparatus. The plasma processing apparatus, for example, places a substrate on a mounting table including a susceptor that constitutes a lower electrode in a depressurized processing container, and supplies high frequency power to the susceptor, thereby generating plasma of a processing gas on the substrate. Then, a predetermined process such as etching is performed on the substrate by the plasma.

この場合,プラズマ処理中の発熱による温度上昇を抑えて基板の温度を一定に制御する必要がある。このため,チラー装置より温調された冷媒を載置台内の冷媒通路に循環供給すると同時に,Heガスなどの伝熱性の良いガス(伝熱ガス)を載置台の中を通して基板の裏面に供給して,基板を間接的に冷却する方式がよく用いられている。この冷却方式は,Heガスの供給圧力に抗して基板を載置台上に固定保持する必要があるため,載置台上に基板保持部を設け,例えば静電吸着力より基板保持部の基板保持面に基板を吸着保持するようになっている。   In this case, it is necessary to control the temperature of the substrate to be constant while suppressing a temperature rise due to heat generation during plasma processing. For this reason, a coolant whose temperature is controlled by the chiller is circulated and supplied to the coolant passage in the mounting table, and at the same time, a gas having good heat transfer property (heat transfer gas) such as He gas is supplied to the back surface of the substrate through the mounting table. Therefore, a method of indirectly cooling the substrate is often used. Since this cooling method requires that the substrate be fixed and held on the mounting table against the He gas supply pressure, a substrate holding unit is provided on the mounting table. For example, the substrate holding unit holds the substrate by electrostatic attraction force. The substrate is sucked and held on the surface.

載置台上の基板保持面に対して基板が位置ずれしていると,サセプタ上で基板保持面が露出するので,この状態でサセプタに高周波電力を印加してプラズマを発生させると,異常放電が発生してサセプタを損傷させる虞がある。従って,このような基板の位置ずれをプラズマを発生させる前に検出することができれば,異常放電の発生を未然に防ぐことができる。   If the substrate is displaced with respect to the substrate holding surface on the mounting table, the substrate holding surface is exposed on the susceptor. If high-frequency power is applied to the susceptor in this state to generate plasma, abnormal discharge will occur. May occur and damage the susceptor. Therefore, if such a position shift of the substrate can be detected before the plasma is generated, the occurrence of abnormal discharge can be prevented in advance.

特開2005−116645号公報JP-A-2005-116645 特開平11−186370号公報Japanese Patent Laid-Open No. 11-186370 特開平4−359539号公報JP-A-4-359539

ところで,近年ではFPD用の絶縁基板は益々大型化の要求が高まっている。このようなFPD用基板は,半導体ウエハに比べてはるかにサイズが大きいため,搬送アームなどの搬送機構を使っても載置台上に正確に基板を載置させるのは極めて困難となる。従って,FPD用基板の場合には,基板の位置ずれを異常放電が発生しない範囲である程度許容できるようにすることが必要となる。   By the way, in recent years, the demand for increasing the size of an insulating substrate for FPD is increasing. Since such an FPD substrate is much larger than a semiconductor wafer, it is extremely difficult to accurately place the substrate on the mounting table even if a transfer mechanism such as a transfer arm is used. Therefore, in the case of an FPD substrate, it is necessary to allow the positional deviation of the substrate to some extent within a range in which abnormal discharge does not occur.

このような位置ずれに対する対策方法として,半導体ウエハの技術では,例えば特許文献1,2に記載のものが知られている。これらの技術は,エッジリングに傾斜面を形成したり,傾斜する突起を半導体ウエハの載置される領域の外側に設けることによって,半導体ウエハが位置ずれしてその端部がエッジリングや突起の斜面に引っかかっても,傾斜面を滑り落ちて位置ずれを修正することができるようにしたものである。   As countermeasures against such misalignment, for example, those disclosed in Patent Documents 1 and 2 are known in the semiconductor wafer technology. In these techniques, an inclined surface is formed on the edge ring, or an inclined protrusion is provided outside the region where the semiconductor wafer is placed, so that the semiconductor wafer is displaced and its end portion is formed by the edge ring or protrusion. Even if it catches on a slope, it can slide down the slope and correct the displacement.

しかしながら,このような技術を半導体ウエハに比べてはるかにサイズが大きいFPD用基板ではその重量も半導体ウエハに比べて大きいため,FPD用基板の端部がエッジリングや突起の斜面に引っかかっても,傾斜面を滑り落ち難く,乗り上げたままになってしまって位置ずれが修正できない蓋然性が高い。   However, since the weight of an FPD substrate having a size much larger than that of a semiconductor wafer is larger than that of a semiconductor wafer, even if the end of the FPD substrate is caught on the edge ring or the slope of the protrusion, It is difficult to slip off the inclined surface, and it is highly likely that it will remain on the slope and the misalignment cannot be corrected.

また,例えば特許文献3に記載の技術のように,載置台の上部に圧力測定孔を設け,圧力測定孔を介して圧力測定ガスを載置台と半導体ウエハとの間に供給して圧力測定ガスの圧力を監視するものがある。この方法では,例えば半導体ウエハがない場合や静電保持力が小さい場合には,圧力測定孔から圧力測定ガスが漏れて圧力が低下するため,その圧力を監視することによって,載置台上の半導体ウエハの有無と保持状態を検出する。しかしながら,この方法では半導体ウエハの位置ずれまでは検出できない。   Further, for example, as in the technique described in Patent Document 3, a pressure measurement hole is provided in the upper portion of the mounting table, and the pressure measurement gas is supplied between the mounting table and the semiconductor wafer via the pressure measurement hole. There is something to monitor the pressure of. In this method, for example, when there is no semiconductor wafer or when the electrostatic holding force is small, the pressure measurement gas leaks from the pressure measurement hole and the pressure decreases, so the semiconductor on the mounting table is monitored by monitoring the pressure. The presence / absence and holding state of the wafer are detected. However, this method cannot detect even a semiconductor wafer misalignment.

そこで,本発明は,このような問題に鑑みてなされたもので,その目的とするところは,被処理基板の位置ずれをある程度許容しつつ,異常放電の発生を未然に防止できる基板保持機構及びプラズマ処理装置を提供することにある。   Accordingly, the present invention has been made in view of such a problem, and an object of the present invention is to provide a substrate holding mechanism capable of preventing the occurrence of abnormal discharge in advance while allowing a positional deviation of the substrate to be processed to some extent. It is to provide a plasma processing apparatus.

上記課題を解決するために,本発明のある観点によれば,プラズマが生成される空間内で絶縁体からなる矩形の被処理基板を載置保持する基板保持機構であって,前記被処理基板を載置保持する矩形の載置台と,前記載置台とこの載置台の基板保持面に保持された被処理基板との間にガスを供給するためのガス流路と,前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,前記ガス孔が形成される領域が前記基板保持面の内側になるようにして,前記ガス孔形成領域全面にわたって形成される凹部と,前記基板保持面の前記ガス孔形成領域の外周に形成される枠部と,前記枠部上面の4つの角部にそれぞれに形成した複数の基板位置ずれ検出孔と,前記基板位置ずれ検出孔と前記凹部とをそれぞれ連通する連通路と,前記ガス流路の圧力を測定する圧力測定手段と,前記載置台上に被処理基板を保持したときに,その被処理基板により前記各基板位置ずれ検出孔が塞がれているか否かを,前記圧力測定手段からの検出圧力に基づく前記各基板位置ずれ検出孔からのガス漏れ量によって検出することにより,所定の位置ずれ許容量を超える前記被処理基板の位置ずれの有無を検出する位置ずれ検出手段とを備えることを特徴とする基板保持機構が提供される。 In order to solve the above problems, according to one aspect of the present invention, there is provided a substrate holding mechanism for mounting and holding a rectangular target substrate made of an insulator in a space where plasma is generated, A rectangular mounting table for mounting and holding, a gas flow path for supplying gas between the mounting table and the substrate to be processed held on the substrate holding surface of the mounting table, and a substrate holding of the mounting table A plurality of gas holes formed on a surface for guiding the gas from the gas flow path onto the substrate holding surface, and the region where the gas holes are formed is located inside the substrate holding surface. A plurality of substrate position shifts formed at each of four corners on the upper surface of the frame portion, a recess formed on the entire surface of the hole formation region, a frame portion formed on the outer periphery of the gas hole formation region of the substrate holding surface a detection hole, the said respective substrate positional deviation detection hole concave A communication passage for communicating preparative respectively, and pressure measuring means for measuring the pressure of the gas flow path, when holding a substrate to be processed on the mounting table, wherein each substrate position displacement detection hole by the substrate to be processed By detecting whether or not the substrate is blocked by the amount of gas leakage from each substrate displacement detection hole based on the detected pressure from the pressure measuring means , There is provided a substrate holding mechanism comprising a positional deviation detecting means for detecting the presence or absence of positional deviation.

このような構成の本発明によれば,基板位置ずれ検出孔には,連通路を介して伝熱ガス(例えばHeガス)が流れる。このため,被処理基板が位置ずれしていない場合には,基板位置ずれ検出孔は被処理基板で塞がれるのでガスが漏れないのに対して,被処理基板が基板保持面の一部が露出するほどの位置ずれしている場合には,基板位置ずれ検出孔からのガスの漏れ量が増大するので,位置ずれを検出することができる。これにより,被処理基板の位置ずれをある程度許容しつつ,被処理基板の位置ずれによる異常放電の発生を未然に防ぐことができる。   According to the present invention having such a configuration, the heat transfer gas (for example, He gas) flows through the communication path through the substrate positional deviation detection hole. For this reason, when the substrate to be processed is not displaced, the substrate displacement detection hole is blocked by the substrate to be processed, so that gas does not leak, whereas the substrate to be processed has a part of the substrate holding surface. If the position is shifted to the extent that it is exposed, the amount of gas leakage from the substrate position shift detection hole is increased, so that the position shift can be detected. Accordingly, it is possible to prevent the occurrence of abnormal discharge due to the positional deviation of the substrate to be processed while allowing the positional deviation of the substrate to be processed to some extent.

この場合,上記基板位置ずれ検出孔は,前記枠部の4つの角部に形成されることが好ましい。この4つの基板位置ずれ検出孔だけで,被処理基板が基板保持面に対して平行に位置ずれしている場合のみならず,被処理基板が基板保持面に対して斜行して位置ずれしている場合についても,被処理基板の位置ずれを検出することができる。また,上記凹部の下面には,この凹部が形成されている領域内で基板を保持する多数の凸部を設けるようにしてもよい。   In this case, it is preferable that the substrate position detection holes are formed at the four corners of the frame portion. Not only when the substrate to be processed is displaced in parallel with the substrate holding surface by these four substrate displacement detection holes, but the substrate to be processed is skewed with respect to the substrate holding surface. Even in this case, it is possible to detect the positional deviation of the substrate to be processed. Further, a plurality of convex portions for holding the substrate in the region where the concave portions are formed may be provided on the lower surface of the concave portion.

上記課題を解決するために,本発明の別の観点によれば,プラズマが生成される空間内で,矩形の絶縁体からなるフラットディスプレイ用の被処理基板を載置保持する基板保持機構であって,前記被処理基板を載置保持する載置台と,前記載置台とこの載置台の基板保持面に保持された被処理基板との間にガスを供給するためのガス流路と,前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,前記被処理基板が前記載置台の基板保持面の基準位置にあるとしたときのその被処理基板の周縁よりも外側に所定の位置ずれ許容量だけ離間して前記周縁に沿って配設され,前記位置ずれ許容量を超えて位置ずれした前記被処理基板が乗り上げて持ち上がるように前記載置台の基板保持面から突出してなる位置ずれ検出用突起と,前記ガス流路の圧力を測定する圧力測定手段と,前記載置台上に被処理基板を保持したときに,その被処理基板が前記位置ずれ検出用突起に乗り上げて持ち上がっているか否かを,前記圧力測定手段からの検出圧力に基づく前記ガス孔からのガス漏れ量によって検出することにより,前記位置ずれ許容量を超える前記被処理基板の位置ずれの有無を検出する位置ずれ検出手段と,を備えることを特徴とする基板保持機構が提供される。 In order to solve the above problems, according to another aspect of the present invention, there is provided a substrate holding mechanism for mounting and holding a substrate to be processed for a flat display made of a rectangular insulator in a space where plasma is generated. A mounting table for mounting and holding the target substrate; a gas flow path for supplying gas between the mounting table and the target substrate held on the substrate holding surface of the mounting table; A plurality of gas holes formed on the substrate holding surface of the mounting table for guiding the gas from the gas flow path onto the substrate holding surface, and the substrate to be processed are at a reference position of the substrate holding surface of the mounting table. When the substrate to be processed is placed on the outer periphery of the substrate to be processed and separated from the periphery of the substrate by a predetermined misalignment allowance, the substrate to be processed that has been misaligned beyond the allowance of misalignment rides up and lifts up. Like the substrate holding surface of the table above A positional shift detection projection formed by protruding, the pressure measuring means for measuring the pressure of the gas flow path, when holding a substrate to be processed on the mounting table, its protrusion for the substrate to be processed the positional deviation detection Whether or not the substrate to be processed has a positional deviation exceeding the positional deviation allowable amount is detected by detecting whether or not the board is lifted by the amount of gas leakage from the gas hole based on the detected pressure from the pressure measuring means. There is provided a substrate holding mechanism characterized by comprising a displacement detection means for detecting.

上記課題を解決するために,本発明の別の観点によれば,処理室内に処理ガスを導入し,前記処理ガスのプラズマを発生させることによって,前記処理室内の載置台に載置保持された矩形の絶縁体からなるフラットディスプレイ用の被処理基板に所定のプラズマ処理を施すプラズマ処理装置であって,前記載置台とこの載置台の基板保持面に保持された被処理基板との間にガスを供給するためのガス流路と,前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,前記被処理基板が前記載置台の基板保持面の基準位置にあるとしたときのその被処理基板の周縁よりも外側に所定の位置ずれ許容量だけ離間して前記周縁に沿って配設され,前記位置ずれ許容量を超えて位置ずれした前記被処理基板が乗り上げて持ち上がるように前記載置台の基板保持面から突出してなる位置ずれ検出用突起と,前記ガス流路の圧力を測定する圧力測定手段と,前記載置台上に被処理基板を保持したときに,その被処理基板が前記位置ずれ検出用突起に乗り上げて持ち上がっているか否かを,前記圧力測定手段からの検出圧力に基づく前記ガス孔からのガス漏れ量によって検出することにより,前記位置ずれ許容量を超える前記所定の位置ずれ許容量以上の前記被処理基板の位置ずれの有無を検出する位置ずれ検出手段とを備えることを特徴とするプラズマ処理装置が提供される。 In order to solve the above problems, according to another aspect of the present invention, by introducing a processing gas into the processing chamber, by generating a plasma of the processing gas, which is placed and held on the mounting table in the processing chamber A plasma processing apparatus for performing predetermined plasma processing on a substrate to be processed for a flat display made of a rectangular insulator , wherein a gas is interposed between the mounting table and the substrate to be processed held on the substrate holding surface of the mounting table. A gas flow path for supplying gas, a plurality of gas holes formed on the substrate holding surface of the mounting table for guiding the gas from the gas flow path onto the substrate holding surface, and the substrate to be processed described above When the substrate holding surface of the mounting table is at the reference position, the substrate is disposed along the peripheral edge with a predetermined positional deviation allowable amount outside the peripheral edge of the substrate to be processed, and exceeds the allowable positional deviation amount. Misaligned Holding and positional shift detection projections formed by projecting from the substrate holding surface of the mounting table as lifts ride is physical substrate, and a pressure measuring means for measuring the pressure of the gas flow path, a substrate to be processed on the mounting table In this case, by detecting whether or not the substrate to be processed rides on the position deviation detection protrusion and is lifted by the amount of gas leakage from the gas hole based on the detected pressure from the pressure measuring means, There is provided a plasma processing apparatus, comprising: a positional deviation detecting means for detecting the presence or absence of positional deviation of the substrate to be processed exceeding the predetermined positional deviation allowable amount exceeding the allowable positional deviation amount.

このような構成の本発明によれば,被処理基板の基準位置から所定の位置ずれ許容量だけ離間して位置ずれ検出用突起を形成することにより,被処理基板が所定の位置ずれ許容量を超えて位置ずれしている場合には,被処理基板の一部が位置ずれ検出用突起に乗り上げてガス孔からのガスの漏れ量が増大するので,被処理基板の位置ずれを検出することができる。これにより,被処理基板上にプラズマを形成する前に位置ずれを検出することができるので,被処理基板の位置ずれをある程度許容しつつ,被処理基板の位置ずれによる異常放電の発生を未然に防ぐことができる。   According to the present invention having such a configuration, the substrate to be processed has a predetermined positional deviation allowable amount by forming the positional deviation detection protrusions apart from the reference position of the substrate to be processed by a predetermined positional deviation allowable amount. If the position of the substrate to be processed is shifted, a part of the substrate to be processed rides on the displacement detection protrusion and the amount of gas leakage from the gas hole increases. it can. As a result, the positional deviation can be detected before the plasma is formed on the substrate to be processed. Therefore, the occurrence of abnormal discharge due to the positional deviation of the substrate to be processed is allowed while allowing the positional deviation of the substrate to be processed to some extent. Can be prevented.

この場合,上記位置ずれ許容量は,前記載置台に被処理基板を保持したときに前記載置台の基板保持面が露出しない範囲で設定することが好ましい。これにより,例えば基板が伝熱ガスのガス孔形成領域を外れる程度に大きく位置ずれしている場合はもちろん,基板保持面の一部が露出する程度の微小な位置ずれしている場合にも,伝熱ガスがガス孔からの漏れ量が増大するので,位置ずれを検出することができる。これにより,被処理基板の位置ずれをある程度許容しつつ,被処理基板の位置ずれによる異常放電の発生を未然に防ぐことができる。   In this case, it is preferable that the allowable displacement is set within a range in which the substrate holding surface of the mounting table is not exposed when the substrate to be processed is held on the mounting table. As a result, for example, when the substrate is largely displaced so as to deviate from the gas hole formation region of the heat transfer gas, not only when the substrate is slightly displaced so that a part of the substrate holding surface is exposed. Since the amount of heat transfer gas leaked from the gas hole increases, it is possible to detect a positional shift. Accordingly, it is possible to prevent the occurrence of abnormal discharge due to the positional deviation of the substrate to be processed while allowing the positional deviation of the substrate to be processed to some extent.

また,上記載置台は,例えばサセプタと,前記サセプタ上に設けられ,前記基板保持面で前記被処理基板を保持する基板保持部と,前記サセプタ及び前記基板保持部の周囲を囲むように配設される外枠部とを備え,前記位置ずれ検出用突起は,例えば前記外枠部の上部に形成される。これによれば,位置ずれ検出用突起を外枠部の上部に形成するという簡単な構成で被処理基板の位置ずれを検出することができ,異常放電の発生を未然に防ぐことができる。   Further, the mounting table includes, for example, a susceptor, a substrate holding part that is provided on the susceptor and holds the substrate to be processed by the substrate holding surface, and is disposed so as to surround the periphery of the susceptor and the substrate holding part. And the misalignment detection projection is formed, for example, on the upper part of the outer frame portion. According to this, it is possible to detect the position shift of the substrate to be processed with a simple configuration in which the position shift detection protrusion is formed on the upper part of the outer frame portion, and it is possible to prevent the occurrence of abnormal discharge.

また,上記基板保持面のサイズは,前記被処理基板のサイズよりも寸法2aだけ小さいものとし,前記位置ずれ許容量を寸法bとすると,各寸法a,bの関係は,a>bであることが好ましい。このような位置に位置ずれ検出用突起を配置することによって,例えば被処理基板が基準位置から位置ずれしていても,被処理基板が位置ずれ検出用突起に乗り上げない位置では,基板保持面の一部が露出することはないので位置ずれを許容できる。これに対して,基板保持面の一部が露出するほど被処理基板が位置ずれしている場合には,被処理基板が位置ずれ検出用突起に乗り上げるため,ガス孔からのガスの漏れ量が増大するので,これらの位置ずれを検出することができる。これにより,被処理基板の位置ずれをある程度許容しつつ,被処理基板の位置ずれによる異常放電の発生を未然に防ぐことができる。   In addition, if the size of the substrate holding surface is smaller than the size of the substrate to be processed by a dimension 2a and the allowable displacement is a dimension b, the relationship between the dimensions a and b is a> b. It is preferable. By disposing the misalignment detection protrusion at such a position, for example, even if the substrate to be processed is displaced from the reference position, the substrate holding surface is not positioned at the position where the substrate to be processed does not run over the misalignment detection protrusion. Since a part of the film is not exposed, the positional deviation can be allowed. On the other hand, when the substrate to be processed is displaced so that a part of the substrate holding surface is exposed, the substrate to be processed runs on the displacement detection protrusion, so that the amount of gas leakage from the gas hole is small. Since it increases, these misregistrations can be detected. Accordingly, it is possible to prevent the occurrence of abnormal discharge due to the positional deviation of the substrate to be processed while allowing the positional deviation of the substrate to be processed to some extent.

また,上記外枠部の上部の高さをh1とし,前記位置ずれ検出用突起の上部の高さをh2とし,前記基板保持面の高さをhとすると,前記各高さh1,h,h2の関係は,h1≦h<h2であることが好ましい。このような位置に位置ずれ検出用突起を配置することによって,被処理基板が位置ずれ検出用突起に乗り上げたときに,基板保持面から被処理基板を持ち上げることができるのでガス孔からのガスの漏れ量が増大させることができる。   Further, when the height of the upper portion of the outer frame portion is h1, the height of the upper portion of the displacement detection protrusion is h2, and the height of the substrate holding surface is h, the heights h1, h, The relationship of h2 is preferably h1 ≦ h <h2. By disposing the misregistration detection protrusion at such a position, when the substrate to be processed rides on the misalignment detection protrusion, the target substrate can be lifted from the substrate holding surface. The amount of leakage can be increased.

また,上記位置ずれ検出用突起は,例えば前記被処理基板の周縁に沿って枠状に形成してもよく,また,上記位置ずれ検出用突起は,駒状に形成して,その駒状の位置ずれ検出用突起を前記被処理基板の周縁に沿って複数設けるようにしてもよい。このような位置ずれ検出用突起によれば,位置ずれ検出用突起を必要な位置に取付けるだけという極めて簡単な構成で被処理基板の位置ずれを検出することができる。さらに,上記位置ずれ検出用突起は,着脱可能に設けるようにしてもよい。これにより,位置ずれ検出用突起332の交換が容易となる。また,基板の形状等に応じて適切な位置に配置を変えることができるとともに,適切な形状のものに交換することもできる。   The misregistration detection projection may be formed in a frame shape, for example, along the periphery of the substrate to be processed, and the misregistration detection projection is formed in a frame shape. A plurality of misalignment detection protrusions may be provided along the periphery of the substrate to be processed. According to such a misregistration detection projection, it is possible to detect the misregistration of the substrate to be processed with a very simple configuration in which the misregistration detection projection is simply attached to a necessary position. Furthermore, the above-described misalignment detection protrusion may be provided so as to be detachable. This facilitates replacement of the misalignment detection projection 332. In addition, the arrangement can be changed to an appropriate position according to the shape of the substrate, etc., and the substrate can be replaced with an appropriate shape.

なお,上記基板保持部は,例えば下部誘電体層と上部誘電体層との間に電極板を挟んで構成し,前記電極板に所定の電圧を印加することによって発生する静電吸着力によって前記基板保持面に前記被処理基板を吸着保持するようにしてもよい。   The substrate holding part is configured, for example, by sandwiching an electrode plate between a lower dielectric layer and an upper dielectric layer, and the electrostatic attraction force generated by applying a predetermined voltage to the electrode plate The substrate to be processed may be sucked and held on the substrate holding surface.

本発明によれば,被処理基板の位置ずれをある程度許容しつつ,異常放電の発生を未然に防止できる基板保持機構及びプラズマ処理装置を提供できるものである。   According to the present invention, it is possible to provide a substrate holding mechanism and a plasma processing apparatus capable of preventing the occurrence of abnormal discharge in advance while allowing a positional deviation of the substrate to be processed to some extent.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(プラズマ処理装置の構成例)
先ず,本発明を複数のプラズマ処理装置を備えるマルチチャンバータイプの処理装置に適用した場合の実施形態について図面を参照しながら説明する。図1は,本実施形態にかかる処理装置100の外観斜視図である。同図に示す処理装置100は,フラットパネルディスプレイ用基板(FPD用基板)Gに対してプラズマ処理を施すための3つのプラズマ処理装置を備える。プラズマ処理装置はそれぞれ処理室200を備える。
(Configuration example of plasma processing equipment)
First, an embodiment when the present invention is applied to a multi-chamber type processing apparatus including a plurality of plasma processing apparatuses will be described with reference to the drawings. FIG. 1 is an external perspective view of a processing apparatus 100 according to the present embodiment. The processing apparatus 100 shown in the figure includes three plasma processing apparatuses for performing plasma processing on a flat panel display substrate (FPD substrate) G. Each plasma processing apparatus includes a processing chamber 200.

処理室200内には,例えばFPD用基板Gを載置する載置台が設けられており,この載置台の上方に処理ガス(例えばプロセスガス)を導入するためのシャワーヘッドが設けられている。載置台は下部電極を構成するサセプタを備え,これと平行に対向して設けられるシャワーヘッドは上部電極としての機能も兼ねる。各処理室200では同一の処理(例えばエッチング処理等)を行っても良いし,互いに異なった処理(例えばエッチング処理とアッシング処理等)を行うようにしても良い。なお,処理室200内の具体的構成例については後述する。   In the processing chamber 200, for example, a mounting table for mounting the FPD substrate G is provided, and a shower head for introducing a processing gas (for example, process gas) is provided above the mounting table. The mounting table includes a susceptor constituting the lower electrode, and the shower head provided in parallel with the susceptor also functions as the upper electrode. Each processing chamber 200 may perform the same processing (for example, etching processing) or different processing (for example, etching processing and ashing processing). A specific configuration example in the processing chamber 200 will be described later.

各処理室200はそれぞれ,断面多角形状(例えば断面矩形状)の搬送室110の側面にゲートバルブ102を介して連結されている。搬送室110にはさらに,ロードロック室120がゲートバルブ104を介して連結されている。ロードロック室120には,基板搬出入機構130がゲートバルブ106を介して隣設されている。   Each processing chamber 200 is connected via a gate valve 102 to a side surface of a transfer chamber 110 having a polygonal cross section (for example, a rectangular cross section). A load lock chamber 120 is further connected to the transfer chamber 110 via a gate valve 104. A substrate carry-in / out mechanism 130 is provided adjacent to the load lock chamber 120 via a gate valve 106.

基板搬出入機構130にそれぞれ2つのインデクサ140が隣設されている。インデクサ140には,FPD用基板Gを収納するカセット142が載置される。カセット142は複数枚(例えば25枚)のFPD用基板Gが収納可能に構成されている。   Two indexers 140 are provided adjacent to the substrate carry-in / out mechanism 130, respectively. A cassette 142 for storing the FPD substrate G is placed on the indexer 140. The cassette 142 is configured to accommodate a plurality of (for example, 25) FPD substrates G.

このようなプラズマ処理装置によってFPD用基板Gに対してプラズマ処理を行う際には,先ず基板搬出入機構130によりカセット142内のFPD用基板Gをロードロック室120内へ搬入する。このとき,ロードロック室120内に処理済みのFPD用基板Gがあれば,その処理済みのFPD用基板Gをロードロック室120内から搬出し,未処理のFPD用基板Gと置き換える。ロードロック室120内へFPD用基板Gが搬入されると,ゲートバルブ106を閉じる。   When plasma processing is performed on the FPD substrate G by using such a plasma processing apparatus, first, the FPD substrate G in the cassette 142 is carried into the load lock chamber 120 by the substrate carry-in / out mechanism 130. At this time, if there is a processed FPD substrate G in the load lock chamber 120, the processed FPD substrate G is carried out of the load lock chamber 120 and replaced with an unprocessed FPD substrate G. When the FPD substrate G is carried into the load lock chamber 120, the gate valve 106 is closed.

次いで,ロードロック室120内を所定の真空度まで減圧した後,搬送室110とロードロック室120間のゲートバルブ104を開く。そして,ロードロック室120内のFPD用基板Gを搬送室110内の搬送機構(図示せず)により搬送室110内へ搬入した後,ゲートバルブ104を閉じる。   Next, after reducing the pressure in the load lock chamber 120 to a predetermined degree of vacuum, the gate valve 104 between the transfer chamber 110 and the load lock chamber 120 is opened. Then, after the FPD substrate G in the load lock chamber 120 is loaded into the transfer chamber 110 by a transfer mechanism (not shown) in the transfer chamber 110, the gate valve 104 is closed.

搬送室110と処理室200との間のゲートバルブ102を開き,上記搬送機構により処理室200内の載置台に未処理のFPD用基板Gを搬入する。このとき,処理済みのFPD用基板Gがあれば,その処理済みのFPD用基板Gを搬出し,未処理のFPD用基板Gと置換える。   The gate valve 102 between the transfer chamber 110 and the processing chamber 200 is opened, and the unprocessed FPD substrate G is loaded onto the mounting table in the processing chamber 200 by the transfer mechanism. At this time, if there is a processed FPD substrate G, the processed FPD substrate G is unloaded and replaced with an unprocessed FPD substrate G.

処理室200内では,処理ガスをシャワーヘッドを介して処理室内に導入し,下部電極或は上部電極,又は上部電極と下部電極の両方に高周波電力を供給することによって,下部電極と上部電極との間に処理ガスのプラズマを発生させることによって,載置台上に保持されたFPD用基板Gに対して所定のプラズマ処理を行う。   In the processing chamber 200, a processing gas is introduced into the processing chamber through a shower head, and high frequency power is supplied to the lower electrode or the upper electrode, or both the upper electrode and the lower electrode, so that the lower electrode, the upper electrode, During this time, plasma of the processing gas is generated to perform predetermined plasma processing on the FPD substrate G held on the mounting table.

(処理室の構成例) (Configuration example of processing chamber)

次に,処理室200の具体的構成例について図面を参照しながら説明する。ここでは,本発明のプラズマ処理装置を,例えばガラス基板などのFPD用の絶縁基板(以下,単に「基板」とも称する)Gをエッチングする容量結合型プラズマ(CCP)エッチング装置に適用した場合の処理室の構成例について説明する。図2は,処理室200の概略構成を示す断面図である。   Next, a specific configuration example of the processing chamber 200 will be described with reference to the drawings. Here, processing when the plasma processing apparatus of the present invention is applied to a capacitively coupled plasma (CCP) etching apparatus that etches an FPD insulating substrate (hereinafter, also simply referred to as “substrate”) G such as a glass substrate, for example. A configuration example of the chamber will be described. FIG. 2 is a cross-sectional view illustrating a schematic configuration of the processing chamber 200.

図2に示す処理室200は,例えば表面が陽極酸化処理(アルマイト処理)されたアルミニウムからなる略角筒形状の処理容器202を備える。処理容器202はグランドに接地されている。処理室200内の底部には,下部電極を構成するサセプタ310を有する載置台300が配設されている。載置台300は,矩形の基板Gを固定保持する基板保持機構として機能し,矩形の基板Gに対応した矩形形状に形成される。この載置台の具体的構成例は後述する。   The processing chamber 200 shown in FIG. 2 includes a processing container 202 having a substantially rectangular tube shape made of aluminum whose surface is anodized (anodized), for example. The processing container 202 is grounded. A mounting table 300 having a susceptor 310 that constitutes a lower electrode is disposed at the bottom of the processing chamber 200. The mounting table 300 functions as a substrate holding mechanism that fixes and holds the rectangular substrate G, and is formed in a rectangular shape corresponding to the rectangular substrate G. A specific configuration example of the mounting table will be described later.

載置台300の上方には,サセプタ310と平行に対向するように,上部電極として機能するシャワーヘッド210が対向配置されている。シャワーヘッド210は処理容器202の上部に支持されており,内部にバッファ室222を有するとともに、サセプタ310と対向する下面には処理ガスを吐出する多数の吐出孔224が形成されている。このシャワーヘッド210はグランドに接地されており,サセプタ310とともに一対の平行平板電極を構成している。   Above the mounting table 300, a shower head 210 that functions as an upper electrode is disposed so as to face the susceptor 310 in parallel. The shower head 210 is supported on the upper portion of the processing container 202, has a buffer chamber 222 therein, and has a plurality of discharge holes 224 for discharging a processing gas on the lower surface facing the susceptor 310. The shower head 210 is grounded and constitutes a pair of parallel plate electrodes together with the susceptor 310.

シャワーヘッド210の上面にはガス導入口226が設けられ,ガス導入口226にはガス導入管228が接続されている。ガス導入管228には,開閉バルブ230,マスフローコントローラ(MFC)232を介して処理ガス供給源234が接続されている。   A gas inlet 226 is provided on the upper surface of the shower head 210, and a gas inlet tube 228 is connected to the gas inlet 226. A processing gas supply source 234 is connected to the gas introduction pipe 228 via an open / close valve 230 and a mass flow controller (MFC) 232.

処理ガス供給源234からの処理ガスは,マスフローコントローラ(MFC)232によって所定の流量に制御され,ガス導入口226を通ってシャワーヘッド210のバッファ室222に導入される。処理ガス(エッチングガス)としては,例えばハロゲン系のガス,Oガス,Arガスなど,通常この分野で用いられるガスを用いることができる。 The processing gas from the processing gas supply source 234 is controlled to a predetermined flow rate by a mass flow controller (MFC) 232 and is introduced into the buffer chamber 222 of the shower head 210 through the gas introduction port 226. As the processing gas (etching gas), for example, a gas usually used in this field such as a halogen-based gas, O 2 gas, Ar gas, or the like can be used.

処理室200の側壁には基板搬入出口204を開閉するためのゲートバルブ102が設けられている。また,処理室200の側壁の下方には排気口が設けられ,排気口には排気管208を介して真空ポンプ(図示せず)を含む排気装置209が接続される。この排気装置209により処理室200の室内を排気することによって,プラズマ処理中に処理室200内を所定の真空雰囲気(たとえば10mTorr=約1.33Pa)に維持することができる。   A gate valve 102 for opening and closing the substrate loading / unloading port 204 is provided on the side wall of the processing chamber 200. In addition, an exhaust port is provided below the side wall of the processing chamber 200, and an exhaust device 209 including a vacuum pump (not shown) is connected to the exhaust port via an exhaust pipe 208. By exhausting the inside of the processing chamber 200 by the exhaust device 209, the inside of the processing chamber 200 can be maintained in a predetermined vacuum atmosphere (for example, 10 mTorr = about 1.33 Pa) during the plasma processing.

(基板保持機構を適用した載置台の構成例)
ここで,本発明にかかる基板保持機構を適用した載置台300の具体的な構成例について図2,図3を参照しながら説明する。図3は,載置台300の伝熱ガス供給機構の構成例を説明する図である。図3は,図2に示す載置台300の上部分の断面を簡略化して示したものである。図3では,説明を簡単にするために図2に示す静電保持部320を省略している。
(Configuration example of a mounting table to which a substrate holding mechanism is applied)
Here, a specific configuration example of the mounting table 300 to which the substrate holding mechanism according to the present invention is applied will be described with reference to FIGS. FIG. 3 is a diagram illustrating a configuration example of the heat transfer gas supply mechanism of the mounting table 300. FIG. 3 shows a simplified cross section of the upper part of the mounting table 300 shown in FIG. In FIG. 3, the electrostatic holding part 320 shown in FIG.

図2に示すように,載置台300は,絶縁性のベース部材302と,このベース部材302上に設けられる導電体(例えばアルミニウム)からなる矩形ブロック状のサセプタ310とを備える。なお,サセプタ310の側面は,図2に示すように絶縁被膜311で覆われている。   As shown in FIG. 2, the mounting table 300 includes an insulating base member 302 and a rectangular block-shaped susceptor 310 made of a conductor (for example, aluminum) provided on the base member 302. The side surface of the susceptor 310 is covered with an insulating film 311 as shown in FIG.

サセプタ310上には,基板Gを基板保持面で保持する基板保持部の1例としての静電保持部320が設けられる。静電保持部320は,例えば下部誘電体層と上部誘電体層との間に電極板322を挟んで構成される。載置台300の外枠を構成し,上記ベース部材302,サセプタ310,静電保持部320の周りを囲むように,例えばセラミックや石英の絶縁部材からなる矩形枠状の外枠部330が配設される。   On the susceptor 310, an electrostatic holding unit 320 is provided as an example of a substrate holding unit that holds the substrate G on the substrate holding surface. The electrostatic holding unit 320 is configured, for example, by sandwiching an electrode plate 322 between a lower dielectric layer and an upper dielectric layer. A rectangular frame-shaped outer frame 330 made of, for example, an insulating member made of ceramic or quartz is disposed so as to constitute an outer frame of the mounting table 300 and surround the base member 302, the susceptor 310, and the electrostatic holding unit 320. Is done.

なお,静電保持部320の下部誘電体層および上部誘電体層は,その体積固有抵抗値が1×1014Ω・cm以上の絶縁体,例えばアルミナ(Al)およびジルコニア(ZrO)の少なくとも一方を主成分とするセラミックスにより構成することが好ましい。電極板322は,任意の導電体材でよく,たとえばタングステンからなる。公知のプラズマ溶射法により,サセプタ310上に下部誘電体層,電極板322,上部誘電体層の三層を順次重ねて形成することができる。 Note that the lower dielectric layer and the upper dielectric layer of the electrostatic holding unit 320 are insulators having a volume resistivity of 1 × 10 14 Ω · cm or more, such as alumina (Al 2 O 3 ) and zirconia (ZrO 2 ). ) Is preferably made of ceramics mainly composed of at least one of the following. The electrode plate 322 may be any conductive material, for example, tungsten. Three layers of a lower dielectric layer, an electrode plate 322, and an upper dielectric layer can be sequentially stacked on the susceptor 310 by a known plasma spraying method.

静電保持部320の電極板322には,直流(DC)電源315がスイッチ316を介して電気的に接続されている。スイッチ316は,例えば電極板322に対してDC電源315とグランド電位とを切り換えられるようになっている。なお,電極板322と直流(DC)電源315との間に,サセプタ310側からの高周波を遮断して,サセプタ310側の高周波がDC電源315側に漏洩するのを阻止する高周波遮断部(図示しない)を設けてもよい。高周波遮断部は,1MΩ以上の高い抵抗値を有する抵抗器または直流を通すローパスフィルタで構成するのが好ましい。   A direct current (DC) power source 315 is electrically connected to the electrode plate 322 of the electrostatic holding unit 320 via a switch 316. For example, the switch 316 can switch between the DC power source 315 and the ground potential with respect to the electrode plate 322. A high-frequency cutoff unit (illustrated) that blocks high-frequency waves from the susceptor 310 side between the electrode plate 322 and the direct current (DC) power source 315 and prevents leakage of high-frequency waves on the susceptor 310 side to the DC power source 315 side. No) may be provided. The high-frequency cutoff unit is preferably constituted by a resistor having a high resistance value of 1 MΩ or more or a low-pass filter that passes direct current.

スイッチ316がDC電源315側に切り換えられると,DC電源315からのDC電圧が電極板322に印加される。このDC電圧が正極性の電圧である場合,基板Gの上面には負の電荷(電子、負イオン)が引き付けられるようにして蓄積する。これにより,基板G上面の負の面電荷と電極板322との間に基板Gおよび上部誘電体層を挟んで互いに引き合う静電吸着力つまりクーロン力が働き,この静電吸着力で基板Gは載置台300上に吸着保持される。スイッチ316がグランド側に切り換えられると,電極板322が除電され,これに伴って基板Gも除電され,上記クーロン力つまり静電吸着力が解除される。   When the switch 316 is switched to the DC power source 315 side, a DC voltage from the DC power source 315 is applied to the electrode plate 322. When this DC voltage is a positive voltage, it accumulates on the upper surface of the substrate G so as to attract negative charges (electrons and negative ions). As a result, an electrostatic attracting force, that is, a Coulomb force attracting each other with the substrate G and the upper dielectric layer sandwiched between the negative surface charge on the upper surface of the substrate G and the electrode plate 322 acts. It is sucked and held on the mounting table 300. When the switch 316 is switched to the ground side, the electrode plate 322 is neutralized, and accordingly, the substrate G is also neutralized, and the Coulomb force, that is, the electrostatic adsorption force is released.

サセプタ310には,整合器312を介して高周波電源314の出力端子が電気的に接続されている。高周波電源314の出力周波数は,比較的高い周波数たとえば13.56MHzに選ばれる。高周波電源314からの高周波電力は,プラズマ発生用とバイアス用とに兼用される。すなわち,プラズマ処理中にサセプタ310に印加される高周波電源314からの高周波電力によって,基板Gの上には処理ガスのプラズマPZが生成されるとともに,プラズマPZ中のイオンが基板Gの上面(被処理面)に引き込まれる。これにより,基板G上に所定のプラズマエッチング処理が施される。   The output terminal of the high frequency power supply 314 is electrically connected to the susceptor 310 via the matching unit 312. The output frequency of the high frequency power supply 314 is selected to be a relatively high frequency, for example, 13.56 MHz. The high frequency power from the high frequency power source 314 is used for both plasma generation and bias. That is, the plasma PZ of the processing gas is generated on the substrate G by the high frequency power from the high frequency power source 314 applied to the susceptor 310 during the plasma processing, and ions in the plasma PZ are transferred to the upper surface of the substrate G (covered). Drawn into the processing surface). Thereby, a predetermined plasma etching process is performed on the substrate G.

サセプタ310の内部には冷媒流路340が設けられており,チラー装置(図示せず)から所定の温度に調整された冷媒が冷媒流路340を流れるようになっている。この冷媒によって,サセプタ310の温度を所定の温度に調整することができる。   A refrigerant flow path 340 is provided inside the susceptor 310, and a refrigerant adjusted to a predetermined temperature flows from the chiller device (not shown) through the refrigerant flow path 340. With this refrigerant, the temperature of the susceptor 310 can be adjusted to a predetermined temperature.

載置台300は,静電保持部320の基板保持面と基板Gの裏面との間に伝熱ガス(例えばHeガス)を所定の圧力で供給する伝熱ガス供給機構を備える。伝熱ガス供給機構は,伝熱ガスをサセプタ310内部のガス流路352を介して基板Gの裏面に所定の圧力で供給するようになっている。   The mounting table 300 includes a heat transfer gas supply mechanism that supplies heat transfer gas (for example, He gas) at a predetermined pressure between the substrate holding surface of the electrostatic holding unit 320 and the back surface of the substrate G. The heat transfer gas supply mechanism supplies the heat transfer gas to the back surface of the substrate G at a predetermined pressure via the gas flow path 352 inside the susceptor 310.

伝熱ガス供給機構は,具体的には例えば図3に示すように構成される。すなわち,サセプタ310の上面及び静電保持部320にはガス孔354が多数設けられており,これらのガス孔354は上記ガス流路352に連通している。ガス孔354は,例えば図15A,図15Bに示すように,基板保持面外周から例えば寸法cだけ内側のガス孔形成領域Rに所定間隔で多数配列されている。   Specifically, the heat transfer gas supply mechanism is configured as shown in FIG. 3, for example. That is, the upper surface of the susceptor 310 and the electrostatic holding part 320 are provided with a large number of gas holes 354, and these gas holes 354 communicate with the gas flow path 352. For example, as shown in FIGS. 15A and 15B, a large number of gas holes 354 are arranged at predetermined intervals in the gas hole formation region R, for example, by a dimension c from the outer periphery of the substrate holding surface.

ガス流路352には,例えば伝熱ガスとしてHeガスを供給するHeガス供給源364が圧力調整バルブ(PCV:Pressure Control Valve)362を介して接続されている。圧力制御バルブ(PCV)362は,ガス孔354側へ供給されるHeガスの圧力が所定の圧力になるように流量を調整するものである。   For example, a He gas supply source 364 that supplies He gas as heat transfer gas is connected to the gas flow path 352 via a pressure control valve (PCV) 362. The pressure control valve (PCV) 362 adjusts the flow rate so that the pressure of the He gas supplied to the gas hole 354 side becomes a predetermined pressure.

圧力制御バルブ(PCV)362は,例えばガス流路352を通流する伝熱ガスの圧力を測定する圧力測定手段の1例としてのマノメータ(例えばキャパシタンスマノメータ(CM))363を備えるとともに,図示しない流量調節バルブ(例えばピエゾバルブ),フローメータ,流量調節バルブであるピエゾバルブを制御するコントローラとが一体化されて構成されている。そして,マノメータ363で測定されたHeガスの圧力に基づいて,コントローラが例えばPID制御によりガス圧が一定になるようにピエゾバルブを制御してHeガス流量を制御する。   The pressure control valve (PCV) 362 includes, for example, a manometer (for example, a capacitance manometer (CM)) 363 as an example of a pressure measuring means for measuring the pressure of the heat transfer gas flowing through the gas flow path 352, and is not illustrated. A flow rate adjusting valve (for example, a piezo valve), a flow meter, and a controller that controls the piezo valve, which is a flow rate adjusting valve, are integrated. Then, based on the pressure of He gas measured by the manometer 363, the controller controls the piezo valve so that the gas pressure becomes constant by, for example, PID control, thereby controlling the He gas flow rate.

これら圧力調整バルブ(PCV)362,Heガス供給源364はそれぞれ,処理装置100の各部を制御する制御部400に接続されている。制御部400は,Heガス供給源364を制御してHeガスを流出させて,圧力調整バルブ(PCV)362によってHeガスを所定の流量に調整してガス流路352に供給する。これにより,Heガスは,ガス流路352及びガス孔354を通って基板Gの裏面に所定の圧力で供給される。このとき,制御部400は,ガス流路352の圧力を圧力調整バルブ(PCV)362のマノメータ363によって測定し,測定した圧力に基づいて例えば基板Gを静電吸着する際におけるHeガスの漏れ量をモニタリングすることができる。   These pressure regulating valves (PCV) 362 and He gas supply source 364 are each connected to a control unit 400 that controls each part of the processing apparatus 100. The control unit 400 controls the He gas supply source 364 to cause the He gas to flow out, adjusts the He gas to a predetermined flow rate by the pressure adjustment valve (PCV) 362, and supplies it to the gas flow path 352. Thereby, the He gas is supplied to the back surface of the substrate G at a predetermined pressure through the gas flow path 352 and the gas hole 354. At this time, the control unit 400 measures the pressure of the gas flow path 352 with the manometer 363 of the pressure adjusting valve (PCV) 362, and leaks He gas when, for example, the substrate G is electrostatically adsorbed based on the measured pressure. Can be monitored.

なお,上記ではガス流路352にマノメータ363と流量調整バルブとが一体化された圧力調整バルブ(PCV)362を用いたが,これに限らず,ガス流路352にこれらマノメータ363と流量調整バルブとを別個に設けるようにしてもよい。また,マノメータとしてもキャパシタンスマノメータに限らず種々のマノメータを用いることができ,流量調節バルブとしてもピエゾバルブに限らず,例えばソレノイドバルブであってもよい。   In the above description, the pressure adjustment valve (PCV) 362 in which the manometer 363 and the flow rate adjustment valve are integrated in the gas flow path 352 is used. However, the present invention is not limited to this, and the manometer 363 and the flow rate adjustment valve are provided in the gas flow path 352. May be provided separately. The manometer is not limited to a capacitance manometer, and various manometers can be used. The flow rate adjusting valve is not limited to a piezo valve, and may be a solenoid valve, for example.

このような伝熱ガス(例えばHeガス)の漏れ量は,基板が位置ずれしていると変化するので,本発明者らは,伝熱ガスの漏れ量の変化によって基板の位置ずれを検出できないかを検討した。ところが,半導体ウエハに比べて極めてサイズの大きいFPD用基板については独自の問題がある。   Since the leakage amount of such heat transfer gas (for example, He gas) changes when the substrate is displaced, the present inventors cannot detect the displacement of the substrate due to the change in the leakage amount of the heat transfer gas. We examined whether. However, an FPD substrate that is extremely large compared to a semiconductor wafer has its own problems.

FPD用基板のように極めて大きいサイズの基板Gでは,FPD用基板よりもはるかに小さいサイズの半導体ウエハに比べて,搬送アームなどの搬送機構を使っても載置台上に正確に載置させるのは極めて困難である。従って,従来は,ある程度の基板Gの位置ずれを許容できるようにするために,例えば図4,図5に示すように外枠部333の上面と載置台301の載置面(静電保持部の基板保持面)とをほぼ同じ高さにして,外枠部333の上面が載置台301の載置面から突出しないようにしていた。   An extremely large substrate G such as an FPD substrate can be accurately placed on a mounting table even if a transfer mechanism such as a transfer arm is used, compared to a semiconductor wafer having a size much smaller than that of an FPD substrate. Is extremely difficult. Therefore, conventionally, in order to allow a certain amount of positional deviation of the substrate G, for example, as shown in FIGS. 4 and 5, the upper surface of the outer frame portion 333 and the mounting surface (static holding portion) of the mounting table 301 are used. The upper surface of the outer frame portion 333 is prevented from projecting from the mounting surface of the mounting table 301.

このような構成では,例えば図4に示すように基板GがHeガスのガス孔354の形成領域Rから外れるほど大きく位置ずれしている場合には,ガス孔354の形成領域R上の基板Gがない部分からHeガスが漏洩するので,Heガスの漏れ量が大きくなる。従って,この場合には,Heガスの漏れ量をモニタリングすることによって基板Gが位置ずれていることを検出できるものと考えられる。   In such a configuration, for example, as shown in FIG. 4, when the substrate G is largely displaced from the formation region R of the He gas gas hole 354, the substrate G on the formation region R of the gas hole 354 is displaced. Since the He gas leaks from the portion where there is no gas, the amount of He gas leakage increases. Therefore, in this case, it is considered that the position shift of the substrate G can be detected by monitoring the amount of He gas leakage.

これに対して,図5に示すように基板GがHeガスのガス孔354の形成領域Rを外れない程度の微小な位置ずれの場合は,ガス孔354の形成領域R上に基板GがあるのでHeガスの漏れ量はほとんど変化しないため,基板Gの位置ずれを検出できない。   On the other hand, as shown in FIG. 5, when the substrate G is slightly displaced so that it does not deviate from the formation region R of the He gas hole 354, the substrate G is on the formation region R of the gas hole 354. Therefore, since the amount of He gas leakage hardly changes, the positional deviation of the substrate G cannot be detected.

しかしながら,基板Gの位置ずれがガス孔354の形成領域Rを外れない程度であっても,サセプタ310上の一部(基板保持面の一部)が露出してしまうと,図5に示すように基板G上にプラズマPZを形成した際に異常放電が発生してサセプタ310を損傷させる虞がある。   However, even if the position shift of the substrate G is such that it does not deviate from the formation region R of the gas hole 354, if a part on the susceptor 310 (a part of the substrate holding surface) is exposed, as shown in FIG. In addition, when the plasma PZ is formed on the substrate G, abnormal discharge may occur and the susceptor 310 may be damaged.

そこで,本実施形態では,外枠部の上部に基板の基準位置から所定の基板位置ずれ許容量だけ離間して位置ずれ検出用突起を形成することにより,基板が所定の基板位置ずれ許容量を超えて位置ずれしている場合には,基板の一部が位置ずれ検出用突起に乗り上げてガス孔からの伝熱ガスの漏れ量が増大することを利用して,基板の位置ずれを検出することができるようにした。   Therefore, in the present embodiment, the substrate is provided with a predetermined substrate positional deviation allowable amount by forming a positional deviation detection protrusion on the upper part of the outer frame portion by being separated from the reference position of the substrate by a predetermined substrate positional deviation allowable amount. If the position of the substrate is displaced, the position of the substrate is detected by utilizing the fact that a part of the substrate rides on the displacement detection protrusion and the amount of heat transfer gas leakage from the gas hole increases. I was able to do that.

これによれば,例えば基板が伝熱ガスのガス孔形成領域を外れる程度に大きく位置ずれしている場合はもちろん,サセプタ上の一部(基板保持面の一部)が露出する程度の微小な位置ずれしている場合にも,伝熱ガスがガス孔からの漏れ量が増大するので,位置ずれを検出することができる。例えば制御部400により圧力調整バルブ(PCV)362のマノメータ363で検出された圧力からガス流路352を通流する伝熱ガスの圧力に基づいて伝熱ガスの漏れ量をモニタリングし,漏れ量が予め設定値を超える場合には,基板Gが位置ずれしていると判断することができる。このように,制御部400は基板Gの位置ずれ検出手段を構成する。これにより,基板G上にプラズマPZを形成する前に位置ずれを検出することができるので,基板の位置ずれによる異常放電の発生を未然に防ぐことができる。   According to this, for example, not only when the substrate is greatly displaced so as to deviate from the gas hole formation region of the heat transfer gas, it is fine enough that a part on the susceptor (a part of the substrate holding surface) is exposed. Even in the case of misalignment, the amount of heat transfer gas leakage from the gas hole increases, so that misalignment can be detected. For example, the leakage amount of the heat transfer gas is monitored based on the pressure of the heat transfer gas flowing through the gas flow path 352 from the pressure detected by the manometer 363 of the pressure adjustment valve (PCV) 362 by the control unit 400. If the preset value is exceeded, it can be determined that the substrate G is displaced. In this way, the control unit 400 constitutes a displacement detection means for the substrate G. As a result, the positional deviation can be detected before the plasma PZ is formed on the substrate G, so that abnormal discharge due to the positional deviation of the substrate can be prevented in advance.

このような本実施形態にかかる位置ずれ検出用突起の構成例について図面を参照しながら説明する。図3は,外枠部330の上部に段部を形成し,この段部を位置ずれ検出用突起332とした場合の具体例である。   A configuration example of the misregistration detection projection according to the present embodiment will be described with reference to the drawings. FIG. 3 shows a specific example in which a step portion is formed on the upper portion of the outer frame portion 330 and this step portion is used as a misalignment detection protrusion 332.

図3を例に挙げて,位置ずれ検出用突起332の配置例を説明する。図3に示すように,基板GのサイズをLとし,載置台300の基板保持面,すなわち静電保持部320の基板保持面のサイズをLとする。なお,ここでのサイズは,基板Gなどの矩形形状のいずれか一辺の長さを示す。 With reference to FIG. 3 as an example, an arrangement example of the misalignment detection protrusions 332 will be described. As shown in FIG. 3, the size of the substrate G and L G, the substrate holding surface of the mounting table 300, i.e., the size of the substrate holding surface of the electrostatic holding section 320 and L S. Here, the size indicates the length of one side of a rectangular shape such as the substrate G.

この場合,基板保持面のサイズLは,基板GのサイズLよりも寸法2aだけ小さいものとする。すなわち,基板保持面と基板Gの中心が一致し,基板Gの各辺が基板保持面の各辺と平行になるような基板Gの位置を基準位置とすれば,基板Gが基準位置にあるときには,基板保持面から基板Gの周端部が全周にわたって寸法aだけ張り出すことになる。 In this case, the size L S of the substrate holding surface is assumed to be smaller by the dimension 2a than the size L G of the substrate G. That is, if the position of the substrate G is such that the center of the substrate holding surface and the center of the substrate G coincide and each side of the substrate G is parallel to each side of the substrate holding surface, the substrate G is at the reference position. In some cases, the peripheral edge of the substrate G protrudes from the substrate holding surface by a dimension a over the entire circumference.

また,基板Gが基準位置にあるとしたときの基板Gの周縁から寸法bだけ離れた位置に位置ずれ検出用突起332を形成したとすると,上記の各寸法a,bの関係は,a>bであることが好ましい。このような位置に位置ずれ検出用突起332を配置することによって,例えば図6に示すように,基板Gが基準位置から位置ずれしていても,基板Gが位置ずれ検出用突起332に乗り上げない位置では,サセプタ310上の一部(基板保持面の一部)が露出することはない。この寸法bは位置ずれ許容量であり,基板Gの周縁から寸法bまでの範囲は,サセプタ310上の一部(基板保持面の一部)が露出しない範囲であり,この範囲では異常放電が発生しないので,基板Gの位置ずれを許容できる範囲となる。   Further, assuming that the misalignment detection protrusion 332 is formed at a position separated from the periphery of the substrate G by the dimension b when the substrate G is at the reference position, the relationship between the dimensions a and b is as follows. b is preferred. By disposing the misalignment detection protrusion 332 at such a position, as shown in FIG. 6 for example, even if the substrate G is misaligned from the reference position, the substrate G does not run on the misalignment detection protrusion 332. In the position, a part (a part of the substrate holding surface) on the susceptor 310 is not exposed. This dimension b is an allowable amount of displacement, and the range from the periphery of the substrate G to the dimension b is a range where a part on the susceptor 310 (a part of the substrate holding surface) is not exposed. Since it does not occur, the positional deviation of the substrate G is allowed.

これに対して,図7に示すようにサセプタ310上の一部(基板保持面の一部)が露出するほど基板Gが位置ずれしている場合には,基板Gが位置ずれ検出用突起332に乗り上げるため,ガス孔354からのHeガスの漏れ量が増大するので,これらの位置ずれを検出することができる。これにより,基板Gの位置ずれをある程度許容しつつ,基板Gの位置ずれによる異常放電の発生を未然に防ぐことができる。   On the other hand, as shown in FIG. 7, when the substrate G is displaced so that a part on the susceptor 310 (a part of the substrate holding surface) is exposed, the substrate G is misaligned. Therefore, the amount of He gas leaked from the gas hole 354 increases, so that these displacements can be detected. Thereby, the occurrence of abnormal discharge due to the positional deviation of the substrate G can be prevented while allowing the positional deviation of the substrate G to some extent.

さらに,外枠部330の上部(位置ずれ検出用突起332よりも内側の低い部分)の高さをh1とし,位置ずれ検出用突起332の上部の高さをh2とし,基板保持面の高さをhとすると,各高さh1,h,h2の関係は,h1≦h<h2であることが好ましい。このような位置に位置ずれ検出用突起332を配置することによって,基板Gが位置ずれ検出用突起332に乗り上げたときに,基板保持面から基板Gを持ち上げることができるのでHeガスのガス孔354からの漏れ量が増大させることができる。   Furthermore, the height of the upper part of the outer frame 330 (the lower part inside the misalignment detection protrusion 332) is h1, the height of the upper part of the misalignment detection protrusion 332 is h2, and the height of the substrate holding surface is set. If h is h, the relationship between the heights h1, h, h2 is preferably h1 ≦ h <h2. By disposing the misregistration detection projection 332 at such a position, when the substrate G rides on the misregistration detection projection 332, the substrate G can be lifted from the substrate holding surface. The amount of leakage from the can be increased.

また,位置ずれ検出用突起332を外枠部330の上部に形成するという簡単な構成で,基板Gの位置ずれを検出することができ,基板Gの位置ずれによる異常放電の発生を未然に防ぐことができる。このような位置ずれ検出用突起332は,基板Gが基板保持面の基準位置にあるとした場合の基板Gの外周に沿って形成される。例えば図8に示すように位置ずれ検出用突起332は,外枠部330上に,点線で示す基板保持面の基準位置にある基板Gから上記位置ずれ許容量に相当する寸法bだけ離れた位置から外側に外枠部330の全周にわたって形成される。なお,外枠部330は,必ずしも一体で構成しなくてもよく,例えば複数に分割された枠部材を組み合わせた分割構造で構成してもよい。また,位置ずれ検出用突起332についても,一体で構成してもよく,分割構造で構成してもよい。   Further, the positional deviation of the substrate G can be detected with a simple configuration in which the positional deviation detection protrusion 332 is formed on the outer frame portion 330, and abnormal discharge due to the positional deviation of the substrate G can be prevented. be able to. Such misalignment detection protrusions 332 are formed along the outer periphery of the substrate G when the substrate G is at the reference position of the substrate holding surface. For example, as shown in FIG. 8, the misalignment detection protrusion 332 is located on the outer frame 330 at a position separated from the substrate G at the reference position of the substrate holding surface indicated by the dotted line by a dimension b corresponding to the above misalignment allowance. It is formed over the entire circumference of the outer frame 330 from the outside to the outside. Note that the outer frame portion 330 does not necessarily have to be integrally formed. For example, the outer frame portion 330 may have a divided structure in which a plurality of divided frame members are combined. Further, the misregistration detection protrusion 332 may be formed integrally or may be formed in a divided structure.

また,図9に示すように,駒状に形成した位置ずれ検出用突起332を,基板Gの外周に沿って複数配置してもよい。この場合,例えば基板Gの短い方の辺に沿って1つずつ配置し,長い方の辺に沿って2つずつ等間隔に配置するようにする。なお,位置ずれ検出用突起332の数はこれに限定されるものではない。例えば,位置ずれ検出用突起332を基板Gの各辺に沿って2つ或は3つ以上設けてもよく,また基板Gの各辺に設ける位置ずれ検出用突起332を同数にしてもよく,また異なる数にしてもよい。   Further, as shown in FIG. 9, a plurality of misalignment detection protrusions 332 formed in a frame shape may be arranged along the outer periphery of the substrate G. In this case, for example, they are arranged one by one along the shorter side of the substrate G, and two are arranged at equal intervals along the longer side. The number of misalignment detection protrusions 332 is not limited to this. For example, two or three or more misalignment detection protrusions 332 may be provided along each side of the substrate G, and the same number of misalignment detection protrusions 332 may be provided on each side of the substrate G. Different numbers may be used.

このような駒状の位置ずれ検出用突起332としては,図10に示すように外枠部330の上に外枠部330と一体に構成してもよく,また図11,図12に示すように外枠部330とは別体で着脱可能に構成してもよい。図11は,位置ずれ検出用突起332の下側にネジ部を設け,外枠部330にネジ止して固定した場合の例である。また,図12は,位置ずれ検出用突起332にねじ穴を設け,このねじ穴にネジを通してネジ止した場合の例である。このように,検出用突起332を外枠部330に着脱可能に設けることによって,位置ずれ検出用突起332の交換が容易となる。また,基板Gの形状等に応じて適切な位置に配置を変えることができるとともに,適切な形状のものに交換することもできる。   Such a frame-shaped misalignment detection protrusion 332 may be formed integrally with the outer frame 330 on the outer frame 330 as shown in FIG. 10, or as shown in FIGS. In addition, the outer frame portion 330 may be configured separately and attachable / detachable. FIG. 11 shows an example in which a screw part is provided below the misalignment detection protrusion 332 and is fixed to the outer frame part 330 by screwing. FIG. 12 shows an example in which a screw hole is provided in the misalignment detection protrusion 332 and a screw is passed through the screw hole. Thus, by providing the detection projection 332 to the outer frame portion 330 so as to be detachable, the displacement detection projection 332 can be easily replaced. In addition, the arrangement can be changed to an appropriate position according to the shape of the substrate G and the like, and the substrate G can be replaced with an appropriate one.

また,位置ずれ検出用突起332は,図13に示すように基板Gが基板保持面の基準位置にあるとした場合の基板Gの外周に沿って枠状に形成してもよく,また,図14に示すようにL字状の位置ずれ検出用突起332をそれぞれ4つの角部にネジなどで固定するようにしてもよい。このような駒状の位置ずれ検出用突起332であれば,外枠部の上部にねじで取付けるという極めて簡単な構成で,基板Gの位置ずれを検出することができる。なお,外枠部330は,必ずしも一体で構成しなくてもよく,例えば複数に分割された枠部材を組み合わせた分割構造で構成してもよい。また,図13に示す位置ずれ検出用突起332についても,一体で構成してもよく,また分割構造で構成してもよい。   Further, the misalignment detection protrusion 332 may be formed in a frame shape along the outer periphery of the substrate G when the substrate G is at the reference position of the substrate holding surface as shown in FIG. As shown in FIG. 14, the L-shaped misregistration detection projections 332 may be fixed to four corners with screws or the like. With such a frame-shaped misalignment detection protrusion 332, it is possible to detect the misalignment of the substrate G with a very simple configuration in which it is attached to the upper portion of the outer frame portion with a screw. Note that the outer frame portion 330 does not necessarily have to be integrally formed. For example, the outer frame portion 330 may have a divided structure in which a plurality of divided frame members are combined. Further, the misregistration detection protrusion 332 shown in FIG. 13 may be configured integrally or may be configured in a divided structure.

なお,上記載置台300の基板保持面の構成は,図3に示すものに限られるものではない。例えば図15A,図15Bに示すように基板保持面にガス孔354の形成領域R全体にわたって極浅い凹部356を設けるようにしてもよい。この凹部356により,ガス孔形成領域Rと基板Gとの間に空間ができ,各ガス孔354から噴出するHeガスは,凹部356により形成された空間内に入り込むので,Heガスにより基板Gの面内をより均一に温度調整することができる。また,上記凹部356の下面には,この凹部356が形成されている領域内で基板Gを保持する多数の凸部355が格子状に設けられている。   The configuration of the substrate holding surface of the mounting table 300 is not limited to that shown in FIG. For example, as shown in FIGS. 15A and 15B, an extremely shallow recess 356 may be provided on the substrate holding surface over the entire formation region R of the gas hole 354. The recess 356 creates a space between the gas hole forming region R and the substrate G, and the He gas ejected from each gas hole 354 enters the space formed by the recess 356. The temperature in the surface can be adjusted more uniformly. In addition, on the lower surface of the concave portion 356, a large number of convex portions 355 for holding the substrate G in a region where the concave portion 356 is formed are provided in a lattice shape.

この場合でも,図15A,図15Bに示すようにガス孔形成領域Rに凹部356を設けることによって,その外周にわたって寸法cの幅で枠部358が形成される。このため,基板Gが静電吸着力により基板保持面に保持されることによって,基板Gは枠部358に所定の圧力で押しつけられるので,Heガスがシールされる。   Even in this case, as shown in FIGS. 15A and 15B, by providing the recess 356 in the gas hole formation region R, the frame portion 358 is formed with a width of the dimension c over the outer periphery thereof. For this reason, since the substrate G is held on the substrate holding surface by the electrostatic adsorption force, the substrate G is pressed against the frame portion 358 with a predetermined pressure, so that the He gas is sealed.

なお,この枠部358には,図16A,図16Bに示すような基板位置ずれ検出孔317を形成し,この基板位置ずれ検出孔317を凹部356と基板Gとの間に形成される空間に連通させるための連通路318を形成するようにしてもよい。なお,この場合,基板位置ずれ検出孔317は,図16Aに示すように,例えば枠部358の4つの角部に設けることが好ましい。   The frame portion 358 is formed with a substrate misalignment detection hole 317 as shown in FIGS. 16A and 16B, and the substrate misalignment detection hole 317 is formed in a space formed between the recess 356 and the substrate G. You may make it form the communication path 318 for making it communicate. In this case, the substrate position detection holes 317 are preferably provided at, for example, four corners of the frame 358 as shown in FIG. 16A.

このような基板位置ずれ検出孔317には,連通路318を介してHeガスが流れる。このため,例えば図16Aに示すように,基板Gが位置ずれしていない場合には,基板位置ずれ検出孔317は基板Gで塞がれるのでHeガスが漏れないのに対して,例えば図17,図18に示すように基板Gがサセプタ310上の一部(基板保持面の一部)が露出するほど位置ずれしている場合には,基板位置ずれ検出孔317からのHeガスの漏れ量が増大するので,位置ずれを検出することができる。これにより,基板Gの位置ずれをある程度許容しつつ,基板Gの位置ずれによる異常放電の発生を未然に防ぐことができる。   He gas flows through the communication path 318 through the substrate position detection hole 317. For this reason, as shown in FIG. 16A, for example, when the substrate G is not displaced, the substrate misalignment detection hole 317 is blocked by the substrate G, so that He gas does not leak. 18, when the substrate G is displaced so that a part of the substrate G (a part of the substrate holding surface) on the susceptor 310 is exposed, the amount of He gas leaked from the substrate misalignment detection hole 317. Therefore, it is possible to detect misalignment. Thereby, the occurrence of abnormal discharge due to the positional deviation of the substrate G can be prevented while allowing the positional deviation of the substrate G to some extent.

また,基板位置ずれ検出孔317を枠部358の4つの角部に設けるので,この4つの基板位置ずれ検出孔317だけで,例えば図17のように基板Gが基板保持面に対して平行に位置ずれしている場合のみならず,図18に示すように基板Gが基板保持面に対して斜行して位置ずれしている場合についても,基板Gの位置ずれを検出することができる。   Further, since the substrate misalignment detection holes 317 are provided at the four corners of the frame portion 358, the substrate G is parallel to the substrate holding surface as shown in FIG. The position shift of the substrate G can be detected not only when the position is shifted but also when the substrate G is skewed with respect to the substrate holding surface as shown in FIG.

なお,上述したように,図16A,図16Bに示すような基板位置ずれ検出孔317を形成する場合には,基板位置ずれ検出孔317によって基板Gの位置ずれを検出できるので,必ずしも図3に示すような位置ずれ検出用突起332を設ける必要はない。具体的には例えば図4に示す載置台301の基板保持面に図16A,図16Bに示すような基板位置ずれ検出孔317を形成することもできる。   As described above, when the substrate misalignment detection hole 317 as shown in FIGS. 16A and 16B is formed, the misalignment of the substrate G can be detected by the substrate misalignment detection hole 317. It is not necessary to provide the positional deviation detection protrusion 332 as shown. Specifically, for example, a substrate displacement detection hole 317 as shown in FIGS. 16A and 16B can be formed on the substrate holding surface of the mounting table 301 shown in FIG.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば上記実施形態では,本発明を適用可能なプラズマ処理装置として,容量結合型プラズマ(CCP)処理装置を例に挙げて説明したが,必ずしもこれに限定されるものではなく,低圧で高密度のプラズマ生成を可能な誘導結合プラズマ(ICP)処理装置に本発明を適用してもよい。   For example, in the above-described embodiment, a capacitively coupled plasma (CCP) processing apparatus has been described as an example of a plasma processing apparatus to which the present invention can be applied. The present invention may be applied to an inductively coupled plasma (ICP) processing apparatus capable of generating plasma.

また,その他,プラズマ生成としてヘリコン波プラズマ生成、ECR(Electron Cyclotron Resonance)プラズマ生成を用いたプラズマ処理装置等にも本発明を適用可能である。   In addition, the present invention can also be applied to a plasma processing apparatus that uses helicon wave plasma generation or ECR (Electron Cyclotron Resonance) plasma generation as plasma generation.

本発明は,基板保持機構及びプラズマ処理装置に適用可能である。   The present invention is applicable to a substrate holding mechanism and a plasma processing apparatus.

本発明の実施形態にかかる処理装置の外観斜視図である。1 is an external perspective view of a processing apparatus according to an embodiment of the present invention. 同実施形態におけるプラズマ処理装置を構成する処理室の断面図である。It is sectional drawing of the process chamber which comprises the plasma processing apparatus in the embodiment. 載置台の伝熱ガス供給機構の構成例を説明するための図である。It is a figure for demonstrating the structural example of the heat-transfer gas supply mechanism of a mounting base. 従来の載置台の作用を説明するための図であって,基板がガス孔形成領域Rから外れるほど大きく位置ずれしている場合である。It is a figure for demonstrating the effect | action of the conventional mounting base, Comprising: When the board | substrate has shifted | deviated greatly so that it remove | deviates from the gas hole formation area | region R. FIG. 従来の載置台の作用を説明するための図であって,基板がガス孔形成領域Rから外れない程度に微小に位置ずれしている場合である。It is a figure for demonstrating the effect | action of the conventional mounting base, Comprising: When a board | substrate has shifted | deviated minutely so that it may not remove | deviate from the gas hole formation area | region R. FIG. 同実施形態にかかる載置台の作用を説明するための図であって,基板の位置ずれを許容できる場合である。It is a figure for demonstrating the effect | action of the mounting base concerning the embodiment, Comprising: It is a case where the position shift of a board | substrate is permissible. 従来の載置台を説明するための図であって,基板の位置ずれを許容できない場合である。It is a figure for demonstrating the conventional mounting base, Comprising: It is a case where the position shift of a board | substrate cannot be accept | permitted. 同実施形態における位置ずれ検出用突起の構成例を説明するための斜視図である。It is a perspective view for demonstrating the structural example of the protrusion for position shift detection in the embodiment. 同実施形態における位置ずれ検出用突起の他の構成例を説明するための斜視図である。It is a perspective view for demonstrating the other structural example of the protrusion for position shift detection in the embodiment. 図9に示す位置ずれ検出用突起の具体例を説明するための断面図である。It is sectional drawing for demonstrating the specific example of the protrusion for position shift detection shown in FIG. 図9に示す位置ずれ検出用突起の変形例を説明するための断面図である。It is sectional drawing for demonstrating the modification of the position shift detection protrusion shown in FIG. 図9に示す位置ずれ検出用突起の他の変形例を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining another modification of the misalignment detection protrusion shown in FIG. 9. 同実施形態における位置ずれ検出用突起の他の構成例を説明するための斜視図である。It is a perspective view for demonstrating the other structural example of the protrusion for position shift detection in the embodiment. 同実施形態における位置ずれ検出用突起の他の構成例を説明するための斜視図である。It is a perspective view for demonstrating the other structural example of the protrusion for position shift detection in the embodiment. 同実施形態にかかる載置台の基板保持面の他の構成例を説明するための図であって,載置台を上方から見た場合の平面図である。It is a figure for demonstrating the other structural example of the board | substrate holding surface of the mounting base concerning the embodiment, Comprising: It is a top view at the time of seeing a mounting base from upper direction. 図15AのP1−P1′断面図である。It is P1-P1 'sectional drawing of FIG. 15A. 同実施形態にかかる載置台の基板保持面の他の構成例を説明するための図であって,載置台を上方から見た場合の平面図である。It is a figure for demonstrating the other structural example of the board | substrate holding surface of the mounting base concerning the embodiment, Comprising: It is a top view at the time of seeing a mounting base from upper direction. 図16AのP2−P2′断面図である。It is P2-P2 'sectional drawing of FIG. 16A. 図16Aに示す載置台の基板保持面に対して基板が平行に位置ずれしている場合を示す図である。It is a figure which shows the case where the board | substrate has shifted | deviated in parallel with respect to the board | substrate holding surface of the mounting base shown to FIG. 16A. 図16Aに示す載置台の基板保持面に対して基板が斜行して位置ずれしている場合を示す図である。It is a figure which shows the case where a board | substrate carries out the skew and has shifted | deviated with respect to the board | substrate holding surface of the mounting base shown to FIG. 16A.

符号の説明Explanation of symbols

100 処理装置
102,104,106 ゲートバルブ
110 搬送室
120 ロードロック室
130 基板搬出入機構
140 インデクサ
142 カセット
200 処理室
202 処理容器
204 基板搬入出口
208 排気管
209 排気装置
210 シャワーヘッド
222 バッファ室
224 吐出孔
226 ガス導入口
228 ガス導入管
230 開閉バルブ
232 マスフローコントローラ
234 処理ガス供給源
300 載置台
302 ベース部材
310 サセプタ
311 絶縁被膜
312 整合器
314 高周波電源
315 DC電源
316 スイッチ
317 基板位置ずれ検出孔
318 連通路
320 静電保持部
322 電極板
330 外枠部
332 位置ずれ検出用突起
333 外枠部
340 冷媒流路
352 ガス流路
354 ガス孔
356 凹部
358 枠部
362 圧力調整バルブ(PCV)
363 マノメータ
364 ガス供給源
400 制御部
G 基板
100 processing apparatus 102, 104, 106 gate valve 110 transfer chamber 120 load lock chamber 130 substrate loading / unloading mechanism 140 indexer 142 cassette 200 processing chamber 202 processing container 204 substrate loading / unloading port 208 exhaust pipe 209 exhaust device 210 shower head 222 buffer chamber 224 discharge Hole 226 Gas introduction port 228 Gas introduction pipe 230 Open / close valve 232 Mass flow controller 234 Processing gas supply source 300 Mounting table 302 Base member 310 Susceptor 311 Insulating film 312 Matching device 314 High frequency power supply 315 DC power supply 316 Switch 317 Substrate misalignment detection hole 318 Passage 320 Electrostatic holding portion 322 Electrode plate 330 Outer frame portion 332 Position shift detection projection 333 Outer frame portion 340 Refrigerant flow channel 352 Gas flow channel 354 Gas hole 356 Recess 358 Frame portion 362 Pressure Sei valve (PCV)
363 Manometer 364 Gas supply source 400 Control unit G Substrate

Claims (12)

プラズマが生成される空間内で絶縁体からなる矩形の被処理基板を載置保持する基板保持機構であって,
前記被処理基板を載置保持する矩形の載置台と,
前記載置台とこの載置台の基板保持面に保持された被処理基板との間にガスを供給するためのガス流路と,
前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,
前記ガス孔が形成される領域が前記基板保持面の内側になるようにして,前記ガス孔形成領域全面にわたって形成される凹部と,
前記基板保持面の前記ガス孔形成領域の外周に形成される枠部と,
前記枠部上面の4つの角部にそれぞれ形成した基板位置ずれ検出孔と,
前記基板位置ずれ検出孔と前記凹部とをそれぞれ連通する連通路と,
前記ガス流路の圧力を測定する圧力測定手段と,
前記載置台上に被処理基板を保持したときに,その被処理基板により前記各基板位置ずれ検出孔が塞がれているか否かを,前記圧力測定手段からの検出圧力に基づく前記各基板位置ずれ検出孔からのガス漏れ量によって検出することにより,所定の位置ずれ許容量を超える前記被処理基板の位置ずれの有無を検出する位置ずれ検出手段と,
を備えることを特徴とする基板保持機構。
A substrate holding mechanism for mounting and holding a rectangular target substrate made of an insulator in a space where plasma is generated,
A rectangular mounting table for mounting and holding the substrate to be processed;
A gas flow path for supplying gas between the mounting table and the substrate to be processed held on the substrate holding surface of the mounting table;
A plurality of gas holes formed on the substrate holding surface of the mounting table for guiding the gas from the gas flow path onto the substrate holding surface;
A recess formed over the entire surface of the gas hole forming region so that the region in which the gas hole is formed is inside the substrate holding surface;
A frame portion formed on an outer periphery of the gas hole forming region of the substrate holding surface;
A substrate misregistration detection hole formed in each of the four corners of the upper surface of the frame portion;
A communication passage communicating said and said recess each substrate position displacement detection hole respectively,
Pressure measuring means for measuring the pressure of the gas flow path;
Each substrate position based on the detected pressure from the pressure measuring means indicates whether or not each substrate position detection hole is closed by the substrate to be processed when the substrate is held on the mounting table. A positional deviation detecting means for detecting the presence or absence of positional deviation of the substrate to be processed exceeding a predetermined positional deviation allowable amount by detecting the amount of gas leakage from the deviation detection hole ;
A substrate holding mechanism comprising:
前記凹部の下面には,この凹部が形成されている領域内で前記基板を保持する多数の凸部が設けられていることを特徴とする請求項1に記載の基板保持機構。 The substrate holding mechanism according to claim 1, wherein a plurality of protrusions for holding the substrate in a region where the recess is formed are provided on a lower surface of the recess. プラズマが生成される空間内で,矩形の絶縁体からなるフラットディスプレイ用の被処理基板を載置保持する基板保持機構であって,
前記被処理基板を載置保持する載置台と,
前記載置台とこの載置台の基板保持面に保持された被処理基板との間にガスを供給するためのガス流路と,
前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,
前記被処理基板が前記載置台の基板保持面の基準位置にあるとしたときのその被処理基板の周縁よりも外側に所定の位置ずれ許容量だけ離間して前記周縁に沿って配設され,前記位置ずれ許容量を超えて位置ずれした前記被処理基板が乗り上げて持ち上がるように前記載置台の基板保持面から突出してなる位置ずれ検出用突起と,
前記ガス流路の圧力を測定する圧力測定手段と,
前記載置台上に被処理基板を保持したときに,その被処理基板が前記位置ずれ検出用突起に乗り上げて持ち上がっているか否かを,前記圧力測定手段からの検出圧力に基づく前記ガス孔からのガス漏れ量によって検出することにより,前記位置ずれ許容量を超える前記被処理基板の位置ずれの有無を検出する位置ずれ検出手段と,
を備えることを特徴とする基板保持機構。
A substrate holding mechanism for mounting and holding a substrate to be processed for a flat display made of a rectangular insulator in a space where plasma is generated,
A mounting table for mounting and holding the substrate to be processed;
A gas flow path for supplying gas between the mounting table and the substrate to be processed held on the substrate holding surface of the mounting table;
A plurality of gas holes formed on the substrate holding surface of the mounting table for guiding the gas from the gas flow path onto the substrate holding surface;
When the substrate to be processed is at the reference position of the substrate holding surface of the mounting table, the substrate to be processed is disposed along the periphery with a predetermined positional deviation allowable outside the periphery of the substrate to be processed. A misregistration detection protrusion that protrudes from the substrate holding surface of the mounting table so that the substrate to be processed that has been misaligned in excess of the misalignment allowance rides on and rises ;
Pressure measuring means for measuring the pressure of the gas flow path;
When the substrate to be processed is held on the mounting table, whether or not the substrate to be processed rides up on the misalignment detection protrusion and is lifted is determined from the gas hole based on the detected pressure from the pressure measuring means. A displacement detection means for detecting the presence or absence of a displacement of the substrate to be processed that exceeds the displacement tolerance by detecting by the amount of gas leakage ;
A substrate holding mechanism comprising:
前記位置ずれ許容量は,前記載置台に被処理基板を保持したときに前記載置台の基板保持面が露出しない範囲で設定することを特徴とする請求項に記載の基板保持機構。 The substrate holding mechanism according to claim 3 , wherein the permissible displacement is set within a range in which the substrate holding surface of the mounting table is not exposed when the substrate to be processed is held on the mounting table. 前記載置台は,サセプタと,前記サセプタ上に設けられ,前記基板保持面で前記被処理基板を保持する基板保持部と,前記サセプタ及び前記基板保持部の周囲を囲むように配設される外枠部とを備え,
前記位置ずれ検出用突起は,前記外枠部の上部に形成されることを特徴とする請求項に記載の基板保持機構。
The mounting table includes a susceptor, a substrate holding unit that is provided on the susceptor and holds the substrate to be processed on the substrate holding surface, and an outer surface disposed so as to surround the susceptor and the substrate holding unit. A frame portion,
The substrate holding mechanism according to claim 3 , wherein the misalignment detection protrusion is formed on an upper portion of the outer frame portion.
前記基板保持面のサイズは,前記被処理基板のサイズよりも寸法2aだけ小さいものとし,前記位置ずれ許容量を寸法bとすると,各寸法a,bの関係は,a>bであることを特徴とする請求項に記載の基板保持機構。 When the size of the substrate holding surface is smaller than the size of the substrate to be processed by a dimension 2a, and the allowable displacement is a dimension b, the relationship between the dimensions a and b is a> b. The substrate holding mechanism according to claim 5 , wherein: 前記外枠部の上部の高さをh1とし,前記位置ずれ検出用突起の上部の高さをh2とし,前記基板保持面の高さをhとすると,前記各高さh1,h,h2の関係は,h1≦h<h2であること特徴とする請求項に記載の基板保持機構。 When the height of the upper portion of the outer frame portion is h1, the height of the upper portion of the protrusion for detecting displacement is h2, and the height of the substrate holding surface is h, each of the heights h1, h, h2 7. The substrate holding mechanism according to claim 6 , wherein the relationship is h1 ≦ h <h2. 前記位置ずれ検出用突起は,前記被処理基板の周縁に沿って枠状に形成されることを特徴とする請求項に記載の基板保持機構。 6. The substrate holding mechanism according to claim 5 , wherein the misalignment detection protrusion is formed in a frame shape along a peripheral edge of the substrate to be processed. 前記位置ずれ検出用突起は,駒状に形成し,
前記駒状の位置ずれ検出用突起を前記被処理基板の周縁に沿って複数設けたことを特徴とする請求項に記載の基板保持機構。
The misalignment detection protrusion is formed in a frame shape,
6. The substrate holding mechanism according to claim 5 , wherein a plurality of the piece-shaped misregistration detection protrusions are provided along the periphery of the substrate to be processed.
前記位置ずれ検出用突起は,着脱可能に設けたことを特徴とする請求項に記載の基板保持機構。 The substrate holding mechanism according to claim 9 , wherein the misalignment detection protrusion is detachably provided. 前記基板保持部は,下部誘電体層と上部誘電体層との間に電極板を挟んで構成し,前記電極板に所定の電圧を印加することによって発生する静電吸着力によって前記基板保持面に前記被処理基板を吸着保持することを特徴とする請求項に記載の基板保持機構。 The substrate holding part is configured by sandwiching an electrode plate between a lower dielectric layer and an upper dielectric layer, and the substrate holding surface by electrostatic attraction generated by applying a predetermined voltage to the electrode plate 6. The substrate holding mechanism according to claim 5 , wherein the substrate to be processed is held by suction. 処理室内に処理ガスを導入し,前記処理ガスのプラズマを発生させることによって,前記処理室内の載置台に載置保持された矩形の絶縁体からなるフラットディスプレイ用の被処理基板に所定のプラズマ処理を施すプラズマ処理装置であって,
前記載置台とこの載置台の基板保持面に保持された被処理基板との間にガスを供給するためのガス流路と,
前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,
前記被処理基板が前記載置台の基板保持面の基準位置にあるとしたときのその被処理基板の周縁よりも外側に所定の位置ずれ許容量だけ離間して前記周縁に沿って配設され,前記位置ずれ許容量を超えて位置ずれした前記被処理基板が乗り上げて持ち上がるように前記載置台の基板保持面から突出してなる位置ずれ検出用突起と,
前記ガス流路の圧力を測定する圧力測定手段と,
前記載置台上に被処理基板を保持したときに,その被処理基板が前記位置ずれ検出用突起に乗り上げて持ち上がっているか否かを,前記圧力測定手段からの検出圧力に基づく前記ガス孔からのガス漏れ量によって検出することにより,前記位置ずれ許容量を超える前記被処理基板の位置ずれの有無を検出する位置ずれ検出手段と,
を備えることを特徴とするプラズマ処理装置。
Process by introducing a process gas into the chamber, by generating a plasma of the process gas, a predetermined plasma process on a target substrate for a flat display comprising a rectangular insulator placed held on the mounting table in the processing chamber A plasma processing apparatus for applying
A gas flow path for supplying gas between the mounting table and the substrate to be processed held on the substrate holding surface of the mounting table;
A plurality of gas holes formed on the substrate holding surface of the mounting table for guiding the gas from the gas flow path onto the substrate holding surface;
When the substrate to be processed is at the reference position of the substrate holding surface of the mounting table, the substrate to be processed is disposed along the periphery with a predetermined positional deviation allowable outside the periphery of the substrate to be processed. A misregistration detection protrusion that protrudes from the substrate holding surface of the mounting table so that the substrate to be processed that has been misaligned in excess of the misalignment allowance rides on and rises ;
Pressure measuring means for measuring the pressure of the gas flow path;
When the substrate to be processed is held on the mounting table, whether or not the substrate to be processed rides up on the misalignment detection protrusion and is lifted is determined from the gas hole based on the detected pressure from the pressure measuring means. A displacement detection means for detecting the presence or absence of a displacement of the substrate to be processed that exceeds the displacement tolerance by detecting by the amount of gas leakage ;
A plasma processing apparatus comprising:
JP2007006321A 2007-01-15 2007-01-15 Substrate holding mechanism and plasma processing apparatus Expired - Fee Related JP4753888B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007006321A JP4753888B2 (en) 2007-01-15 2007-01-15 Substrate holding mechanism and plasma processing apparatus
TW097101385A TWI421970B (en) 2007-01-15 2008-01-14 A substrate holding mechanism and a plasma processing device
KR1020080004033A KR100929448B1 (en) 2007-01-15 2008-01-14 Substrate holding mechanism and plasma processing apparatus
CN2008100034479A CN101226894B (en) 2007-01-15 2008-01-15 Substrate holding mechanism and plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006321A JP4753888B2 (en) 2007-01-15 2007-01-15 Substrate holding mechanism and plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2008172170A JP2008172170A (en) 2008-07-24
JP4753888B2 true JP4753888B2 (en) 2011-08-24

Family

ID=39699956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006321A Expired - Fee Related JP4753888B2 (en) 2007-01-15 2007-01-15 Substrate holding mechanism and plasma processing apparatus

Country Status (4)

Country Link
JP (1) JP4753888B2 (en)
KR (1) KR100929448B1 (en)
CN (1) CN101226894B (en)
TW (1) TWI421970B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045071A (en) * 2008-08-08 2010-02-25 Nikon Corp Detecting device, substrate holding member, transfer device, and bonding device
JP5871453B2 (en) * 2010-05-20 2016-03-01 東京エレクトロン株式会社 Plasma processing apparatus, substrate holding mechanism, and substrate misalignment detection method
JP5689283B2 (en) * 2010-11-02 2015-03-25 東京エレクトロン株式会社 Substrate processing method and storage medium storing program for executing the method
CN104538334B (en) * 2014-12-17 2017-08-08 中国地质大学(北京) A kind of multi-functional plasma chamber processing system
KR101632606B1 (en) * 2014-12-30 2016-06-23 세메스 주식회사 Method and apparatus for treating substrate
KR101694754B1 (en) * 2016-09-08 2017-01-11 (주)브이앤아이솔루션 eletectrostatic chuck and manufacturing method for the same
US9922857B1 (en) 2016-11-03 2018-03-20 Lam Research Corporation Electrostatically clamped edge ring
KR102397545B1 (en) 2017-05-02 2022-05-12 삼성전자주식회사 Chuck stage particle detection device
KR102056855B1 (en) * 2018-05-29 2019-12-17 세메스 주식회사 Method and Apparatus for treating substrate
JP7203585B2 (en) * 2018-12-06 2023-01-13 東京エレクトロン株式会社 Substrate support, substrate processing apparatus, substrate processing system, and method of detecting adhesive erosion in substrate support
JP7058239B2 (en) * 2019-03-14 2022-04-21 株式会社Kokusai Electric Semiconductor device manufacturing methods, substrate processing devices and programs
CN114345742A (en) * 2021-12-31 2022-04-15 苏州汇川控制技术有限公司 Method, apparatus, device and medium for detecting chip mounting position

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144771A (en) * 1996-11-06 1998-05-29 Sony Corp Semiconductor manufacturing device
JP4030030B2 (en) * 1998-04-24 2008-01-09 キヤノンアネルバ株式会社 Method and apparatus for detecting suction force of electrostatic chuck holder
JP2001189374A (en) * 1999-12-28 2001-07-10 Nikon Corp Substrate treatment apparatus and charged particle exposure system
JP4126286B2 (en) * 2001-02-08 2008-07-30 東京エレクトロン株式会社 Processing equipment
TWI226303B (en) * 2002-04-18 2005-01-11 Olympus Corp Substrate carrying device
JP2005116645A (en) * 2003-10-03 2005-04-28 Matsushita Electric Ind Co Ltd Plasma processing apparatus and manufacturing method of semiconductor device
JP4421874B2 (en) * 2003-10-31 2010-02-24 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP2006232477A (en) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd Sheet body positioning fixture and drawing device using it

Also Published As

Publication number Publication date
KR20080067305A (en) 2008-07-18
JP2008172170A (en) 2008-07-24
TW200839931A (en) 2008-10-01
CN101226894A (en) 2008-07-23
TWI421970B (en) 2014-01-01
CN101226894B (en) 2012-07-04
KR100929448B1 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP4753888B2 (en) Substrate holding mechanism and plasma processing apparatus
JP5871453B2 (en) Plasma processing apparatus, substrate holding mechanism, and substrate misalignment detection method
US11404249B2 (en) Substrate processing apparatus
US7658816B2 (en) Focus ring and plasma processing apparatus
TWI411034B (en) A plasma processing apparatus and a method and a focusing ring
KR100900585B1 (en) Focus ring and plasma processing apparatus
JP4547182B2 (en) Plasma processing equipment
KR100802670B1 (en) Electrostatic absorption apparatus, plasma processing apparatus and plasma processing method
US9021984B2 (en) Plasma processing apparatus and semiconductor device manufacturing method
KR100929449B1 (en) Substrate Processing Unit and Focus Ring
KR100938635B1 (en) Plasma confinement baffle and flow equalizer for enhanced magnetic control of plasma radial distribution
KR100373878B1 (en) Apparatus and method for etching a thin film layer on a substrate, and apparatus and method for positioning and clamping a substrate on an accommodating portion of the substrate support member
JP5759718B2 (en) Plasma processing equipment
US20100288728A1 (en) Apparatus and method for processing substrate
US20070227666A1 (en) Plasma processing apparatus
KR20080114612A (en) Substrate processing apparatus and shower head
TW202111851A (en) Transfer method and transfer apparatus for substrate processing system
KR20120031966A (en) Plasma process apparatus
US20220084798A1 (en) Plasma processing apparatus and electrode structure
US9011634B2 (en) Plasma processing apparatus and plasma processing method
TWI549221B (en) Electrostatic fixture
TW202121567A (en) Substrate processing apparatus and substrate processing method ensuring the rigidity of the protective frame that protects the edge portion of the substrate
US8034213B2 (en) Plasma processing apparatus and plasma processing method
JP3113796B2 (en) Plasma processing equipment
JP5411098B2 (en) Dividable electrode, plasma processing apparatus using the electrode, and electrode exchange method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees