JP4753240B2 - High-strength aluminum alloy material and method for producing the alloy material - Google Patents

High-strength aluminum alloy material and method for producing the alloy material Download PDF

Info

Publication number
JP4753240B2
JP4753240B2 JP2005290675A JP2005290675A JP4753240B2 JP 4753240 B2 JP4753240 B2 JP 4753240B2 JP 2005290675 A JP2005290675 A JP 2005290675A JP 2005290675 A JP2005290675 A JP 2005290675A JP 4753240 B2 JP4753240 B2 JP 4753240B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
strength
alloy material
treatment
strength aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005290675A
Other languages
Japanese (ja)
Other versions
JP2007100157A (en
Inventor
武 坂上
紘一 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2005290675A priority Critical patent/JP4753240B2/en
Publication of JP2007100157A publication Critical patent/JP2007100157A/en
Application granted granted Critical
Publication of JP4753240B2 publication Critical patent/JP4753240B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

自転車のギヤ材などでは、軽量で強度の高い高強度アルミニウム合金の使用が主となっており、該高強度アルミニウム材としては、Al−Zn−Mg−Cu系の7075合金(例えば特許文献1)、Al−Cu−Mg系の2014、2024合金などが用いられている。また、強度レベルは落ちるものの生産性に優れることからAl−Zn−Mg系の7N01合金等が用いられる場合もある。自転車のギヤ材では、上記のような高強度アルミニウム合金を用いて、図2に示すように、鋳造、熱間圧延、冷間圧延を経て、シート状にカッティングした板材10をバッチ炉11による溶体化処理を1〜2時間をかけて行い、その後、水冷を行うことで所定の強度を得ている。その後、前記板材10を打ち抜いてギア粗材12とし、該ギア粗材12に切削加工を行って所定の形状に加工し、さらに時効処理を行うことで所望の強度のギア材13を得ている。その後、所望によりメッキ処理を行って表面への装飾を施して製品化している。
特開平9−31688号公報
Bicycle gear materials are mainly made of lightweight, high-strength, high-strength aluminum alloys. As the high-strength aluminum materials, Al—Zn—Mg—Cu-based 7075 alloys (for example, Patent Document 1). Al-Cu-Mg based 2014 and 2024 alloys are used. In addition, although the strength level is lowered, the Al—Zn—Mg-based 7N01 alloy or the like may be used because of excellent productivity. In the gear material of a bicycle, as shown in FIG. 2, a plate material 10 cut into a sheet shape by casting, hot rolling, and cold rolling is used as a solution in a batch furnace 11 using the high-strength aluminum alloy as described above. The chemical treatment is performed for 1 to 2 hours, and then water cooling is performed to obtain a predetermined strength. Thereafter, the plate material 10 is punched into a gear coarse material 12, the gear coarse material 12 is cut into a predetermined shape, and further subjected to an aging treatment to obtain a gear material 13 having a desired strength. . Thereafter, plating is performed as desired to decorate the surface to produce a product.
JP-A-9-31688

しかし、前記したAl−Cu−Mg系高強度アルミニウム合金は鋳造割れが生じやすく、圧延時にはサイドクラックの発生が多いことから歩留りが悪くなるという問題がある。また、Al−Zn−Mg系に前記問題は生じにくいが、強度が低いことおよびメッキ性が良好でないという問題がある。また、上記した各高強度アルミニウム合金では、溶体化処理後にそのまま、もしくは10%以下の冷間加工を行った後に打ち抜きや切削を伴うギア等の製作を行うと、強度が低いために平面度の悪化や切削時に切粉が連続して作業性を損なうことがあり、逆に製品としての必要強度を板材であるうちに付与しておくと、工具摩耗が速いなどの弊害が出るため、製造効率に劣るという問題がある。また、上記高強度アルミニウム合金からなるギア材などでは、耐応力腐食割れ性(以下耐SCC性という)に劣っているという問題もある。   However, the Al—Cu—Mg high-strength aluminum alloy described above has a problem that casting cracks are likely to occur, and side cracks are frequently generated during rolling, resulting in poor yield. In addition, the Al—Zn—Mg system is unlikely to have the above problem, but has a problem that the strength is low and the plating property is not good. In addition, in each of the above high-strength aluminum alloys, if a gear such as punching or cutting is performed as it is after the solution treatment or after cold working of 10% or less, the flatness is low due to low strength. Deterioration or cutting may continuously impair the workability during cutting, and conversely, if the required strength of the product is given while it is a plate material, there will be adverse effects such as rapid tool wear, resulting in production efficiency. There is a problem that it is inferior. In addition, the gear material made of the high-strength aluminum alloy has a problem that it is inferior in stress corrosion cracking resistance (hereinafter referred to as SCC resistance).

本発明は、上記事情を背景としてなされたものであり、鋳造割れなどがなくて生産性に優れ、さらに加工性、メッキ性、耐応力腐食割れ性などに優れた高強度アルミニウム合金材ならびに該合金材の製造方法を提供することを目的とする。 The present invention has been made with the above circumstances as the background, excellent productivity without such casting crack, further processability, plating resistance, high strength aluminum alloy material and the alloy with excellent such stress corrosion cracking resistance It aims at providing the manufacturing method of material.

質量%で、Zn:5.0〜8.0%、Mg:1.0〜2.0%、Cu:0.25〜0.6%、Ti:0.001〜0.05%、Fe:0.15超〜0.35%を含み、さらにMn:0.05〜0.5%、Cr:0.05〜0.15%、Zr:0.05〜0.25%のうち1種以上を含有し、残部がAlおよび不可避不純物からなる組成を有し、結晶粒組織が繊維状組織であり、該結晶粒の長径側が平均で50μm以下であることを特徴とする。 In mass%, Zn: 5.0-8.0%, Mg: 1.0-2.0%, Cu: 0.25-0.6%, Ti: 0.001-0.05%, Fe: More than 0.15 to 0.35%, Mn: 0.05 to 0.5%, Cr: 0.05 to 0.15%, Zr: 0.05 to 0.25% And the balance is composed of Al and inevitable impurities , the crystal grain structure is a fibrous structure, and the major axis side of the crystal grains is 50 μm or less on average .

請求項2記載の高強度アルミニウム合金材の製造方法の発明は、請求項1記載の組成を有する高強度アルミニウム合金に溶体化焼入れ処理後に時効処理を行い、耐力を270〜350MPaとすることを特徴とする。 The invention of the method for producing a high-strength aluminum alloy material according to claim 2 is characterized in that the high-strength aluminum alloy having the composition according to claim 1 is subjected to an aging treatment after solution quenching treatment, and the proof stress is set to 270 to 350 MPa. And

請求項記載の高強度アルミニウム合金材の製造方法の発明は、請求項記載の発明において、前記溶体化焼入処理は、460〜540℃で30〜120秒保持した後、強制空冷30〜600℃/分の冷却速度で冷却することを特徴とする。 Invention of a manufacturing method according to claim 3 high strength aluminum alloy material described in the invention of claim 2, wherein said solution quenching treatment, after holding 30 to 120 seconds at from 460 to 540 ° C., forced air cooling 30 The cooling is performed at a cooling rate of 600 ° C./min.

請求項記載の高強度アルミニウム合金材の製造方法の発明は、請求項またはに記載の発明において、前記時効処理は、80〜120℃で5〜8時間加熱保持することを特徴とする。 The invention of the method for producing a high-strength aluminum alloy material according to claim 4 is the invention according to claim 2 or 3 , wherein the aging treatment is carried out by heating at 80 to 120 ° C. for 5 to 8 hours. .

請求項記載の高強度アルミニウム合金材の製造方法の発明は、請求項のいずれかに記載の発明において、前記時効処理後に加工を行い、その後、さらに第二の時効処理を行うことを特徴とする。 The invention of the method for producing a high-strength aluminum alloy material according to claim 5 is the invention according to any one of claims 2 to 4 , wherein the processing is performed after the aging treatment, and then the second aging treatment is further performed. It is characterized by.

請求項記載の高強度アルミニウム合金材の製造方法の発明は、請求項記載の発明において、前記第二の時効処理は、140〜170℃で4〜16時間加熱保持することを特徴とする。 The method for producing a high-strength aluminum alloy material according to claim 6 is the invention according to claim 5 , wherein the second aging treatment is carried out by heating at 140 to 170 ° C. for 4 to 16 hours. .

請求項記載の高強度アルミニウム合金材の製造方法の発明は、請求項のいずれかに記載の発明において、前記高強度アルミニウム合金材が自転車用ギヤ材であることを特徴とする。 Invention of a manufacturing method according to claim 7 a high-strength aluminum alloy material according is the invention according to any one of claims 2-6, characterized in that said high strength aluminum alloy material is a bicycle gear member.

以下に、本発明で規定する内容について以下に説明する。なお、以下で示す含有量は、いずれも質量%で示されるものである。   The contents defined in the present invention will be described below. In addition, all content shown below is shown by the mass%.

(高強度アルミニウム合金)
Zn:5.0〜8.0%
ZnはMgと共存してMgZnを形成し強度を向上させる。また、この化合物がメッキ処理前の酸洗い時に溶解して均一微細なエッチピットを形成し、メッキ層の密着性を向上させる。ただし、下限未満ではこれらの効果が少なく、上限を超えると粒界に優先析出する量が多くなりメッキ性が低下するので、Zn含有量を5.0〜8.0%に定める。なお、同様の理由で下限を6.0%、上限を8.0%とするのが望ましい。
(High strength aluminum alloy)
Zn: 5.0-8.0%
Zn coexists with Mg to form MgZn 2 and improve the strength. Further, this compound dissolves at the time of pickling before the plating treatment to form uniform fine etch pits, thereby improving the adhesion of the plating layer. However, if it is less than the lower limit, these effects are small, and if it exceeds the upper limit, the amount of preferential precipitation at the grain boundary increases and the plating property is lowered, so the Zn content is set to 5.0 to 8.0%. For the same reason, it is desirable to set the lower limit to 6.0% and the upper limit to 8.0%.

Mg:1.0〜2.0
MgはZnと共存してMgZnを形成し強度を向上させる。また、この化合物がメッキ処理前の酸洗い時に溶解して均一微細なエッチピットを形成し、メッキ層の密着性を向上させる。下限未満ではこれらの効果が少なく、上限を超えると熱間加工性が著しく低下するので、Mg含有量を1.0〜2.0%に定める。
Mg: 1.0-2.0
Mg coexists with Zn to form MgZn 2 and improve the strength. Further, this compound dissolves at the time of pickling before the plating treatment to form uniform fine etch pits, thereby improving the adhesion of the plating layer. If the amount is less than the lower limit, these effects are small, and if the upper limit is exceeded, the hot workability is remarkably deteriorated, so the Mg content is set to 1.0 to 2.0%.

Cu:0.25〜0.6%
CuはMgやZnと同様に強度を向上させると共に他の元素と化合物を形成し、酸洗い時のエッチピットの形成に寄与する。また、粒界に優先析出するMgZnに対して作用し顕著な粒界エッチングを抑止する効果があるため、均一なエッチングに寄与する。下限未満ではこれらの効果が無く、上限を超えると鋳造割れを生じ易くなる。Cu量の高い合金は、メッキ性は良好であるが鋳造割れを起こす可能性が高いため、鋳塊の製造が非常に難しくなるため、Cu量を上限以下とすれば低コストの製品を製造できるようになる。これら理由によりCu量を0.25〜0.6%に定める。
Cu: 0.25 to 0.6%
Cu, like Mg and Zn, improves strength and forms compounds with other elements, contributing to the formation of etch pits during pickling. Moreover, since it acts on MgZn 2 preferentially precipitated at the grain boundaries and has the effect of suppressing significant grain boundary etching, it contributes to uniform etching. If it is less than the lower limit, these effects are not obtained, and if it exceeds the upper limit, casting cracks are likely to occur. An alloy with a high Cu content has good plating properties but has a high possibility of causing casting cracks, which makes it very difficult to manufacture an ingot. Therefore, a low-cost product can be manufactured by setting the Cu content to the upper limit or less. It becomes like this. For these reasons, the amount of Cu is set to 0.25 to 0.6%.

Ti:0.001〜0.05%
Tiは鋳造組織を微細にする。ただし、下限未満ではこの効果が小さく、上限を超えるとその効果が飽和するばかりか巨大な金属間化合物を生成しメッキ性を悪化させるので、Ti量を0.001〜0.05%に定める。なお、同様の理由で下限を0.02%、上限を0.04%とするのが望ましい。
Ti: 0.001 to 0.05%
Ti makes the cast structure fine. However, if the amount is less than the lower limit, this effect is small. If the amount exceeds the upper limit, the effect is saturated, and a huge intermetallic compound is generated to deteriorate the plating property. Therefore, the Ti amount is set to 0.001 to 0.05%. For the same reason, it is desirable that the lower limit is 0.02% and the upper limit is 0.04%.

Fe:0.15超〜0.35%
Feはアルミニウム合金中では不純物として扱われることも多いが、鋳造割れを抑止する効果があることがわかった。アルミニウム中へのFeの最大固溶度は655℃平衡状態で0.052%であるので、そのほとんどは金属間化合物として鋳造時に晶出する。下限未満ではその鋳造割れ抑止効果が小さく、上限を超えると粗大な金属間化合物を形成しメッキ欠陥の原因となったり、鋳塊製造時に特徴的なマクロ組織を生成し、それに起因した帯状の表面欠陥として圧延後の板表面に現れたりすることがあるので、Fe量を0.15超〜0.35%に定める。なお、同様の理由で下限を0.25%、上限を0.35%とするのが望ましい。
Fe: more than 0.15 to 0.35%
Although Fe is often treated as an impurity in aluminum alloys, it has been found that it has an effect of suppressing casting cracks. Since the maximum solid solubility of Fe in aluminum is 0.052% at an equilibrium state of 655 ° C., most of it is crystallized at the time of casting as an intermetallic compound. If it is less than the lower limit, the effect of inhibiting casting cracks is small, and if it exceeds the upper limit, a coarse intermetallic compound is formed, causing plating defects, or a characteristic macrostructure is generated during ingot production, resulting in a band-like surface. Since it may appear on the surface of the plate after rolling as a defect, the Fe content is determined to be more than 0.15 to 0.35%. For the same reason, it is desirable to set the lower limit to 0.25% and the upper limit to 0.35%.

Mn:0.05〜0.5%
Cr:0.05〜0.15%
Zr:0.05〜0.25%
Mn、Cr、Zrは、均質化処理時に微細な金属間化合物を形成し、再結晶を抑止して製品の結晶粒を繊維状組織とするので1種以上を含有させる。各成分で、下限未満ではその効果が不充分であり、上限を超えるとその効果が飽和するばかりか粗大な金属間化合物を形成しメッキ欠陥の原因となるので、Mn、Cr、Zrの含有量をそれぞれ上記に定める。なお、同様の理由でMnの下限を0.25%、上限を0.35%とするのが望ましく、Crの下限を0.05%、上限を0.10%とするのが望ましく、Zrの下限を0.15%、上限を0.25%とするのが望ましい。
その他の不純物はおのおの0.05%以下であることが望ましい。
Mn: 0.05 to 0.5%
Cr: 0.05 to 0.15%
Zr: 0.05 to 0.25%
Mn, Cr, and Zr form a fine intermetallic compound during the homogenization treatment, suppress recrystallization, and make the crystal grains of the product into a fibrous structure. For each component, the effect is insufficient if the content is less than the lower limit, and if the content exceeds the upper limit, the effect is saturated and a coarse intermetallic compound is formed, causing plating defects. Therefore, the contents of Mn, Cr, and Zr Are defined above. For the same reason, the lower limit of Mn is preferably 0.25% and the upper limit is preferably 0.35%, the lower limit of Cr is preferably 0.05%, and the upper limit is preferably 0.10%. It is desirable that the lower limit is 0.15% and the upper limit is 0.25%.
The other impurities are each desirably 0.05% or less.

(高強度アルミニウム合金材)
結晶粒組織が繊維状組織、該結晶粒の長径側が平均で50μm以下
結晶粒組織の長径側の平均粒径が50μmを超えると強度に及ぼす結晶粒径の影響が小さくなる為に所望の強度が得られないばかりか、耐SCC性が劣化する。なお、長径側の平均粒径は、1μm以上が望ましい。1μm未満となると、部品製造時の耐力が350MPaを超えてしまい工具の摩耗が顕著になる。
(High-strength aluminum alloy material)
The crystal grain structure is a fibrous structure, and the average diameter of the major axis of the crystal grain is 50 μm or less. If the average grain size of the major axis of the crystal grain structure exceeds 50 μm, the effect of the crystal grain size on the strength is reduced, so that the desired strength is obtained. Not only can it be obtained, but the SCC resistance deteriorates. The average particle diameter on the long diameter side is desirably 1 μm or more. If it is less than 1 μm, the proof stress at the time of component production exceeds 350 MPa, and the wear of the tool becomes remarkable.

(高強度アルミニウム材の製造方法)
溶体化焼入れ処理、時効処理後の耐力:270〜350MPa
溶体化焼入処理、時効処理を行って耐力270〜350MPaに調整することにより、その後の打ち抜き、切削加工などの加工処理を円滑に行うことができ、切削工具などへの負担も小さくすることができる。耐力が270MPa未満であると、加工処理を円滑に行うことが困難になり、また350MPaを超えると、強度が高すぎて加工が難しくなり、切削工具の摩耗などが顕著になる。
(Manufacturing method of high-strength aluminum material)
Yield strength after solution hardening and aging treatment: 270 to 350 MPa
By performing solution hardening treatment and aging treatment and adjusting the yield strength to 270 to 350 MPa, subsequent processing such as punching and cutting can be performed smoothly, and the burden on cutting tools and the like can be reduced. it can. If the proof stress is less than 270 MPa, it becomes difficult to perform the processing smoothly, and if it exceeds 350 MPa, the strength is too high and the processing becomes difficult, and wear of the cutting tool becomes remarkable.

溶体化焼入れ処理:460〜540℃×30〜120秒加熱
強制空冷
溶体化処理は、焼入処理の前処理として、添加元素を固溶させることを目的として行う。溶体化処理によって固溶した元素がその後の時効処理によって析出して、高強度化が可能になる。溶体化処理に際し、加熱温度が460℃未満では、溶体化が十分になされず、一方、540℃を超えると、局部的な溶融が起こり欠陥となるため上記温度範囲が望ましい。また、溶体化処理時の加熱保持時間は、溶体化が十分になされるように、30秒以上とするのが望ましい。本発明法では、特定組成のアルミニウム合金を対象にして溶体化処理を行っており、該組成においては、30秒の加熱時間によって必要な固溶がなされる。一方、120秒を超えると、結晶粒が粗大化して十分な強度が得られないため、上記加熱時間が望ましい。
また、溶体化処理後に急速に冷却することで、溶体化処理で固溶した元素がそのまま冷却される。このため、溶体化処理における冷却速度は30℃/分以上とするのが望ましい。一方、強制空冷を超える冷却速度(600℃/分超)で冷却を行うと、耐SCC性が低下する。これは粒界の析出物が細かくなり腐食しやすくなるためと考えられる。
Solution quenching treatment: 460-540 ° C x 30-120 seconds heating
The forced air cooling solution treatment is performed for the purpose of dissolving the additive elements as a pretreatment for the quenching treatment. The element dissolved in the solution treatment is precipitated by the subsequent aging treatment, and the strength can be increased. In the solution treatment, when the heating temperature is less than 460 ° C., the solution is not sufficiently formed. On the other hand, when the heating temperature exceeds 540 ° C., local melting occurs and defects occur, so the above temperature range is desirable. In addition, the heating and holding time during the solution treatment is desirably 30 seconds or longer so that the solution treatment is sufficiently performed. In the method of the present invention, a solution treatment is performed on an aluminum alloy having a specific composition. In the composition, the necessary solid solution is obtained by a heating time of 30 seconds. On the other hand, if it exceeds 120 seconds, the crystal grains become coarse and sufficient strength cannot be obtained, so the above heating time is desirable.
In addition, by rapidly cooling after the solution treatment, elements dissolved in the solution treatment are cooled as they are. For this reason, it is desirable that the cooling rate in the solution treatment is 30 ° C./min or more. On the other hand, when the cooling is performed at a cooling rate exceeding the forced air cooling (over 600 ° C./min), the SCC resistance is lowered. This is presumably because the precipitates at the grain boundaries become finer and become more susceptible to corrosion.

時効処理:80〜120℃×5〜8時間
溶体化処理を行ったままでは、材料の強度は十分ではなく、その後、打ち抜き、切削などの加工を行うと、材料が柔らかすぎて良好な加工を行うことが困難である。したがって溶体化処理後時効処理を行って耐力270〜350MPaの強度を得ることで良好な加工が可能になる。
時効処理では、温度が80℃未満であると、時効が十分になされず強度向上作用が不十分であり、一方、120℃を超えると強度が高くなりすぎるので、時効処理温度を80〜120℃とするのが望ましい。また、時効処理時間は、5時間未満であると時効が十分になされず強度向上作用が不十分であり、一方、8時間を超えても効果は飽和し、生産上現実的でないので、上記時間範囲が望ましい。
Aging treatment: 80 to 120 ° C. × 5 to 8 hours If the solution treatment is performed, the strength of the material is not sufficient. After that, if the material is punched or cut, the material is too soft and good processing is performed. Difficult to do. Therefore, favorable processing becomes possible by performing the aging treatment after the solution treatment and obtaining the strength of 270 to 350 MPa.
In the aging treatment, if the temperature is less than 80 ° C., the aging is not sufficiently performed and the strength improving action is insufficient. On the other hand, if the temperature exceeds 120 ° C., the strength becomes too high. Is desirable. In addition, if the aging treatment time is less than 5 hours, the aging is not sufficiently performed and the effect of improving the strength is insufficient. On the other hand, if the aging treatment time exceeds 8 hours, the effect is saturated and impractical in production. A range is desirable.

溶体化処理および時効処理後には、所望の加工が施される。代表的には、打ち抜き、切削の加工が例示される。本発明としては当該加工方法および加工内容が特に限定されるものではなく、最終品の種別に応じて必要な加工が選定される。   After the solution treatment and the aging treatment, desired processing is performed. Typically, punching and cutting are exemplified. In the present invention, the processing method and the processing content are not particularly limited, and necessary processing is selected according to the type of the final product.

第二の時効処理:140〜170℃×4〜16時間
上記加工処理後、必要に応じて第二の時効処理を実施することができる。上記した第一の時効処理では、最終品としての強度が十分でないような場合に第二の時効処理を行う。このように、加工後に第二の時効処理を行うことにより、加工時に強度が高すぎて加工が困難になるのを回避できる。
第二の時効処理では、最終品の種別によっても異なるが、400〜500MPaの0.2%耐力とすることができる。
第二の時効処理では、加熱温度を140℃以上とするのが望ましい。温度が140℃未満であると、時効が不足した亜時効状態になるため、強度向上作用が不十分であり、耐SCC性にも劣る。一方、170℃を超えると過時効が行過ぎて、却って強度が低下するので、第二の時効処理の温度を140〜170℃とするのが望ましい。また、時効処理時間は、4時間未満であると時効が十分になされず強度向上作用が不十分であり、一方、16時間を超えても効果は飽和し、生産上現実的でないので、上記時間範囲が望ましい。
Second aging treatment: 140 to 170 ° C. × 4 to 16 hours After the processing, a second aging treatment can be performed as necessary. In the first aging treatment described above, the second aging treatment is performed when the strength of the final product is not sufficient. As described above, by performing the second aging treatment after the processing, it is possible to avoid that the processing is difficult because the strength is too high during the processing.
In the second aging treatment, a 0.2% proof stress of 400 to 500 MPa can be obtained although it varies depending on the type of the final product.
In the second aging treatment, the heating temperature is desirably 140 ° C. or higher. When the temperature is lower than 140 ° C., the sub-aging state is insufficient, and the strength improving action is insufficient and the SCC resistance is inferior. On the other hand, if the temperature exceeds 170 ° C., excessive aging is performed excessively, and the strength is decreased. Therefore, the temperature of the second aging treatment is preferably 140 to 170 ° C. Further, if the aging treatment time is less than 4 hours, the aging is not sufficiently performed and the effect of improving the strength is insufficient. On the other hand, if the treatment time exceeds 16 hours, the effect is saturated and impractical in production. A range is desirable.

本発明のアルミニウム合金材は、その用途が特に限定されるものではないが、好適には軽量、高強度で耐SCC性などの耐腐食性に優れた自転車用ギア材として用いることができる。
また、本発明のアルミニウム合金材は、必要に応じてメッキなどの表面処理を行うことができる。メッキ方法としては、電解メッキ、無電解メッキなどが挙げられる。
The use of the aluminum alloy material of the present invention is not particularly limited, but it can be suitably used as a bicycle gear material that is lightweight, high in strength, and excellent in corrosion resistance such as SCC resistance.
Moreover, the aluminum alloy material of the present invention can be subjected to a surface treatment such as plating as necessary. Examples of the plating method include electrolytic plating and electroless plating.

以上、説明したように、本発明の高強度アルミニウム合金によれば、質量%で、Zn:5.0〜8.0%、Mg:1.0〜2.0%、Cu:0.25〜0.6%、Ti:0.001〜0.05%、Fe:0.15超〜0.35%を含み、さらにMn:0.05〜0.5%、Cr:0.05〜0.15%、Zr:0.05〜0.25%のうち1種以上を含有し、残部がAlおよび不可避不純物からなる組成を有し、結晶粒組織が繊維状組織であり、該結晶粒の長径側が平均で50μm以下であるので、鋳塊割れが抑止されるため生産性が良く、軽量、高強度で加工性に優れた材料を効率的に製造することが可能になる。また、高い強度が得られ、さらに優れた耐SCC性と加工性とを兼ね備えるという効果が得られる。 As described above, according to the high-strength aluminum alloy material of the present invention, by mass, Zn: 5.0 to 8.0%, Mg: 1.0 to 2.0%, Cu: 0.25 -0.6%, Ti: 0.001-0.05%, Fe: more than 0.15 to 0.35%, Mn: 0.05-0.5%, Cr: 0.05-0 .15%, Zr: 0.05 to 0.25% of one or more, with the balance being composed of Al and inevitable impurities , the crystal grain structure is a fibrous structure, Since the long diameter side is 50 μm or less on average , the ingot cracking is suppressed, so that productivity is good, and it becomes possible to efficiently manufacture a material that is lightweight, high in strength and excellent in workability. Moreover, high strength is obtained, and further, an effect of having both excellent SCC resistance and workability is obtained.

さらに、本発明の高強度アルミニウム合金材の製造方法によれば、前記組成の高強度アルミニウム合金を溶体化焼入れ処理後に時効処理を行い、耐力を270〜350MPaとするので、適度な強度を有することにより優れた加工性を得ることができる。加工後、さらに第二の時効処理を施すことでさらに高強度とすることができ、加工性を損なうことなく高強度の製品を得ることが可能になる。   Furthermore, according to the method for producing a high-strength aluminum alloy material of the present invention, the high-strength aluminum alloy having the above composition is subjected to an aging treatment after the solution hardening treatment, and the proof stress is set to 270 to 350 MPa. Thus, excellent workability can be obtained. By applying a second aging treatment after the processing, the strength can be further increased, and a high strength product can be obtained without impairing the workability.

以下に、本発明の一実施形態を図1に基づいて説明する。
本発明のアルミニウム合金組成に調整し、常法により溶製することができる。鋳造に際しては、鋳造割れが効果的に防止される。これにより大型鋳塊の製造が可能になり、低コストの素材の製作が可能となる。
その後、熱間圧延、冷間圧延などを経て溶体化処理に供することができる。圧延時には、サイドクラックの発生も少なく効率よく圧延がなされる。
また、連続鋳造圧延によって板材を得て溶体化処理に供することもできる。すなわち、本発明においては、その組成が特定されるものの、溶体化処理に至る製造過程は特定に限定されるものではなく、必要に応じて適宜の製造過程を経ることができる。
溶体化焼入処理では、前述したように、好適には、460〜540℃×30〜120秒の加熱条件により溶体化を行い、その後、強制空冷により焼入を行うことができる。上記溶体化処理は、急速加熱、急速冷却が可能な連続炉により行うのが望ましく、コイル状としたアルミニウム合金材1を連続炉2で急速加熱、急速冷却し、コイル状に巻き取って効率よく次工程に供することができる。なお、強制空冷は、例えば冷却速度として上限を5℃/秒として示すことができる。
上記溶体化焼入処理を行ったアルミニウム合金材には、好適には80〜120℃×5〜8時間の加熱条件によって時効処理を行い、耐力270〜350MPaとする。なお、上記時効処理は、既知の加熱炉などを用いて行うことができる。
Below, one Embodiment of this invention is described based on FIG.
It can adjust to the aluminum alloy composition of this invention, and can manufacture by a conventional method. During casting, casting cracks are effectively prevented. This makes it possible to produce large ingots and to produce low-cost materials.
Then, it can use for solution treatment through hot rolling, cold rolling, etc. During rolling, rolling is performed efficiently with little occurrence of side cracks.
Further, a plate material can be obtained by continuous casting and rolling and subjected to a solution treatment. That is, in the present invention, although the composition is specified, the manufacturing process leading to the solution treatment is not limited to the specific process, and an appropriate manufacturing process can be performed as necessary.
In the solution quenching treatment, as described above, it is preferable to perform solution treatment under the heating conditions of 460 to 540 ° C. × 30 to 120 seconds, and then quench by forced air cooling. The solution treatment is preferably performed in a continuous furnace capable of rapid heating and rapid cooling. The coiled aluminum alloy material 1 is rapidly heated and rapidly cooled in the continuous furnace 2 and wound into a coil shape for efficient operation. It can use for the next process. In addition, forced air cooling can show an upper limit as 5 degree-C / sec as a cooling rate, for example.
The aluminum alloy material subjected to the solution hardening treatment is preferably subjected to an aging treatment under a heating condition of 80 to 120 ° C. × 5 to 8 hours to have a yield strength of 270 to 350 MPa. The aging treatment can be performed using a known heating furnace or the like.

上記溶体化焼入処理および時効処理を施したアルミニウム合金材は、製品形状に従って打ち抜き加工を行ってギア粗材3を得て、さらに該ギア粗材3に歯車型性のために切削加工を施してギア材4を得る。該加工工程では、円滑に打ち抜き、切削加工を行うことができる。
該ギア材4は、製品としてさらに高い強度が必要とされるため、第二の時効処理を好適には140〜170℃×4〜16時間の加熱条件で施して、ギア材としては引張強さで430MPa以上、ギアの耐久性をより満足するには450MPa以上の引張強さを有するものとするのが望ましい。
該ギア材は、必要に応じて、電解メッキ、無電解メッキなどによりメッキなどの表面処理を行って製品化する。メッキ処理では、前処理としてのエッチング処理でギア材にピットが良好に形成され、メッキ皮膜が良好に形成される。得られたギア材は、軽量で高い強度を有しており、さらに耐SCC性にも優れている。なお、本発明としては表面処理の内容が特定のものに限定されるものではなく、表面処理を行わないものであっても良い。
The aluminum alloy material subjected to the above solution hardening treatment and aging treatment is punched according to the product shape to obtain the gear coarse material 3, and further, the gear coarse material 3 is subjected to cutting work for gear formability. The gear material 4 is obtained. In the processing step, it can be smoothly punched and cut.
Since the gear material 4 requires higher strength as a product, the second aging treatment is preferably performed under heating conditions of 140 to 170 ° C. × 4 to 16 hours, and the gear material has a tensile strength. In order to satisfy the durability of the gear more than 430 MPa, it is desirable to have a tensile strength of 450 MPa or more.
If necessary, the gear material is subjected to surface treatment such as electroplating or electroless plating to produce a product. In the plating process, the pits are satisfactorily formed in the gear material by the etching process as the pretreatment, and the plating film is favorably formed. The obtained gear material is lightweight and has high strength, and is also excellent in SCC resistance. In the present invention, the content of the surface treatment is not limited to a specific one, and the surface treatment may not be performed.

以下に、本発明の実施例を説明する。表1に示す合金成分を有する大型鋳塊を半連続鋳造により製造した。この鋳塊を480℃×12hrの均質化処理後に390℃で熱間圧延を開始し板厚6mmに圧延し、その後、冷間圧延して2.8mmの板とした。続いて表2に示す条件で溶体化処理と、一部材料には表2に示す時効処理を施し、それぞれ耐力の測定を行った。これら供試材については以下に示す切削性評価試験を行った。   Examples of the present invention will be described below. Large ingots having the alloy components shown in Table 1 were produced by semi-continuous casting. This ingot was homogenized at 480 ° C. × 12 hr, and then hot rolling was started at 390 ° C. and rolled to a plate thickness of 6 mm, followed by cold rolling to obtain a 2.8 mm plate. Subsequently, the solution treatment was performed under the conditions shown in Table 2, and the aging treatment shown in Table 2 was applied to some materials, and the yield strength was measured. These test materials were subjected to the following machinability evaluation test.

さらに、上記中間熱処理を施した供試材について、表2に示す最終の時効処理を施し引張強さを測定した。
上記処理を行ったそれぞれの供試材についてめっき処理を施し、耐SCC性の評価試験を行った。メッキ処理は前処理として基材を脱脂、水洗する表面活性化処理を施した後に、ジンケート処理を行った。次いで、下記条件の電気めっき法により、板材の表面に電気Ni−Pめっき層を形成した。
めっき浴:NiSO・6HO200g/l、NiCl・6HO50g/l、HPO440g/l、HPO50g/l、HBO0.5〜3g/l、サッカリン0〜1.0g/l、温度:60±5℃、pH:1±0.5、電流密度:5〜30A/dm撹拌方法:エアー撹拌
Furthermore, the final aging treatment shown in Table 2 was performed on the specimen subjected to the intermediate heat treatment, and the tensile strength was measured.
Each test material subjected to the above treatment was subjected to a plating treatment, and an SCC resistance evaluation test was performed. In the plating treatment, the substrate was degreased and subjected to a surface activation treatment for washing with water, followed by a zincate treatment. Next, an electric Ni—P plating layer was formed on the surface of the plate material by an electroplating method under the following conditions.
Plating bath: NiSO 4 · 6H 2 O200g / l, NiCl 2 · 6H 2 O50g / l, H 3 PO 3 440g / l, H 3 PO 4 50g / l, H 3 BO 3 0.5~3g / l, saccharin 0 to 1.0 g / l, temperature: 60 ± 5 ° C., pH: 1 ± 0.5, current density: 5 to 30 A / dm 2 stirring method: air stirring

上記各供試材について、鋳造時の割れ、圧延時のサイドクラック発生、切削性、めっき性、組織観察、耐SCC性について以下の方法で評価を行った。
・鋳造割れは、500mm厚さの鋳塊を一般的な条件で製造したときに生じる割れの有無で判断した。
・板製造時のサイドクラックは、両サイドに生じるクラックの最大長さをコイル長手方向
の先端部、中央部、終端部で測定した。尚、一般に30mm未満が好ましいとされている。
・ミクロ組織観察は圧延平行方向断面にて光学顕微鏡を用いて行った。観察前に#1000研磨紙、3μmアルミナ粒子を使用したバフ研磨を行い、ケラー試液にて腐食させて結晶粒組織を現出したものを試料とし、切断法にて結晶粒径(長径側)を測定した。
・メッキ性の評価はメッキ層の均一性を目視にて全体に均一を○、一部不均一を△、全体
に不均一を×として評価した。
・耐SCC性は3点曲げにて応力(耐力の90%)を負荷して、沸騰クロム酸混液(CrO:36g/l、KCr:30g/l、NaCl:3g/l)中に浸漬し、6hr後に割れが生じていないものを○、割れが生じたものを×とした。
・中間熱処理後の耐力、及び最終熱処理後の引張強度をJIS:Z2241に準拠し、常温大気中で引張方向はL方向、引張速度は5mm/minで行った。
・切削性の評価は、板表面を施削することにより生じる切粉の最大長さで評価した。40mm以上の長さになると施削工具への巻き付きが多くなる。
About each said test material, evaluation was performed with the following method about the crack at the time of casting, generation | occurrence | production of the side crack at the time of rolling, machinability, plating property, structure | tissue observation, and SCC resistance.
-Cast cracks were judged by the presence or absence of cracks produced when a 500 mm thick ingot was produced under general conditions.
-As for side cracks during plate production, the maximum length of cracks generated on both sides was measured at the tip, center, and end of the coil in the longitudinal direction. In general, a thickness of less than 30 mm is preferred.
-Microstructure observation was performed using an optical microscope in a cross section in the rolling parallel direction. Before observation, buffing using # 1000 abrasive paper and 3 μm alumina particles was performed, and the crystal grain structure was revealed by corroding with Keller test solution. It was measured.
-The evaluation of the plating property was evaluated by visually observing the uniformity of the plating layer as ◯ for overall uniformity, Δ for partial non-uniformity, and x for overall non-uniformity.
-SCC resistance is stressed by three-point bending (90% of yield strength), boiling chromic acid mixture (CrO 3 : 36 g / l, K 2 Cr 2 O 7 : 30 g / l, NaCl: 3 g / l ) And those that did not crack after 6 hours were marked as ◯, and those that cracked were marked as ×.
The proof stress after the intermediate heat treatment and the tensile strength after the final heat treatment were compliant with JIS: Z2241, and the tensile direction was L direction and the tensile speed was 5 mm / min in normal temperature atmosphere.
-Evaluation of machinability was evaluated by the maximum length of chips produced by machining the plate surface. When the length is 40 mm or more, winding around the cutting tool increases.

表1のNo.1〜12が本発明の成分を有する材料で、No.13〜15は比較材で網掛け部が本発明の成分範囲から外れている。
表2に示したように、本発明の成分を用いた実施例1〜23は、鋳造割れとサイドクラックに対して良好な特性を示した。一方、比較材を用いた比較例1〜3は、これら特性が明らかに劣る結果が得られた。
また本発明は、制御された熱処理工程を実施することにより、中間熱処理後の平均粒径や耐力を適切な数値に収めることで、より切削性や高強度、高耐SCC性に優れた材料が得られた。
No. in Table 1 1 to 12 are materials having the components of the present invention. 13 to 15 are comparative materials, and the shaded portion is out of the component range of the present invention.
As shown in Table 2, Examples 1 to 23 using the components of the present invention showed good characteristics against casting cracks and side cracks. On the other hand, in Comparative Examples 1 to 3 using the comparative material, these characteristics were clearly inferior.
In addition, by carrying out a controlled heat treatment step, the present invention can provide a material having superior machinability, high strength, and high SCC resistance by keeping the average particle size and proof stress after intermediate heat treatment within appropriate values. Obtained.

Figure 0004753240
Figure 0004753240

Figure 0004753240
Figure 0004753240

本発明の一実施形態の製造方法の工程を示すフロー図である。It is a flowchart which shows the process of the manufacturing method of one Embodiment of this invention. 従来の製造方法の工程を示すフロー図である。It is a flowchart which shows the process of the conventional manufacturing method.

符号の説明Explanation of symbols

1 アルミニウム合金材
2 連続炉
3 ギア粗材
4 ギア材
1 Aluminum alloy material 2 Continuous furnace 3 Gear coarse material 4 Gear material

Claims (7)

質量%で、Zn:5.0〜8.0%、Mg:1.0〜2.0%、Cu:0.25〜0.6%、Ti:0.001〜0.05%、Fe:0.15超〜0.35%を含み、さらにMn:0.05〜0.5%、Cr:0.05〜0.15%、Zr:0.05〜0.25%のうち1種以上を含有し、残部がAlおよび不可避不純物からなる組成を有し、結晶粒組織が繊維状組織であり、該結晶粒の長径側が平均で50μm以下であることを特徴とする高強度アルミニウム合金材。 In mass%, Zn: 5.0-8.0%, Mg: 1.0-2.0%, Cu: 0.25-0.6%, Ti: 0.001-0.05%, Fe: More than 0.15 to 0.35%, Mn: 0.05 to 0.5%, Cr: 0.05 to 0.15%, Zr: 0.05 to 0.25% A high-strength aluminum alloy material characterized in that the balance is composed of Al and inevitable impurities , the crystal grain structure is a fibrous structure, and the major axis side of the crystal grains is 50 μm or less on average . 請求項1記載の組成を有する高強度アルミニウム合金に溶体化焼入れ処理後に時効処理を行い、耐力を270〜350MPaとすることを特徴とする高強度アルミニウム合金材の製造方法。 A method for producing a high-strength aluminum alloy material, characterized in that the high-strength aluminum alloy having the composition according to claim 1 is subjected to an aging treatment after a solution quenching treatment to have a yield strength of 270 to 350 MPa. 前記溶体化焼入処理は、460〜540℃で30〜120秒保持した後、強制空冷30〜600℃/分の冷却速度で冷却することを特徴とする請求項記載の高強度アルミニウム合金材の製造方法。 3. The high-strength aluminum alloy material according to claim 2, wherein the solution hardening treatment is performed at a cooling rate of forced air cooling of 30 to 600 ° C./min after being held at 460 to 540 ° C. for 30 to 120 seconds. Manufacturing method. 前記時効処理は、80〜120℃で5〜8時間加熱保持して行うことを特徴とする請求項またはに記載の高強度アルミニウム合金材の製造方法。 The method for producing a high-strength aluminum alloy material according to claim 2 or 3 , wherein the aging treatment is performed by heating and holding at 80 to 120 ° C for 5 to 8 hours. 前記時効処理後に加工を行い、その後、さらに第二の時効処理を行うことを特徴とする請求項のいずれかに記載の高強度アルミニウム合金材の製造方法。 Wherein performs processing after the aging treatment, then even higher strength manufacturing method of an aluminum alloy material according to any one of claims 2 to 4, characterized in that the second aging treatment. 前記第二の時効処理は、140〜170℃で4〜16時間加熱保持して行うことを特徴とする請求項記載の高強度アルミニウム合金材の製造方法。 The method for producing a high-strength aluminum alloy material according to claim 5, wherein the second aging treatment is performed by heating and holding at 140 to 170 ° C for 4 to 16 hours. 前記高強度アルミニウム合金材が自転車用ギヤ材であることを特徴とする請求項のいずれかに記載の高強度アルミニウム合金材の製造方法。 The method for producing a high-strength aluminum alloy material according to any one of claims 2 to 6 , wherein the high-strength aluminum alloy material is a bicycle gear material.
JP2005290675A 2005-10-04 2005-10-04 High-strength aluminum alloy material and method for producing the alloy material Expired - Fee Related JP4753240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290675A JP4753240B2 (en) 2005-10-04 2005-10-04 High-strength aluminum alloy material and method for producing the alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290675A JP4753240B2 (en) 2005-10-04 2005-10-04 High-strength aluminum alloy material and method for producing the alloy material

Publications (2)

Publication Number Publication Date
JP2007100157A JP2007100157A (en) 2007-04-19
JP4753240B2 true JP4753240B2 (en) 2011-08-24

Family

ID=38027382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290675A Expired - Fee Related JP4753240B2 (en) 2005-10-04 2005-10-04 High-strength aluminum alloy material and method for producing the alloy material

Country Status (1)

Country Link
JP (1) JP4753240B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161964A1 (en) * 2015-04-09 2016-10-13 广东欧珀移动通信有限公司 Aluminum alloy and anode oxidation method thereof
WO2018102324A1 (en) * 2016-12-02 2018-06-07 Honeywell International Inc. Ecae materials for high strength aluminum alloys
US11649535B2 (en) 2018-10-25 2023-05-16 Honeywell International Inc. ECAE processing for high strength and high hardness aluminum alloys

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009002557A5 (en) * 2008-10-30 2011-10-13 Aleris Aluminium Duffel Bvba Structure automotive component from an aluminum alloy sheet product
JP5204793B2 (en) * 2010-01-12 2013-06-05 株式会社神戸製鋼所 High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
CN102108463B (en) * 2010-01-29 2012-09-05 北京有色金属研究总院 Aluminium alloy product suitable for manufacturing structures and preparation method
EP2716780A4 (en) 2011-06-02 2014-11-05 Aisin Keikinzoku Co Ltd Aluminum alloy and method of manufacturing extrusion using same
JP5023233B1 (en) * 2011-06-23 2012-09-12 住友軽金属工業株式会社 High strength aluminum alloy material and manufacturing method thereof
KR20150038678A (en) * 2012-09-20 2015-04-08 가부시키가이샤 고베 세이코쇼 Aluminum alloy plate for automobile part
JP6223670B2 (en) * 2012-09-20 2017-11-01 株式会社神戸製鋼所 Aluminum alloy sheet for automobile parts
JP6223669B2 (en) * 2012-09-20 2017-11-01 株式会社神戸製鋼所 Aluminum alloy sheet for automobile parts
JP5830006B2 (en) * 2012-12-27 2015-12-09 株式会社神戸製鋼所 Extruded aluminum alloy with excellent strength
JP5631379B2 (en) * 2012-12-27 2014-11-26 株式会社神戸製鋼所 High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
US9249487B2 (en) * 2013-03-14 2016-02-02 Alcoa Inc. Methods for artificially aging aluminum-zinc-magnesium alloys, and products based on the same
JP6378937B2 (en) * 2014-05-29 2018-08-22 三菱重工業株式会社 Method for producing aluminum alloy member
WO2018078527A1 (en) * 2016-10-24 2018-05-03 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components
CN108467979B (en) * 2018-06-25 2020-12-29 上海交通大学 Metal mold gravity casting aluminum alloy material and preparation method thereof
CN114196895A (en) * 2021-12-09 2022-03-18 东北轻合金有限责任公司 Manufacturing method of high-strength aluminum alloy cold-drawn bar for aerospace fastener

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234955A (en) * 1984-05-08 1985-11-21 Kobe Steel Ltd Manufacture of al-zn-mg alloy superior in stress corrosion cracking resistance
JPH08144031A (en) * 1994-11-28 1996-06-04 Furukawa Electric Co Ltd:The Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JPH08295976A (en) * 1995-04-21 1996-11-12 Showa Alum Corp High strength aluminum alloy excellent in extrudability and stress corrosion cracking resistance and production of extruded material made of the same alloy
JP2001026834A (en) * 1999-07-13 2001-01-30 Mitsubishi Alum Co Ltd Impact absorbing member
JP2001140029A (en) * 1999-09-02 2001-05-22 Kobe Steel Ltd Energy absorbing member
JP2007119904A (en) * 2005-09-27 2007-05-17 Aisin Keikinzoku Co Ltd High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234955A (en) * 1984-05-08 1985-11-21 Kobe Steel Ltd Manufacture of al-zn-mg alloy superior in stress corrosion cracking resistance
JPH08144031A (en) * 1994-11-28 1996-06-04 Furukawa Electric Co Ltd:The Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JPH08295976A (en) * 1995-04-21 1996-11-12 Showa Alum Corp High strength aluminum alloy excellent in extrudability and stress corrosion cracking resistance and production of extruded material made of the same alloy
JP2001026834A (en) * 1999-07-13 2001-01-30 Mitsubishi Alum Co Ltd Impact absorbing member
JP2001140029A (en) * 1999-09-02 2001-05-22 Kobe Steel Ltd Energy absorbing member
JP2007119904A (en) * 2005-09-27 2007-05-17 Aisin Keikinzoku Co Ltd High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161964A1 (en) * 2015-04-09 2016-10-13 广东欧珀移动通信有限公司 Aluminum alloy and anode oxidation method thereof
US10626517B2 (en) 2015-04-09 2020-04-21 Guangdong Oppo Mobile Telecommunications Corp., Lt Aluminum alloy and method of anodizing same
WO2018102324A1 (en) * 2016-12-02 2018-06-07 Honeywell International Inc. Ecae materials for high strength aluminum alloys
US10851447B2 (en) 2016-12-02 2020-12-01 Honeywell International Inc. ECAE materials for high strength aluminum alloys
US11248286B2 (en) 2016-12-02 2022-02-15 Honeywell International Inc. ECAE materials for high strength aluminum alloys
US11421311B2 (en) 2016-12-02 2022-08-23 Honeywell International Inc. ECAE materials for high strength aluminum alloys
US11649535B2 (en) 2018-10-25 2023-05-16 Honeywell International Inc. ECAE processing for high strength and high hardness aluminum alloys

Also Published As

Publication number Publication date
JP2007100157A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4753240B2 (en) High-strength aluminum alloy material and method for producing the alloy material
JP5371173B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP4725019B2 (en) Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material
JP6807142B2 (en) Aluminum alloy substrate for magnetic disks and its manufacturing method
JP5365194B2 (en) Steel sheet having high {222} plane integration and method for producing the same
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
CN107075620B (en) Aluminum alloy brazing sheet having high strength, high corrosion resistance, and high elongation of plateau material
WO2012176345A1 (en) High-strength aluminum alloy material and method for producing same
JP2012207302A (en) METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY
JP6427267B2 (en) Aluminum alloy substrate for magnetic disk, method of manufacturing the same, and magnetic disk using the aluminum alloy substrate for magnetic disk
JP2018178243A (en) Cu-Co-Si-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD, AND COMPONENT USING THE SHEET MATERIAL
WO2012176744A1 (en) High-strength aluminum alloy material and method for producing same
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
TWI434939B (en) Aluminium alloy and process of preparation thereof
JP2010255120A (en) Aluminum alloy fin material for heat exchanger
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
WO2017086470A1 (en) Aluminum alloy material and production method therefor
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2003221637A (en) Aluminum alloy plate for fabrication and its manufacturing process
JP7053281B2 (en) Aluminum alloy clad material and its manufacturing method
JP5762387B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP6587533B2 (en) Aluminum alloy extruded material for cutting with excellent fatigue strength characteristics and method for producing the same
JP5415016B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2001020027A (en) Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE
JP2004315878A (en) Method for manufacturing aluminum alloy sheet to be formed superior in hem bendability and surface quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees